1
|
Shanab O, Fareed F, Nassar AY, Abd-Elhafeez HH, Ahmed AS, El-Zamkan MA. Molecular characterization of histidine and tyrosine decarboxylating Enterococcus species isolated from some milk products. BMC Microbiol 2025; 25:234. [PMID: 40264025 PMCID: PMC12016370 DOI: 10.1186/s12866-025-03940-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 03/28/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND Fermented foods can cause adverse effects on human health because of the biogenic amines (BAs) accumulating through amino acid decarboxylation. This study investigated the presence of BAs including tyramine and histamine in 240 samples of some cheese and fermented milk samples using high-performance liquid chromatography. Another aim of this study is to isolate and identify Enterococcus spp. as the most important and frequent BA producer in the examined samples. The isolated Enterococcus spp. was investigated phenotypically for their capacity to produce amino acid decarboxylase enzyme using decarboxylase microplate assay, and genotypically through molecular detection of some genes encoding amino acid decarboxylation (tyrdc and hdc). Biogenic amines producing enterococci were then investigated for their antimicrobial resistance, biofilm production as well as their virulence determinants. RESULTS Tyramine and histamine could be detected in 86.7 and 87.9% of the investigated samples with 52.9% being contaminated with Enterococcus spp. Significant correlation between the incidence of Enterococci enterococci and BAs formed in the examined samples (P < 0.0001). tyrdc and hdc genes were detected in 85 and 5% of amino acid decarboxylating Enterococcus spp., respectively. A high percentage of Enterococcus isolates (57.5%) were multidrug-resistant and resistance against penicillin was widespread among isolates followed by tetracycline, vancomycin, erythromycin and linezolid. Also, 77.5% of the isolates were capable of forming biofilms and a highly significant correlation (P < 0.0001) was found between biofilm formation and multidrug resistance. The results showed that the rates of most virulence genes gelE, esp, ace, asa1, and cylA were 77.5. 47.5, 47.5, 35 and 7.5%, respectively, while the hyl gene was not detected in any isolates. CONCLUSION The study highlights the significant presence of BAs (TYM and HIS) in cheese and fermented milk samples, with a strong correlation between enterococci contamination and TYM production. The high prevalence of tyramine-producing Enterococcus species poses a notable public health concern especially with the high prevalence of multidrug-resistant, biofilm production and virulence in BAs producing Enterococcus spp. in dairy products, emphasizing the urgent need for improved antimicrobial stewardship among food producers and veterinarians to mitigate the risk of transferring resistant strains to humans.
Collapse
Affiliation(s)
- Obeid Shanab
- Department of Biochemistry, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Faten Fareed
- Department of Biochemistry, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Ahmed Y Nassar
- Department of Biochemistry, Faculty of Medicine, Assiut University, Assiut, 71526, Egypt
| | - Hanan H Abd-Elhafeez
- Department of Cell and Tissues, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt.
| | - Ahmed Shaban Ahmed
- Department of Food Hygiene and Control (Milk Hygiene), Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Mona A El-Zamkan
- Department of Food Hygiene and Control (Milk Hygiene), Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt.
| |
Collapse
|
2
|
Rudnicki K, Powałka E, Marciniak K, Poltorak L. Ready-to-use polymeric films used as the electrified liquid-liquid interface supports. Talanta 2025; 285:127256. [PMID: 39616752 DOI: 10.1016/j.talanta.2024.127256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/30/2024] [Accepted: 11/19/2024] [Indexed: 01/23/2025]
Abstract
In this work, we have tested two commercially available polymeric films: one with natural porosity (polyvinylidene difluoride - PVDF) and the other modified to include micropores (ethylene-vinyl acetate - EVA) created through needle puncturing. Subsequently, these films were successfully employed for the miniaturization of the electrified liquid-liquid interface formed between water and 1,2-dichloroethane solutions. The geometry of the membranes was assessed with confocal microscopy, the aqueous phase wettability was evaluated with a drop-shape analyzer whereas their ability to support the electrified liquid-liquid interfaces was followed with ion transfer voltammetry. Finally, the resulting platforms were applied to the electroanalytical detection of 2-phenylethylamine.
Collapse
Affiliation(s)
- Konrad Rudnicki
- University of Lodz, Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, Electrochemistry@Soft Interfaces Team, Tamka 12, Lodz 91-403, Poland.
| | - Emilia Powałka
- University of Lodz, Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, Electrochemistry@Soft Interfaces Team, Tamka 12, Lodz 91-403, Poland
| | - Karolina Marciniak
- University of Lodz, Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, Electrochemistry@Soft Interfaces Team, Tamka 12, Lodz 91-403, Poland
| | - Lukasz Poltorak
- University of Lodz, Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, Electrochemistry@Soft Interfaces Team, Tamka 12, Lodz 91-403, Poland
| |
Collapse
|
3
|
Redruello B, Arranz D, Szekeres B, Del Rio B, Alvarez MA. Identification of technological/metabolic/environmental profiles associated with cheeses accumulating the neuroactive compound tryptamine. Food Chem 2024; 460:140622. [PMID: 39089014 DOI: 10.1016/j.foodchem.2024.140622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/09/2024] [Accepted: 07/22/2024] [Indexed: 08/03/2024]
Abstract
Tryptamine is a neuromodulator of the central nervous system. It is also a biogenic amine, formed by the microbial decarboxylation of L-tryptophan. Tryptamine accumulation in cheese has been scarcely examined. No studies are available regarding the factors that could influence its accumulation. Determining the tryptamine content and identifying the factors that influence its accumulation could help in the design of functional tryptamine-enriched cheeses without potentially toxic concentrations being reached. We report the tryptamine concentration of 300 cheese samples representing 201 varieties. 16% of the samples accumulated tryptamine, at between 3.20 mg kg-1 and 3012.14 mg kg-1 (mean of 29.21 mg kg-1). 4.7% of cheeses accumulated tryptamine at higher levels than those described as potentially toxic. Moreover, three technological/metabolic/environmental profiles associated with tryptamine-containing cheese were identified, as well as the hallmark varieties reflecting each. Such knowledge could be useful for the dairy industry to control the tryptamine content of their products.
Collapse
Affiliation(s)
- Begoña Redruello
- Molecular Microbiology Research Group, Dairy Research Institute (IPLA) CSIC, Paseo Rio Linares s/n, 33300 Villaviciosa, Asturias, Spain; Molecular Microbiology Research Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario s/n, 33011 Oviedo, Asturias, Spain..
| | - David Arranz
- Molecular Microbiology Research Group, Dairy Research Institute (IPLA) CSIC, Paseo Rio Linares s/n, 33300 Villaviciosa, Asturias, Spain; Molecular Microbiology Research Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario s/n, 33011 Oviedo, Asturias, Spain
| | - Barbara Szekeres
- Molecular Microbiology Research Group, Dairy Research Institute (IPLA) CSIC, Paseo Rio Linares s/n, 33300 Villaviciosa, Asturias, Spain
| | - Beatriz Del Rio
- Molecular Microbiology Research Group, Dairy Research Institute (IPLA) CSIC, Paseo Rio Linares s/n, 33300 Villaviciosa, Asturias, Spain; Molecular Microbiology Research Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario s/n, 33011 Oviedo, Asturias, Spain
| | - Miguel A Alvarez
- Molecular Microbiology Research Group, Dairy Research Institute (IPLA) CSIC, Paseo Rio Linares s/n, 33300 Villaviciosa, Asturias, Spain; Molecular Microbiology Research Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario s/n, 33011 Oviedo, Asturias, Spain
| |
Collapse
|
4
|
Thawabteh AM, Ghanem AW, AbuMadi S, Thaher D, Jaghama W, Karaman R, Scrano L, Bufo SA. Antibacterial Activity and Antifungal Activity of Monomeric Alkaloids. Toxins (Basel) 2024; 16:489. [PMID: 39591244 PMCID: PMC11598475 DOI: 10.3390/toxins16110489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Scientists are becoming alarmed by the rise in drug-resistant bacterial and fungal strains, which makes it more costly, time-consuming, and difficult to create new antimicrobials from unique chemical entities. Chemicals with pharmacological qualities, such as antibacterial and antifungal elements, can be found in plants. Alkaloids are a class of chemical compounds found in nature that mostly consist of basic nitrogen atoms. Biomedical science relies heavily on alkaloid compounds. Based on 241 papers published in peer-reviewed scientific publications within the last ten years (2014-2024), we examined 248 natural or synthesized monomeric alkaloids that have antifungal and antibacterial activity against Gram-positive and Gram-negative microorganisms. Based on their chemical structure, the chosen alkaloids were divided into four groups: polyamine alkaloids, alkaloids with nitrogen in the side chain, alkaloids with nitrogen heterocycles, and pseudoalkaloids. With MIC values of less than 1 µg/mL, compounds 91, 124, 125, 136-138, 163, 164, 191, 193, 195, 205 and 206 shown strong antibacterial activity. However, with MIC values of below 1 µg/mL, compounds 124, 125, 163, 164, 207, and 224 demonstrated strong antifungal activity. Given the rise in antibiotic resistance, these alkaloids are highly significant in regard to their potential to create novel antimicrobial drugs.
Collapse
Affiliation(s)
- Amin Mahmood Thawabteh
- Department of Chemistry, Birzeit University, Birzeit P.O. Box 14, Palestine;
- Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, Birzeit P.O. Box 14, Palestine; (A.W.G.); (S.A.); (D.T.); (W.J.)
| | - Aseel Wasel Ghanem
- Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, Birzeit P.O. Box 14, Palestine; (A.W.G.); (S.A.); (D.T.); (W.J.)
| | - Sara AbuMadi
- Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, Birzeit P.O. Box 14, Palestine; (A.W.G.); (S.A.); (D.T.); (W.J.)
| | - Dania Thaher
- Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, Birzeit P.O. Box 14, Palestine; (A.W.G.); (S.A.); (D.T.); (W.J.)
| | - Weam Jaghama
- Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, Birzeit P.O. Box 14, Palestine; (A.W.G.); (S.A.); (D.T.); (W.J.)
| | - Rafik Karaman
- Pharmaceutical Sciences Department, Faculty of Pharmacy, Al-Quds University, Jerusalem 20002, Palestine;
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Laura Scrano
- Department of European and Mediterranean Cultures, University of Basilicata, Via Lanera 20, 75100 Matera, Italy;
| | - Sabino A. Bufo
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
- Department of Geography, Environmental Management and Energy Studies, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg 2092, South Africa
| |
Collapse
|
5
|
Sampedro L, Casado A, Redruello B, Del Rio B, Alvarez MA. Do the biogenic amines ethylamine, ethanolamine and methylamine reach toxic concentrations in foods? Food Chem Toxicol 2024; 192:114947. [PMID: 39179017 DOI: 10.1016/j.fct.2024.114947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
Ethylamine, ethanolamine and methylamine are biogenic amines (BA) - active metabolites that, despite having important biological functions, may accumulate at toxic concentrations in certain foods. Very little information exists on the toxicity of these BA in this context. This study provides new insights into their cytotoxicity with respect to a human intestinal epithelial cell line, as assessed using real-time cell analyzer technology. A preliminary evaluation of the cytotoxic mode of action was also performed. The present results show that only ethylamine was cytotoxic for these cells at food concentrations. These new data should help establish legal limits for these BA in foods.
Collapse
Affiliation(s)
- Lorena Sampedro
- Molecular Microbiology Group, Dairy Research Institute (IPLA, CSIC), Paseo Rio Linares s/n, 33300, Villaviciosa, Spain; Molecular Microbiology Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain.
| | - Angel Casado
- Molecular Microbiology Group, Dairy Research Institute (IPLA, CSIC), Paseo Rio Linares s/n, 33300, Villaviciosa, Spain; Molecular Microbiology Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain.
| | - Begoña Redruello
- Molecular Microbiology Group, Dairy Research Institute (IPLA, CSIC), Paseo Rio Linares s/n, 33300, Villaviciosa, Spain; Molecular Microbiology Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain.
| | - Beatriz Del Rio
- Molecular Microbiology Group, Dairy Research Institute (IPLA, CSIC), Paseo Rio Linares s/n, 33300, Villaviciosa, Spain; Molecular Microbiology Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain.
| | - Miguel A Alvarez
- Molecular Microbiology Group, Dairy Research Institute (IPLA, CSIC), Paseo Rio Linares s/n, 33300, Villaviciosa, Spain; Molecular Microbiology Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain.
| |
Collapse
|
6
|
Tzoupis H, Papavasileiou KD, Papatzelos S, Mavrogiorgis A, Zacharia LC, Melagraki G, Afantitis A. Systematic Review of Naturally Derived Substances That Act as Inhibitors of the Nicotine Metabolizing Enzyme Cytochrome P450 2A6. Int J Mol Sci 2024; 25:8031. [PMID: 39125600 PMCID: PMC11312336 DOI: 10.3390/ijms25158031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/20/2024] [Accepted: 07/21/2024] [Indexed: 08/12/2024] Open
Abstract
Tobacco smoking has been highlighted as a major health challenge in modern societies. Despite not causing death directly, smoking has been associated with several health issues, such as cardiovascular diseases, respiratory disorders, and several cancer types. Moreover, exposure to nicotine during pregnancy has been associated with adverse neurological disorders in babies. Nicotine Replacement Therapy (NRT) is the most common strategy employed for smoking cessation, but despite its widespread use, NRT presents with low success and adherence rates. This is attributed partially to the rate of nicotine metabolism by cytochrome P450 2A6 (CYP2A6) in each individual. Nicotine addiction is correlated with the high rate of its metabolism, and thus, novel strategies need to be implemented in NRT protocols. Naturally derived products are a cost-efficient and rich source for potential inhibitors, with the main advantages being their abundance and ease of isolation. This systematic review aims to summarize the natural products that have been identified as CYP2A6 inhibitors, validated through in vitro and/or in vivo assays, and could be implemented as nicotine metabolism inhibitors. The scope is to present the different compounds and highlight their possible implementation in NRT strategies. Additionally, this information would provide valuable insight regarding CYP2A6 inhibitors, that can be utilized in drug development via the use of in silico methodologies and machine-learning models to identify new potential lead compounds for optimization and implementation in NRT regimes.
Collapse
Affiliation(s)
- Haralampos Tzoupis
- Department of ChemInformatics, NovaMechanics Ltd., Nicosia 1070, Cyprus; (H.T.); (K.D.P.); (S.P.); (A.M.)
| | - Konstantinos D. Papavasileiou
- Department of ChemInformatics, NovaMechanics Ltd., Nicosia 1070, Cyprus; (H.T.); (K.D.P.); (S.P.); (A.M.)
- Department of ChemInformatics, NovaMechanics MIKE, 18545 Piraeus, Greece
| | - Stavros Papatzelos
- Department of ChemInformatics, NovaMechanics Ltd., Nicosia 1070, Cyprus; (H.T.); (K.D.P.); (S.P.); (A.M.)
| | - Angelos Mavrogiorgis
- Department of ChemInformatics, NovaMechanics Ltd., Nicosia 1070, Cyprus; (H.T.); (K.D.P.); (S.P.); (A.M.)
| | - Lefteris C. Zacharia
- School of Life and Health Sciences, University of Nicosia, Nicosia 1700, Cyprus;
| | - Georgia Melagraki
- Division of Physical Sciences and Applications, Hellenic Military Academy, 16672 Vari, Greece;
| | - Antreas Afantitis
- Department of ChemInformatics, NovaMechanics Ltd., Nicosia 1070, Cyprus; (H.T.); (K.D.P.); (S.P.); (A.M.)
- Department of ChemInformatics, NovaMechanics MIKE, 18545 Piraeus, Greece
- Division of Data Driven Innovation, Entelos Institute, Larnaca 6059, Cyprus
| |
Collapse
|
7
|
Kim D, Jin YH, Mah JH. Biogenic amine reduction by food additives in Cheonggukjang, a Korean fermented soybean paste, fermented with tyramine-producing heterogeneous bacterial species. Heliyon 2024; 10:e26135. [PMID: 38379996 PMCID: PMC10877360 DOI: 10.1016/j.heliyon.2024.e26135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/10/2024] [Accepted: 02/08/2024] [Indexed: 02/22/2024] Open
Abstract
This study was conducted to mitigate the food safety risks related to biogenic amine (BA) by reducing the BA content in Cheonggukjang using applicable food additives. In in-vitro experiments, of the additives tested, tartaric acid (TA), potassium sorbate (PS), and sodium benzoate (SB) considerably inhibited tyramine production of strains of Bacillus spp. and Enterococcus faecium while less affecting their growth. In addition to these three additives, two additives, glycine (GL) and nicotinic acid (NA), reported to have significant inhibitory effects in previous studies, were applied to the Cheonggukjang fermentation with prolific tyramine-producing strains of B. subtilis and E. faecium. The content of tyramine in the Cheonggukjang samples treated with TA, PS, SB, GL, and NA was significantly reduced by 27.5%, 50.7%, 51.4%, 76.1%, and 100.0%, respectively, compared to the control sample. Additionally, the content of polyamines (putrescine, cadaverine, spermidine, and spermine) in the GL-treated sample was reduced by 42.6%-62.4%. The mode of action could be attributed to inhibiting the bacterial decarboxylase activity and/or growth. Consequently, excluding NA that interfered with Cheonggukjang fermentation, GL was the most outstanding additive with an inhibitory effect on tyramine formation in food, followed by SB and PS, all of which showed a more than 50% reduction. Therefore, the use of appropriate additives could be one of the promising strategies to avoid the food safety issues implicated in BAs in Cheonggukjang.
Collapse
Affiliation(s)
- Dabin Kim
- Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea
| | - Young Hun Jin
- Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea
| | - Jae-Hyung Mah
- Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea
| |
Collapse
|
8
|
Bajrami D, Sarquis A, Ladero VM, Fernández M, Mizaikoff B. Rapid discrimination of Lentilactobacillus parabuchneri biofilms via in situ infrared spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123391. [PMID: 37714102 DOI: 10.1016/j.saa.2023.123391] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/01/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023]
Abstract
Microbial contamination in food industry is a source of foodborne illnesses and biofilm-related diseases. In particular, biogenic amines (BAs) accumulated in fermented foods via lactic acid bacterial activity exert toxic effects on human health. Among these, biofilms of histamine-producer Lentilactobacillus parabuchneri strains adherent at food processing equipment surfaces can cause food spoilage and poisoning. Understanding the chain of contamination is closely related to elucidating molecular mechanisms of biofilm formation. In the present study, an innovative approach using integrated chemical sensing technologies is demonstrated to fundamentally understand the temporal behavior of biofilms at the molecular level by combining mid-infrared (MIR) spectroscopy and fluorescence sensing strategies. Using these concepts, the biofilm forming capacity of six cheese-isolated L. parabuchneri strains (IPLA 11151, 11150, 11129, 11125, 11122 and 11117) was examined. The cut-off values for the biofilm production ability of each strain were quantified using crystal violet (CV) assays. Real-time infrared attenuated total reflection spectroscopy (IR-ATR) combined with fluorescence quenching oxygen sensing provides insight into distinct molecular mechanisms for each strain. IR spectra showed significant changes in characteristic bands of amides, lactate, nucleic acids, and extracellular polymeric substances (i.e., lipopolysaccharides, phospholipids, phosphodiester, peptidoglycan, etc.), which are major contributors to biofilm maturation involved in the initial adhesion processes. Chemometric methods including principal component analysis and partial least square-discriminant analysis facilitated the rapid determination and classification of cheese isolated L. parabuchneri strains unambiguously differentiating the IR signatures based on their ability to produce biofilm. All biofilms were morphologically characterized by confocal laser scanning microscopy on relevant industrial equipment surfaces. In summary, this innovative approach combining MIR spectroscopy with luminescence sensing enables real-time insight into the molecular composition and formation of L. parabuchneri biofilms.
Collapse
Affiliation(s)
- Diellza Bajrami
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Agustina Sarquis
- Dairy Research Institute (IPLA-CSIC), Paseo Rio Linares s/n, 33300 Villaviciosa, Spain
| | - Victor M Ladero
- Dairy Research Institute (IPLA-CSIC), Paseo Rio Linares s/n, 33300 Villaviciosa, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - María Fernández
- Dairy Research Institute (IPLA-CSIC), Paseo Rio Linares s/n, 33300 Villaviciosa, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain.
| | - Boris Mizaikoff
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany; Hahn-Schickard, Sedanstrasse 14, 89077 Ulm, Germany.
| |
Collapse
|
9
|
Bahuguna A, Kumar V, Bodkhe G, Ramalingam S, Lim S, Joe AR, Lee JS, Kim SY, Kim M. Safety Analysis of Korean Cottage Industries' Doenjang, a Traditional Fermented Soybean Product: A Special Reference to Biogenic Amines. Foods 2023; 12:4084. [PMID: 38002142 PMCID: PMC10670832 DOI: 10.3390/foods12224084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
The typical Korean diet contains a significant quantity of doenjang owing to its unique taste and health benefits. However, the presence of anti-nutritional and toxic substances, such as biogenic amines and microbial pathogens, in doenjang has resulted in a loss of revenue and poor consumer health. The present study focused on the identification and quantification of different biogenic amines, pathogenic Bacillus cereus, and yeast counts in 36 doenjang products (designated as De-1 to De-36, 500 g each) procured from the different cottage industries situated in different parts of the Republic of Korea. The results indicated, only three samples were contaminated with B. cereus, exceeding the recommended limit (4 log CFU/g) suggested by the national standards of Korea. A total of six distinct yeasts were identified in different doenjang samples, whose comprehensive enzymatic profiling suggested the absence of harmful enzymes such as N-acetyl-β-glucosaminidase, α-chymotrypsin, and β-glucuronidase. The biogenic amines were detected in the range of 67.68 mg/kg to 2556.68 mg/kg and classified into six major groups based on hierarchical cluster analysis. All doenjang samples contained tryptamine, putrescine, cadaverine, histamine, and tyramine, while 94.44% were positive for spermidine and spermine. The results documented the analysis of traditional cottage industry doenjang and suggest the need for constant monitoring to ensure the safety of food for the consumer.
Collapse
Affiliation(s)
- Ashutosh Bahuguna
- Department of Food Science and Technology, Yeungnam University, Gyeongsan 38541, Republic of Korea; (A.B.); (V.K.); (G.B.); (S.R.); (S.L.); (A.-r.J.)
| | - Vishal Kumar
- Department of Food Science and Technology, Yeungnam University, Gyeongsan 38541, Republic of Korea; (A.B.); (V.K.); (G.B.); (S.R.); (S.L.); (A.-r.J.)
| | - Gajanan Bodkhe
- Department of Food Science and Technology, Yeungnam University, Gyeongsan 38541, Republic of Korea; (A.B.); (V.K.); (G.B.); (S.R.); (S.L.); (A.-r.J.)
| | - Srinivasan Ramalingam
- Department of Food Science and Technology, Yeungnam University, Gyeongsan 38541, Republic of Korea; (A.B.); (V.K.); (G.B.); (S.R.); (S.L.); (A.-r.J.)
| | - SeMi Lim
- Department of Food Science and Technology, Yeungnam University, Gyeongsan 38541, Republic of Korea; (A.B.); (V.K.); (G.B.); (S.R.); (S.L.); (A.-r.J.)
| | - Ah-ryeong Joe
- Department of Food Science and Technology, Yeungnam University, Gyeongsan 38541, Republic of Korea; (A.B.); (V.K.); (G.B.); (S.R.); (S.L.); (A.-r.J.)
| | - Jong Suk Lee
- Division of Food & Nutrition and Cook, Taegu Science University, Daegu 41453, Republic of Korea;
| | - So-Young Kim
- Department of Agrofood Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea;
| | - Myunghee Kim
- Department of Food Science and Technology, Yeungnam University, Gyeongsan 38541, Republic of Korea; (A.B.); (V.K.); (G.B.); (S.R.); (S.L.); (A.-r.J.)
| |
Collapse
|
10
|
Świder O, Roszko MŁ, Wójcicki M. The inhibitory effects of plant additives on biogenic amine formation in fermented foods - a review. Crit Rev Food Sci Nutr 2023; 64:12935-12960. [PMID: 37724793 DOI: 10.1080/10408398.2023.2258964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Fermented food has unique properties and high nutritional value, and thus, should constitute a basic element of a balanced and health-promoting diet. However, it can accumulate considerable amount of biogenic amines (BAs), which ingested in excess can lead to adverse health effects. The application of plant-derived additives represents a promising strategy to ensure safety or enhance the functional and organoleptic properties of fermented food. This review summarizes currently available data on the application of plant-origin additives with the aim to reduce BA content in fermented products. The importance of ensuring fermented food safety has been highlighted considering the growing evidence of beneficial effects resulting from the consumption of this type of food, as well as the increasing number of individuals sensitive to BAs. The examined plant-origin additives reduced the BA concentration to varying degrees, and their efficacy depended on the type of additive, matrix, autochthonous, and inoculated microorganisms, as well as the manufacturing conditions. The main mechanisms of action include antimicrobial effects and the inhibition of microbial decarboxylases. Further research on the optimization of bioactive substances extraction, standardization of their chemical composition, and development of detailed procedures for its use in fermented products manufacturing are needed.
Collapse
Affiliation(s)
- Olga Świder
- Department of Food Safety and Chemical Analysis, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Warsaw, Poland
| | - Marek Łukasz Roszko
- Department of Food Safety and Chemical Analysis, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Warsaw, Poland
| | - Michał Wójcicki
- Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Warsaw, Poland
| |
Collapse
|
11
|
Montegiove N, Leonardi L, Cesaretti A, Pellegrino RM, Pellegrino A, Emiliani C, Calzoni E. Biogenic Amine Content Analysis of Three Chicken-Based Dry Pet Food Formulations. Animals (Basel) 2023; 13:1945. [PMID: 37370455 DOI: 10.3390/ani13121945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
The pet food market is constantly expanding, and more and more attention is paid to the feeding of pets. Dry foods stand out and are often preferred due to their long shelf life, ease of administration, and low cost. In this context, dry foods are formulated from fresh meats, meat meals, or a mix of the two. These raw materials are often meat not fit for human consumption; they might be subject to contamination and proliferation of microorganisms which, by degrading the organic component, can lead to the formation of undesirable by-products such as biogenic amines. These nitrogenous compounds obtained by decarboxylation of amino acids can therefore be found in high-protein foods, and their ingestion in large quantities can cause intoxication and be harmful. This study aims at analyzing the possible presence of biogenic amines in three different formulations of chicken-based kibbles for pets: one obtained from fresh meat, one from meat meal, and one from a mix of the two. This study is also focused on the presence of free amino acids as they represent the key substrate for decarboxylating enzymes. Mass spectrometry (Q-TOF LC/MS) was used to analyze the presence of biogenic amines and free amino acids. The results show that fresh-meat-based products have a lower content of biogenic amines, and at the same time a higher quantity of free amino acids; on the contrary, meat-meal- and mix-based products have a greater quantity of biogenic amines and a lower concentration of free amino acids, suggesting that there has been a higher microbial proliferation as proved by the total aerobic mesophilic bacteria counts. It is therefore clear that fresh-meat-based kibbles are to be preferred when they are used for preparing dry pet food due to the lowest concentration of biogenic amines.
Collapse
Affiliation(s)
- Nicolò Montegiove
- Department of Chemistry, Biology and Biotechnology, Biochemistry and Molecular Biology Section, University of Perugia, Via del Giochetto, 06126 Perugia, Italy
| | - Leonardo Leonardi
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy
| | - Alessio Cesaretti
- Department of Chemistry, Biology and Biotechnology, Biochemistry and Molecular Biology Section, University of Perugia, Via del Giochetto, 06126 Perugia, Italy
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via del Giochetto, 06126 Perugia, Italy
| | - Roberto Maria Pellegrino
- Department of Chemistry, Biology and Biotechnology, Biochemistry and Molecular Biology Section, University of Perugia, Via del Giochetto, 06126 Perugia, Italy
| | | | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, Biochemistry and Molecular Biology Section, University of Perugia, Via del Giochetto, 06126 Perugia, Italy
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via del Giochetto, 06126 Perugia, Italy
| | - Eleonora Calzoni
- Department of Chemistry, Biology and Biotechnology, Biochemistry and Molecular Biology Section, University of Perugia, Via del Giochetto, 06126 Perugia, Italy
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via del Giochetto, 06126 Perugia, Italy
| |
Collapse
|
12
|
Bartkiene E, Rimsa A, Zokaityte E, Starkute V, Mockus E, Cernauskas D, Rocha JM, Klupsaite D. Changes in the Physicochemical Properties of Chia ( Salvia hispanica L.) Seeds during Solid-State and Submerged Fermentation and Their Influence on Wheat Bread Quality and Sensory Profile. Foods 2023; 12:foods12112093. [PMID: 37297338 DOI: 10.3390/foods12112093] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/17/2023] [Accepted: 05/20/2023] [Indexed: 06/12/2023] Open
Abstract
This study aimed at investigating the impacts of 24 h of either solid-state fermentation (SSF) or submerged fermentation (SMF) with Lactiplantibacillus plantarum strain No. 122 on the physico-chemical attributes of chia seeds (CS). Furthermore, this study examined how adding fermented chia seeds (10, 20, and 30% concentrations) affected the properties and sensory profile of wheat bread. Acidity, lactic acid bacteria (LAB) viable counts, biogenic amine (BA), and fatty acid (FA) profiles of fermented chia seeds were analysed. The main quality parameters, acrylamide concentration, FA and volatile compound (VC) profiles, sensory characteristics, and overall acceptability of the obtained breads, were analysed. A decline in the concentration of certain BA and saturated FA and an increase in polyunsaturated FA and omega-3 (ω-3) were found in fermented CS (FCS). The same tendency in the FA profile was observed in both breads, i.e., breads with non-fermented CS (NFCS) or FCS. The quality parameters, VC profile, and sensory attributes of wheat bread were significantly affected by the addition of NFCS or FCS to the main bread formula. All supplemented breads had reduced specific volume and porosity, but SSF chia seeds increased moisture and decreased mass loss after baking. The lowest acrylamide content was found in bread with a 30% concentration of SSF chia seeds (11.5 µg/kg). The overall acceptance of supplemented breads was lower than the control bread, but breads with 10 and 20% SMF chia seed concentrations were still well accepted (on average, 7.4 score). Obtained results highlight that fermentation with Lp. plantarum positively contributes to chia seed nutritional value, while incorporation of NFCS and FCS at certain levels results in an improved FA profile, certain sensory attributes, and reduced acrylamide content in wheat bread.
Collapse
Affiliation(s)
- Elena Bartkiene
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
| | - Arnoldas Rimsa
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
| | - Egle Zokaityte
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
| | - Vytaute Starkute
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
| | - Ernestas Mockus
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
| | - Darius Cernauskas
- Food Institute, Kaunas University of Technology, Radvilenu Road 19, LT-50254 Kaunas, Lithuania
| | - João Miguel Rocha
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| | - Dovile Klupsaite
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
| |
Collapse
|
13
|
Kwon C, Ediriweera MK, Kim Cho S. Interplay between Phytochemicals and the Colonic Microbiota. Nutrients 2023; 15:nu15081989. [PMID: 37111207 PMCID: PMC10145007 DOI: 10.3390/nu15081989] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/08/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Phytochemicals are natural compounds found in food ingredients with a variety of health-promoting properties. Phytochemicals improve host health through their direct systematic absorption into the circulation and modulation of the gut microbiota. The gut microbiota increases the bioactivity of phytochemicals and is a symbiotic partner whose composition and/or diversity is altered by phytochemicals and affects host health. In this review, the interactions of phytochemicals with the gut microbiota and their impact on human diseases are reviewed. We describe the role of intestinal microbial metabolites, including short-chain fatty acids, amino acid derivatives, and vitamins, from a therapeutic perspective. Next, phytochemical metabolites produced by the gut microbiota and the therapeutic effect of some selected metabolites are reviewed. Many phytochemicals are degraded by enzymes unique to the gut microbiota and act as signaling molecules in antioxidant, anti-inflammatory, anticancer, and metabolic pathways. Phytochemicals can ameliorate diseases by altering the composition and/or diversity of the gut microbiota, and they increase the abundance of some gut microbiota that produce beneficial substances. We also discuss the importance of investigating the interactions between phytochemicals and gut microbiota in controlled human studies.
Collapse
Affiliation(s)
- Chohee Kwon
- Department of Environmental Biotechnology, Graduate School of Industry, Jeju National University, Jeju 63243, Republic of Korea
| | - Meran Keshawa Ediriweera
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Colombo, Colombo 008, Sri Lanka
| | - Somi Kim Cho
- Department of Environmental Biotechnology, Graduate School of Industry, Jeju National University, Jeju 63243, Republic of Korea
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
14
|
Yu W, Zhang G, Wu D, Guo L, Huang X, Ning F, Liu Y, Luo L. Identification of the botanical origins of honey based on nanoliter electrospray ionization mass spectrometry. Food Chem 2023; 418:135976. [PMID: 36963136 DOI: 10.1016/j.foodchem.2023.135976] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 02/21/2023] [Accepted: 03/15/2023] [Indexed: 03/26/2023]
Abstract
The botanical origins of honey are important for the quality control and commercialization of honey. In this research, we established a nanoliter electrospray ionization mass spectrometry (Nano-ESI-MS) method to identify Castanopsis honey (CH), Eurya honey (EH), Dendropanax dentiger honey (DH), and Triadica cochinchinensis honey (TH). In total, 38 compounds were identified based on the collision-induced dissociation experiments by Nano-ESI-MS with 16 differential compounds and 7 quantified as potential differential markers. These four types of honey were distinguished from each other by their mass spectrometry data combined with multivariate analysis with three out of the 7 differential markers, i.e., phenethylamine, tricoumaroyl spermidine, and (+/-)-abscisic acid, identified as potential markers for CH, EH, and DH, respectively. Both the qualitative and quantitative results derived from Nano-ESI-MS were further verified by UPLC-Q/TOF-MS. Our studies provided the significant potential of the Nano-ESI-MS method in the identification of the botanical origins of different kinds of honey.
Collapse
Affiliation(s)
- Wenjie Yu
- College of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Gaowei Zhang
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Dong Wu
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Limin Guo
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Xueyong Huang
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Fangjian Ning
- College of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Yongquan Liu
- School of Life Sciences, Nanchang University, Nanchang 330031, China; College of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Liping Luo
- College of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| |
Collapse
|
15
|
Yue CS, Lim AK, Chia ML, Wong PY, Chin JSR, Wong WH. Determination of biogenic amines in chicken, beef, and mutton by dansyl chloride microwave derivatization in Malaysia. J Food Sci 2023; 88:650-665. [PMID: 36624628 DOI: 10.1111/1750-3841.16404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 10/31/2022] [Accepted: 11/14/2022] [Indexed: 01/11/2023]
Abstract
In this study, an improved dansyl-chloride derivatization technique using a microwave synthesizer was used for the qualitative and quantitative analyses of biogenic amine in the fresh meat samples. The derivatization technique was optimized in terms of temperature, reaction time, and spinning speed. The derivatization method together with a validated reversed-phase HPLC-DAD method was used for the determination of biogenic amines in chicken, beef, and mutton sold in the wet market. The results of the analyses showed that tryptamine, putrescine, and histamine were generally detected in all the three types of meat. Higher levels of histamine were found in chicken and beef. However, low levels of histamine were observed in mutton. Tyramine was either detected low or moderate in all the three types of meat. The biogenic amines of the fresh meat sold in the wet market is generally higher than the reported values. The mechanisms of biogenic amines-dansyl-chloride formation were investigated and proposed. PRACTICAL APPLICATION: The biogenic amine derivatization method was improved. The improved derivatization method can be potentially used for various food products beside meats for routine biogenic amine analyses due to its fast analysis time and simplicity. High levels of biogenic amines were generally found in the meat sold in the wet markets. However, proper handling of the raw meat can reduce the risk of infection.
Collapse
Affiliation(s)
- Chen Son Yue
- Department of Physical Science, Faculty of Applied Sciences, Tunku Abdul Rahman University of Management and Technology, Kuala Lumpur, Malaysia
| | - Ah Kee Lim
- Department of Bioscience, Faculty of Applied Sciences, Tunku Abdul Rahman University of Management and Technology, Kuala Lumpur, Malaysia
| | - Meow Lin Chia
- Department of Bioscience, Faculty of Applied Sciences, Tunku Abdul Rahman University of Management and Technology, Kuala Lumpur, Malaysia
| | - Pei Yin Wong
- Department of Physical Science, Faculty of Applied Sciences, Tunku Abdul Rahman University of Management and Technology, Kuala Lumpur, Malaysia
| | - Joey Siew Rey Chin
- Department of Physical Science, Faculty of Applied Sciences, Tunku Abdul Rahman University of Management and Technology, Kuala Lumpur, Malaysia
| | - Weng Hang Wong
- Department of Physical Science, Faculty of Applied Sciences, Tunku Abdul Rahman University of Management and Technology, Kuala Lumpur, Malaysia
| |
Collapse
|
16
|
Hui X, Wan Y, Dong H, Peng J, Wu W, Yang X, He Q. A promising insight into the inhibition of lipid oxidation, protein degradation and biogenic amine accumulation in postmortem fish: Functional glazing layers of modified bio-polymer. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
17
|
Yu W, Sun F, Xu R, Cui M, Liu Y, Xie Q, Guo L, Kong C, Li X, Guo X, Luo L. Chemical composition and anti-inflammatory activities of Castanopsis honey. Food Funct 2023; 14:250-261. [PMID: 36484340 DOI: 10.1039/d2fo02233h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Castanopsis is diffusely spread in tropical and subtropical regions and is an important nectar source plant in China. The Castanopsis honey (CH) is characterized by its bitter taste. However, its composition and functions remain unclear. In this study, the physicochemical parameters, chemical composition, and antioxidant capacity of CH were comprehensively investigated, with the anti-inflammatory effects of the Castanopsis honey extract (CHE) evaluated based on the RAW 264.7 cell inflammatory model. The results revealed a high level of quality in CH based on the quality standards. Among a total of 84 compounds identified in CH, 5 high response compounds and 29 phenols were further quantified by UPLC-Q/TOF-MS. The high content of phenylethylamine (117.58 ± 64.81 mg kg-1) was identified as a potential marker of CH. Furthermore, the CH showed evident antioxidant activities, and the anti-inflammatory activities of CHE were observed to inhibit the release of nitric oxide (NO) and reduce the content of tumor necrosis factor alpha (TNF-α) and improve the content of interleukin-10 (IL-10) by regulating the NF-κB pathway. Our study indicates that CH has sound physicochemical properties and biological activities with a high level of quality, providing strong experimental evidence to support the further economic and agricultural development and application of CH.
Collapse
Affiliation(s)
- Wenjie Yu
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Fengjie Sun
- School of Science and Technology, Georgia Gwinnett College, Lawrenceville, GA 30043, USA
| | - Ruixin Xu
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Meng Cui
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Yongquan Liu
- School of Life Sciences, Nanchang University, Nanchang, 330031, China.,College of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Quanyuan Xie
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Limin Guo
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Chenxian Kong
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Xin Li
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Xiali Guo
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Liping Luo
- College of Food and Health, Beijing Technology and Business University (BTBU), Beijing, 100048, China.
| |
Collapse
|
18
|
Do vine cropping and breeding practices affect the biogenic amines' content of produced wines? J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2022.104901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Li C, Han X, Han B, Deng H, Wu T, Zhao X, Huang W, Zhan J, You Y. Survey of the biogenic amines in craft beer from the Chinese market and the analysis of the formation regularity during beer fermentation. Food Chem 2022; 405:134861. [DOI: 10.1016/j.foodchem.2022.134861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/22/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
|
20
|
Wang H, Zhang H, Liu S, Qin L, Chen Q, Kong B. Analysis of biogenic amine in dry sausages collected from northeast China: From the perspective of free amino acid profile and bacterial community composition. Food Res Int 2022; 162:112084. [DOI: 10.1016/j.foodres.2022.112084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/19/2022] [Accepted: 10/22/2022] [Indexed: 11/04/2022]
|
21
|
Li Z, Ding B, Ali MRK, Zhao L, Zang X, Lv Z. Dual Effect of Tryptamine on Prostate Cancer Cell Growth Regulation: A Pilot Study. Int J Mol Sci 2022; 23:11087. [PMID: 36232383 PMCID: PMC9569450 DOI: 10.3390/ijms231911087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/25/2022] Open
Abstract
Abnormal tryptophan metabolism is linked to cancer and neurodegenerative diseases, and tryptophan metabolites have been reported as potential prostate cancer (PCa) biomarkers. However, little is known about the bioactivities of tryptophan metabolites on PCa cell growth. In this study, MTT and transwell assays were used to study the cytotoxicities of 13 major tryptophan metabolites on PCa and normal prostate epithelial cell lines. Ultraperformance liquid chromatography-high resolution mass spectrometry (UPLC-HRMS) was used to analyze metabolic changes in cells treated with tryptamine. Flow cytometry, confocal imaging, and Western blot were used to test the apoptosis induced by tryptamine. It was shown that tryptamine had obvious inhibitory effects on PCa cell lines PC-3 and LNCaP, stronger than those on the normal prostate cell line RWPE-1. Tryptamine was further shown to induce apoptosis and inhibit PC-3 cell migration. Metabolic changes including amino acid metabolism related to cell proliferation and metastasis were found in PC-3 cells treated with tryptamine. Furthermore, a PC-3 xenograft mouse model was used to study the effect of tryptamine in vivo. The intratumoral injection of tryptamine was demonstrated to significantly reduce the tumor growth and tumor sizes in vivo; however, intraperitoneal treatment resulted in increased tumor growth. Such dual effects in vivo advanced our understanding of the bioactivity of tryptamine in regulating prostate tumor development, in addition to its major role as a neuromodulator.
Collapse
Affiliation(s)
- Zhuangzhuang Li
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266235, China
| | - Baoyan Ding
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266235, China
| | - Mustafa R. K. Ali
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Lizhen Zhao
- College of Physics, Qingdao University, Qingdao 266071, China
| | - Xiaoling Zang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266235, China
| | - Zhihua Lv
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266235, China
| |
Collapse
|
22
|
Effect of Adding Bifidobacterium animalis BZ25 on the Flavor, Functional Components and Biogenic Amines of Natto by Bacillus subtilis GUTU09. Foods 2022; 11:foods11172674. [PMID: 36076859 PMCID: PMC9455604 DOI: 10.3390/foods11172674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/25/2022] [Accepted: 08/27/2022] [Indexed: 11/17/2022] Open
Abstract
Natto is a high-value fermented soybean produced by B. subtilis. However, B. subtilis produces a pungent amine odor. This study compared the volatile organic compounds (VOCs), free amino acids (FAAs) and biogenic amines (BAs), nattokinase (NK) of natto made by two-strain fermentation with Bifidobacterium animalis BZ25 and Bacillus subtilis GUTU09 (NMBB) and that of natto made by single-strain fermentation with Bacillus subtilis GUTU09 (NMB). Compared with NMB, volatile amine substances disappeared, ketones and aldehydes of NMBB were reduced, and alcohols increased. Besides that, the taste activity value of other bitter amino acids was lowered, and BA content was decreased from 255.88 mg/kg to 238.35 mg/kg but increased NK activity from 143.89 FU/g to 151.05 FU/g. Correlation analysis showed that the addition of BZ25 reduced the correlation between GUTU09 and BAs from 0.878 to 0.808, and pH was changed from a positive correlation to a negative one. All these results showed that the quality of natto was improved by two-strain co-fermentation, which laid a foundation for its potential industrial application.
Collapse
|
23
|
Simultaneous Voltammetric Determination of Tryptamine and Histamine in Wines Using a Carbon Paste Electrode Modified with Nickel Phthalocyanine. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02390-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Kim SY, Dang YM, Ha JH. Effect of various seasoning ingredients on the accumulation of biogenic amines in kimchi during fermentation. Food Chem 2022; 380:132214. [PMID: 35093653 DOI: 10.1016/j.foodchem.2022.132214] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 11/24/2022]
Abstract
This study was aimed at evaluating the effect of basic ingredients (white radish, red pepper powder, garlic, ginger, Welsh onion, fish sauce, and sticky rice porridge) used for kimchi seasoning on the accumulation of biogenic amines (BAs) during kimchi fermentation. Initial accumulation of cadaverine, putrescine, histamine, 2-phenylethylamine, tyramine, and tryptamine occurred mainly owing to fish sauce. Putrescine and tyramine content increased rapidly, reaching 14-15-times the initial values after 7 days of fermentation. Total BA content of kimchi without fish sauce was 42-63% lower than that of kimchi with 5% fish sauce. Moreover, the total BA content of kimchi with 8% red pepper powder added was 25-44% lower than that of kimchi without it. These results show that addition of less fish sauce and more red pepper powder can effectively decrease the total BA content in kimchi.
Collapse
Affiliation(s)
- Su-Yeon Kim
- Hygienic Safety and Distribution Research Group, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Yun-Mi Dang
- Hygienic Safety and Distribution Research Group, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Ji-Hyoung Ha
- Hygienic Safety and Distribution Research Group, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| |
Collapse
|
25
|
Jin YH, Lee J, Pawluk AM, Mah JH. Inhibitory effects of nicotinic acid, glycine, and other food additives on biogenic amine formation in Baechu kimchi fermentation. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
26
|
Update on Biogenic Amines in Fermented and Non-Fermented Beverages. Foods 2022; 11:foods11030353. [PMID: 35159503 PMCID: PMC8834261 DOI: 10.3390/foods11030353] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/20/2022] [Accepted: 01/22/2022] [Indexed: 01/12/2023] Open
Abstract
The formation of biogenic amines in food and beverages is mainly due to the presence of proteins and/or free amino acids that represent the substrates for microbial or natural enzymes with decarboxylation or amination activity. Fermentation occurring in many alcoholic beverages, such as wine, beer, cider, liqueurs, as well as coffee and tea, is one of the main processes affecting their production. Some biogenic amines can also be naturally present in some fruit juices or fruit-based drinks. The dietary intake of such compounds should consider all their potential sources by both foods and drinks, taking in account the health impact on some consumers that represent categories at risk for a deficient metabolic activity or assuming inhibiting drugs. The most important tool to avoid their adverse effects is based on prevention through the selection of lactic acid bacteria with low decarboxylating activity or good manufacturing practices hurdling the favoring conditions on biogenic amines' production.
Collapse
|
27
|
Lee J, Jin YH, Pawluk AM, Mah JH. Reduction in Biogenic Amine Content in Baechu (Napa Cabbage) Kimchi by Biogenic Amine-Degrading Lactic Acid Bacteria. Microorganisms 2021; 9:microorganisms9122570. [PMID: 34946171 PMCID: PMC8704687 DOI: 10.3390/microorganisms9122570] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 11/16/2022] Open
Abstract
This study was performed to mine biogenic amine (BA)-degrading lactic acid bacteria (LAB) from kimchi and to investigate the effects of the LAB strains on BA reduction in Baechu kimchi fermentation. Among 1448 LAB strains isolated from various kimchi varieties, five strains capable of considerably degrading histamine and/or tyramine were selected through in vitro tests and identified as Levilactobacillus brevis PK08, Lactiplantibacillus pentosus PK05, Leuconostoc mesenteroides YM20, L. plantarum KD15, and Latilactobacillus sakei YM21. The selected strains were used to ferment five groups of Baechu kimchi, respectively. The LB group inoculated with L. brevis PK08 showed the highest reduction in tyramine content, 66.65% and 81.89%, compared to the control group and the positive control group, respectively. Other BA content was also considerably reduced, by 3.76–89.26% (five BAs) and 7.87–23.27% (four BAs), compared to the two control groups, respectively. The other inoculated groups showed similar or less BA reduction than the LB group. Meanwhile, a multicopper oxidase gene was detected in L. brevis PK08 when pursuing the BA degradation mechanism. Consequently, L. brevis PK08 could be applied to kimchi fermentation as a starter or protective culture to improve the BA-related safety of kimchi where prolific tyramine-producing LAB strains are present.
Collapse
|
28
|
Ogbole OO, Noleto-Dias C, Kamdem RST, Akinleye TE, Nkumah A, Ward JL, Beale MH. γ-Glutamyl-β-phenylethylamine, a novel α-glucosidase and α-amylase inhibitory compound from Termitomyces robustus, an edible Nigerian mushroom. Nat Prod Res 2021; 36:4681-4691. [PMID: 34878952 DOI: 10.1080/14786419.2021.2012774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Termitomyces species are known edible mushrooms in Nigeria, believed to have exceptional culinary and nutraceutical properties. Methanol extract from fruiting bodies of Termitomyces robustus was evaluated for antidiabetic activity using in vitro α-amylase and α-glucosidase assays. The isolation and structural elucidation of metabolites from the T. robustus extract afforded five compounds including a new natural product γ-glutamyl-β-phenylethylamine 3 and four known phenyl derivatives: tryptophan 1, 4-hydroxyphenylacetic acid 2, 4-hydroxyphenylpropionic acid 4, and phenyllactic acid 5. Structures were elucidated from analyses of spectroscopic data (1 D and 2 D NMR, HRESIMS) and all isolated compounds were tested for α-amylase and α-glycosidase inhibitory activity. The in vitro assay established crude extract to possess α- amylase and α-glucosidase inhibition with IC50 of 78.05 µg/mL and 86.10 µg/mL, respectively. The isolated compounds compared favourably with the standard drug, acarbose with IC50 ranging from 6.18-15.08 µg/mL and 18.28-44.63 µg/mL for α-amylase and glucosidase, respectively.
Collapse
Affiliation(s)
- Omonike O Ogbole
- Department of Pharmacognosy, Faculty of Pharmacy, University of Ibadan, Ibadan, Oyo State, Nigeria.,Department of Computational and Analytical Sciences, Rothamsted Research, Hertfordshire, United Kingdom
| | - Clarice Noleto-Dias
- Department of Computational and Analytical Sciences, Rothamsted Research, Hertfordshire, United Kingdom
| | - Ramsay S T Kamdem
- Department of Organic Chemistry, Higher Teachers Training College, The University of Yaounde I, Yaounde, Cameroon.,Institute of Organic and Analytical Chemistry, Bremen-University, Bremen, Germany
| | - Toluwanimi E Akinleye
- Department of Pharmacognosy, Faculty of Pharmacy, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Abraham Nkumah
- Department of Pharmacognosy, Faculty of Pharmacy, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Jane L Ward
- Department of Computational and Analytical Sciences, Rothamsted Research, Hertfordshire, United Kingdom
| | - Michael H Beale
- Department of Computational and Analytical Sciences, Rothamsted Research, Hertfordshire, United Kingdom
| |
Collapse
|
29
|
Hungerford JM. Histamine and Scombrotoxins. Toxicon 2021; 201:115-126. [PMID: 34419509 DOI: 10.1016/j.toxicon.2021.08.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 12/23/2022]
Abstract
Histamine intoxications result when histamine-metabolizing enzymes are compromised or overwhelmed by dietary histamine in the human body. This can occur either due to metabolic enzyme deficiencies, such as in histamine intolerance to wines, aged cheese and other foods or from high concentrations of histamine following ingestion of decomposed fish. The presence of histamine in decomposed fish and fish products results from bacterial decarboxylation of free L-histidine following product mishandling. Consequently, histamine intoxications from mishandled fish, commonly referred to as scombrotoxin fish poisoning (SFP) or scombroid poisoning, require high levels of free L-histidine only found in certain species of pelagic fish. Differential diagnosis is required of clinicians since dietary histamine intoxications produce the same symptoms typical of release of endogenous histamine due to IgE -mediated seafood allergies or anisakiasis. Although high levels of dietary histamine are responsible for SFP, histamine has important physiological functions and tends to exert toxic effects only at doses beyond the physiological range. Endogenous histamine is essential to local immune responses, regulation of gastric acid secretion in the gut, and neurotransmission in the central nervous system. Scombrotoxins, postulated to explain histamine's augmented toxicity in scombrotoxic fish, are a milieu of histamine and other bioactives. Since time-and-temperature abuse is required to produce high levels of histamine in fish, management consists of ensuring proper handling by identifying hazards and critical control points (HACCP) and maintaining a "cold chain" from catch to consumption. Reference methods for detecting histamine have received increased attention and the European Commission has validated a popular precolumn dansylation-based HPLC method through inter-laboratory collaboration and studied method equivalence with the AOAC fluorescence method 977.13 recognized by Codex Alimentarius. Much progress has been made during the last decade in the development and validation of rapid screening methods for detecting histamine in food and especially in fish products. These include many innovative sensors and several validated commercial test kits, many of them based on a recombinant form of the enzyme histamine dehydrogenase (HD).
Collapse
Affiliation(s)
- James M Hungerford
- Applied Technology Center, Pacific Northwest Laboratory, Office of Regulatory Affairs, US Food and Drug Administration, 22201 23rd Dr SE Bothell, WA, 98021, USA.
| |
Collapse
|
30
|
Omer AK, Mohammed RR, Ameen PSM, Abas ZA, Ekici K. Presence of Biogenic Amines in Food and Their Public Health Implications: A Review. J Food Prot 2021; 84:1539-1548. [PMID: 34375430 DOI: 10.4315/jfp-21-047] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/05/2021] [Indexed: 12/18/2022]
Abstract
ABSTRACT Essential foods as part of a daily meal may include numerous kinds of biogenic amines (BAs) at various concentrations. BAs have a variety of toxicological effects on human health and have been linked to multiple outbreaks of foodborne disease. BAs also are known to cause cancer based on their ability to react with nitrite salts, resulting in the production of carcinogenic organic compounds (nitrosamines). Ingestion of large quantities of BAs in food causes toxicological effects and health disorders, including psychoactive, vasoactive, and hypertensive effects and respiratory, gastrointestinal, cardiovascular, and neurological disorders. The toxicity of BAs is linked closely to the BAs histamine and tyramine. Other amines, such as phenylethylamine, putrescine, and cadaverine, are important because they can increase the negative effects of histamine. The key method for reducing BA concentrations and thus foodborne illness is management of the bacterial load in foods. Basic good handling and hygiene practices should be used to control the formation of histamine and other BAs and reduce the toxicity histamine and tyramine. A better understanding of BAs is essential to enhance food safety and quality. This review also includes a discussion of the public health implications of BAs in foods. HIGHLIGHTS
Collapse
Affiliation(s)
- Abdullah Khalid Omer
- Smart Health Tower, François Mitterrand Street, Sulaimani, Iraq.,Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Rebin Rafaat Mohammed
- Sulaimani Veterinary Directorate, Veterinary Quarantine, Bashmakh International Border, Sulaimani, Iraq
| | - Peshraw S Mohammed Ameen
- Sulaimani Veterinary Directorate, Veterinary Quarantine, Bashmakh International Border, Sulaimani, Iraq
| | - Zaniar Ali Abas
- Sulaimani Veterinary Directorate, Veterinary Quarantine, Bashmakh International Border, Sulaimani, Iraq
| | - Kamil Ekici
- Department of Food Hygiene and Technology, Veterinary College, University of Van Yününcü Yıl, Van, Turkey
| |
Collapse
|
31
|
Paley EL. Towards Understanding COVID-19: Molecular Insights, Co-infections, Associated Disorders, and Aging. J Alzheimers Dis Rep 2021; 5:571-600. [PMID: 34514341 PMCID: PMC8385430 DOI: 10.3233/adr-210010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND COVID-19 can be related to any diseases caused by microbial infection(s) because 1) co-infection with COVID-19-related virus and other microorganism(s) and 2) because metabolites produced by microorganisms such as bacteria, fungi, and protozoan can be involved in necrotizing pneumonia and other necrotizing medical conditions observed in COVID-19. OBJECTIVE By way of illustration, the microbial metabolite of aromatic amino acid tryptophan, a biogenic amine tryptamine inducing neurodegeneration in cell and animal models, also induces necrosis. METHODS This report includes analysis of COVID-19 positivity by zip codes in Florida and relation of the positivity to population density, possible effect of ecological and social factors on spread of COVID-19, autopsy analysis of COVID-19 cases from around the world, serum metabolomics analysis, and evaluation of autoantigenome related to COVID-19. RESULTS In the present estimations, COVID-19 positivity percent per zip code population varied in Florida from 4.65% to 44.3% (February 2021 data). COVID-19 analysis is partially included in my book Microbial Metabolism and Disease (2021). The autoantigenome related to COVID-19 is characterized by alterations in protein biosynthesis proteins including aminoacyl-tRNA synthetases. Protein biosynthesis alteration is a feature of Alzheimer's disease. Serum metabolomics of COVID-19 positive patients show alteration in shikimate pathway metabolism, which is associated with the presence of Alzheimer's disease-associated human gut bacteria. CONCLUSION Such alterations in microbial metabolism and protein biosynthesis can lead to toxicity and neurodegeneration as described earlier in my book Protein Biosynthesis Interference in Disease (2020).
Collapse
Affiliation(s)
- Elena L. Paley
- Expert BioMed, Inc. and Nonprofit Public Charity Stop Alzheimers Corp., Miami-Dade, FL, USA
| |
Collapse
|
32
|
Zokaityte E, Lele V, Starkute V, Zavistanaviciute P, Klupsaite D, Bartkevics V, Pugajeva I, Bērziņa Z, Gruzauskas R, Sidlauskiene S, Juodeikiene G, Santini A, Bartkiene E. The influence of combined extrusion and fermentation processes on the chemical and biosafety parameters of wheat bran. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111498] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Jaguey-Hernández Y, Aguilar-Arteaga K, Ojeda-Ramirez D, Añorve-Morga J, González-Olivares LG, Castañeda-Ovando A. Biogenic amines levels in food processing: Efforts for their control in foodstuffs. Food Res Int 2021; 144:110341. [PMID: 34053537 DOI: 10.1016/j.foodres.2021.110341] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 11/25/2022]
Abstract
Fermented and/or protein-rich foods, the most widely consumed worldwide, are the most susceptible to the presence of high levels of biogenic amines (BAs). Many reviews have focused on BAs toxicity and presence in foods; however, technological strategies such as evaluation of physical parameters, the addition of natural or synthetic compounds or the use of specific starter cultures of BAs reduction, and quick detection methods have been scarcely approached. In current research, there has been a focus on fast detection of BAs through colorimetric methods that allow these compounds to be quickly and easily identified by consumers. To reduce BAs presence in food, several alternatives have been developed and investigated with the aim of preventing negative effects caused by their intake, which can be applied before, during, or after processing. Food safety is one of the most important concerns of consumer and sanitary authorities. Therefore, detecting toxins such as BAs in food has become a priority for research. Recent reports that focus on the development of rapid detection methods of BAs are reviewed in this analysis. These methods have been successfully applied to food matrices with little to no sample pretreatment. Several alternatives for BAs reduction in food was also summarized. These findings will help the food industry to improve its processes for developing safe food.
Collapse
Affiliation(s)
- Yari Jaguey-Hernández
- Universidad Autonoma del Estado de Hidalgo, Chemistry Department, Carr. Pachuca-Tulancingo km. 4.5, 42184 Mineral de la Reforma, Hgo., Mexico
| | - Karina Aguilar-Arteaga
- Universidad Politécnica de Francisco I. Madero, Agroindustry Engineering Department, Carr. Tepatepec-San Juan Tepa km. 2, 42660 Francisco I. Madero, Hgo., Mexico
| | - Deyanira Ojeda-Ramirez
- Universidad Autonoma del Estado de Hidalgo, Veterinary Medicine Department, Rancho Universitario Av. Universidad km. 1, Ex-Hacienda de Aquetzalpa, 43600 Tulancingo, Hgo., Mexico
| | - Javier Añorve-Morga
- Universidad Autonoma del Estado de Hidalgo, Chemistry Department, Carr. Pachuca-Tulancingo km. 4.5, 42184 Mineral de la Reforma, Hgo., Mexico
| | - Luis Guillermo González-Olivares
- Universidad Autonoma del Estado de Hidalgo, Chemistry Department, Carr. Pachuca-Tulancingo km. 4.5, 42184 Mineral de la Reforma, Hgo., Mexico
| | - Araceli Castañeda-Ovando
- Universidad Autonoma del Estado de Hidalgo, Chemistry Department, Carr. Pachuca-Tulancingo km. 4.5, 42184 Mineral de la Reforma, Hgo., Mexico.
| |
Collapse
|
34
|
Biogenic Amines' Content in Safe and Quality Food. Foods 2021; 10:foods10010100. [PMID: 33418895 PMCID: PMC7825060 DOI: 10.3390/foods10010100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 01/02/2021] [Indexed: 11/16/2022] Open
Abstract
Biogenic amines (BAs) are bioactive compounds distributed in foods of all origins. Apart from their fundamental role in many body functions, great interest is recently being focused on their toxicological potential, and many pieces of research are being carried out to understand their occurrence related to both desired and undesired fermentative phenomena, chemical spoilage, low hygienic conditions, wrong handling, and criticism about technological factors of process and storage conditions. All these causes can contribute to a higher content of them in food, particularly of those hazardous to human health. This editorial has the purpose to collect works looking for new tools to limit the over-production of BAs' in food, see new food sources of them, and mainly to switch on a spotlight between the concept of safe food and BAs' content.
Collapse
|
35
|
N-(2-(1H-Indol-3-yl)ethyl)-2-(2-fluoro-[1,1′-biphenyl]-4-yl)propanamide. MOLBANK 2020. [DOI: 10.3390/m1177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
N-(2-(1H-Indol-3-yl)ethyl)-2-(2-fluoro-[1,1′-biphenyl]-4-yl)propanamide was prepared by a reaction between tryptamine and flurbiprofen, applying N,N’-Dicyclohexylcarbodiimide, as a coupling agent. The obtained new amide has a fragment similar to Brequinar, a compound used in SARS-CoV-2 treatment trials. The newly synthesized compound was fully analyzed and characterized via 1H, 13C-NMR, UV, IR, and mass spectral data.
Collapse
|
36
|
Yang Y, Hu W, Xia Y, Mu Z, Tao L, Song X, Zhang H, Ni B, Ai L. Flavor Formation in Chinese Rice Wine (Huangjiu): Impacts of the Flavor-Active Microorganisms, Raw Materials, and Fermentation Technology. Front Microbiol 2020; 11:580247. [PMID: 33281774 PMCID: PMC7691429 DOI: 10.3389/fmicb.2020.580247] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 09/22/2020] [Indexed: 11/13/2022] Open
Abstract
Huangjiu (Chinese rice wine) has been consumed for centuries in Asian countries and is known for its unique flavor and subtle taste. The flavor compounds of Huangjiu are derived from a wide range of sources, such as raw materials, microbial metabolic activities during fermentation, and chemical reactions that occur during aging. Of these sources, microorganisms have the greatest effect on the flavor quality of Huangjiu. To enrich the microbial diversity, Huangjiu is generally fermented under an open environment, as this increases the complexity of its microbial community and flavor compounds. Thus, understanding the formation of flavor compounds in Huangjiu will be beneficial for producing a superior flavored product. In this paper, a critical review of aspects that may affect the formation of Huangjiu flavor compounds is presented. The selection of appropriate raw materials and the improvement of fermentation technologies to promote the flavor quality of Huangjiu are discussed. In addition, the effects of microbial community composition, metabolic function of predominant microorganisms, and dynamics of microbial community on the flavor quality of Huangjiu are examined. This review thus provides a theoretical basis for manipulating the fermentation process by using selected microorganisms to improve the overall flavor quality of Huangjiu.
Collapse
Affiliation(s)
- Yijin Yang
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China.,School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Wuyao Hu
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yongjun Xia
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Zhiyong Mu
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Leren Tao
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Xin Song
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Hui Zhang
- Shanghai Jinfeng Wine Co., Ltd., Shanghai, China
| | - Bin Ni
- Shanghai Jinfeng Wine Co., Ltd., Shanghai, China
| | - Lianzhong Ai
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|