1
|
He J, Li M, Gao M, Li L, Liu Y, Gu T, Wang J, Zhang J. Differential volatile compounds between rice and tartary buckwheat by solid-state fermentation with Monascus purpureus. Int J Food Microbiol 2025; 435:111181. [PMID: 40168754 DOI: 10.1016/j.ijfoodmicro.2025.111181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/22/2025] [Accepted: 03/25/2025] [Indexed: 04/03/2025]
Abstract
The fermentation substrate influenced the quality and flavor of solid-state fermented products. Monascus purpureus solid-state fermentation was carried out with rice, tartary buckwheat (TB), and a combination of both (RTB) as fermentation substrates to explore the enrichment of functional components, the changes in the odor and volatile flavor components in Monascus fermented products. The fermentation process led to a decrease in starch content while increasing protein content and enriching the functional components in the final products. Additionally, Monascus pigments and monacolin K were produced during Monascus solid-state fermented rice (MSFR), TB (MSFTB) and RTB (MSFRTB). The fermentation of different raw materials resulted in variations in the composition of volatile flavor compounds (VFCs) in the fermented products. Compared to MSFR or MSFTB alone, MSFRTB could significantly increase the content of five VFCs, including nitrogen oxide, broad methane, sulfur organic, broad alcohol, and sulfur-chlor. The content of most VFCs in MSFRTB significantly increased compared to MSFR and MSFTB samples. Notably, VFCs such as 1-propanol, 2-methylpropanal, acetone, and ethanol were identified as the main flavor substances in MSFRTB. M. purpureus solid-state fermentation could enhance the nutritional composition, functional properties, and flavor quality of fermented products when compared to raw materials. The selection of fermentation raw materials significantly impacted the overall characteristics of the fermented products.
Collapse
Affiliation(s)
- Jingyi He
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, China
| | - Meng Li
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, China
| | - Mengxiang Gao
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, China; Institute of Food Science and Technology, Yangtze University, Jingzhou, Hubei 434025, China
| | - Li Li
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, China; Institute of Food Science and Technology, Yangtze University, Jingzhou, Hubei 434025, China
| | - Yingbao Liu
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, China
| | - Tong Gu
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, China
| | - Jinsong Wang
- College of Bioengineering, Jingchu University of Technology, Jingmen, Hubei 448000, China
| | - Jialan Zhang
- College of Animal Science and Technology, Yangtze University, Jingzhou, Hubei 434025, China.
| |
Collapse
|
2
|
Liu T, Zhang W, Wang S, Tian Y, Wang Y, Gao R, Chen S, Sun W, Ma W, Xu Z. Metabolome and transcriptome association study reveals biosynthesis of specialized benzylisoquinoline alkaloids in Phellodendron amurense. CHINESE HERBAL MEDICINES 2025; 17:178-188. [PMID: 39949809 PMCID: PMC11814251 DOI: 10.1016/j.chmed.2024.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/24/2024] [Accepted: 11/07/2024] [Indexed: 02/16/2025] Open
Abstract
Objective Benzylisoquinoline alkaloids (BIAs) have pharmacological functions and clinical use. BIAs are mainly distributed in plant species across the order Ranunculales and the genus Phellodendron from Sapindales. The BIA biosynthesis has been intensively investigated in Ranunculales species. However, the accumulation mechanism of BIAs in Phellodendron is largely unknown. The aim of this study is to unravel the biosynthetic pathways of BIAs in Phellodendron amurens. Methods The transcriptome and metabolome data from 18 different tissues of P. amurense were meticulously sequenced and subsequently subjected to a thorough analysis. Weighted gene co-expression network analysis (WGCNA), a powerful systems biology approach that facilitates the construction and subsequent analysis of co-expression networks, was utilized to identify candidate genes involved in BIAs biosynthesis. Following this, recombinant plasmids containing candidate genes were expressed in Escherichia coli, a widely used prokaryotic expression system. The purpose of this genetic engineering endeavor was to express the candidate genes within the bacteria, thereby enabling the assessment of the resultant enzyme activity. Results The synonymous substitutions per synonymous site for paralogs indicated that at least one whole genome duplication event has occurred. The potential BIA biosynthetic pathway of P. amurense was proposed, and two PR10/Bet v1 members, 14 CYP450s, and 33 methyltransferases were selected as related to BIA biosynthesis. One PR10/Bet v1 was identified as norcoclaurine synthase, which could catalyze dopamine and 4-hydroxyphenylacetaldehyde into (S)-norcoclaurine. Conclusion Our studies provide important insights into the biosynthesis and evolution of BIAs in non-Ranunculales species.
Collapse
Affiliation(s)
- Tingxia Liu
- College of Pharmaceutical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Wanran Zhang
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Sijia Wang
- College of Pharmaceutical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ya Tian
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Yifan Wang
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Ranran Gao
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shilin Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Wei Sun
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Wei Ma
- College of Pharmaceutical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Zhichao Xu
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
3
|
Wang P, Wei J, Hua X, Dong G, Dziedzic K, Wahab AT, Efferth T, Sun W, Ma P. Plant anthraquinones: Classification, distribution, biosynthesis, and regulation. J Cell Physiol 2024; 239:e31063. [PMID: 37393608 DOI: 10.1002/jcp.31063] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/10/2023] [Accepted: 05/22/2023] [Indexed: 07/04/2023]
Abstract
Anthraquinones are polycyclic compounds with an unsaturated diketone structure (quinoid moiety). As important secondary metabolites of plants, anthraquinones play an important role in the response of many biological processes and environmental factors. Anthraquinones are common in the human diet and have a variety of biological activities including anticancer, antibacterial, and antioxidant activities that reduce disease risk. The biological activity of anthraquinones depends on the substitution pattern of their hydroxyl groups on the anthraquinone ring structure. However, there is still a lack of systematic summary on the distribution, classification, and biosynthesis of plant anthraquinones. Therefore, this paper systematically reviews the research progress of the distribution, classification, biosynthesis, and regulation of plant anthraquinones. Additionally, we discuss future opportunities in anthraquinone research, including biotechnology, therapeutic products, and dietary anthraquinones.
Collapse
Affiliation(s)
- Peng Wang
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Jia Wei
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Xin Hua
- College of Life Sciences, Northeast Forestry University, Harbin, China
| | | | - Krzysztof Dziedzic
- Department of Food Technology of Plant Origin, Poznan' University of Life Sciences, Poznań, Poland
| | - Atia-Tul Wahab
- Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Wei Sun
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Pengda Ma
- College of Life Sciences, Northwest A&F University, Yangling, China
| |
Collapse
|
4
|
Liu T, Wang P, Chen Y, Sun B, Li Q, Wan H, Yang W, Ma P, Zhang D, Dong G, Chen S, Chen Q, Ma W, Sun W. LC-MS and MALDI-MSI-based metabolomic approaches provide insights into the spatial-temporal metabolite profiles of Tartary buckwheat achene development. Food Chem 2024; 449:139183. [PMID: 38604028 DOI: 10.1016/j.foodchem.2024.139183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/03/2024] [Accepted: 03/27/2024] [Indexed: 04/13/2024]
Abstract
Tartary buckwheat, celebrated as the "king of grains" for its flavonoid and phenolic acid richness, has health-promoting properties. Despite significant morphological and metabolic variations in mature achenes, research on their developmental process is limited. Utilizing Liquid chromatography-mass spectrometry and atmospheric pressure matrix-assisted laser desorption/ionization mass spectrometry imaging, we conducted spatial-temporal metabolomics on two cultivars during achene development. Metabolic profiles including 17 phenolic acids and 83 flavonoids are influenced by both varietal distinctions and developmental intricacies. Notably, flavonols, as major flavonoids, accumulated with achene ripening and showed a tissue-specific distribution. Specifically, flavonol glycosides and aglycones concentrated in the embryo, while methylated flavonols and procyanidins in the hull. Black achenes at the green achene stage have higher bioactive compounds and enhanced antioxidant capacity. These findings provide insights into spatial and temporal characteristics of metabolites in Tartary buckwheat achenes and serve as a theoretical guide for selecting optimal resources for food production.
Collapse
Affiliation(s)
- Tingxia Liu
- College of Pharmaceutical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Peng Wang
- College of Life Science, Northwest A & F University, Yangling 712100, China
| | - Yiling Chen
- Amway (China) Botanical R&D Centre, Wuxi 214115, China
| | - Boshi Sun
- College of Life Science, Northwest A & F University, Yangling 712100, China
| | - Qing Li
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Huihua Wan
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Wei Yang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Pengda Ma
- College of Life Science, Northwest A & F University, Yangling 712100, China
| | - Dong Zhang
- College of Agriculture, South China Agricultural University, Guangzhou Laboratory for Lingnan Modern Agriculture Science and Technology, Guangzhou 510642, China
| | | | - Shilin Chen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qingfu Chen
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Baoshan Beilu15 116, Guiyang 550001, China
| | - Wei Ma
- College of Pharmaceutical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| | - Wei Sun
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
5
|
Mubeen HM, Li Y, Hu C. Metabolite Diversity and Carbohydrate Distribution in Brassica campestris ssp. chinensis L. Cultivars: A UPLC-MS/MS Approach. BIOLOGY 2024; 13:568. [PMID: 39194506 DOI: 10.3390/biology13080568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024]
Abstract
Pak choi exhibits a wide range of phenotypic and morphological variations, significantly impacting its carbohydrate composition. This study aimed to analyze these variations by employing UPLC-MS/MS technology on eight biological replicates of seven Pak choi cultivars. The untargeted metabolic analysis identified 513 metabolites, focusing on 16 key carbohydrates, including monosaccharides, disaccharides, and polysaccharides. Monosaccharides were the most prevalent, which were followed by di-, poly-, and oligosaccharides. Suzhouqing had the highest number of differentially accumulated metabolites (DAMs), while Xiangqingcai had the least. Notably, the cultivars Xiangqingcai, Suzhouqing, and Aijiaohuang showed significant metabolite differentiation. The study found 114 metabolites that differed significantly between Suzhouqing and Aijiaohuang, of which 69 were upregulated and 45 were downregulated. In Xiangqingcai and Aijiaohuang, 66 metabolites were upregulated and 49 were downregulated. Between Xiangqingcai and Suzhouqing, 80 metabolites were downregulated and 53 were upregulated. Key carbohydrate digestion and absorption pathways were identified alongside the most enriched flavonoid biosynthesis pathway in Xiangqingcai and Suzhouqing. The findings highlight the considerable carbohydrate variation among Pak choi cultivars, providing valuable insights for targeted carbohydrate extraction and improving nutritional and agricultural practices.
Collapse
Affiliation(s)
- Hafiz Muhammad Mubeen
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Li
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunmei Hu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
6
|
González‐Ramírez I, López‐Gómez V, Cano‐Santana Z, Romero Pérez A, Hernández Cumplido J. Host-plant sex and phenology of Buddleja cordata Kunth interact to influence arthropod communities. Ecol Evol 2024; 14:e11555. [PMID: 38895571 PMCID: PMC11183185 DOI: 10.1002/ece3.11555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Intraspecific variation in plants is expected to have profound impacts on the arthropod communities associated with them. Because sexual dimorphism in plants is expected to provide consistent variation among individuals of the same species, researchers have often studied the effect it has on associated arthropods. Nevertheless, most studies have focused on the effect of sexual dimorphism in a single or a few herbivores, thus overlooking the potential effects on the whole arthropod community. Our main objective was to evaluate effects of Buddleja cordata's plant-sex on its associated arthropod community. We surveyed 13 pairs of male and female plants every 2 months during a year (June 2010 to April 2011). Every sampling date, we measured plant traits (water content and leaf thickness), herbivory, and the arthropod community. We did not find differences in herbivory between plant sex or through time. However, we found differences in water content through time, with leaf water-content matching the environmental seasonality. For arthropod richness, we found 68 morphospecies associated with female and 72 with male plants, from which 53 were shared by both sexes. We did not observe differences in morphospecies richness; however, we found sex-associated differences in the diversity of all species and differences on the diversity of the most abundant species with an interesting temporal component. During peak flowering season, male plants showed higher values on both parameters, but during the peak fructification season female plants showed the higher values on both diversity parameters. Our research exemplifies the interaction between plant-phenology and plant-sex as drivers of arthropod communities' diversity, even when plant sexual-dimorphism is inconspicuous, and highlighting the importance of accounting for seasonal variation. We stress the need of conducting more studies that test this time-dependent framework in other dioecious systems, as it has the potential to reconcile previous contrasting observations reported in the literature.
Collapse
Affiliation(s)
- I. González‐Ramírez
- Department of Integrative BiologyUniversity of California BerkeleyBerkeleyCaliforniaUSA
| | - V. López‐Gómez
- Instituto Nacional de Ecología y Cambio ClimáticoCoordinación General de Contaminación y Salud AmbientalCiudad de MéxicoMexico
| | - Z. Cano‐Santana
- Departamento de Ecología y Recursos NaturalesUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | - A. Romero Pérez
- Departamento de Ecología y Recursos NaturalesUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | - J. Hernández Cumplido
- Departamento de Ecología y Recursos NaturalesUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| |
Collapse
|
7
|
Li L, Cao X, Huang J, Zhang T, Wu Q, Xiang P, Shen C, Zou L, Li J, Li Q. Effect of Pleurotus eryngii mycelial fermentation on the composition and antioxidant properties of tartary buckwheat. Heliyon 2024; 10:e25980. [PMID: 38404826 PMCID: PMC10884446 DOI: 10.1016/j.heliyon.2024.e25980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/14/2024] [Accepted: 02/06/2024] [Indexed: 02/27/2024] Open
Abstract
In this study, we investigated the effect of solid-state fermentation of Pleurotus eryngii on the composition and antioxidant activity of Tartary buckwheat (TB). Firstly, the solid-state fermentation of P. eryngii mycelium with buckwheat was carried out, and the fermentation process was explored. The results of the extraction process and method selection experiments showed that the percolation extraction method was superior to the other two methods. The results of extraction rate, active components and antioxidant activity measurements before and after fermentation of TB extract showed that the extraction rate increased about 1.7 times after fermentation. Total flavonoids, rutin and triterpene contents were increased after fermentation compared to control. Meanwhile, LC-MS results showed an increase in the content of the most important substances in the fermented TB extract and the incorporation of new components, such as oleanolic acid, ursolic acid, amino acids, and D-chiral inositol. The fermented TB extract showed stronger antioxidant activity, while the protein and amino acid contents increased by 1.93-fold and 1.94-fold, respectively. This research was the first to use P. eryngii to ferment TB and prepared a lyophilized powder that could be used directly using vacuum freeze-drying technology. Not only the use of solid-state fermentation technology advantages of edible fungi to achieve value-added buckwheat, but also to broaden the scope of TB applications. This study will provide ideas and directions for the development and application of edible mushroom fermentation technology and TB.
Collapse
Affiliation(s)
- Lijiao Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Xiaonian Cao
- Luzhou Laojiao Co. Ltd., Luzhou, 646000, China
- National Engineering Research Center of Solid-State Brewing, Luzhou, 646000, China
| | - Jingwei Huang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Ting Zhang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Qian Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Peng Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Caihong Shen
- Luzhou Laojiao Co. Ltd., Luzhou, 646000, China
- National Engineering Research Center of Solid-State Brewing, Luzhou, 646000, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Jun Li
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
- Postdoctoral Research Station of Luzhou Laojiao Company, Luzhou, 646000, China
| |
Collapse
|
8
|
Wang P, Li Q, Wei J, Zeng S, Sun B, Sun W, Ma P. Germplasm Resources and Metabolite Marker Screening of High-Flavonoid Tartary Buckwheat ( Fagopyrum tataricum). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20131-20145. [PMID: 38063436 DOI: 10.1021/acs.jafc.3c06878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Tartary buckwheat is an annual minor cereal crop with a variety of secondary metabolites, endowing it with a high nutritional and medicinal value. Flavonoids constitute the primary compounds of Tartary buckwheat. Recently, metabolomics, as an adjunct breeding method, has been increasingly employed in crop research. This study explores the correlation between the total flavonoid content (TFC) and antioxidant capacity in 167 Tartary buckwheat varieties. Ten Tartary buckwheat varieties with significant differences in flavonoid content and antioxidant capacity were selected by cluster analysis. With the use of liquid chromatography-mass spectrometry, 58 flavonoid compounds were identified, namely, 42 flavonols, 10 flavanols, 3 flavanones, 1 isoflavone, 1 anthocyanidin, and 1 proanthocyanidin. Different samples were clearly separated by employing principal component analysis and partial least-squares discriminant analysis. Eight differential flavonoid compounds were further selected through volcano plots and variable importance in projection. Differential metabolites were highly correlated with TFC and antioxidant capacity. Finally, metabolic markers of kaempferol-3-O-hexoside, kaempferol-7-O-glucoside, and naringenin-O-hexoside were determined by the random forest model. The findings provide a basis for the selection and identification of Tartary buckwheat varieties with high flavonoid content and strong antioxidant activity.
Collapse
Affiliation(s)
- Peng Wang
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Qian Li
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Jia Wei
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun 130033, China
| | - Sijia Zeng
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Boshi Sun
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Wei Sun
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Pengda Ma
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
9
|
Zhao Q, Li Y, Li S, He X, Gu R. Comparative bioactivity evaluation and metabolic profiling of different parts of Duhaldea nervosa based on GC-MS and LC-MS. Front Nutr 2023; 10:1301715. [PMID: 38144429 PMCID: PMC10748410 DOI: 10.3389/fnut.2023.1301715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/24/2023] [Indexed: 12/26/2023] Open
Abstract
Duhaldea nervosa (Wallich ex Candolle) Anderberg has been widely used as medicine and food additive in China for a long history. Its roots, known as Xiaoheiyao, are the mainly used medicinal part, while the other tissues of D. nervosa are ignored as non-medicinal parts despite their high biomass, resulting in a huge waste of resources. To mine and expand the medicinal values of different parts of D. nervosa, metabolic analysis by GC/LC-MS and bioactivity evaluation were performed. Based on the antioxidant activity and correlation analysis, a metabolite-related network was constructed. A total of 45 volatile and 174 non-volatile compounds were identified. Among them, caffeoylquinic acids and derivatives were more abundant in roots and flowers, while coumaroyltartaric acids and derivatives were mainly present in stems and leaves. By multivariate analysis, 13 volatile and 37 non-volatile differential metabolites were found, respectively. In the bioactivity evaluation of different parts, the order of antioxidant capacity was flowers > roots > leaves or stems. The flowers showed the highest FRAP value (354.47 μM TE/g DW) and the lowest IC50 values in the DPPH (0.06 mg/mL) and ABTS (0.19 mg/mL) assay, while higher inhibitory activity against α-glucosidase was exhibited by flowers and leaves. This study first established the similarities and differences of phytochemicals and bioactivities in D. nervosa, providing a scientific basis for developing non-medicinal parts and guiding the clinical application of this medicinal and edible herb.
Collapse
Affiliation(s)
- Qian Zhao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuan Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Si Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofeng He
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rui Gu
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
10
|
Liu J, Yin J, Huang X, Liu C, Hu L, Huang Y, Geng F, Nie S. Anthraquinone Removal from Cassia obtusifolia Seed Water Extract Using Baking, Stir-Frying, and Adsorption Treatments: Effects on the Chemical Composition, Physicochemical Properties of Polysaccharides, and Antioxidant Activities of the Water Extract. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5721-5732. [PMID: 36971230 DOI: 10.1021/acs.jafc.3c00345] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Safety issues of the controversial anthraquinones from Cassia obtusifolia seed water extracts (CWEs) limit its application. This work aimed to remove the anthraquinones of CWEs by baking treatment (BT), stir-frying treatment (ST), and adsorption treatment (AT). Effects of these treatments on the chemical composition, physicochemical properties of polysaccharides, and antioxidant activities of CWEs were analyzed and compared. Results indicated that AT exhibited the best removal effect on the total anthraquinone among the three treatments. After AT, the contents of rhein, emodin, aloe-emodin, and aurantio-obtusin of the CWE were below the limit of detection. In addition, AT increased the contents of neutral sugars in CWEs in comparison to BT and ST. None of the treatments had an obvious influence on the structural characteristics of polysaccharides. However, AT decreased the antioxidant activity of CWEs due to their lower anthraquinone content. In summary, AT was considered as an efficient and simple method to remove anthraquinones, while retaining the features of polysaccharides.
Collapse
Affiliation(s)
- Jinjin Liu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi 330047, China
| | - Junyi Yin
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi 330047, China
| | - Xiaojun Huang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi 330047, China
| | - Cencen Liu
- Infinitus (China) Co. Ltd, Guangzhou 510263, China
| | - Liuyun Hu
- Infinitus (China) Co. Ltd, Guangzhou 510263, China
| | | | - Fang Geng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi 330047, China
- Food Laboratory of Zhongyuan, Luohe, Henan 462300, China
| |
Collapse
|
11
|
Liu X, Zhong C, Xie J, Liu H, Xie Z, Zhang S, Jin J. Geographical region traceability of Poria cocos and correlation between environmental factors and biomarkers based on a metabolomic approach. Food Chem 2023; 417:135817. [PMID: 36905692 DOI: 10.1016/j.foodchem.2023.135817] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 02/20/2023] [Accepted: 02/26/2023] [Indexed: 03/08/2023]
Abstract
The edible values of P. cocos from different origins vary significantly, therefore, it is important to investigate the traceability of geographical regions and identify the geographical biomarkers of P. cocos. The metabolites of P. cocos of the different geographical origins were assessed using liquid chromatography tandem-mass spectrometry, principal component analysis and orthogonal partial least-squares discriminant analysis (OPLS-DA). The OPLS-DA could clearly discriminate the metabolites of P. cocos from the three cultivation regions (YN, Yunnan; AH, Anhui; JZ, Hunan). Finally, three carbohydrates, four amino acids, and four triterpenoids were selected as biomarkers for P. cocos origin tracing. Correlation matrix analysis revealed that the contents of biomarkers were closely related to geographical origin. Altitude, temperature, and soil fertility were the main factors responsible for the differences in biomarker profiles in P. cocos. The metabolomics approach provides an effective strategy for tracing and identifying the biomarkers of P. cocos from different geographical origins.
Collapse
Affiliation(s)
- Xiaoliu Liu
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha 410013, China
| | - Can Zhong
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha 410013, China
| | - Jing Xie
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha 410013, China
| | - Hao Liu
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha 410013, China
| | - Zhenni Xie
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha 410013, China
| | - Shuihan Zhang
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha 410013, China
| | - Jian Jin
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha 410013, China.
| |
Collapse
|
12
|
Qian G, Li X, Zhang H, Zhang H, Zhou J, Ma X, Sun W, Yang W, He R, Wahab AT, Wan H, Li L. Metabolomics analysis reveals the accumulation patterns of flavonoids and phenolic acids in quinoa ( Chenopodium quinoa Willd.) grains of different colors. Food Chem X 2023; 17:100594. [PMID: 36845489 PMCID: PMC9945449 DOI: 10.1016/j.fochx.2023.100594] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
Quinoa grains are gaining increasing popularity owing to their high nutritional merits. However, only limited information is available on the metabolic profiles of quinoa grains. In this study, we determined the metabolic profiles of black, red, and white quinoa grains via an ultraperformance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESI-MS/MS)-based metabolomics. A total of 689 metabolites were identified, among which 251, 182, and 317 metabolites displayed different accumulation patterns in the three comparison groups (Black vs Red, Black vs White, and Red vs White), respectively. In particular, flavonoid and phenolic acid contents displayed considerable differences, with 22 flavonoids, 5 phenolic acids, and 1 betacyanin being differentially accumulated among the three quinoa cultivars. Additionally, correlation analysis showed that flavonoids and phenolic acids could act as betanin co-pigments in quinoa grains. In conclusion, this study provides comprehensive insights into the adequate utilization and development of novel quinoa-based functional foods.
Collapse
Affiliation(s)
- Guangtao Qian
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Xiangyu Li
- Institute of Crop Resources, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Heng Zhang
- State Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Hailong Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Jingwen Zhou
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Xiaohui Ma
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Wei Sun
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Wei Yang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ruikun He
- Byhealth Institute of Nutrition & Health, Guangzhou 510663, China
| | - Atia-tul Wahab
- Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Huihua Wan
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Corresponding authors at: Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, No.26 Hexing Rode, Xiangfang District, Harbin 150040, China (L. Li). Institute of Chinese Materia Medica, China Academy of Chinese Medical SciencesNo.16 Nanxiaojie, Dongzhimen Nei Ave, Dongcheng District, Beijing, 100700, China (H. Wan).
| | - Lixin Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
- Corresponding authors at: Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, No.26 Hexing Rode, Xiangfang District, Harbin 150040, China (L. Li). Institute of Chinese Materia Medica, China Academy of Chinese Medical SciencesNo.16 Nanxiaojie, Dongzhimen Nei Ave, Dongcheng District, Beijing, 100700, China (H. Wan).
| |
Collapse
|
13
|
Li R, Chen Z, Zheng R, Chen Q, Deng J, Li H, Huang J, Liang C, Shi T. QTL mapping and candidate gene analysis for yield and grain weight/size in Tartary buckwheat. BMC PLANT BIOLOGY 2023; 23:58. [PMID: 36703107 PMCID: PMC9878770 DOI: 10.1186/s12870-022-04004-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/14/2022] [Indexed: 06/18/2023]
Abstract
BACKGROUND Grain weight/size influences not only grain yield (GY) but also nutritional and appearance quality and consumer preference in Tartary buckwheat. The identification of quantitative trait loci (QTLs)/genes for grain weight/size is an important objective of Tartary buckwheat genetic research and breeding programs. RESULTS Herein, we mapped the QTLs for GY, 1000-grain weight (TGW), grain length (GL), grain width (GW) and grain length-width ratio (L/W) in four environments using 221 recombinant inbred lines (XJ-RILs) derived from a cross of 'Xiaomiqiao × Jinqiaomai 2'. In total, 32 QTLs, including 7 for GY, 5 for TGW, 6 for GL, 11 for GW and 3 for L/W, were detected and distributed in 24 genomic regions. Two QTL clusters, qClu-1-3 and qClu-1-5, located on chromosome Ft1, were revealed to harbour 7 stable major QTLs for GY (qGY1.2), TGW (qTGW1.2), GL (qGL1.1 and qGL1.4), GW (qGW1.7 and qGW1.10) and L/W (qL/W1.2) repeatedly detected in three and above environments. A total of 59 homologues of 27 known plant grain weight/size genes were found within the physical intervals of qClu-1-3 and qClu-1-5. Six homologues, FtBRI1, FtAGB1, FtTGW6, FtMADS1, FtMKK4 and FtANT, were identified with both non-synonymous SNP/InDel variations and significantly differential expression levels between the two parents, which may play important roles in Tatary buckwheat grain weight/size control and were chosen as core candidate genes for further investigation. CONCLUSIONS Two stable major QTL clusters related to grain weight/size and six potential key candidate genes were identified by homology comparison, SNP/InDel variations and qRT‒qPCR analysis between the two parents. Our research provides valuable information for improving grain weight/size and yield in Tartary buckwheat breeding.
Collapse
Affiliation(s)
- Ruiyuan Li
- Key Laboratory of Information and Computing Science of Guizhou Province, Guizhou Normal University, Guiyang, 550001, Guizhou, China
| | - Zhengfeng Chen
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, 550001, Guizhou, China
| | - Ran Zheng
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, 550001, Guizhou, China
| | - Qingfu Chen
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, 550001, Guizhou, China
| | - Jiao Deng
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, 550001, Guizhou, China
| | - Hongyou Li
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, 550001, Guizhou, China
| | - Juan Huang
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, 550001, Guizhou, China
| | - Chenggang Liang
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, 550001, Guizhou, China
| | - Taoxiong Shi
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, 550001, Guizhou, China.
| |
Collapse
|
14
|
Meng Y, Du Q, Du H, Wang Q, Wang L, Du L, Liu P. Analysis of chemotypes and their markers in leaves of core collections of Eucommia ulmoides using metabolomics. FRONTIERS IN PLANT SCIENCE 2023; 13:1029907. [PMID: 36699853 PMCID: PMC9868706 DOI: 10.3389/fpls.2022.1029907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
The leaves of Eucommia ulmoides contain various active compunds and nutritional components, and have successively been included as raw materials in the Chinese Pharmacopoeia, the Health Food Raw Material Catalogue, and the Feed Raw Material Catalogue. Core collections of E. ulmoides had been constructed from the conserved germplasm resources basing on molecular markers and morphological traits, however, the metabolite diversity and variation in this core population were little understood. Metabolite profiles of E. ulmoides leaves of 193 core collections were comprehensively characterized by GC-MS and LC-MS/MS based non-targeted metabolomics in present study. Totally 1,100 metabolites were identified and that belonged to 18 categories, and contained 120 active ingredients for traditional Chinese medicine (TCM) and 85 disease-resistant metabolites. Four leaf chemotypes of the core collections were established by integrated uses of unsupervised self-organizing map (SOM), supervised orthogonal partial least squares discriminant analysis (OPLS-DA) and random forest (RF) statistical methods, 30, 23, 43, and 23 chemomarkers were screened corresponding to the four chemotypes, respectively. The morphological markers for the chemotypes were obtained by weighted gene co-expression network analysis (WGCNA) between the chenomarkers and the morphological traits, with leaf length (LL), chlorophyll reference value (CRV), leaf dentate height (LDH), and leaf thickness (LT) corresponding to chemotypes I, II, III, and IV, respectively. Contents of quercetin-3-O-pentosidine, isoquercitrin were closely correlated to LL, leaf area (LA), and leaf perimeter (LP), suggesting the quercetin derivatives might influence the growth and development of E. ulmoides leaf shape.
Collapse
Affiliation(s)
- Yide Meng
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou, China
| | - Qingxin Du
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou, China
| | - Hongyan Du
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou, China
| | - Qi Wang
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou, China
| | - Lu Wang
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou, China
| | - Lanying Du
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou, China
| | - Panfeng Liu
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou, China
- Key Laboratory of Non-timber Forest Germplasm Enhancement & Utilization of National Forestry and Grassland Administration, Zhengzhou, China
| |
Collapse
|
15
|
Mi Y, Li Y, Qian G, Vanhaelewyn L, Meng X, Liu T, Yang W, Shi Y, Ma P, Tul-Wahab A, Viczián A, Chen S, Sun W, Zhang D. A transcriptional complex of FtMYB102 and FtbHLH4 coordinately regulates the accumulation of rutin in Fagopyrum tataricum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:696-707. [PMID: 36565614 DOI: 10.1016/j.plaphy.2022.12.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/09/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Tartary buckwheat is rich in flavonoids, which not only play an important role in the plant-environment interaction, but are also beneficial to human health. Rutin is a therapeutic flavonol which is massively accumulated in Tartary buckwheat. It has been demonstrated that transcription factors control rutin biosynthesis. However, the transcriptional regulatory network of rutin is not fully clear. In this study, through transcriptome and target metabolomics, we validated the role of FtMYB102 and FtbHLH4 TFs at the different developmental stages of Tartary buckwheat. The elevated accumulation of rutin in the sprout appears to be closely associated with the expression of FtMYB102 and FtbHLH4. Yeast two-hybrid, transient luciferase activity and co-immunoprecipitation demonstrated that FtMYB102 and FtbHLH4 can interact and form a transcriptional complex. Moreover, yeast one-hybrid showed that both FtMYB102 and FtbHLH4 directly bind to the promoter of chalcone isomerase (CHI), and they can coordinately induce CHI expression as shown by transient luciferase activity assay. Finally, we transferred FtMYB102 and FtbHLH4 into the hairy roots of Tartary buckwheat and found that they both can promote the accumulation of rutin. Our results indicate that FtMYB102 and FtbHLH4 can form a transcriptional complex by inducing CHI expression to coordinately promote the accumulation of rutin.
Collapse
Affiliation(s)
- Yaolei Mi
- College of Agriculture, South China Agricultural University, Guangzhou Laboratory for Lingnan Modern Agriculture Science and Technology, Guangzhou, 510642, China; Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yu Li
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Industrial Crop Research Insitute, Sichuan Academy of Agricultural Sciences, Chengdu, 610300, China
| | - Guangtao Qian
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Lucas Vanhaelewyn
- Department of Agricultural Economics, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium; Deroose Plants NV., Weststraat 129 A, 9940, Sleidinge, Belgium
| | - Xiangxiao Meng
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Tingxia Liu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Wei Yang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yuhua Shi
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Pengda Ma
- Northwest A&F University, Yangling, 712100, China
| | - Atia Tul-Wahab
- Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - András Viczián
- Laboratory of Photo- and Chronobiology, Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Szeged, H-6726, Hungary
| | - Shilin Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Wei Sun
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Dong Zhang
- College of Agriculture, South China Agricultural University, Guangzhou Laboratory for Lingnan Modern Agriculture Science and Technology, Guangzhou, 510642, China.
| |
Collapse
|
16
|
Yongliang B, Meiguo X, Roumin L, Weijun H, Shuyan H, Rong Z, Yiping G. Metabolomics and water migration analysis provides valuable insights into nutrient generation in Tartary buckwheat ( Fagopyrum tataricum) seed germination. FOOD AGR IMMUNOL 2022. [DOI: 10.1080/09540105.2022.2117797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Bai Yongliang
- College of Food Science and Technology, Foshan University, Foshan, People’s Republic of China
- Key laboratory of Guangdong Food Intelligent Manufactory, Foshan University, Foshan, People’s Republic of China
| | - Xin Meiguo
- College of Food Science and Technology, Foshan University, Foshan, People’s Republic of China
- Key laboratory of Guangdong Food Intelligent Manufactory, Foshan University, Foshan, People’s Republic of China
| | - Lin Roumin
- College of Food Science and Technology, Foshan University, Foshan, People’s Republic of China
| | - He Weijun
- College of Food Science and Technology, Foshan University, Foshan, People’s Republic of China
| | - He Shuyan
- College of Food Science and Technology, Foshan University, Foshan, People’s Republic of China
| | - Zeng Rong
- College of Food Science and Technology, Foshan University, Foshan, People’s Republic of China
| | - Guo Yiping
- College of Food Science and Technology, Foshan University, Foshan, People’s Republic of China
| |
Collapse
|
17
|
Metabolite Profiling of Tartary Buckwheat Extracts in Rats Following Co-Administration of Ethanol Using UFLC-Q-Orbitrap High-Resolution Mass Spectrometry. SEPARATIONS 2022. [DOI: 10.3390/separations9120407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tartary buckwheat, a gluten-free pseudocereal, has received considerable attention owing to its unique nutritional ingredients and beneficial health effects such as anti-tumor, anti-oxidation, anti-inflammation and hepatoprotective activities. Pharmacokinetic and metabolite profiling have been preliminarily assessed for Tartary buckwheat extracts. However, its metabolites have not yet been characterized in vivo after co-administration with ethanol when Tartary buckwheat extracts are used for the treatment of alcoholic liver disease. In this paper, a Q-Exactive orbitrap high-resolution mass spectrometer was employed to identify the metabolites of Tartary buckwheat extracts in rat biological samples. Compared with previous metabolite profiling results, a total of 26 novel metabolites were found in rat biological samples, including 11, 10, 2 and 5 novel metabolites in rat plasma, bile, urine and feces, respectively, after oral co-administration of 240 mg/kg Tartary buckwheat extracts with ethanol (42%, v/v). The major metabolic pathways of the constituents in Tartary buckwheat extracts involved hydroxylation, methylation, glucuronidation, acetylation and sulfation. Quercetin and its metabolites may be the pharmacological material basis of Tartary buckwheat for the protective effect against alcoholic liver injury. The research enriched in vivo metabolite profiling of Tartary buckwheat extracts, which provided experimental data for a comprehensive understanding and rational use of Tartary buckwheat against alcoholic liver disease.
Collapse
|
18
|
Wang D, Yang T, Li Y, Deng F, Dong S, Li W, He Y, Zhang J, Zou L. Light Intensity-A Key Factor Affecting Flavonoid Content and Expression of Key Enzyme Genes of Flavonoid Synthesis in Tartary Buckwheat. PLANTS (BASEL, SWITZERLAND) 2022; 11:2165. [PMID: 36015468 PMCID: PMC9415826 DOI: 10.3390/plants11162165] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/13/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Tartary buckwheat, a polygonaceae family plant, is rich in abundant flavonoids, high-quality protein, and well-balanced essential amino acids. This study aimed to investigate the effects of climatic variables on the quality of Tartary buckwheat. In this study, six distinct types of Tartary buckwheat collected from the Sichuan Basin, Western Sichuan Plateau, and Yunnan-Guizhou Plateau in southwest China were chosen to investigate the impact of climatic conditions from the grain-filling stage to the harvest stage on the concentration of flavonoids and expression of key enzyme genes involved the synthesis of flavonoids. Meteorological data of three producing areas were collected from the China Meteorological Network, mainly including maximum temperature (Tmax), minimum temperature (Tmin), diurnal temperature difference (Tdif), and light intensity. Then, the contents of rutin, kaempferol-3-O-rutin glycoside, quercetin, and kaempferol in 30 batches of Tartary buckwheat from 6 varieties including Chuanqiao No. 1, Chuanqiao No. 2, Xiqiao No. 1, Xiqiao No. 2, Miqiao No. 1 and Di ku were determined by ultra performance liquid chromatography-mass spectrometry (UPLC-MS/MS). Furthermore, the expression levels of phenylalanine ammonia lyase (PAL), 4-coumaric acid coenzyme A ligase (4CL), and anthocyanin synthase (ANS) in six kinds of Tartary buckwheat were detected by real-time polymerase chain reaction (PCR). The seed photos were processed by ImageJ processing software. The partial least squares method was used to analyze the correlation. As a result, light intensity can promote the accumulation of flavonoids and the expression of key enzyme genes. Miqiao No. 1, which grows in Liangshan Prefecture, Sichuan Province, has the highest light intensity and is the dominant variety with flavonoid content. More importantly, the expression levels of PAL and 4CL in the secondary metabolic pathway of flavonoids were positively correlated with the content of Tartary buckwheat flavonoids. Interestingly, the expression level of ANS was negatively correlated with the content of PAL, 4CL, and flavonoids. In addition, ANS is a key gene affecting the seed coat color of Tartary buckwheat. The higher the expression of ANS, the darker the seed coat color. These findings provide a theoretical basis and reference for the breeding of fine buckwheat varieties.
Collapse
Affiliation(s)
- Di Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tao Yang
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yangqian Li
- Asset and Laboratory Management Department, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Fang Deng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shuai Dong
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wei Li
- School of Basic Medicine, Chengdu University, Chengdu 610106, China
| | - Yueyue He
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jinming Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, China
| |
Collapse
|
19
|
Wang Y, Li Y, Wu X, Wu X, Feng Z, Wang J, Wang B, Lu Z, Li G. Elucidation of the Flavor Aspects and Flavor-Associated Genomic Regions in Bottle Gourd ( Lagenaria siceraria) by Metabolomic Analysis and QTL-seq. Foods 2022; 11:foods11162450. [PMID: 36010450 PMCID: PMC9407550 DOI: 10.3390/foods11162450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/04/2022] [Accepted: 08/11/2022] [Indexed: 12/04/2022] Open
Abstract
Bottle gourd (Lagenaria siceraria) is a commercially important cucurbitaceous vegetable with health-promoting properties whose collections and cultivars differ considerably in their flavor aspects. However, the metabolomic profile related to flavor has not yet been elucidated. In the present study, a comprehensive metabolite analysis revealed the metabolite profile of the strong-flavor collection “J120” and weak-flavor collection “G32”. The major differentially expressed metabolites included carboxylic acids, their derivatives, and organooxygen compounds, which are involved in amino acid biosynthesis and metabolism. QTL-seq was used to identify candidate genomic regions controlling flavor in a MAGIC population comprising 377 elite lines. Three significant genomic regions were identified, and candidate genes likely associated with flavor were screened. Our study provides useful information for understanding the metabolic causes of flavor variation among bottle gourd collections and cultivars. Furthermore, the identified candidate genomic regions may facilitate rational breeding programs to improve bottle gourd quality.
Collapse
Affiliation(s)
- Ying Wang
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yanwei Li
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiaohua Wu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xinyi Wu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Zishan Feng
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jian Wang
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Baogen Wang
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Zhongfu Lu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Guojing Li
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Correspondence: ; Tel.: +86-0571-86403050
| |
Collapse
|
20
|
Impact of gelatinization on common (Fagopyrum esculentum) and Tartary (Fagopyrum tataricum) buckwheat: effect on taste and flavor assessed by e-senses in relation to phenolic compounds. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04066-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
21
|
Khan WA, Hu H, Ann Cuin T, Hao Y, Ji X, Wang J, Hu C. Untargeted metabolomics and comparative flavonoid analysis reveal the nutritional aspects of pak choi. Food Chem 2022; 383:132375. [DOI: 10.1016/j.foodchem.2022.132375] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 02/03/2022] [Accepted: 02/05/2022] [Indexed: 12/20/2022]
|
22
|
Profiling of polyphenols for in-depth understanding of Tartary buckwheat sprouts: Correlation between cultivars and active components, dynamic changes and the effects of ultraviolet B stress. Food Chem X 2022; 14:100295. [PMID: 35372824 PMCID: PMC8968448 DOI: 10.1016/j.fochx.2022.100295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/23/2022] [Accepted: 03/24/2022] [Indexed: 11/23/2022] Open
|
23
|
Wen D, Wu L, Wang M, Yang W, Wang X, Ma W, Sun W, Chen S, Xiang L, Shi Y. CRISPR/Cas9-Mediated Targeted Mutagenesis of FtMYB45 Promotes Flavonoid Biosynthesis in Tartary Buckwheat ( Fagopyrum tataricum). FRONTIERS IN PLANT SCIENCE 2022; 13:879390. [PMID: 35646007 PMCID: PMC9133938 DOI: 10.3389/fpls.2022.879390] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/25/2022] [Indexed: 06/01/2023]
Abstract
The clustered regularly interspaced short palindromic repeat/CRISPR-associated protein 9 (CRISPR/Cas9) technology is an efficient genome editing tool used in multiple plant species. However, it has not been applied to Tartary buckwheat (Fagopyrum tataricum), which is an important edible and medicinal crop rich in rutin and other flavonoids. FtMYB45 is an R2R3-type MYB transcription factor that negatively regulates flavonoid biosynthesis in Tartary buckwheat. Here, the CRISPR/Cas9 system polycistronic tRNA-sgRNA (PTG)/Cas9 was employed to knock out the FtMYB45 gene in Tartary buckwheat. Two single-guide RNAs (sgRNAs) were designed to target the second exon of the FtMYB45 gene. Twelve transgenic hairy roots were obtained using Agrobacterium rhizogenes-mediated transformation. Sequencing data revealed that six lines containing six types of mutations at the predicted double-stranded break site were generated using sgRNA1. The mutation frequency reached 50%. A liquid chromatography coupled with triple quadrupole mass spectrometry (LC-QqQ-MS) based metabolomic analysis revealed that the content of rutin, catechin, and other flavonoids was increased in hairy root mutants compared with that of lines transformed with the empty vector. Thus, CRISPR/Cas9-mediated targeted mutagenesis of FtMYB45 effectively increased the flavonoids content of Tartary buckwheat. This finding demonstrated that the CRISPR/Cas9 system is an efficient tool for precise genome editing in Tartary buckwheat and lays the foundation for gene function research and quality improvement in Tartary buckwheat.
Collapse
Affiliation(s)
- Dong Wen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lan Wu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mengyue Wang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Yang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xingwen Wang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Ma
- College of Pharmaceutical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wei Sun
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shilin Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Xiang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuhua Shi
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
24
|
Qualitative analysis and differentiation of ginkgo cultivars based on UHPLC-QTOF-MS/MS with the characteristic ion and neutral loss strategy combined with chemometric methods. J Pharm Biomed Anal 2022; 211:114595. [DOI: 10.1016/j.jpba.2022.114595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 01/26/2023]
|
25
|
Guo X, Yan Z, Wang J, Fan X, Kang J, Niu R, Sun Z. Effect of traditional chinese medicine (TCM) and its fermentation using Lactobacillus plantarum on ceftriaxone sodium-induced dysbacteriotic diarrhea in mice. Chin Med 2022; 17:20. [PMID: 35139871 PMCID: PMC8827261 DOI: 10.1186/s13020-022-00575-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/24/2022] [Indexed: 12/11/2022] Open
Abstract
Background Buzhongyiqi decoction (BD), Sijunzi decoction (SD), and Shenlingbaizhu decoction (SHD) have been extensively used clinically for the treatment of diseases caused by spleen-Qi deficiency and microbial fermentation has historically been utilized in traditional Chinese medicine (TCM). This study aimed to investigate the mitigative effect of TCM and fermented TCM (FTCM) with Lactobacillus plantarum (LP) on antibiotic-associated diarrhea, and to select an optimal formula and then identify its compounds. Methods Dysbacteriosis in mice was induced by ceftriaxone sodium (CS). The mice were then treated with LP, BD, SD, SHD, fermented BD, fermented SD (FSD), and fermented SHD. Diarrhea indexes, the abundances of gut bacteria, intestinal morphometrics, and mRNA expressions of genes related to intestinal barrier function were assessed. Then, ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF/MS) were employed to identify and relatively quantify the compounds in the selected decoctions. Results CS significantly increased the fecal output weight, the total number of fecal output, and fecal water content, indicating the occurrence of diarrhea. Bacterial culture tests showed that the above symptoms were accompanied by the disruption of specific intestinal flora. TCM, LP, and FTCM alleviated the diarrhea index and recovered the intestinal microbiota. FTCM showed more advantageous than TCM or LP alone. The mRNA expressions of aquaporins (AQPs) and tight junctions (TJs) decreased by CS were enhanced by TCM, LP, and FTCM. In addition, through UHPLC-Q-TOF/MS, (S)-(-)-2-hydroxyisocaproic acid, L-methionine, 4-guanidinobutyric acid (4GBA), and phenyllactate (PLA) in SD and FSD were identified and relatively quantified. Conclusions TCM, LP, and TCM fermented with LP alleviated CS-induced diarrhea symptoms, and improved the intestinal flora and barrier function. Four compounds including (S)-(-)-2-hydroxyisocaproic acid, L-methionine, 4GBA, and PLA in FSD, which were identified by UHPLC-Q-TOF/MS, might function in modulating intestinal flora and improving villi structure. Supplementary Information The online version contains supplementary material available at 10.1186/s13020-022-00575-x.
Collapse
Affiliation(s)
- Xin Guo
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, China
| | - Zipeng Yan
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, China
| | - Jixiang Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, China
| | - Xinfeng Fan
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, China
| | - Jie Kang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, China.,Fenyang College of Shanxi Medical University, Fenyang, 032200, China
| | - Ruiyan Niu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, China
| | - Zilong Sun
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, China.
| |
Collapse
|
26
|
Huang J, Wang L, Tang B, Ren R, Shi T, Zhu L, Deng J, Liang C, Wang Y, Chen Q. Integrated Transcriptomics and Widely Targeted Metabolomics Analyses Provide Insights Into Flavonoid Biosynthesis in the Rhizomes of Golden Buckwheat ( Fagopyrum cymosum). FRONTIERS IN PLANT SCIENCE 2022; 13:803472. [PMID: 35783922 PMCID: PMC9247553 DOI: 10.3389/fpls.2022.803472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/22/2022] [Indexed: 05/05/2023]
Abstract
Golden buckwheat (Fagopyrum cymosum) is used in Traditional Chinese Medicine. It has received attention because of the high value of its various medicinal and nutritional metabolites, especially flavonoids (catechin and epicatechin). However, the metabolites and their encoding genes in golden buckwheat have not yet been identified in the global landscape. This study performed transcriptomics and widely targeted metabolomics analyses for the first time on rhizomes of golden buckwheat. As a result, 10,191 differentially expressed genes (DEGs) and 297 differentially regulated metabolites (DRMs) were identified, among which the flavonoid biosynthesis pathway was enriched in both transcriptome and metabolome. The integration analyses of the transcriptome and the metabolome revealed a network related to catechin, in which four metabolites and 14 genes interacted with each other. Subsequently, an SG5 R2R3-MYB transcription factor, named FcMYB1, was identified as a transcriptional activator in catechin biosynthesis, as it was positively correlated to eight flavonoid biosynthesis genes in their expression patterns and was directly bound to the promoters of FcLAR2 and FcF3'H1 by yeast one hybrid analysis. Finally, a flavonoid biosynthesis pathway was proposed in the rhizomes of golden buckwheat, including 13 metabolites, 11 genes encoding 9 enzymes, and 1 MYB transcription factor. The expression of 12 DEGs were validated by qRT-PCR, resulting in a good agreement with the Pearson R ranging from 0.83 to 1. The study provided a comprehensive flavonoid biosynthesis and regulatory network of golden buckwheat.
Collapse
Affiliation(s)
- Juan Huang
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, China
- Juan Huang
| | - Luyuan Wang
- Tunliu District Vocational Senior Middle School, Changzhi, China
| | - Bin Tang
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, China
| | - Rongrong Ren
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, China
| | - Taoxiong Shi
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, China
| | - Liwei Zhu
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, China
| | - Jiao Deng
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, China
| | - Chenggang Liang
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, China
| | - Yan Wang
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, China
| | - Qingfu Chen
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, China
- *Correspondence: Qingfu Chen
| |
Collapse
|
27
|
Marchev AS, Vasileva LV, Amirova KM, Savova MS, Balcheva-Sivenova ZP, Georgiev MI. Metabolomics and health: from nutritional crops and plant-based pharmaceuticals to profiling of human biofluids. Cell Mol Life Sci 2021; 78:6487-6503. [PMID: 34410445 PMCID: PMC8558153 DOI: 10.1007/s00018-021-03918-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 12/19/2022]
Abstract
During the past decade metabolomics has emerged as one of the fastest developing branches of “-omics” technologies. Metabolomics involves documentation, identification, and quantification of metabolites through modern analytical platforms in various biological systems. Advanced analytical tools, such as gas chromatography–mass spectrometry (GC/MS), liquid chromatography–mass spectroscopy (LC/MS), and non-destructive nuclear magnetic resonance (NMR) spectroscopy, have facilitated metabolite profiling of complex biological matrices. Metabolomics, along with transcriptomics, has an influential role in discovering connections between genetic regulation, metabolite phenotyping and biomarkers identification. Comprehensive metabolite profiling allows integration of the summarized data towards manipulation of biosynthetic pathways, determination of nutritional quality markers, improvement in crop yield, selection of desired metabolites/genes, and their heritability in modern breeding. Along with that, metabolomics is invaluable in predicting the biological activity of medicinal plants, assisting the bioactivity-guided fractionation process and bioactive leads discovery, as well as serving as a tool for quality control and authentication of commercial plant-derived natural products. Metabolomic analysis of human biofluids is implemented in clinical practice to discriminate between physiological and pathological state in humans, to aid early disease biomarker discovery and predict individual response to drug therapy. Thus, metabolomics could be utilized to preserve human health by improving the nutritional quality of crops and accelerating plant-derived bioactive leads discovery through disease diagnostics, or through increasing the therapeutic efficacy of drugs via more personalized approach. Here, we attempt to explore the potential value of metabolite profiling comprising the above-mentioned applications of metabolomics in crop improvement, medicinal plants utilization, and, in the prognosis, diagnosis and management of complex diseases.
Collapse
Affiliation(s)
- Andrey S Marchev
- Department Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria.,Laboratory of Metabolomics, Department of Biotechnology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 4000, Plovdiv, Bulgaria
| | - Liliya V Vasileva
- Department Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria.,Laboratory of Metabolomics, Department of Biotechnology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 4000, Plovdiv, Bulgaria
| | - Kristiana M Amirova
- Department Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria.,Laboratory of Metabolomics, Department of Biotechnology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 4000, Plovdiv, Bulgaria
| | - Martina S Savova
- Department Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria.,Laboratory of Metabolomics, Department of Biotechnology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 4000, Plovdiv, Bulgaria
| | - Zhivka P Balcheva-Sivenova
- Department Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria.,Laboratory of Metabolomics, Department of Biotechnology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 4000, Plovdiv, Bulgaria
| | - Milen I Georgiev
- Department Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria. .,Laboratory of Metabolomics, Department of Biotechnology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 4000, Plovdiv, Bulgaria.
| |
Collapse
|
28
|
Qin H, Wang Y, Yang W, Yang S, Zhang J. Comparison of metabolites and variety authentication of Amomum tsao-ko and Amomum paratsao-ko using GC-MS and NIR spectroscopy. Sci Rep 2021; 11:15200. [PMID: 34312460 PMCID: PMC8313684 DOI: 10.1038/s41598-021-94741-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 07/05/2021] [Indexed: 11/09/2022] Open
Abstract
Amomum tsao-ko, as an edible and medicinal variety, has been cultivated for more than 600 years in China. Recently, two cultivars, A. tsao-ko and Amomum paratsao-ko, were found in A. tsao-ko planting area. The two cultivars are often confused because of the similar phenotype and difficult to distinguish through sensory judgment. In this study, the non-targeted gas chromatography-mass spectrometry (GC-MS) metabolomics combined with near-infrared spectroscopy (NIRS) were used for dissecting the two cultivars with phenotypic differences. According to principal component analysis (PCA) loading diagram and orthogonal partial least squares discriminant analysis (OPLS-DA) S-plot of the metabolites, the accumulation of major components including 1,8-cineole, α-phellandrene, (E)-2-decenal, (-)-β-pinene, (E)-2-octenal, 1-octanal, D-limonene, and decanal, were present differences between the two cultivars. Seven metabolites potential differentiated biomarkers as β-selinene, decamethylcyclopentasiloxane, (E,Z)-2,6-dodecadienal, (E)-2-hexenal, (E)-2-decenal, isogeranial, 1,8-cineole and β-cubebene were determined. Although A. tsao-ko and A. paratsao-ko belong to the same genera and are similar in plant and fruit morphology, the composition and content of the main components were exposed significant discrepancy, so it is necessary to distinguish them. In this study, the discriminant model established by GC-MS or NIRS combined with multivariate analysis has achieved a good classification effect. NIRS has the advantages of simple, fast and nondestructive and can be used for rapid identification of varieties and fruit tissues.
Collapse
Affiliation(s)
- Huiwei Qin
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan, 650200, Kunming, China
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Yunnan, 650500, Kunming, China
| | - Yuanzhong Wang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan, 650200, Kunming, China
| | - Weize Yang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan, 650200, Kunming, China
| | - Shaobing Yang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan, 650200, Kunming, China.
| | - Jinyu Zhang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan, 650200, Kunming, China.
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Yunnan, 650500, Kunming, China.
| |
Collapse
|
29
|
Hou S, Du W, Hao Y, Han Y, Li H, Liu L, Zhang K, Zhou M, Sun Z. Elucidation of the Regulatory Network of Flavonoid Biosynthesis by Profiling the Metabolome and Transcriptome in Tartary Buckwheat. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7218-7229. [PMID: 34151566 DOI: 10.1021/acs.jafc.1c00190] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The characteristics of flavonoid metabolism in different Tartary buckwheat (TB) tissues and the related gene regulation network are still unclear at present. One hundred forty-seven flavonoids were identified from six TB tissues using the ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method. The roadmap of the rutin synthesis pathway was revealed. Through transcriptomic analysis it was revealed that the differentially expressed genes (DEGs) are mainly enriched in the "Phenylpropanoid biosynthesis" pathway. Fifty-two DEGs involved in the "flavonol synthesis" pathway were identified. The weighted gene correlation network analysis revealed four co-expression network modules correlated with six flavonol metabolites. Eventually, 74 genes revealed from MEblue and MElightsteelblue modules were potentially related to flavonol synthesis. Of them, 7 MYB transcript factors had been verified to regulate flavonoid synthesis. Furthermore, overexpressed FtMYB31 enhanced the rutin content in vivo. The present findings provide a dynamic flavonoid metabolism profile and co-expression network related to rutin synthesis and are thus valuable in understanding the molecular mechanisms of rutin synthesis in TB.
Collapse
Affiliation(s)
- Siyu Hou
- College of Agriculture, Institute of Agricultural Bioengineering, Shanxi Agricultural University, 030801 Taigu, Shanxi, China
| | - Wei Du
- College of Agriculture, Institute of Agricultural Bioengineering, Shanxi Agricultural University, 030801 Taigu, Shanxi, China
| | - Yanrong Hao
- College of Agriculture, Institute of Agricultural Bioengineering, Shanxi Agricultural University, 030801 Taigu, Shanxi, China
| | - Yuanhuai Han
- College of Agriculture, Institute of Agricultural Bioengineering, Shanxi Agricultural University, 030801 Taigu, Shanxi, China
| | - Hongying Li
- College of Agriculture, Institute of Agricultural Bioengineering, Shanxi Agricultural University, 030801 Taigu, Shanxi, China
| | - Longlong Liu
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, 030031 Taiyuan, Shanxi, China
| | - Kaixuan Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Meiliang Zhou
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Zhaoxia Sun
- College of Agriculture, Institute of Agricultural Bioengineering, Shanxi Agricultural University, 030801 Taigu, Shanxi, China
| |
Collapse
|
30
|
Luthar Z, Golob A, Germ M, Vombergar B, Kreft I. Tartary Buckwheat in Human Nutrition. PLANTS (BASEL, SWITZERLAND) 2021; 10:700. [PMID: 33916396 PMCID: PMC8066602 DOI: 10.3390/plants10040700] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 01/29/2023]
Abstract
Tartary buckwheat (Fagopyrum tataricum Gaertn.) originates in mountain areas of western China, and it is mainly cultivated in China, Bhutan, northern India, Nepal, and central Europe. Tartary buckwheat shows greater cold resistance than common buckwheat, and has traits for drought tolerance. Buckwheat can provide health benefits due to its contents of resistant starch, mineral elements, proteins, and in particular, phenolic substances, which prevent the effects of several chronic human diseases, including hypertension, obesity, cardiovascular diseases, and gallstone formation. The contents of the flavonoids rutin and quercetin are very variable among Tartary buckwheat samples from different origins and parts of the plants. Quercetin is formed after the degradation of rutin by the Tartary buckwheat enzyme rutinosidase, which mainly occurs after grain milling during mixing of the flour with water. High temperature treatments of wet Tartary buckwheat material prevent the conversion of rutin to quercetin.
Collapse
Affiliation(s)
- Zlata Luthar
- Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (Z.L.); (A.G.); (M.G.)
| | - Aleksandra Golob
- Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (Z.L.); (A.G.); (M.G.)
| | - Mateja Germ
- Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (Z.L.); (A.G.); (M.G.)
| | - Blanka Vombergar
- The Education Centre Piramida Maribor, SI-2000 Maribor, Slovenia;
| | - Ivan Kreft
- Nutrition Institute, Tržaška 40, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
31
|
Comparative metabolomic analysis of the body wall from four varieties of the sea cucumber Apostichopus japonicus. Food Chem 2021; 352:129339. [PMID: 33667918 DOI: 10.1016/j.foodchem.2021.129339] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 01/20/2021] [Accepted: 02/06/2021] [Indexed: 11/23/2022]
Abstract
The sea cucumber, Apostichopus japonicas, is an important economic species with high nutritive value. In recent years, driven by significant market demand, the sea cucumber breeding industry has developed rapidly. Body color and number of papillae are important factors that determine the value and price of sea cucumbers. In this study, metabolite profiling of four sea cucumber varieties (green, white, purple and spiny) was performed using ultra-performance liquid chromatography-quadrupole-time-of-flight-mass spectrometry (UPLC-QTOF-MS) combined with multivariate analysis. Orthogonal partial least-squares discriminant analysis (OPLS-DA) clearly discriminated the body wall metabolites of four sea cucumber varieties. Differential metabolites included fatty acids, phospholipids, and sugars. KEGG metabolic pathway analysis revealed that carbohydrate, protein, and phospholipid metabolism were highly conserved among the varieties. These results provide a comprehensive insight into differences in the metabolite profile of four A. japonicus varieties and a deeper understanding of sea cucumber varieties breeding.
Collapse
|
32
|
Flavonoids and caffeoylquinic acids in Chrysanthemum morifolium Ramat flowers: A potentially rich source of bioactive compounds. Food Chem 2020; 344:128733. [PMID: 33280963 DOI: 10.1016/j.foodchem.2020.128733] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 11/17/2020] [Accepted: 11/22/2020] [Indexed: 11/20/2022]
Abstract
Varieties of chrysanthemums are among the world's most valuable edible ornamental crops. However, the availability and relationship between the bio-chemicals of chrysanthemums and their morphological variations remain unclear. We developed liquid chromatography mass spectrometry to construct a spectral tag library to identify and quantify chemicals of 7 caffeoylquinic acids, 21 flavones and flavonols, 4 carotenoids, and 13 other compounds in 27 cultivars and representative tea of Chrysanthemum morifolium. A correlation analysis found that more acacetin 7-O-galactoside (23) resulted in lighter colored flowers and less acacetin (43) and kaempferol (44) was associated with yellow flowers. Hot-H2O extraction of C. morifolium tea showed that most flavonoids and caffeoylquinic acids dissolved out at 30 min, with 20.977 and 8.958 mg/g GW indicated that C. morifolium, which is used in food and tea, is rich in flavonoids and carotenoids. The results improve our understanding of flavonoid biosynthesis and the mechanisms responsible for flower color.
Collapse
|