1
|
Jiang W, Liu L, Li W, Liu H, Yang J, Wang P. A lysosomal-targeted switchable fluorescent probe for the detection of peroxynitrite in living tumor cells and in vivo. Talanta 2025; 291:127866. [PMID: 40037163 DOI: 10.1016/j.talanta.2025.127866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/13/2025] [Accepted: 02/28/2025] [Indexed: 03/06/2025]
Abstract
Peroxynitrite (ONOO-) is a reactive nitrogen species whose abnormal accumulation in the body can lead to various diseases, including those related to oxidative stress. Accurate detection of ONOO- levels is essential for the diagnosis and treatment of these diseases. To address this need, we developed a lysosome-targeted fluorescent probe Lyso-PE for detecting ONOO- in tumors. In the presence of ONOO-, probe Lyso-PE showed a large Stokes shift of 100 nm. The probe exhibited high sensitivity, selectivity, and rapid response toward ONOO-. Additionally, Lyso-PE displayed excellent lysosomal targeting and was successfully employed in imaging the exogenous peroxynitrite in tumor cells. In the 4T1 subcutaneous graft tumor model, the probe could effectively distinguish tumors and normal tissues with the help of fluorescence imaging in vivo. Moreover, Lyso-PE could be used for tumor resection guided by fluorescent signals in vivo. These results suggested that Lyso-PE could enhance our understanding of lysosomal function in disease, identify new therapeutic targets, and aid in developing new diagnostic and therapeutic strategies with significant clinical implications.
Collapse
Affiliation(s)
- Wen Jiang
- Department of Pathology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Li Liu
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Wenqing Li
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Huijia Liu
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Jing Yang
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, China.
| | - Peng Wang
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
2
|
Zhang Y, Wei H, Li Y, Shang Z, Zhang R, Zhang Z, Meng Q. An azacrown ether-based near-infrared fluorescent probe for the detection of Pb 2+ and its applications in food, environmental water, plant and animal samples. Anal Chim Acta 2025; 1351:343882. [PMID: 40187874 DOI: 10.1016/j.aca.2025.343882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/22/2025] [Accepted: 02/28/2025] [Indexed: 04/07/2025]
Abstract
BACKGROUND Lead ion (Pb2+), as a kind of heavy metal ion, is particularly harmful to human health and ecosystems due to its high toxicity and easy bioaccumulation. Fluorescent probes capable of selective and sensitive detection of Pb2+ are crucial for enabling rapid and on-site monitoring and regulation, thereby mitigating its adverse health and environmental impacts. Additionally, the development of fluorescence probes for the detection of Pb2+ in plant systems is rarely reported. Accordingly, the development of near-infrared (NIR) emission fluorescence probe for the detection of Pb2+ in food, environment and in vivo is of great significance. RESULTS In this work, an azacrown ether-based NIR fluorescence probe LCE1 was reported for the detection of Pb2+. Probe LCE1 can generate 1:1 complex with Pb2+, resulting in the inhibition of ICT effect to reduce the fluorescence signal. LCE1 exhibited many advantages, including NIR emission (λem = 670 nm), high selectivity and sensitivity (LOD = 0.34 μM) and fast response (30 s). The quantitative determination of Pb2+ in real food and water samples has been achieved with good recovery using LCE1 as the probe. Concurrently, the on-site and rapid determination of Pb2+ in water sample was realized by smartphone-assisted LCE1-based test strip technology. Notably, the fluorescence imaging of Pb2+ in cells and animals has been successfully implemented using the probe LCE1. Most importantly, the fluorescence imaging of Pb2+ in Pb-hyperaccumulator plant samples has been successfully demonstrated. SIGNIFICANCE LCE1 could provide new methods for understanding the physiopathological roles of Pb2+, evaluating food safety and selecting plants used to remediate soil contaminated by heavy metals.
Collapse
Affiliation(s)
- Yueyuan Zhang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, PR China; Anshan Vocational and Technical College, Anshan, Liaoning Province, 114046, PR China
| | - Huacong Wei
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, PR China
| | - Yu Li
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, PR China
| | - Zhuye Shang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, PR China.
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Zhiqiang Zhang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, PR China
| | - Qingtao Meng
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, PR China; Key Laboratory of Functional Materials in Universities of Liaoning Province, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, PR China.
| |
Collapse
|
3
|
Zhang M, Chai T, Wang S, Feng J, Xiong X, Zeng Y, Quan Q, Luo H, Xue M, Jin G. Multi-component driven fluorescence composite nanospheres coating strategy: Spectral properties, release, tumor imaging and bioactivity evaluation in a simulated gastrointestinal microenvironment. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 333:125858. [PMID: 39933486 DOI: 10.1016/j.saa.2025.125858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/31/2025] [Accepted: 02/03/2025] [Indexed: 02/13/2025]
Abstract
Carborane has been widely studied for its excellent tumor-targeting and other properties, but its poor water solubility and inability to visualize the treatment limit the application of carborane. Therefore, in this paper, two different indol-nido-carbrane potassium salt-crown ether-sodium alginate polymers were obtained by designing an indole dye with good fluorescence performance, combining it with nido-carbrane potassium salt, and then loading it into sodium alginate and different crown ethers. Among them, the polymer (INC-2) formed by loading dipropenone-18-crown-6 and sodium alginate is considered to be the most promising anti-tumor drug with good fluorescence properties. The optical properties test showed that INC-2 had good fluorescence properties. The results of atomic force microscopy (AFM) and transmission electron microscopy (TEM) manifested that INC-2 was a smooth and uniform sphere, which was conducive to absorption in vivo. Through the cell proliferation toxicity test (CCK8), it was found that when the concentration was 300 μg/mL, the highest inhibition rates of INC-2 on HCT-116, HeLa and L02 were 53.43 %, 61.19 % and 17.06 %, respectively, demonstrating that the polymer had significant anti-tumor activity and low cytotoxicity. In addition, INC-2 was applied to cell imaging, which could enter and be well absorbed by HCT-116 and HeLa cells. Further in vivo imaging experiments showed that INC-2 could be well targeted to the gastrointestinal tract of mice. In summary, this design not only solves the problem of poor water solubility of carborane, improves its bioavailability, but also provides excellent visual fluorescence targeting effect.
Collapse
Affiliation(s)
- Mengtong Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013 China
| | - Tiantian Chai
- School of Pharmacy, Jiangsu University, Zhenjiang 212013 China
| | - Shuo Wang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013 China
| | - Jiankang Feng
- School of Pharmacy, Jiangsu University, Zhenjiang 212013 China
| | - Xiangyi Xiong
- School of Pharmacy, Jiangsu University, Zhenjiang 212013 China
| | - Yangchen Zeng
- School of Pharmacy, Jiangsu University, Zhenjiang 212013 China
| | - Qiuyan Quan
- School of Pharmacy, Jiangsu University, Zhenjiang 212013 China
| | - Honglei Luo
- School of Pharmacy, Jiangsu University, Zhenjiang 212013 China
| | - Miaomiao Xue
- School of Pharmacy, Jiangsu University, Zhenjiang 212013 China
| | - Guofan Jin
- School of Pharmacy, Jiangsu University, Zhenjiang 212013 China.
| |
Collapse
|
4
|
Chen X, Zhao C, Yang S, Yang Y, Wang Y, Zhang R, Wang K, Qian J, Long L. In Situ Selective Determination of Cysteine in Crops Employing a Novel Colorimetric and NIR-Emitting Ratiometric Fluorescent Probe along with a Smartphone-Assisted Portable Detection Device. Anal Chem 2025; 97:9291-9301. [PMID: 40270116 DOI: 10.1021/acs.analchem.4c07073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Cysteine (Cys) is the first organic sulfur nutrient produced by crops. There is an urgent need to construct a reliable analytical method to quantitatively detect Cys in crops. Herein, a colorimetric and NIR-emitting ratiometric fluorescent probe for in situ quantitative detection of Cys in crops has been developed. The probe presented highly specific response to Cys over other biothiols including Hcy and GSH. The fluorescence ratios (I545/I655) exhibited a linearity with Cys concentration in the range of 0.113-300 μM, and the detection limit was measured to be 0.034 μM (S/N = 3). Importantly, the specific sensing reaction between the probe and Cys is achieved through a unique two-step recognition process. The probe was employed to detect Cys in living cells through fluorescence imaging. Additionally, alterations in Cys levels within Gynura cusimbua leaves, triggered by atmospheric H2S, have been monitored. Furthermore, the probe has been utilized to trace changes in the Cys concentration in G. cusimbua roots under external Cd stress. Notably, to facilitate in situ quantitative detection of Cys in crops, a smartphone-assisted portable detection device was made up. The probe and portable detection device were successfully employed for in situ quantitative detection of Cys in cabbage and apple.
Collapse
Affiliation(s)
- Xiaodong Chen
- Key Laboratory of Modern Agricultural Equipment and Technology (Ministry of Education), Jiangsu University, Zhenjiang 212013, Jiangsu, P. R. China
- College of Food Science and Engineering, Anhui Science and Technology University, Chuzhou 233100, Anhui, P. R. China
- Anhui Province Key Laboratory of Functional Agriculture and Functional Food, Anhui Science and Technology University, Chuzhou 233100, Anhui, P. R. China
| | - Chenglu Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, P. R. China
| | - Sanxiu Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, P. R. China
| | - Yunfei Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, P. R. China
| | - Yuqing Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, P. R. China
| | - Rumeng Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, P. R. China
| | - Kun Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, P. R. China
| | - Jing Qian
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, P. R. China
| | - Lingliang Long
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, P. R. China
| |
Collapse
|
5
|
Wang Y, Zhang R, Liu W, Gu W, Wang K, Faheem M, Wei J, Qian J, Long L. In-situ quantitative detection of hypochlorous acid in food samples by employing a near-infrared fluorescent probe in association with a portable optical data acquisition system. Anal Chim Acta 2025; 1349:343844. [PMID: 40074461 DOI: 10.1016/j.aca.2025.343844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025]
Abstract
BACKGROUND Hypochlorous acid (HClO) is a crucial disinfectant in the food industry. It can be used to soak perishable foods like vegetables, fruits, eggs, fish, and raw meat before processing and storage, eliminating microorganisms, bacteria, fungi, and pathogens to ensure food safety. HClO also helps preserve vegetables and fruits by reducing ethylene production, delaying rotting, decreasing cell membrane permeability, inhibiting polyphenol oxidase activity, and postponing discoloration. However, excessive HClO residues in food can degrade nutrients and pose health risks. Thus, it's urgent to develop an efficient method for in-situ quantitative determination of HClO in various food samples. RESULTS A colorimetric and near-infrared (NIR) fluorescent probe, YQ, has been developed for HClO. In YQ, the 2-(2-methyl-4H-chromen-4-ylidene) malononitrile conjugated 1,2-dihydrocyclopenta[b]chromen-6-ol acts as a NIR fluorophore, and the O-phenyl methanethioate is incorporated as a new recognition group for HClO. When exposed to HClO, the probe shows highly sensitive and selective NIR fluorescence response with detection limit of 74 nM. It also exhibits significant colorimetric changes after sensing reaction, substantially enhancing detection reliability. The probe has been applied for imaging exogenous and endogenous HClO in living cells. The residual HClO concentrations in lettuce leaves after spraying with different concentrations of HClO solutions were also monitored. Test strips made with YQ enable in-situ HClO detection in water samples. Notably, to accomplish in-situ quantitative detection, a portable optical signal detection system was devised. Probe YQ, together with this self-fabricated system, has been implemented for in-situ quantitative detection of HClO in tomatoes and strawberries. SIGNIFICANCE Existing methods for quantifying HClO typically require costly equipment, advanced technical skills, and complex sample preparation, making them unsuitable for in-situ quantification. Here, the developed colorimetric and NIR fluorescent probe for HClO avoids background interference from the food matrix and enhances detection reliability. More importantly, when coupled with the self-made portable optical signal detection system, this probe can be served as a powerful tool for in-situ quantitative measurement of HClO in diverse foods.
Collapse
Affiliation(s)
- Yuqing Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China; Key Laboratory of Modern Agricultural Equipment and Technology (Ministry of Education), Jiangsu University, Zhenjiang, Jiangsu, 212013 PR China
| | - Rumeng Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China; Key Laboratory of Modern Agricultural Equipment and Technology (Ministry of Education), Jiangsu University, Zhenjiang, Jiangsu, 212013 PR China
| | - Wei Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China; Key Laboratory of Modern Agricultural Equipment and Technology (Ministry of Education), Jiangsu University, Zhenjiang, Jiangsu, 212013 PR China
| | - Wuyan Gu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China; Key Laboratory of Modern Agricultural Equipment and Technology (Ministry of Education), Jiangsu University, Zhenjiang, Jiangsu, 212013 PR China
| | - Kun Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China; Key Laboratory of Modern Agricultural Equipment and Technology (Ministry of Education), Jiangsu University, Zhenjiang, Jiangsu, 212013 PR China.
| | - Muhammad Faheem
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China; Key Laboratory of Modern Agricultural Equipment and Technology (Ministry of Education), Jiangsu University, Zhenjiang, Jiangsu, 212013 PR China
| | - Jie Wei
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China; Key Laboratory of Modern Agricultural Equipment and Technology (Ministry of Education), Jiangsu University, Zhenjiang, Jiangsu, 212013 PR China
| | - Jing Qian
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China; Key Laboratory of Modern Agricultural Equipment and Technology (Ministry of Education), Jiangsu University, Zhenjiang, Jiangsu, 212013 PR China
| | - Lingliang Long
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China; Key Laboratory of Modern Agricultural Equipment and Technology (Ministry of Education), Jiangsu University, Zhenjiang, Jiangsu, 212013 PR China.
| |
Collapse
|
6
|
Bartwal G, Manivannan R, Patra SK, Choi Y, Son YA. A triple-chromophore based NIR fluorescent chemodosimeter with configurable opto-chemical logic gate functions for multi-analyte recognition of N 2H 4, CN -, and ClO - in real samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 339:126250. [PMID: 40306033 DOI: 10.1016/j.saa.2025.126250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 04/06/2025] [Accepted: 04/14/2025] [Indexed: 05/02/2025]
Abstract
Developing structurally simple, near-infrared (NIR)-emitting organic fluorescent probes capable of simultaneously detecting multiple analytes remains challenging. Herein, we reported a dual donor-π-acceptor (D'-D-π-A) type NIR-chemodosimeter, TPB with a large stokes shift (ca. 250 nm) based on a novel triphenylamine-phenothiazine-benzothiazole multichromophoric system. With its dual reactive sites i.e. an electrophilic β-vinylic carbon and an oxidizable sulfur atom, TPB demonstrated multi-analyte responsiveness towards N2H4, CN-, and ClO- through distinct fluorescence read-outs. Photophysical analysis revealed ratiometric sensing for N2H4 and CN- with emission colors shifting from faint red to turquoise and light blue, respectively. In contrast, ClO- triggered fluorescence quenching, resulting in complete disappearance of emission color. TPB displayed high sensitivity with minimal interference and exhibited low limit of detection (LOD) values of 0.065 μM, 0.117 μM, and 0.63 μM and rapid response times of 5 min, 2 min, and 12 min, for N2H4, CN- and ClO-, respectively. Comprehensive 1H/13C NMR, HRMS analyses, and TD-DFT studies were conducted to support the proposed mechanistic pathways. The optical responses acquired by sequential analyte interactions ensued us to devise multifunctional molecular logic circuits (YES, NOT, PASS 0, NOR) on a unimolecular platform. To enhance practicality, TPB was incorporated into test strips, allowing solid-phase real-time detection of these analytes. Furthermore, TPB successfully detected N2H4 in various soil-samples, demonstrating its effectiveness in environmental monitoring.
Collapse
Affiliation(s)
- Gaurav Bartwal
- Department of Advanced Organic Materials Engineering, Chungnam National University, Daejeon 34134, South Korea
| | - Ramalingam Manivannan
- Department of Advanced Organic Materials Engineering, Chungnam National University, Daejeon 34134, South Korea
| | - Sumit Kumar Patra
- Department of Advanced Organic Materials Engineering, Chungnam National University, Daejeon 34134, South Korea
| | - Yoonwoo Choi
- Department of Advanced Organic Materials Engineering, Chungnam National University, Daejeon 34134, South Korea
| | - Young-A Son
- Department of Advanced Organic Materials Engineering, Chungnam National University, Daejeon 34134, South Korea.
| |
Collapse
|
7
|
Ashiagbor K, Jayan H, Gao S, Amaglo NK, Adade SYSS, El-Seedi HR, Khalifa SAM, Zou X, Guo Z. Recent advances in photoelectric methods application for cooking oil quality and safety evaluation: a review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025. [PMID: 40219683 DOI: 10.1002/jsfa.14276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 02/20/2025] [Accepted: 02/23/2025] [Indexed: 04/14/2025]
Abstract
Cooking oil is used daily in consumed food and culinary applications; therefore, its safety and quality are very important. Notably, susceptibility to contamination at each processing stage poses threats to living organisms. This review discusses the parameters of oil quality, as well as the role of the various non-destructive photoelectric techniques with respect to its quality and safety, including near-infrared spectroscopy (NIR), mid-infrared spectroscopy, Fourier transform near-infrared spectroscopy, Raman spectroscopy and fluorescence spectroscopy. Data on cooking oil quality, such as values of the following parameters, notably peroxides, thiobarbituric acid, anisidine, iodine, trans-fat and fatty acid profile, carbonyl compounds, adulteration and total polar components, are also demonstrated. Photoelectric methods are rapid and efficient tools for the preliminary screening of cooking oil when aiming to determine its quality before its entry into the food chain. Primarily, NIR has been used to predict most of the cooking oil safety and quality parameters, and thus is considered as the most convenient non-destructive method to be recommended. Accordingly, deep insight into state-of-the-art photoelectric/spectral technologies and the varieties of techniques available provides an opportunity to detect and predict the safety parameters of products prior to their processing and distribution. In this review, we highlight these perspectives with particular emphasis on the cooking oil. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kwami Ashiagbor
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Heera Jayan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Shipeng Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Newton K Amaglo
- Department of Horticulture, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | | - Hesham R El-Seedi
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
- Department of Pharmaceutical Biosciences, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Shaden A M Khalifa
- Department of Pharmaceutical Biosciences, Biomedical Centre, Uppsala University, Uppsala, Sweden
- Psychiatry and Neurology Department, Capio Saint Göran's Hospital, Stockholm, Sweden
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Department of Pharmaceutical Biosciences, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Zhiming Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, Jiangsu University, Zhenjiang, China
| |
Collapse
|
8
|
Doria E, Lerno L, Chen MA, Lee J, Huang G, Mitchell AE. Novel UHPLC-(+ESI)MS/MS Method for Determining Amygdalin, Prunasin and Total Cyanide in Almond Kernels and Hulls ( Prunus dulcis). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:5500-5510. [PMID: 39964058 PMCID: PMC11887422 DOI: 10.1021/acs.jafc.4c08437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/13/2025] [Accepted: 01/22/2025] [Indexed: 03/06/2025]
Abstract
Almonds contain cyanogenic glycosides (CNGs), prunasin and amygdalin, which generate hydrogen cyanide upon hydrolysis. Different extraction and analytical methods are currently used to measure CNGs or cyanide (CN), necessitating distinct samples and can lead to inconsistent or incomparable results. To address this, we describe a method that uses ultrasonic-assisted sample extraction. Amygdalin and prunasin are measured directly in the extract, whereas CN is measured in the extract after derivatization with cysteine ethyl ester to form a cyano-S-ethyl-O-cysteine (CNCysEt) conjugate. The amygdalin, prunasin, and CNCysEt are quantified using the same UHPLC-(+ESI)MS/MS method. This new approach measured total CN in ten common almond kernel and hull varieties. The limit of quantitation ranged from 7.78 μg L-1 (amygdalin), 51.36 μg L-1 (prunasin), and 7.80 μg L-1 (CNCysEt; kernel) and 25.02 μg L-1 (CNCysEt; hull). This is the first time CNGs and CN levels are reported for almond hulls. Average total CN levels in hulls (<3 mg kg-1) were significantly lower than levels in kernels (<20 mg kg-1). Based on these findings, the hulls from California sweet almond varieties may be considered for use in human food products without additional processing to reduce CNG levels.
Collapse
Affiliation(s)
- Elyse Doria
- Department
of Food Science and Technology, University
of California Davis, One Shields Avenue, Davis, California 95616, United States
| | - Larry Lerno
- Department
of Viticulture and Enology, University of
California Davis, One
Shields Avenue, Davis, California 95616, United States
| | - Mary-Ann Chen
- Department
of Food Science and Technology, University
of California Davis, One Shields Avenue, Davis, California 95616, United States
| | - Jihyun Lee
- Department
of Food and Nutrition, Seoul National University, Seoul 08826, Republic of Korea
| | - Guangwei Huang
- Almond
Board of California, Suite 1500, 1150 Ninth Street, Modesto, California 95354, United States
| | - Alyson E. Mitchell
- Department
of Food Science and Technology, University
of California Davis, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
9
|
Gandra U, Pandey RP, Palanikumar L, Irfan A, Magzoub M, Belmabkhout Y, Hasan SW, Mohideen MIH. Cu-TCPP Metal-Organic Nanosheets Embedded Thin-Film Composite Membranes for Enhanced Cyanide Detection and Removal: A Multifunctional Approach to Water Treatment and Environmental Safety. ACS APPLIED MATERIALS & INTERFACES 2025; 17:9563-9574. [PMID: 39893663 PMCID: PMC11826502 DOI: 10.1021/acsami.4c18944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/24/2025] [Accepted: 01/24/2025] [Indexed: 02/04/2025]
Abstract
Cyanide is highly toxic, with widespread industrial use posing serious environmental risks. Effective materials for detecting and filtering cyanide from water are urgently needed. This study introduces a novel approach utilizing Cu-TCPP (TCPP = o-tetra(4-carboxyphenyl)porphine) metal-organic nanosheets (MONS) embedded in thin-film composite membranes, offering a multifunctional solution for cyanide detection and filtration. Ultrathin Cu-TCPP MONs were synthesized using a surfactant-assisted method featuring highly accessible metal centers that enhance cyanide interaction and detection. The membranes, developed by modifying cellulose acetate (CA) with Cu-TCPP MONs, demonstrated exceptional performance for cyanide removal. The 6% Cu-TCPP/CA membrane exhibited a 2.3-fold increase in pure water permeability and achieved a cyanide removal efficiency of 94.68%, significantly outperforming the pristine 0% Cu-TCPP/CA membrane (Pure Water Permeability (PWP) = 380.83 L m-2 h-1 bar-1; CN- removal = 5.01%). This is the first report describing the detection and removal of CN- in water using the membrane technique in literature. In addition to its removal efficiency, the Cu-TCPP MONs showed remarkable detection capabilities, with a calculated limit of detection of 1.76 × 10-7 M, surpassing World Health Organization (WHO) and United States Environmental Protection Agency (EPA) safety standards for cyanide levels in water. Additionally, Cu-TCPP MONs, a bioimaging agent with excellent cell viability, were deployed to detect CN- in MiaPaCa-2 cells, detecting concentrations as low as 0.1 ppm.
Collapse
Affiliation(s)
- Upendar
Reddy Gandra
- Department
of Chemistry, Khalifa University of Science
and Technology, P.O. Box 127788 Abu Dhabi, United Arab Emirates
| | - Ravi P. Pandey
- Department
of Chemical and Petroleum Engineering, Khalifa
University of Science and Technology,
P.O. Box 127788 Abu Dhabi, United Arab Emirates
- Center
for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, P.O. Box 127788 Abu Dhabi, United Arab Emirates
| | - L. Palanikumar
- Biology
Program, Division of Science, New York University
Abu Dhabi, P.O. Box 129188 Abu Dhabi, United Arab Emirates
| | - Ahamad Irfan
- Department
of Chemistry, Khalifa University of Science
and Technology, P.O. Box 127788 Abu Dhabi, United Arab Emirates
- Center
for Catalysis and Separations, Khalifa University
of Science and Technology, P.O. Box 127788 Abu Dhabi, United Arab Emirates
| | - Mazin Magzoub
- Biology
Program, Division of Science, New York University
Abu Dhabi, P.O. Box 129188 Abu Dhabi, United Arab Emirates
| | - Youssef Belmabkhout
- Technology
Development Cell (TechCell), Technology Transfer Office (TTO), Mohammed VI Polytechnic University (UM6P), P.O. Box 43150 Ben Guerir, Morocco
| | - Shadi W. Hasan
- Department
of Chemical and Petroleum Engineering, Khalifa
University of Science and Technology,
P.O. Box 127788 Abu Dhabi, United Arab Emirates
- Center
for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, P.O. Box 127788 Abu Dhabi, United Arab Emirates
| | - M. Infas Haja Mohideen
- Department
of Chemistry, Khalifa University of Science
and Technology, P.O. Box 127788 Abu Dhabi, United Arab Emirates
- Center
for Catalysis and Separations, Khalifa University
of Science and Technology, P.O. Box 127788 Abu Dhabi, United Arab Emirates
| |
Collapse
|
10
|
Gandra UR, Lo R, Managutti PB, Butt AM, Reddy PS, Qurashi AUH, Mohamed S, Mohideen MIH. ICT-based fluorescent nanoparticles for selective cyanide ion detection and quantification in apple seeds. Analyst 2025; 150:489-497. [PMID: 39711329 DOI: 10.1039/d4an01265h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
In this report, we successfully engineered a novel probe based on an acceptor-donor-acceptor (A-D-A) architecture featuring dicyanovinyl-substituted thieno[3,2-b]thiophene, termed DCVTT. The designed probe self-assembles into luminous nanoparticles (DCVTT NPs) upon introducing mixed aqueous solutions. These fluorescent nanostructures served as a ratiometric probe for detecting cyanide (CN-) ions in aqueous-based environments, owing to the robust Intramolecular Charge Transfer (ICT) characteristics of DCVTT. The A-D-A substituents in DCVTT significantly enhanced ICT behavior by promoting more efficient electron transfer between the donor and acceptor groups. This improved electron transfer process leads to heightened sensitivity in detection applications. In the case of cyanide (CN) sensing, this enhanced ICT behavior manifests as a strong colorimetric response, allowing for a visible color change before and after interaction with cyanide. Speculation regarding the interaction mechanism between DCVTT and CN- is proposed based on the findings of various experimental analyses. The detection limit (LOD) for DCVTT in identifying CN- is 0.83 nM, significantly lower than the CN- concentration thresholds deemed safe by the World Health Organization (WHO) and the United States Environmental Protection Agency (EPA). Time-Dependent Density Functional Theory (TD-DFT) has been utilized to theoretically analyze the optical properties of DCVTT both before and after the introduction of the CN- ions. A paper-based test strip was developed to demonstrate its practical application to enable efficient qualitative CN- detection by visual inspection. Furthermore, this sensing platform demonstrates highly accurate quantitative detection of CN- in apple seeds. No prior reports have utilized fluorescence techniques to estimate apple seeds' CN levels.
Collapse
Affiliation(s)
- Upendar Reddy Gandra
- Department of Chemistry, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates.
- Institute for Inorganic and Analytical Chemistry (IAAC), Friedrich Schiller University Jena, Humboldtstr. 8, D-07743 Jena, Germany
| | - Rabindranath Lo
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 542/2, Prague 160 00, Czech Republic
| | - Praveen B Managutti
- Department of Chemistry, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates.
- Chemical Crystallography Laboratory, Khalifa University of Science and Technology, Abu Dhabi, PO BOX 127788, United Arab Emirates
| | - Abdul Mannan Butt
- Department of Chemistry, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates.
| | - Pogula Sreekanth Reddy
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Ahasan Ul Haq Qurashi
- Department of Chemistry, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates.
- Center for Catalysis and Separations, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates.
| | - Sharmarke Mohamed
- Department of Chemistry, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates.
- Chemical Crystallography Laboratory, Khalifa University of Science and Technology, Abu Dhabi, PO BOX 127788, United Arab Emirates
- Center for Catalysis and Separations, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates.
| | - M Infas H Mohideen
- Department of Chemistry, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates.
- Center for Catalysis and Separations, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates.
| |
Collapse
|
11
|
Jayasudha P, Manivannan R, Kim W, Son YA. An affordable, field-deployable detecting system for cyanide ion - Investigating applications in real time uses. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 324:124946. [PMID: 39208543 DOI: 10.1016/j.saa.2024.124946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/31/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
A highly efficient system that incorporates the instantaneous visualization of the cyanide ion in water was synthesized by keeping the fluorophore system (electron donor) as a julolidine-coumarin conjugate and changing the electron acceptor unit. The probes exhibit a notable color change in normal and UV light. The probe interaction modalities are based on the ICT process. With a detection limit in the nM range, it may preferentially react with cyanide, which is less than the tolerable level of 1.9 μM. According to 1H NMR data, the probes detect cyanide ions by nucleophilic addition reaction mechanism. Furthermore, current probe successfully determines real resources, including cyanide containing cassava powder, sprouted potatoes and various water samples. Besides the test strips, an electronic Arduino device was also employed to detect the cyanide ion. As such, the developed probes exhibit outstanding practical application with respect to the cyanide ion.
Collapse
Affiliation(s)
- Palanisamy Jayasudha
- Department of Advanced Organic Materials Engineering, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejeon 305-764, South Korea
| | - Ramalingam Manivannan
- Department of Advanced Organic Materials Engineering, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejeon 305-764, South Korea
| | - Wonbin Kim
- Department of Advanced Organic Materials Engineering, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejeon 305-764, South Korea
| | - Young-A Son
- Department of Advanced Organic Materials Engineering, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejeon 305-764, South Korea.
| |
Collapse
|
12
|
Zhang P, Su J, Zhen H, Yu T, Wei L, Zheng M, Zeng C, Shu W. Recent design strategies and applications of small molecule fluorescent probes for food detection. Coord Chem Rev 2025; 522:216232. [DOI: 10.1016/j.ccr.2024.216232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
13
|
Kalavathi A, Satheeshkumar K, Dharaniprabha V, Vennila KN, Elango KP. Spectroscopic and Theoretical Studies on the Selective Detection of Cyanide Ions by a Turn-On Fluorescent Chemo-Dosimeter and its Application in Living Cell Imaging. J Fluoresc 2025; 35:165-178. [PMID: 38008863 DOI: 10.1007/s10895-023-03509-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 11/08/2023] [Indexed: 11/28/2023]
Abstract
A new chemo-dosimeter AK4 containing quinoline fluorophore has rationally been designed, synthesised and characterized using 1H and 13C NMR and mass spectral techniques. The probe senses explicitly CN- ion through a dramatic enhancement in fluorescence over other commonly coexistent anions in H2O:DMSO (9:1 v/v) medium over a broad pH range (4-10). 1H NMR titration revealed the deprotonation followed by nucleophilic addition reaction of CN-, which was supported by 13C NMR and mass spectral examinations. The Job's continuous variation method indicated the formation of a 1:1 adduct between AK4 and CN- with a binding constant of 1.62 × 104 M-1. A limit of detection (LOD) towards CN- of 0.69 µM has been determined, which is much lower than the World Health Organization (WHO) recommended limit of CN- in drinking water (1.9 µM). The changes in the optical properties of AK4 upon reaction with CN- were delineated using Density Functional Theory (DFT) and Time-Dependent Density Functional Theory (TD-DFT) calculations. Moreover, fluorescence microscopic studies established that AK4 could be an effective probe for imaging intracellular CN- in HeLa cells.
Collapse
Affiliation(s)
- A Kalavathi
- Department of Chemistry, Gandhigram Rural Institute (Deemed to be University), Gandhigram, 624302, India
| | - K Satheeshkumar
- Department of Chemistry, Gandhigram Rural Institute (Deemed to be University), Gandhigram, 624302, India
| | - V Dharaniprabha
- Department of Chemistry, Gandhigram Rural Institute (Deemed to be University), Gandhigram, 624302, India
| | - K N Vennila
- Department of Chemistry, Gandhigram Rural Institute (Deemed to be University), Gandhigram, 624302, India
| | - Kuppanagounder P Elango
- Department of Chemistry, Gandhigram Rural Institute (Deemed to be University), Gandhigram, 624302, India.
| |
Collapse
|
14
|
Chen HW, Cao HW, Li JZ, Chen YS, Li LY, Li ZK, Wang HJ, Wang MQ. D-π-A type fluorescent dyes: Effect of π-bridge units on optical and G4 DNA binding properties. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 323:124901. [PMID: 39094268 DOI: 10.1016/j.saa.2024.124901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/15/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
Fluorescent solvatochromic dyes that are sensitive to the nature of local microenvironmental, have been explored as probes in applications ranging from the imaging biomolecules to understanding of basic biomolecule functions. To expand the scope of fluorescent solvatochromic dyes for G-quadruplex (G4) DNA structures, and to illustrate the relationship between structure and properties, three newly designed D-π-A type fluorescent dyes were synthesized by introducing diarylimidazole to carbazole skeleton linked to benzene, furan or thiophene π-conjugated bridge and connected with pyridinium acceptor, respectively. Their structural characteristics, optical properties, and G4 DNA binding properties were discussed in detail. In general, the incorporation of furan and thiophene as π-conjugated bridges leads the better conjugation and molecular coplanarity with more efficient intramolecular charge transfer (ICT) effect compared with benzene bridge. The fluorescence intensities induced upon interaction were found that TP-6 with thiophene π-conjugated bridge had the strongest response toward G4 DNAs. In addition, the application of this dye as a fluorescent agent for living cell imaging was also demonstrated.
Collapse
Affiliation(s)
- Hai-Wen Chen
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Hao-Wen Cao
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Jing-Zhi Li
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Yan-Song Chen
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Lu-Yu Li
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Ze-Kai Li
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Hai-Jiao Wang
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, PR China.
| | - Ming-Qi Wang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
15
|
Tian X, Zheng X, Chen L, Wang Z, Liu BT, Bi Y, Li L, Shi H, Li S, Li C, Zhang D. Recent advances in photoluminescent fluorescent probe technology for food flavor compounds analysis. Food Chem 2024; 459:140455. [PMID: 39029422 DOI: 10.1016/j.foodchem.2024.140455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/24/2024] [Accepted: 07/12/2024] [Indexed: 07/21/2024]
Abstract
The real-time, precise qualitative and quantitative sensing of food flavor compounds is crucial for ensuring food safety, quality, and consumer acceptance. As indicators for food flavor labeling, it is vital to delve deep into the specific ingredient and content of food flavor compounds to assess the food flavor quality, but still facing huge challenges. Photoluminescent fluorescent probe technology, with fast detection and high sensitivity, has shown immense potentials in detecting food flavor compounds. In this review, the classification and optical sensing mechanism of photoluminescent fluorescent probe technology are described in detail. Besides, challenges in applying photoluminescent fluorescent probe technology to analyze food flavor compounds are outlined to indicate future research directions. We hope this review can provide an insight for the applications of photoluminescent fluorescent probe technology in the evaluation of food flavor quality in future.
Collapse
Affiliation(s)
- Xiaoxian Tian
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaochun Zheng
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Li Chen
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhenyu Wang
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bai-Tong Liu
- Department of Chemistry, The University of Hong Kong, 999077, Hong Kong Special Administrative Region
| | - Yongzhao Bi
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
| | - Liang Li
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Haonan Shi
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shaobo Li
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Cheng Li
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Dequan Zhang
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
16
|
Hu X, Zhang H, Guo X, Wang Z, Huang Q, Wang Y, Ma X, Lin Z. Nanozyme catalysis pressure-powered intuitive distance variation for portable quantitative detection of H 2S with the naked eye. Anal Bioanal Chem 2024; 416:6045-6055. [PMID: 38878181 DOI: 10.1007/s00216-024-05390-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 10/26/2024]
Abstract
As a representative gas of food spoilage, the development of rapid hydrogen sulfide (H2S) analysis strategies for food safety control is in great demand. Despite traditional methods for H2S detection possessing great achievements, they are still incapable of meeting the requirement of portability and quantitative detection at the same time. Herein, a nanozyme catalysis pressure-powered sensing platform that enables visual quantification with the naked eye is proposed. In this methodology, Pt nanozyme inherits the catalase-like activity to facilitate the decomposition of H2O2 to O2, which can significantly improve the pressure in the closed container, further pushing the movement of indicator dye. Furthermore, H2S was found to effectively inhibit the catalytic activity of Pt nanozyme, indicating that the catalase-like activity of PtNPs may be regulated by varying concentrations of H2S. Therefore, by utilizing a self-designed pressure-powered microchannel device, the concentration of H2S was successfully converted into a distinct signal variation in distance. The effectiveness of the as-designed sensor in assessing the spoilage of red wine by H2S determination has been demonstrated. It exhibits a strong correlation between the change in dye distance and H2S concentration within the range of 1-250 μM, with a detection limit of 0.17 μM. This method is advantageous as it enhances the quantitative detection of H2S with the naked eye based on the portable pressure-powered sensing platform, as compared to traditional H2S biosensors. Such a pressure-powered distance variation platform would greatly broaden the application of H2S-based detection in food spoilage management.
Collapse
Affiliation(s)
- Xuan Hu
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, China
| | - Huifang Zhang
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, China
- Department of Chemistry, Nanchang University, Nanchang, 330031, China
| | - Xinyu Guo
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, China
| | - Zhen Wang
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, China
| | - Qitong Huang
- Key Laboratory of Biomedical Sensors of Ganzhou, Key Laboratory of Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou, 341000, China
| | - Yu Wang
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, China
| | - Xiaoming Ma
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, China.
| | - Zhenyu Lin
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116, China.
| |
Collapse
|
17
|
Sert A, Erdemir S, Malkondu S. Ratiometric detection and monitoring of cyanide in biological, environmental and food samples by a novel triphenylamine-xhantane based fluorescent probe. Anal Chim Acta 2024; 1320:343000. [PMID: 39142780 DOI: 10.1016/j.aca.2024.343000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/22/2024] [Accepted: 07/21/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND As cyanide (CN-) is a significant hazard to the environment and human health, it is essential to monitor cyanide levels in water and food samples. Moreover, real-time visualization of CN-could provide an additional understanding of its critical physiological and toxicological roles in living cells. The fluorescence approach based on small organic probes is an effective way for the detection of CN-. In this approach, a triphenylamine-xhantane conjugate was applied to detect in many samples such as sewage water, soil, sprouted potato, apricot seed, and living cells. RESULTS We report a new ratiometric near-infrared fluorescent probe based on a triphenylamine-xhantane derivative for CN-sensing in many samples. The probe displays high selectivity for only CN- ions among a series of analytes. The addition of cyanide to the dicyanovinyl moiety of the probe disrupts π-conjugation followed by the interruption of internal charge transfer. Consequently, the emission peak of the probe shifts hypsochromically from 655 to 495 nm. There is a linear correlation between the emission intensity (I495) and cyanide level, with a detection limit of 0.036 μM. The probe has many advantages over many probes, such as NIR fluorescence, ratiometric response, low cytotoxicity (85.0 % cell viability up to 50.0 μM of the probe), good membrane permeability, fast response time (4.0 min), high selectivity, good photostability, and anti-interference capability. SIGNIFICANCE Although various probes have been reported in the literature, the use of triphenylamine-xhantane unit as CN- probe has yet to be explored. The probe can detect trace levels of cyanide in many samples such as sewage water, soil, sprouted potatoes, and apricot seeds. Furthermore, it is successfully utilized for the ratiometric fluorescent bioimaging of cyanide in living cells.
Collapse
Affiliation(s)
- Ali Sert
- Selcuk University, Science Faculty, Department of Chemistry, 42250, Konya, Turkey
| | - Serkan Erdemir
- Selcuk University, Science Faculty, Department of Chemistry, 42250, Konya, Turkey.
| | - Sait Malkondu
- Giresun University, Faculty of Engineering, Department of Environmental Engineering, Giresun, 28200, Turkey
| |
Collapse
|
18
|
Dharaniprabha V, Kalavathi A, Satheeshkumar K, Elango KP. A ferrocene-based chemo-dosimeter for colorimetric and electrochemical detection of cyanide and its estimation in cassava flour. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:4880-4888. [PMID: 38973414 DOI: 10.1039/d4ay00415a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
A simple chemo-dosimeter VDP2 bearing a ferrocene moiety was designed, synthesized, and characterized, and exhibited both chromogenic and electrochemical responses selectively for CN- in H2O-DMSO (9 : 1, v/v) medium. The probe VDP2 showed an instantaneous color change from colorless to yellow with CN- that can readily be observed visually. The deprotonation of the benzimidazole -NH, followed by nucleophilic addition of CN- to the olefinic C-atom, as evidenced by 1H and 13C NMR titration experiments, caused the colorimetric and electrochemical responses. The mass spectral study, CV, FTIR and Mulliken charges computed well supported the proposed mechanism. The electrochemical limit of detection was calculated to be 72 nM. The results of DFT and TD-DFT calculations suggested that the colorless nature of the probe VDP2 is due to weak intramolecular charge transfer (ICT) transition and the yellow color of the VDP2+CN adduct is due to through-space ICT transition. Above all, the probe could be an ideal candidate for monitoring cyanide in water samples and cassava flour with practical significance. A simple and convenient colorimetric method was developed to determine cyanide content in cassava flour.
Collapse
Affiliation(s)
- V Dharaniprabha
- Department of Chemistry, Gandhigram Rural Institute (Deemed to be University), Gandhigram 624302, India.
| | - A Kalavathi
- Department of Chemistry, Gandhigram Rural Institute (Deemed to be University), Gandhigram 624302, India.
| | - K Satheeshkumar
- Department of Chemistry, Gandhigram Rural Institute (Deemed to be University), Gandhigram 624302, India.
| | - Kuppanagounder P Elango
- Department of Chemistry, Gandhigram Rural Institute (Deemed to be University), Gandhigram 624302, India.
| |
Collapse
|
19
|
Zhu Y, Chong X, Luo Z, Zhao X, Liu J, Chen J, Liu W, Zhang L, Meng WQ. Visual detection and discrimination of nerve and blood agents using a dual-site fluorescent probe in living cells and mice. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134604. [PMID: 38759283 DOI: 10.1016/j.jhazmat.2024.134604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/01/2024] [Accepted: 05/11/2024] [Indexed: 05/19/2024]
Abstract
Of all chemical warfare agents (CWAs), only nerve and blood agents cause massive mortality at low concentrations. To better detect and discriminate nerve and blood agents, a reliable detection method is desirable. We report a series of fluorescent probes for nerve and blood agent detection. Among the tested probes, SR-Pip detected nerve and blood agents quickly (within 10 s for nerve agents and 1 min for blood agents). SR-Pip coupled with nerve agent produced a weak orange fluorescence with good sensitivity [limit of detection (LOD)= 5.5 μM]. Upon reaction with blood agent, the fluorescence of SR-Pip changed from orange fluorescence to blue fluorescence with detection limits as low as 9.6 nM. This probe effectively visualised different concentrations of nerve agents in living cells and mice. A portable test kit using SR-Pip instantly detected nerve and blood agents. To the best of our knowledge, SR-Pip is the first fluorescent probe for nerve and blood agent detection.
Collapse
Affiliation(s)
- Yuping Zhu
- Basic Medical Experimental Teaching Center, Basic Medical College, Naval Medical University, Shanghai 200433, China
| | - Xiaodan Chong
- Clinical Cancer Institute, Translational Medicine Center, Naval Medical University, Shanghai 200433, China
| | - Zimeng Luo
- Lab of Toxicology & Pharmacology, Faculty of Naval Medicine, Naval Military Medical University, Shanghai, China; Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Xuan Zhao
- Lab of Toxicology & Pharmacology, Faculty of Naval Medicine, Naval Military Medical University, Shanghai, China; Basic Medical Experimental Teaching Center, Basic Medical College, Naval Medical University, Shanghai 200433, China
| | - Junhong Liu
- Lab of Toxicology & Pharmacology, Faculty of Naval Medicine, Naval Military Medical University, Shanghai, China
| | - Jiasheng Chen
- Lab of Toxicology & Pharmacology, Faculty of Naval Medicine, Naval Military Medical University, Shanghai, China
| | - Wei Liu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China.
| | - Ling Zhang
- Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China.
| | - Wen-Qi Meng
- Lab of Toxicology & Pharmacology, Faculty of Naval Medicine, Naval Military Medical University, Shanghai, China; Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China; Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China.
| |
Collapse
|
20
|
Chen X, Zhao C, Zhao Q, Yang Y, Yang S, Zhang R, Wang Y, Wang K, Qian J, Long L. Construction of a Colorimetric and Near-Infrared Ratiometric Fluorescent Sensor and Portable Sensing System for On-Site Quantitative Measurement of Sulfite in Food. Foods 2024; 13:1758. [PMID: 38890986 PMCID: PMC11171829 DOI: 10.3390/foods13111758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
Sulfites play imperative roles in food crops and food products, serving as sulfur nutrients for food crops and as food additives in various foods. It is necessary to develop an effective method for the on-site quantification of sulfites in food samples. Here, 7-(diethylamino) quinoline is used as a fluorescent group and electron donor, alongside the pyridinium salt group as an electron acceptor and the C=C bond as the sulfite-specific recognition group. We present a novel fluorescent sensor based on a mechanism that modulates the efficiency of intramolecular charge transfer (ICT), CY, for on-site quantitative measurement of sulfite in food. The fluorescent sensor itself exhibited fluorescence in the near-infrared light (NIR) region, effectively minimizing the interference of background fluorescence in food samples. Upon exposure to sulfite, the sensor CY displayed a ratiometric fluorescence response (I447/I692) with a high sensitivity (LOD = 0.061 μM), enabling accurate quantitative measurements in complex food environments. Moreover, sensor CY also displayed a colorimetric response to sulfite, making sensor CY measure sulfite in both fluorescence and colorimetric dual-signal modes. Sensor CY has been utilized for quantitatively measuring sulfite in red wine and sugar with recoveries between 99.65% and 101.90%, and the RSD was below 4.0%. The sulfite concentrations in live cells and zebrafish were also monitored via fluorescence imaging. Moreover, the sulfite assimilated by lettuce leaves was monitored, and the results demonstrated that excessive sulfite in leaf tissue could lead to leaf tissue damage. In addition, the sulfate-transformed sulfite in lettuce stem tissue was tracked, providing valuable insights for evaluating sulfur nutrients in food crops. More importantly, to accomplish the on-site quantitative measurement of sulfite in food samples, a portable sensing system was prepared. Sensor CY and the portable sensing system were successfully used for the on-site quantitative measurement of sulfite in food.
Collapse
Affiliation(s)
- Xiaodong Chen
- Key Laboratory of Modern Agricultural Equipment and Technology (Ministry of Education), Jiangsu University, Zhenjiang 212013, China
| | - Chenglu Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Qiwei Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yunfei Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Sanxiu Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Rumeng Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yuqing Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Kun Wang
- Key Laboratory of Modern Agricultural Equipment and Technology (Ministry of Education), Jiangsu University, Zhenjiang 212013, China
| | - Jing Qian
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Lingliang Long
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
21
|
Immanuel David C, Lee J, Ramanagul K, Gothandapani V, Kim BJ, Lee HI. Dual channel chemosensor for successive detection of environmentally toxic Pd 2+ and CN - ions and its application to cancer cell imaging. Anal Chim Acta 2024; 1305:342582. [PMID: 38677838 DOI: 10.1016/j.aca.2024.342582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/19/2024] [Accepted: 04/04/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND Detecting and neutralizing Pd2+ ions are a significant challenge due to their cytotoxicity, even at low concentrations. To address this issue, various chemosensors have been designed for advanced detection systems, offering simplicity and the potential to differentiate signals from different analytes. Nonetheless, these chemosensors often suffer from limited emission response and complex synthesis procedures. As a result, the tracking and quantification of residual palladium in biological systems and environments remain challenging tasks, with only a few chemosensing probes available for commercial use. RESULTS In this paper, a straightforward approach for the selective detection of Pd2+ ions is proposed, which involves the design, synthesis, and utilization of a propargylated naphthalene-derived probe (E)-N'-((2-(prop-2-yn-1-yloxy)naphthalen-1-yl)methylene)benzohydrazide (NHP). The NHP probe exhibits sensitive dual-channel colorimetry and fluorescence Pd2+ detection over other tested metal ions. The detection process is performed through a catalytic depropargylation reaction, followed by an excited state intramolecular proton transfer (ESIPT) process, the detection limit is as low as 11.58 × 10-7 M under mild conditions. Interestingly, the resultant chemodosimeter adduct (E)-N'-((2-hydroxynaphthalen-1-yl)methylene)benzohydrazide (NHH) was employed for the consecutive detection of CN- ions, exhibiting an impressive detection limit of 31.79 × 10-8 M. Validation of both detection processes was achieved through 1H nuclear magnetic resonance and density functional theory calculations. For real-time applications of the NHP and NHH probes, smartphone-assisted detection, and intracellular detection of Pd2+ and CN- ions within HeLa cells were studied. SIGNIFICANCE This research presents a novel naphthalene derivative for visually detecting environmentally toxic Pd2+ and CN- ions. The synthesized probe selectively binds to Pd2+, forming a chemodosimeter. It successfully detects CN- ions through colorimetry and fluorimetry, offering a low detection limit and quick response. Notably, it's the first naphthalene-based small molecule to serve as a dual probe for toxic analytes - palladium and cyanide. Moreover, it effectively detects Pd2+ and CN- intracellularly in cancer cells.
Collapse
Affiliation(s)
- Charles Immanuel David
- Department of Chemistry, Chemical Industry Research Institution (CIRI), University of Ulsan, Ulsan, 44776, Republic of Korea
| | - Jihyun Lee
- Department of Chemistry, Chemical Industry Research Institution (CIRI), University of Ulsan, Ulsan, 44776, Republic of Korea
| | - Karthick Ramanagul
- Department of Physics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, Tamil Nadu, 602105, India
| | - Velraj Gothandapani
- Department of Physics, CEG Campus, Anna University, Chennai, Tamil Nadu, 600025, India
| | - Beom Jin Kim
- Department of Chemistry, Chemical Industry Research Institution (CIRI), University of Ulsan, Ulsan, 44776, Republic of Korea.
| | - Hyung-Il Lee
- Department of Chemistry, Chemical Industry Research Institution (CIRI), University of Ulsan, Ulsan, 44776, Republic of Korea.
| |
Collapse
|
22
|
Yue C, Zeng L, Zhang D, Li K, Jiang L, Xie P. A practical chromogenic and fluorogenic dual-mode sensing platform for rapid quantification of sulfite in food. Food Chem 2024; 440:138183. [PMID: 38104454 DOI: 10.1016/j.foodchem.2023.138183] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/23/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
Sulfur dioxide (SO2) and its derivatives (HSO3- and SO32-) are widely used in food-processing. Whereas excessive consumption of sulfur dioxide and its derivatives (>0.70 mg·kg-1day-1) severely endangers human health. In this work, we rationally constructed a practical dual-mode probe (dicyanomethylene)-1-methyl-1,4-dihydroquinolin-2-yl)vinyl)-1-methylquinolinium (QMN), which underwent a specific 1, 4-Michael addition with sulfite to afford a noticeable color change from pale yellow to red along with a high-contrast fluorescence turn-on response at 598 nm. QMN has the advantages of rapid response, high signal-to-noise ratio, excellent selectivity, good water-solubility, large Stokes shift and low detection limit (LOD = 31.9 nM). QMN has been successfully used to on-site visually determine sulfite in a diversity of foods with satisfactory recoveries (91.33-111.33 %) and high accuracy (93.74-98.71 %). Furthermore, a portable smartphone-based fluorescence sensing platform was fabricated for on-site determination of sulfite in food with good performance.
Collapse
Affiliation(s)
- Chenyang Yue
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Lintao Zeng
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Di Zhang
- Institute of Quality and Safety for Agro-products, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Kai Li
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Lirong Jiang
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China.
| | - Peng Xie
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
| |
Collapse
|
23
|
Palanisamy J, Gatasheh MK, Hatamleh AA. A reaction based carbazole-indolium conjugate probe for the selective detection of environmentally toxic ions. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2869-2877. [PMID: 38639075 DOI: 10.1039/d4ay00301b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
A nucleophilic addition based chemodosimeter was designed and synthesized with a carbazole donor and an indole acceptor. The addition of a cyanide ion to an electron-deficient indole moiety disrupts the acceptor-donor relationship, resulting in noticeable color shifts and spectrum differences in both the absorption and emission profiles. The design has a D-π-A molecular arrangement. Selectivity was investigated in 90% aqueous DMSO solution of probe CI with various anions such as SCN-, PF6-, NO3-, N3-, I-, HSO4-, CN-, H2PO4-, F-, HS-, ClO4-, Cl-, Br-, and AcO-. An intermolecular charge transfer (ICT) band at 506 nm in the UV-visible spectra vanished and the intensity of emission was quenched at 624 nm upon the addition of CN- ions. These outcomes demonstrate the effective nucleophilic addition of cyanide ions to the electron-deficient indole moiety of the probe, resulting in the formation of a new adduct in which the ICT transition is interrupted when π conjugation is blocked. The Job plot, 1H NMR spectroscopy, and HRMS analysis confirmed the formation of a new product. An outstanding response was shown by paper test strips made using probe molecules for the easy detection of cyanide ions in aqueous solutions. Besides, the probe selectively senses cyanide ions in different water samples.
Collapse
Affiliation(s)
- Jayasudha Palanisamy
- Department of Chemistry, Subramanya College of Arts and Science, Tamilnadu 624618, India.
| | - Mansour K Gatasheh
- Department of Biochemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ashraf Atef Hatamleh
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
24
|
Duyssembayev S, Serikova A, Ikimbayeva N, Balgabaikyzy A, Zhexenayeva A. The quality of beef in the conditions of the former Semipalatinsk Test Site. J Anim Physiol Anim Nutr (Berl) 2023; 107:1328-1335. [PMID: 37036054 DOI: 10.1111/jpn.13821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/09/2023] [Accepted: 03/26/2023] [Indexed: 04/11/2023]
Abstract
The territory of the Semipalatinsk Nuclear Test Site represents vast areas of grassy steppes, their use as pastures seems promising. The purpose of work was to compare beef samples obtained from settlements belonging to different categories of radiation risk: Kokpekty village, Chagan urban-type settlement, Krivinka village, Sarzhal village, three samples were examined from each settlement. Organoleptic analysis, radiometric determination of 137 Cs, was used as criteria. Also, an analysis of the amino acid composition by the high-performance liquid chromatograph method was carried out and a calculation of protein indicators was made: meat tenderness, amino acid usefulness, nutrition value. The organoleptic examination showed the compliance of all samples with the standards, with the exception of one sample from the Sarzhal village. The study of the specific activity of 137 Cs showed a direct correlation between the category of radiation risk and the content of this radioisotope in meat from different zones. The availability of some deviations in the samples indicators obtained from the Sarzhal village indicates the need to approach the products control from this zone more carefully, and radioisotope analysis should become a decisive criterion in determining the safety profile of the product.
Collapse
Affiliation(s)
- Sergazy Duyssembayev
- Department of Veterinary, Shakarim University of Semey, Semey, Republic of Kazakhstan
| | - Ainur Serikova
- Department of Veterinary, Shakarim University of Semey, Semey, Republic of Kazakhstan
| | - Nurgul Ikimbayeva
- Department of Veterinary, Shakarim University of Semey, Semey, Republic of Kazakhstan
| | - Assem Balgabaikyzy
- Department of Veterinary, Shakarim University of Semey, Semey, Republic of Kazakhstan
| | - Assel Zhexenayeva
- Department of Veterinary, Shakarim University of Semey, Semey, Republic of Kazakhstan
| |
Collapse
|
25
|
Bonnefond S, Reynaud A, Cazareth J, Abélanet S, Vassalli M, Brau F, Lippi GL. Nanoscatterer-Assisted Fluorescence Amplification Technique. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2875. [PMID: 37947721 PMCID: PMC10648225 DOI: 10.3390/nano13212875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023]
Abstract
Weak fluorescence signals, which are important in research and applications, are often masked by the background. Different amplification techniques are actively investigated. Here, a broadband, geometry-independent and flexible feedback scheme based on the random scattering of dielectric nanoparticles allows the amplification of a fluorescence signal by partial trapping of the radiation within the sample volume. Amplification of up to a factor of 40 is experimentally demonstrated in ultrapure water with dispersed TiO2 nanoparticles (30 to 50 nm in diameter) and fluorescein dye at 200 μmol concentration (pumped with 5 ns long, 3 mJ laser pulses at 490 nm). The measurements show a measurable reduction in linewidth at the emission peak, indicating that feedback-induced stimulated emission contributes to the large gain observed.
Collapse
Affiliation(s)
- Sylvain Bonnefond
- Université Côte d’Azur, UMR 7010 CNRS, Institut de Physique de Nice, 06560 Valbonne, France;
| | - Antoine Reynaud
- Université Côte d’Azur, UMR 7275 CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Valbonne, France; (A.R.); (J.C.); (S.A.); (F.B.)
| | - Julie Cazareth
- Université Côte d’Azur, UMR 7275 CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Valbonne, France; (A.R.); (J.C.); (S.A.); (F.B.)
| | - Sophie Abélanet
- Université Côte d’Azur, UMR 7275 CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Valbonne, France; (A.R.); (J.C.); (S.A.); (F.B.)
| | - Massimo Vassalli
- James Watt School of Engineering, University of Glasgow, Glasgow G12 8LT, UK;
| | - Frédéric Brau
- Université Côte d’Azur, UMR 7275 CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Valbonne, France; (A.R.); (J.C.); (S.A.); (F.B.)
| | - Gian Luca Lippi
- Université Côte d’Azur, UMR 7010 CNRS, Institut de Physique de Nice, 06560 Valbonne, France;
| |
Collapse
|
26
|
Sun H, Xu Q, Xu C, Zhang Y, Ai J, Ren M, Liu K, Kong F. Construction of a water-soluble fluorescent probe for copper (II) ion detection in live cells and food products. Food Chem 2023; 418:135994. [PMID: 36989639 DOI: 10.1016/j.foodchem.2023.135994] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/15/2023] [Accepted: 03/18/2023] [Indexed: 03/29/2023]
Abstract
The quality of wine can be affected by excess Cu2+ due to the occurrence of oxidation reactions or precipitation. Therefore, it is essential to use simple and effective testing methods to ensure the Cu2+ content in wine. In this work, we designed and synthesized a rhodamine polymer fluorescent probe (PEG-R). The water solubility of PEG-R was improved by the introduction of polyethylene glycol, which improved the performance and broadened its application in the food field. The PEG-R was characterized by high sensitivity, selectivity and fast response to Cu2+ and was able to complete the response process within 30 s, with approximately 29-fold fluorescence enhancement of the probe after exposure to Cu2+, the limit of detection (LOD) was 1.295 × 10-6 M. The probe can be used for the determination of Cu2+ in living cells, zebrafish, white wine and food products, and it was made into practical gels and test strips.
Collapse
Affiliation(s)
- Hui Sun
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Qingyu Xu
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Chen Xu
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Yukun Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Jindong Ai
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Mingguang Ren
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China.
| | - Keyin Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China.
| | - Fangong Kong
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| |
Collapse
|
27
|
Satheeshkumar K, Saravanakumar P, Kalavathi A, Vennila KN, Ciattini S, Chelazzi L, Elango KP. A highly selective probe for fluorometric sensing of cyanide in an aqueous solution and its application in quantitative determination and living cell imaging. Methods 2023; 215:1-9. [PMID: 37187297 DOI: 10.1016/j.ymeth.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/20/2023] [Accepted: 05/10/2023] [Indexed: 05/17/2023] Open
Abstract
A simple fluorescent probe (KS4) containing multiple reaction sites (phenolic -OH, imine and C = C bonds) is successfully synthesized and characterized using 1H NMR, 13C NMR, mass and single crystal XRD techniques. KS4 exhibits high selectivity towards CN- over a wide range of common anions in H2O:DMSO (1:1 v/v) leading to an amazing turn-on fluorescence at 505 nm via deprotonation of the phenolic -OH group. The limit of detection (1.3 µM) for CN- was much below the standard (1.9 µM) set by the World Health Organization (WHO). Stoichiometry of the interaction between KS4 and CN- was ascertained as 1:1 by the Job's plot method and the binding constant was determined to be 1.5x104 M-1. Density Functional Theory (DFT) and Time-Dependent Density Functional Theory (TD-DFT) based theoretical insight has been appealed to understand the optical properties of KS4 before and after the addition of CN- ion. The probe shows respectable real-time applicability for qualitative detection of CN- in almond and cassava powder as well as quantification in real water samples with excellent recoveries (98.8 - 99.8%). In addition, KS4 is found to safe towards living HeLa cells and successfully applied to the detection of endogenous cyanide ions in HeLa cells.
Collapse
Affiliation(s)
- K Satheeshkumar
- Department of Chemistry, Gandhigram Rural Institute (Deemed to be University), Gandhigram 624302, India
| | - P Saravanakumar
- Department of Chemistry, Gandhigram Rural Institute (Deemed to be University), Gandhigram 624302, India
| | - A Kalavathi
- Department of Chemistry, Gandhigram Rural Institute (Deemed to be University), Gandhigram 624302, India
| | - K N Vennila
- Department of Chemistry, Gandhigram Rural Institute (Deemed to be University), Gandhigram 624302, India
| | - S Ciattini
- Structural Crystallography Centre, University of Florence, Sesto Fiorentino (Florence), Italy
| | - L Chelazzi
- Structural Crystallography Centre, University of Florence, Sesto Fiorentino (Florence), Italy
| | - Kuppanagounder P Elango
- Department of Chemistry, Gandhigram Rural Institute (Deemed to be University), Gandhigram 624302, India.
| |
Collapse
|
28
|
Shang Z, Meng Q, Tian D, Wang Y, Zhang Z, Zhang Z, Zhang R. Red-emitting fluorescent probe for hydrogen sulfide detection and its applications in food freshness determination and in vivo bioimaging. Food Chem 2023; 427:136701. [PMID: 37423045 DOI: 10.1016/j.foodchem.2023.136701] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/11/2023]
Abstract
We report the development of a red-emitting fluorescence probe (XDS) for hydrogen sulfide (H2S) detection in biosystems, real-world food samples, and application of this probe for monitoring of H2S production during food spoilage. The XDS probe is developed by coupling of coumarin derivative to rhodanic-CN through a H2S responsive CC bond. Remarkable fluorescence quenching of XDS is observed as a result of the response to H2S. Semi-quantitative detection of H2S in three real-world water and two beer samples and monitoring of H2S production during food spoilage in real-time by "naked-eye" and smartphone colorimetric analysis are then achieved using XDS as the probe. Moreover, XDS is low toxicity, allowing it being used for visualizing endogenous and exogenous H2S in vivo in a mouse model. It is expected that the successful development of XDS could provide an effective tool for investigating the roles of H2S in biomedical system and for future food safety evaluation.
Collapse
Affiliation(s)
- Zhuye Shang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, PR China
| | - Qingtao Meng
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, PR China; Key Laboratory for Functional Material, Educational Department of Liaoning Province, University of Science and Technology Liaoning, Anshan, Liaoning Province 114051, PR China.
| | - Dihua Tian
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yue Wang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, PR China
| | - Zexi Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Zhiqiang Zhang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, PR China.
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
29
|
He D, Chen X, Yang S, Yang Y, Wang Y, Zhang R, Wang K, Qian J, Long L. A Sensitive Colorimetric and Near-Infrared Fluorescent Probe for Tracing Slight pH Variation in Food Samples. ACS FOOD SCIENCE & TECHNOLOGY 2023; 3:891-897. [DOI: 10.1021/acsfoodscitech.3c00062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
- Dan He
- School of Chemistry and Chemical Engineering, Key Laboratory of Modern Agricultural Equipment and Technology (Ministry of Education), Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
| | - Xiaodong Chen
- School of Chemistry and Chemical Engineering, Key Laboratory of Modern Agricultural Equipment and Technology (Ministry of Education), Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
| | - Sanxiu Yang
- School of Chemistry and Chemical Engineering, Key Laboratory of Modern Agricultural Equipment and Technology (Ministry of Education), Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
| | - Yunfei Yang
- School of Chemistry and Chemical Engineering, Key Laboratory of Modern Agricultural Equipment and Technology (Ministry of Education), Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
| | - Yuqing Wang
- School of Chemistry and Chemical Engineering, Key Laboratory of Modern Agricultural Equipment and Technology (Ministry of Education), Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
| | - Rumeng Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory of Modern Agricultural Equipment and Technology (Ministry of Education), Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
| | - Kun Wang
- School of Chemistry and Chemical Engineering, Key Laboratory of Modern Agricultural Equipment and Technology (Ministry of Education), Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
| | - Jing Qian
- School of Chemistry and Chemical Engineering, Key Laboratory of Modern Agricultural Equipment and Technology (Ministry of Education), Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
| | - Lingliang Long
- School of Chemistry and Chemical Engineering, Key Laboratory of Modern Agricultural Equipment and Technology (Ministry of Education), Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
| |
Collapse
|
30
|
Xu ZY, Wang XH, Luo HQ, Li NB. Cascade reaction-based highly sensitive fluorescent sensing systems applicable for dual-pattern fluorescence visualizing of thiophenol flavors in meat products and condiments. Food Chem 2023; 407:135120. [PMID: 36495742 DOI: 10.1016/j.foodchem.2022.135120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/29/2022] [Accepted: 11/27/2022] [Indexed: 12/12/2022]
Abstract
Thiophenols (ArSHs) are widely used as popular flavoring ingredients for making daily dishes. Dissecting the ArSHs contents in common foodstuffs is meaningful in the field of food safety science. Herein, a novel small-molecule sensor 2-(1H-benzo[d]imidazol-2-yl)-3-(2-(2,4-dinitrophenoxy)-4-morpholinophenyl)acrylonitrile (NOSA) has been tailored. The NOSA is able to respond to ArSHs, spontaneously yielding highly green-emissive fluorescent iminocoumarin (I500). This cascade reaction-based strategy is sensitive (limit-of-detection = 2.8 nM), rapid (within 5 min), and selective toward ArSH flavors. Probe NOSA has been applied to the determination of ArSHs in real-life meat products and condiments. Moreover, a far-red fluorescent compound, 2-(7-(diethylamino)-4-(4-(methylthio)styryl)-2H-chromen-2-ylidene)malononitrile (CMMT), has been first combined with NOSA to construct a composite probe NOSA@CMMT for the ratiometric detection of ArSHs (I500/I630). System NOSA@CMMT exhibits a conspicuous fluorescence change from deep-red to light-green. Benefitted from the gorgeous chromatic fluctuation, a smartphone-integrated analysis platform is established for the real-time evaluation of ArSHs level.
Collapse
Affiliation(s)
- Zi Yi Xu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Xiao Hu Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Hong Qun Luo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| | - Nian Bing Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
31
|
Ren M, Yang F, Hua L, Liu S, Zhang S, Xie Y, Jiang J, Chen P, Wen Y, Wang L, Li H. Rapid and high-throughput measurement of cyanide in liquor by negative photoionization time-of-flight mass spectrometry. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
32
|
Meng WQ, Sedgwick AC, Kwon N, Sun M, Xiao K, He XP, Anslyn EV, James TD, Yoon J. Fluorescent probes for the detection of chemical warfare agents. Chem Soc Rev 2023; 52:601-662. [PMID: 36149439 DOI: 10.1039/d2cs00650b] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Chemical warfare agents (CWAs) are toxic chemicals that have been intentionally developed for targeted and deadly use on humans. Although intended for military targets, the use of CWAs more often than not results in mass civilian casualties. To prevent further atrocities from occurring during conflicts, a global ban was implemented through the chemical weapons convention, with the aim of eliminating the development, stockpiling, and use of CWAs. Unfortunately, because of their relatively low cost, ease of manufacture and effectiveness on mass populations, CWAs still exist in today's world. CWAs have been used in several recent terrorist-related incidents and conflicts (e.g., Syria). Therefore, they continue to remain serious threats to public health and safety and to global peace and stability. Analytical methods that can accurately detect CWAs are essential to global security measures and for forensic analysis. Small molecule fluorescent probes have emerged as attractive chemical tools for CWA detection, due to their simplicity, ease of use, excellent selectivity and high sensitivity, as well as their ability to be translated into handheld devices. This includes the ability to non-invasively image CWA distribution within living systems (in vitro and in vivo) to permit in-depth evaluation of their biological interactions and allow potential identification of therapeutic countermeasures. In this review, we provide an overview of the various reported fluorescent probes that have been designed for the detection of CWAs. The mechanism for CWA detection, change in optical output and application for each fluorescent probe are described in detail. The limitations and challenges of currently developed fluorescent probes are discussed providing insight into the future development of this research area. We hope the information provided in this review will give readers a clear understanding of how to design a fluorescent probe for the detection of a specific CWA. We anticipate that this will advance our security systems and provide new tools for environmental and toxicology monitoring.
Collapse
Affiliation(s)
- Wen-Qi Meng
- Department of Protective Medicine Against Chemical Agents, Faculty of Naval Medicine, Naval Medical University, 800 Xiangying Rd., Shanghai 200433, China.
| | - Adam C Sedgwick
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, OX1 3TA, UK
| | - Nahyun Kwon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 120-750, Korea.
| | - Mingxue Sun
- Department of Protective Medicine Against Chemical Agents, Faculty of Naval Medicine, Naval Medical University, 800 Xiangying Rd., Shanghai 200433, China.
| | - Kai Xiao
- Department of Protective Medicine Against Chemical Agents, Faculty of Naval Medicine, Naval Medical University, 800 Xiangying Rd., Shanghai 200433, China.
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China. .,The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China.,National Center for Liver Cancer, Shanghai 200438, China
| | - Eric V Anslyn
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, USA.
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK. .,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 120-750, Korea.
| |
Collapse
|
33
|
Dong Z, Liang W, Ren H, Zhang Y, Wang H, Wang Y. Selective visualization of cyanide in food, living cells and zebrafish by a mitochondria targeted NIR-emitting fluorescent probe. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 279:121485. [PMID: 35696972 DOI: 10.1016/j.saa.2022.121485] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/03/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
Cyanide is a highly toxic substance, and the detection of cyanide in the environment and food samples is critical to public health care. Herein, we rationally designed a mitochondria-targeted near-infrared fluorescent probe BTC for ratiometric monitoring of CN- in water, food, living cells, and zebrafish. BTC exhibits a remarkable colorimetric ratiometric fluorescence response to CN- with high selectivity, low detection limit (54.3 nM), and large Stokes shift. The cyanide sensing mechanism was demonstrated by NMR and ESI-MS analysis and density functional theory (DFT). More importantly, BTC was used for efficient naked-eye colorimetric detection of CN- in sprouting potatoes, almonds, and ginkgo fruit samples. Further, the BTC is capable of situ tracking and imaging cyanide in mitochondria of SMMC-7721 cells and in zebrafish via dual emission channels, and was prepared into a kit for convenient and visual on-site sensing of cyanide in food samples.
Collapse
Affiliation(s)
- Zhenming Dong
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China
| | - Wenfang Liang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China
| | - Hong Ren
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China
| | - Yuetao Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Hui Wang
- School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030006, PR China.
| | - Yu Wang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China.
| |
Collapse
|
34
|
Liu W, Wang F, Chen X, Zhi W, Wang X, Xu B, Yang B. Design of "turn-off" luminescent Ln-MOFs for sensitive detection of cyanide anions. Dalton Trans 2022; 51:15741-15749. [PMID: 36178037 DOI: 10.1039/d2dt01844f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two novel 2D lanthanide metal-organic frameworks (Ln-MOFs), namely {[Eu2(DBTA)3(DMF)2]·DMF}n (1) and {[Tb2(DBTA)3(DMF)2]·DMF}n (2) (H2DBTA = 2,5-dibromoterephthalic acid), have been successfully synthesized by the solvothermal method. Single-crystal X-ray diffraction results proved that the complexes possess the same topological structure of a (42·6)2(42·84)(47·63)2-connected net. The recognition of CN- from interfering anions with a low detection limit by "turn-off" luminescence makes them promising candidates for the highly selective and sensitive detection of the cyanide ion. The Ln-MOFs 1 and 2 exhibit excellent chemical sensing properties for CN- with efficiency, selectivity, and excellent performance in various mixed anions. The evaluation parameters, including the quenching constant and detection limit, have been investigated to obtain the detection performance for CN-.
Collapse
Affiliation(s)
- Weisai Liu
- National Engineering Research Center of Vacuum Metallurgy, Kunming 650093, China. .,Key Laboratory of Vacuum Metallurgy for Nonferrous Metal of Yunnan Province, Kunming 650093, China.,Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Fei Wang
- National Engineering Research Center of Vacuum Metallurgy, Kunming 650093, China. .,Key Laboratory of Vacuum Metallurgy for Nonferrous Metal of Yunnan Province, Kunming 650093, China.,Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Xiaoyi Chen
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Wenke Zhi
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Xuquan Wang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Baoqiang Xu
- National Engineering Research Center of Vacuum Metallurgy, Kunming 650093, China.
| | - Bin Yang
- National Engineering Research Center of Vacuum Metallurgy, Kunming 650093, China.
| |
Collapse
|
35
|
Yao Y, Fu XM, Hu JH. Novel high sensitivity dual-channel chemosensor for detecting CN− based on asymmetric azine derivatives in aqueous media. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
36
|
Panjwani F, Dey S, Kongor A, Kumar A, Panchal M, Modi K, Vora M, Kumar A, Jain VK. Pyrene functionalized oxacalix[4]arene architecture as dual readout sensor for expeditious recognition of cyanide anion. J Fluoresc 2022; 32:1425-1433. [PMID: 35438369 DOI: 10.1007/s10895-022-02924-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/01/2022] [Indexed: 10/18/2022]
Abstract
A pyrene functionalized oxacalix[4]arene architecture (DPOC) was utilized as a fluorescence probe for selective recognition of cyanide ions. The receptor DPOC shows excellent selectivity towards cyanide ion with a red shift of 108 nm in absorption band along with a significant change in colour from light yellow to pink. The fluorescence titration experiments further confirm the lower limit of detection as 1.7µM with no significant influences of competing anions. 1 H-NMR titration experiments support the deprotonation phenomena, as the -NH proton disappears upon successive addition of cyanide ions. The DFT calculation also indicates a certain increment of -NH bond length upon interaction with cyanide ions. The spectral properties as well as colour of DPOC-CN- system may be reversed upon the addition of Ag+/ Cu2+ ions up to 5 consecutive cycles. Moreover, DPOC coated "test strips" were prepared for visual detection of cyanide ions.
Collapse
Affiliation(s)
- Falak Panjwani
- Department of Chemistry, School of Sciences, Gujarat University, 380009, Ahmedabad, Gujarat, India
| | - Shuvankar Dey
- Department of Chemistry, School of Sciences, Gujarat University, 380009, Ahmedabad, Gujarat, India
| | - Anita Kongor
- Department of Chemistry, School of Sciences, Gujarat University, 380009, Ahmedabad, Gujarat, India
| | - Anshu Kumar
- Department of Chemistry, School of Sciences, Gujarat University, 380009, Ahmedabad, Gujarat, India
| | - Manthan Panchal
- Department of Chemistry, School of Sciences, Gujarat University, 380009, Ahmedabad, Gujarat, India
| | - Krunal Modi
- Faculty of Science, Department of Chemistry, Ganpat University, Kherva Mehsana, Gujarat, India
| | - Manoj Vora
- Department of Chemistry, School of Sciences, Gujarat University, 380009, Ahmedabad, Gujarat, India
| | - Ashu Kumar
- Department of Chemistry, School of Sciences, Gujarat University, 380009, Ahmedabad, Gujarat, India
| | - Vinod Kumar Jain
- Department of Chemistry, School of Sciences, Gujarat University, 380009, Ahmedabad, Gujarat, India.
| |
Collapse
|
37
|
Shang Z, Liu J, Meng Q, Wang Y, Zhang C, Zhang Z. A near-infrared emitted fluorescence probe for the detection of biosulfite in live zebrafish, mouse and real food samples. Methods 2022; 204:47-54. [PMID: 35447358 DOI: 10.1016/j.ymeth.2022.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 12/12/2022] Open
Abstract
Bisulfite (HSO3-) has been widely used as an important food additive in daily life. Furthermore, a normal amount of HSO3- plays a significant role in biological systems. However, excessive intake of HSO3- will lead to a variety of diseases. Therefore, it is of great significance to develop an efficient fluorescent probe that can be used for detection of HSO3- in biological systems and food samples. In this work, a near-infrared (NIR) emitted fluorescent probe (SZY) based on hemicyanine dye was successfully synthesized and applied to detect HSO3- in several food samples and live animals. The proposed nucleophilic addition sensing mechanism of SZY towards HSO3- has been confirmed by 1H NMR titration, high resolution mass spectrometry (HR-MS) and density functional theory (DFT) theoretical computation. The HSO3--induced nucleophilic reaction with α,β-unsaturated C=C binding of SZY results in the dramatic decline of the UV-vis absorption and remarkable quenching of the fluorescence emission. SZY features the advantages of near infrared emission (centered at 720 nm), high water solubility (in 98% aqueous solution), fast response time (50 s), large Stokes shift (244 nm) and low cytotoxicity. The probe SZY was successfully applied to image of HSO3- in live nude mouse and adult zebrafish. Semi-quantitatively analyzing the HSO3- level by "naked eye" in several food samples including canned fruit, white wine, white sugar and jasmine tea drinks has been realized by the colorimetric method.
Collapse
Affiliation(s)
- Zhuye Shang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, P. R. China
| | - Jianhua Liu
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, P. R. China
| | - Qingtao Meng
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, P. R. China; Key Laboratory for Functional Material, Educational Department of Liaoning Province, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, P. R. China.
| | - Yue Wang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, P. R. China
| | - Cheng Zhang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, P. R. China
| | - Zhiqiang Zhang
- Key Laboratory for Functional Material, Educational Department of Liaoning Province, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, P. R. China
| |
Collapse
|
38
|
Rahimi F, Anbia M. Determination of cyanide based on a dual-emission ratiometric nanoprobe using silver sulfide quantum dots and silicon nanoparticles. Mikrochim Acta 2022; 189:115. [PMID: 35192072 DOI: 10.1007/s00604-022-05209-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 01/28/2022] [Indexed: 10/19/2022]
Abstract
A novel ratiometric fluorescent nanoprobe was designed for the sensitive determination of cyanide anion (CN-) by the electrostatic attraction between positively charged silicon nanoparticles (Si NPs) and negatively charged silver sulfide quantum dots (Ag2S QDs). The nanoprobe exhibited two well-resolved emission peaks at 446 nm and 540 nm under a single excitation wavelength (360 nm). In the presence of CN-, the fluorescence of Ag2S QDs at 540 nm was remarkably quenched, while the fluorescence of the Si NPs at 446 nm remained constant, establishing the desired conditions for ratiometric fluorescence detection. Under optimal conditions, the ratiometric fluorescence assay showed good linearity (R2 = 0.9921) within the range 0.05-15 μM, and the limit of detection was calculated to be 56 nM (at an S/N ratio of 3). The proposed Ag2S QD/Si NP nanoprobe has been successfully used to determine CN- in water and sprouting potato samples with satisfactory recoveries in the range 97-110.5%.
Collapse
Affiliation(s)
- Fatemeh Rahimi
- Research Laboratory of Nanoporous Materials, Faculty of Chemistry, Iran University of Science and Technology, Narmak, 16846-13114, Tehran, Iran
| | - Mansoor Anbia
- Research Laboratory of Nanoporous Materials, Faculty of Chemistry, Iran University of Science and Technology, Narmak, 16846-13114, Tehran, Iran.
| |
Collapse
|
39
|
Long L, Liu W, Ruan P, Yang X, Chen X, Li L, Yuan F, He D, Huang P, Gong A, Wang K. Visualizing the Interplay of Lipid Droplets and Protein Aggregates During Aging via a Dual-Functional Fluorescent Probe. Anal Chem 2022; 94:2803-2811. [PMID: 35104110 DOI: 10.1021/acs.analchem.1c04278] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Fluorescence imaging the interplay between lipid droplets (LDs) and protein aggregates (PAs) is extremely valuable for elucidating molecular mechanisms of aging. Here, we describe the first dual-functional fluorescent probe, LW-1, for simultaneously imaging LDs and PAs in distinct fluorescence channels to dissect interplaying roles between LDs and PAs during aging. Notably, based on an intriguing mechanism of hydrogen bonds regulating single bond rotation, LW-1 selectively detected LDs in a red channel. Meanwhile, based on another mechanism of the hydrogen bond regulating intramolecular charge transfer efficiency, probe LW-1 further detected PAs in an NIR channel. Practical applications showed that LW-1 was capable of concurrently detecting LDs and PAs in living cells. Moreover, simultaneously imaging LDs and PAs in intestine tissues of mice at different aging degrees was conducted. The results denoted that the PAs level in the intestine tissue increased dramatically with aging, accompanying the buildup of LDs. Significantly, the interplay between LDs and PAs during aging was observed. These evidences demonstrated that the PAs level was closely related with aging processes in intestine tissues, while LDs were formed correspondingly to interact with PAs, suggesting that excessive PAs can be loaded into LDs and then be removed by lipophagy.
Collapse
Affiliation(s)
- Lingliang Long
- School of Chemistry and Chemical Engineering, Key Laboratory of Modern Agriculture Equipment and Technology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China.,Guangxi Key Laboratory of Electrochemical Energy Materials, Nanning, Guangxi 530004, P. R. China
| | - Weiguo Liu
- School of Chemistry and Chemical Engineering, Key Laboratory of Modern Agriculture Equipment and Technology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
| | - Peng Ruan
- School of Chemistry and Chemical Engineering, Key Laboratory of Modern Agriculture Equipment and Technology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
| | - Xinrong Yang
- School of Chemistry and Chemical Engineering, Key Laboratory of Modern Agriculture Equipment and Technology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
| | - Xiaodong Chen
- School of Chemistry and Chemical Engineering, Key Laboratory of Modern Agriculture Equipment and Technology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
| | - LuLu Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Modern Agriculture Equipment and Technology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
| | - Fang Yuan
- School of Chemistry and Chemical Engineering, Key Laboratory of Modern Agriculture Equipment and Technology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
| | - Dan He
- School of Chemistry and Chemical Engineering, Key Laboratory of Modern Agriculture Equipment and Technology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
| | - Pan Huang
- School of Chemistry and Chemical Engineering, Key Laboratory of Modern Agriculture Equipment and Technology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
| | - Aihua Gong
- School of Chemistry and Chemical Engineering, Key Laboratory of Modern Agriculture Equipment and Technology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
| | - Kun Wang
- School of Chemistry and Chemical Engineering, Key Laboratory of Modern Agriculture Equipment and Technology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
| |
Collapse
|
40
|
Jiang L, Chen T, Song E, Fan Y, Min D, Zeng L, Bao GM. High-performance near-infrared fluorescence probe for fast and specific visualization of harmful sulfite in food, living cells, and zebrafish. CHEMICAL ENGINEERING JOURNAL 2022; 427:131563. [DOI: 10.1016/j.cej.2021.131563] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
41
|
Guarding food safety with conventional and up-conversion near-infrared fluorescent sensors. J Adv Res 2022; 41:129-144. [DOI: 10.1016/j.jare.2022.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 01/05/2023] Open
|
42
|
|
43
|
Zhang X, Sun J, Li P, Zeng F, Wang H. Hyperspectral detection of salted sea cucumber adulteration using different spectral preprocessing techniques and SVM method. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112295] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
44
|
Zuo B, Shao H, Li W, Wang S, Huang M, Deng Q. Magnetic mesoporous nanomaterials with AIE properties for selective detection and removal of CN - from water under magnetic conditions. Analyst 2021; 146:5550-5557. [PMID: 34515702 DOI: 10.1039/d1an01152a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have prepared a type of magnetic mesoporous nanomaterial with aggregation-induced emission properties (Fe3O4@mSiO2@TPA@BA, hence abbr. FSTB) to detect and remove cyanide ions (CN-) under magnetic conditions. FSTB has a large specific surface area and improved fluorescence performance to identify CN-, and its superparamagnetic behavior plays an important role in removing CN-. The magnetic sensor FSTB shows excellent selectivity and anti-interference for the detection of CN- in aqueous solutions. It is obvious from the equation LOD = 3δ/S that the limit of detection (LOD) of FSTB for CN- is significantly lower than the permissible level of CN- in drinkable water recommended by the World Health Organization. Therefore, the magnetic sensor FSTB has a wide range of applications for detecting and removing harmful CN-.
Collapse
Affiliation(s)
- Bin Zuo
- College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Han Shao
- College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Wanfang Li
- College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Shige Wang
- College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Mingxian Huang
- College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Qinyue Deng
- College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
45
|
A multiple selective chemosensor based on triazine nitrogen-rich derivative with Sequential“off-on-off”Fluorescence response to Fe3+, Cr2O72−, toluene, xylene, nitrobenzene and its application in water sample, vegetables and oil product. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106492] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
46
|
Hao N, Qiu Y, Lu J, Han X, Li Y, Qian J, Wang K. Flexibly regulated electrochemiluminescence of all-inorganic perovskite CsPbBr3 quantum dots through electron bridge to across interfaces between polar and non-polar solvents. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.01.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
47
|
Jin X, Ma X, Zhou H, Chen J, Li M, Yang J, Bai H, She M. Construction of DCM-based NIR fluorescent probe for visualization detection of H 2S in solution and nanofibrous film. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 257:119764. [PMID: 33848953 DOI: 10.1016/j.saa.2021.119764] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/25/2021] [Accepted: 03/28/2021] [Indexed: 06/12/2023]
Abstract
Hydrogen sulfide (H2S) played crucial roles in biological processes and daily life, and the abnormal level of H2S was associated with many physiological processes. In this paper, we designed and developed a dicyanomethylene-4H-chromene (DCM)-based near-infrared (NIR) fluorescent probe DCM-NO guided by theoretical calculation. The probe displayed excellent selectivity towards H2S with a fast response time (3 min) and low detection limit (fluorescence 25.3 nM/absorption 6.61 nM) in Hela cells and real water samples. Furthermore, the probe-doped solid sensing materials (test strips and nanofibrous films) exhibited specific visualization of H2S under ambient light or hand-held UV lamp, providing great potential for on-site and real-time application in environmental and biological systems.
Collapse
Affiliation(s)
- Xilang Jin
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710032, Shaanxi, PR China.
| | - Xuehao Ma
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710032, Shaanxi, PR China
| | - Hongwei Zhou
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710032, Shaanxi, PR China
| | - Jiawei Chen
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710032, Shaanxi, PR China
| | - Minzhi Li
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710032, Shaanxi, PR China
| | - Jin Yang
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710032, Shaanxi, PR China
| | - Haiyan Bai
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710032, Shaanxi, PR China
| | - Mengyao She
- Ministry of Education Key Laboratory of Resource Biology and Modern Biotechnology in Western China, The College of Life Sciences, Northwest University, Xi'an, Shaanxi Province 710069, PR China.
| |
Collapse
|
48
|
Zhang C, Han L, Liu Q, Liu M, Gu B, Shen Y. A colorimetric and far-red fluorescent probe for rapid detection of bisulfite/sulfite in full water-soluble based on biquinolinium and its applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 253:119561. [PMID: 33618262 DOI: 10.1016/j.saa.2021.119561] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/18/2021] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
Bisulfite (HSO3-) and sulfite (SO32-) are involved in numerous physiological processes of living systems. However, high levels of these substances are often correlated to many diseases. Herein, we designed and synthesized a simple full water-soluble colorimetric and far-red fluorescent probe (E)-1-methyl-4-(2-(1-methylquinolin-1-ium-3-yl)vinyl)quinolin-1-ium iodide trifluoromethanesulfonate (DQ) for HSO3-/SO32- detection by coupling 1,4-dimethylquinolinium with 3-quinolinium carboxaldehyde for the first time. The probe DQ showed high selectivity for HSO3- detection via a 1,4-nucleophilic addition reaction with distinct color changes from colorless to purple-red and remarkable far-red fluorescence enhancement in pure aqueous solutions. Specifically, the probe displayed a fast response (<15 s) for bisulfite, which renders it suitable for real time detection of HSO3-. Under the optimized conditions, the far-red fluorescence intensity was linear to the concentrations of HSO3- in the range from 0 to 25 μM and the detection limit was as low as 0.11 μM. Additionally, the probe could be applied to sense HSO3- on paper strips, real sample including vermicelli and sugar and image HSO3- in living cells, which indicated that probe DQ has potential application in food samples and living systems.
Collapse
Affiliation(s)
- Chunxiang Zhang
- Province Engineering Research Center of Electroplating Wastewater Reuse Technology, Hunan Province Cooperative Innovation Center for the Construction & Development of Dongting Lake Ecological Economic Zone, Hunan Provincial Key Laboratory of Water Treatment Functional Materials, College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde 415000, PR China
| | - Lujiao Han
- Key Laboratory of Functional Organometallic Materials of College of Hunan Province, College of Chemistry and Materials Science, Hengyang Normal University, Hengyang 421008, PR China
| | - Qingheng Liu
- Province Engineering Research Center of Electroplating Wastewater Reuse Technology, Hunan Province Cooperative Innovation Center for the Construction & Development of Dongting Lake Ecological Economic Zone, Hunan Provincial Key Laboratory of Water Treatment Functional Materials, College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde 415000, PR China
| | - Mengqin Liu
- Key Laboratory of Functional Organometallic Materials of College of Hunan Province, College of Chemistry and Materials Science, Hengyang Normal University, Hengyang 421008, PR China
| | - Biao Gu
- Key Laboratory of Functional Organometallic Materials of College of Hunan Province, College of Chemistry and Materials Science, Hengyang Normal University, Hengyang 421008, PR China.
| | - Youming Shen
- Province Engineering Research Center of Electroplating Wastewater Reuse Technology, Hunan Province Cooperative Innovation Center for the Construction & Development of Dongting Lake Ecological Economic Zone, Hunan Provincial Key Laboratory of Water Treatment Functional Materials, College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde 415000, PR China.
| |
Collapse
|
49
|
Gao JJ, Lang XX, Yu QQ, Li HY, Wang HJ, Wang MQ. Amphiphilic BODIPY-based nanoparticles as "light-up" fluorescent probe for PAEs detection by an aggregation/disaggregation approach. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 252:119492. [PMID: 33517216 DOI: 10.1016/j.saa.2021.119492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Phthalic acid eaters (PAEs) play the role of plasticizer and have been widely used in the industrial and plastic production process. But due to not chemically bound in the polymeric matrix, PAEs can be easily released directly and/or indirectly into the environment, and pose a threat the ecosystem and human health. Small-molecule self-assembled nanoparticles have drawn more and more attention due to advantages of precise molecular structure, biocompatibility, great diversity, and tunability in optical properties and functionalities. Here we report the use of disaggregation-induced emission (DIE) based supramolecular assembly to design organic nanoprobe for detection PAEs. In the water solution, the designed small organic fluorophore AJ-1 was aggregated via noncovalent forces to form fluorescence off nanoparticles, but in the presence of PAEs, they disaggregated and produced a clear light-up fluorescent signal. The detection of PAEs with selectivity, sensitivity and rapid response were further achieved. The experiment of recovery of PAEs in real-water sample illustrated the practicability of probe AJ-1 in real-world applications. Besides, cellular uptake assay suggested that AJ-1 could pass through membrane and gather in the cytoplasm.
Collapse
Affiliation(s)
- Juan-Juan Gao
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Xue-Xian Lang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Quan-Qi Yu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Hong-Yao Li
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Hai-Jiao Wang
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Ming-Qi Wang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
50
|
Wang J, He J, Zhang J, Chen Z, Liang J, Chen L. Controllable and reversible sensing cyanide ion using dual-functional Cu(II)-based ensemble. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 252:119526. [PMID: 33582438 DOI: 10.1016/j.saa.2021.119526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 01/21/2021] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
In this work, a dual-functional Cu2+-based ensemble (2S·Cu2+) was well designed and characterized. Then, the successional and discriminating sensing for CN- over other competitive species (H2PO4- and biothiols) was achieved based on the disaggregation of 2S·Cu2+ ensemble and the deprotonation of imidazole NH of regenerated sensor S in aqueous solution, respectively. The visual sensing mechanism could be clearly demonstrated by 1H NMR, HRMS and energy changes between the HOMO-LUMO band gaps. Furthermore, the reversibility and reusability of S and 2S·Cu2+ upon alternating addition of CN-/H+ and CN-/Cu2+ were studied. Interestingly, the sequential sensing for biothiols (cysteine, glutathione and homocysteine) and CN- was also realized through spectroscopic methodology and test paper strips. This work may provide a feasible strategy to discriminate CN- over H2PO4- and biothiols with high selectivity and sensitivity through Cu2+-based ensembles.
Collapse
Affiliation(s)
- Jun Wang
- Key Lab of Functional Materials Chemistry of Guizhou Province, School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550025, China.
| | - Jinjun He
- Key Lab of Functional Materials Chemistry of Guizhou Province, School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550025, China
| | - Jinsheng Zhang
- Key Lab of Functional Materials Chemistry of Guizhou Province, School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550025, China
| | - Zhiming Chen
- Key Lab of Functional Materials Chemistry of Guizhou Province, School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550025, China
| | - Jinfu Liang
- School of Physics and Electronic Science, Guizhou Normal University, Guiyang 550025, China
| | - Lin Chen
- Key Lab of Functional Materials Chemistry of Guizhou Province, School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550025, China
| |
Collapse
|