1
|
Liang S, Qin Y, Bo Z, He J, Li Q, Sun J, Zhang G, Li C, Liu L, Huo G. Molecular interaction mechanisms of Lactobacillus helveticus KLDS1.8701 on construction of yogurt gel network, transformation of milk protein conformation, and formation of characteristic flavor. J Dairy Sci 2025:S0022-0302(25)00289-9. [PMID: 40306433 DOI: 10.3168/jds.2025-26531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 04/02/2025] [Indexed: 05/02/2025]
Abstract
The excellent properties of Lactobacillus helveticus KLDS1.8701 (L. helveticus KLDS1.8701) make it a potential auxiliary starter strain. This study aimed to investigate the effects of L. helveticus KLDS1.8701 on yogurt and the mechanisms underlying these effects. The results indicated that L. helveticus KLDS1.8701, when used as an auxiliary starter, significantly shortened fermentation time, improved the textural and rheological properties of yogurt, and enhanced its viscosity and water-holding capacity. Observations of the yogurt microstructure revealed that the addition of L. helveticus KLDS1.8701 resulted in the formation of a more compact network structure, which correlated with its ability to produce extracellular polysaccharides. Furthermore, when used as an adjunct starter, L. helveticus KLDS1.8701 significantly reduced surface hydrophobicity and free thiol content, and altered the proportions of its secondary structure. The content of all secondary structural units except β-sheet significantly decreased. These changes in protein structure may be the primary factors contributing to variations in the gelation of the yogurt. Finally, L. helveticus KLDS1.8701, serving as an auxiliary starter, exerted a notable influence on the sensory characteristics of yogurt. It not only substantially increased the levels of 2-heptanone and 2-nonanone in yogurt but also introduced a distinct fruity aroma derived from heptanethioic acid, S-methyl ester. The unique flavor imparted by L. helveticus KLDS1.8701 enhanced the yogurt's aroma and overall flavor quality. Therefore, the addition of L. helveticus KLDS1.8701 enhances the fermentation of yogurt, making it a potentially valuable adjunct starter with commercial potential.
Collapse
Affiliation(s)
- Shengnan Liang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yanbo Qin
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zhihang Bo
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jian He
- National Center of Technology Innovation for Dairy, Hohhot 010110, China
| | - Qiming Li
- New Hope Dairy Co. Ltd., Chengdu 610000, China
| | - Jinwei Sun
- National Center of Technology Innovation for Dairy, Hohhot 010110, China
| | - Guofang Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Green Food Science Research Institute, Harbin 150028, China
| | - Chun Li
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Green Food Science Research Institute, Harbin 150028, China.
| | - Libo Liu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Guicheng Huo
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
2
|
Kong F, Zhao Q, Wang S, Mu G, Wu X. Comparative Study on the Physical and Chemical Properties Influenced by Variations in Fermentation Bacteria Groups: Inoculating Different Fermented Mare's Milk into Cow's Milk. Foods 2025; 14:1328. [PMID: 40282730 PMCID: PMC12027402 DOI: 10.3390/foods14081328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/07/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025] Open
Abstract
Fermented strains play a crucial role in shaping the physicochemical properties and functionality of fermented cow's milk. The natural fermentation system demonstrates a certain degree of stability and safety after undergoing continuous domestication. Fermented mare's milk has been consumed for its intestinal health benefits in regions such as Xinjiang and Inner Mongolia in China. This consumption is closely related to the fermented strains present. Consequently, from the perspective of fermented strains, this study aimed to compare the microbiota diversity of naturally fermented mare's milk with that of inoculated fermented cow's milk, using it as a fermentation system to develop new functional fermented cow's milk products. Water retention, rheology, texture, pH, and titration acidity were analyzed to evaluate the quality of fermented cow's milk with the obtained transmission strain system. Importantly, the correlation between the property of fermented cow's milk and the diversity of fermentation system has been thoroughly analyzed. The findings indicate that the gel property of fermented cow's milk is not directly linked to the strain diversity or the core strain of fermentation. Instead, the abundance of Lactobacillus, Lactococcus, Hafnia-Obesumbacterium, Leuconostoc, Acetobacter, and Acinetobacter bacteria significantly influences the quality of fermented cow's milk. Consequently, this study has successfully developed a new type of fermented cow's milk and provided a reliable theoretical foundation for the functional enhancement of specialized fermented cow's milk products.
Collapse
Affiliation(s)
| | | | | | - Guangqing Mu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xiaomeng Wu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
3
|
Li J, Miao Y, Guo C, Tang Y, Xin S, Fan Z, Su Y, Li Q. Ultrasound combined mechanical wall-breaking extraction of new Ganoderma leucocontextum polysaccharides and their application as a structural and functional improver in set fat-free goat yogurt production. Food Chem 2025; 468:142374. [PMID: 39674011 DOI: 10.1016/j.foodchem.2024.142374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/24/2024] [Accepted: 12/02/2024] [Indexed: 12/16/2024]
Abstract
Herein, we investigate the yield, micro-structures, rheological properties and bioactivities of new Ganoderma leucocontextum polysaccharide (GLPUBE) obtained from Kangding via ultrasound combined mechanical wall-breaking extraction (UBE), and examine the effect of GLPUBE as a structural and functional improver on the physicochemical, sensory, aromatic, water-holding capacity (WHC), textural, rheological, micro-structural and protein structural properties, and bioactivities of set fat-free goat yogurt (set-FGY). Through response surface optimisation, the extracted GLPUBE achieved a maximum yield of 2.18 %, showing good apparent viscosity and elastic behaviour in 3 % aqueous solution as well as good micro-structure and significant anti-oxidant and anti-diabetic activities. The presence of 0.12 % GLPUBE significantly improved the WHC, pH, acidity, textural and rheological properties, protein concentration and secondary structure, but had no effect on the protein primary structure in set-FGY production. The addition of 0.12 % GLPUBE had an excellent ability in promoting sensory acceptance; total solid, and total polyphenol contents, WHC, pH, acidity, texture, free amino acid contents, viscosity, rheology and aroma properties; enhancing anti-oxidant and anti-diabetic abilities; inhibiting protein degradation; and maintaining the micro-structure and stability of the primary and secondary structures of protein complex of set-FGY during 21 days of storage. Therefore, GLPUBE can be used as an innovative structural and functional improver in set fat-free yogurt industry.
Collapse
Affiliation(s)
- Jiaxin Li
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu 610068, China; College of Life Sciences, Sichuan Normal University, Chengdu, Sichuan 610066, China
| | - Yuzhi Miao
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu 610068, China; College of Life Sciences, Sichuan Normal University, Chengdu, Sichuan 610066, China.
| | - Caifu Guo
- College of Life Sciences, Sichuan Normal University, Chengdu, Sichuan 610066, China
| | - Ying Tang
- College of Life Sciences, Sichuan Normal University, Chengdu, Sichuan 610066, China
| | - Songling Xin
- Sichuan Cuisine Development and Research Center, Sichuan Tourism University, Chengdu 610100, China
| | - Zixi Fan
- College of Life Sciences, Sichuan Normal University, Chengdu, Sichuan 610066, China
| | - Yanqiu Su
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu 610068, China; College of Life Sciences, Sichuan Normal University, Chengdu, Sichuan 610066, China
| | - Qi Li
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu 610068, China; College of Life Sciences, Sichuan Normal University, Chengdu, Sichuan 610066, China
| |
Collapse
|
4
|
Rendueles C, Garay-Novillo JN, Rau MH, Gaspar P, Ruiz-Masó JÁ, Mahony J, Rodríguez A, Barra JL, del Solar G, Martínez B. A Plasmid-Encoded Surface Polysaccharide Partly Blocks Ceduovirus Infection in Lactococci. Int J Mol Sci 2025; 26:2508. [PMID: 40141150 PMCID: PMC11942015 DOI: 10.3390/ijms26062508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/05/2025] [Accepted: 03/09/2025] [Indexed: 03/28/2025] Open
Abstract
Bacteriophages (or phages) remain the leading cause of failure in dairy fermentations. Thereby, phage-resistant Lactococcus lactis and Lactococcus cremoris dairy starters are in continuous demand. In this work, our goal was to identify phage defense mechanisms against ceduoviruses encoded by two wild isolates of dairy origin named L. lactis IPLA517 and IPLA1064. These strains were previously subjected to experimental evolution to select derivatives that are resistant to the bacteriocin Lcn972. It was observed that the Lcn972R derivatives became sensitive to phage infection; however, the underlying mechanism was not defined. The long-read sequencing technologies applied in this work reveal that all of the Lcn972R derivatives shared the loss of a 41 kb endogenous plasmid (p41) that harbors a putative exopolysaccharide (EPS) gene cluster with significant homology to one described in Lactococcus garvieae. Using a CRISPR-Cas9-based approach, p41 was selectively cured from L. lactis IPLA1064. Phage infection assays with three ceduoviruses demonstrated that curing p41 restored phage sensitivity at levels comparable to the Lcn972R-IPLA1064 derivatives. Phage adsorption to Δp41 cells was also increased, consistent with the hypothesis of EPS production hindering access to the phage receptor protein Pip. Our results reinforce the role of EPSs in protecting Lactococcus against phage infection, a phenomenon that is rarely reported for ceduoviruses. Moreover, the results also exemplify the likely horizontal gene transfer that can occur between L. lactis and L. garvieae in a dairy environment.
Collapse
Affiliation(s)
- Claudia Rendueles
- Instituto de Productos Lacteos de Asturias (IPLA), CSIC, C/Francisco Pintado Fe, 26, 33011 Oviedo, Asturias, Spain; (C.R.)
| | - Javier Nicolás Garay-Novillo
- Departamento de Quimica Biologica Ranwel Caputto, CIQUIBIC-CONICET, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Cordoba X5000HUA, Argentina; (J.N.G.-N.); (J.L.B.)
| | - Martin Holm Rau
- R&D, Microbe and Culture Research, Novonesis A/S, 2970 Hørsholm, Denmark; (M.H.R.); (P.G.)
| | - Paula Gaspar
- R&D, Microbe and Culture Research, Novonesis A/S, 2970 Hørsholm, Denmark; (M.H.R.); (P.G.)
| | - José Ángel Ruiz-Masó
- Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, c/ Ramiro de Maetzu, 9, 28040 Madrid, Spain; (J.Á.R.-M.); (G.d.S.)
| | - Jennifer Mahony
- School of Microbiology, University College Cork, T12 K8AF Cork, Ireland;
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland
| | - Ana Rodríguez
- Instituto de Productos Lacteos de Asturias (IPLA), CSIC, C/Francisco Pintado Fe, 26, 33011 Oviedo, Asturias, Spain; (C.R.)
| | - José Luis Barra
- Departamento de Quimica Biologica Ranwel Caputto, CIQUIBIC-CONICET, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Cordoba X5000HUA, Argentina; (J.N.G.-N.); (J.L.B.)
| | - Gloria del Solar
- Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, c/ Ramiro de Maetzu, 9, 28040 Madrid, Spain; (J.Á.R.-M.); (G.d.S.)
| | - Beatriz Martínez
- Instituto de Productos Lacteos de Asturias (IPLA), CSIC, C/Francisco Pintado Fe, 26, 33011 Oviedo, Asturias, Spain; (C.R.)
| |
Collapse
|
5
|
Sharma P, Sharma A, Lee HJ. Antioxidant potential of exopolysaccharides from lactic acid bacteria: A comprehensive review. Int J Biol Macromol 2024; 281:135536. [PMID: 39349319 DOI: 10.1016/j.ijbiomac.2024.135536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/23/2024] [Accepted: 09/09/2024] [Indexed: 10/02/2024]
Abstract
Exopolysaccharides (EPSs) from lactic acid bacteria (LAB) have multifunctional capabilities owing to their diverse structural conformations, monosaccharide compositions, functional groups, and molecular weights. A review paper on EPS production and antioxidant potential of different LAB genera has not been thoroughly reviewed. Therefore, the current review provides comprehensive information on the biosynthesis of EPSs, including the isolation source, type, characterization techniques, and application, with a primary focus on their antioxidant potential. According to this review, 17 species of Lactobacillus, five species of Bifidobacterium, four species of Leuconostoc, three species of Weissella, Enterococcus, and Lactococcus, two species of Pediococcus, and one Streptococcus species have been documented to exhibit antioxidant activity. Of the 111 studies comprehensively reviewed, 98 evaluated the radical scavenging activity of EPSs through chemical-based assays, whereas the remaining studies documented the antioxidant activity using cell and animal models. Studies have shown that different LAB genera have a unique capacity to produce homo- (HoPs) and heteropolysaccharides (HePs), with varied carbohydrate compositions, linkages, and molecular weights. Leuconostoc, Weissella, and Pediococcus were the main HoPs producers, whereas the remaining genera were the main HePs producers. Recent trends in EPSs production and blending to improve their properties have also been discussed.
Collapse
Affiliation(s)
- Priyanka Sharma
- Department of Food and Nutrition, College of Bionanotechnology, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| | - Anshul Sharma
- Department of Food and Nutrition, College of Bionanotechnology, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea; Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea.
| | - Hae-Jeung Lee
- Department of Food and Nutrition, College of Bionanotechnology, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea; Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea; Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea.
| |
Collapse
|
6
|
Zhong M, Miao Y, Lan Y, Ma Q, Li K, Chen W. Effects of Exidia yadongensis polysaccharide as emulsifier on the stability, aroma, and antioxidant activities of fat-free stirred mango buffalo yogurt. Int J Biol Macromol 2024; 276:133785. [PMID: 39084987 DOI: 10.1016/j.ijbiomac.2024.133785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/25/2024] [Accepted: 07/08/2024] [Indexed: 08/02/2024]
Abstract
Because of the poor stability and rheological properties of fat-free stirred yogurt fortified with fruit pulp, new functional polysaccharides as a natural emulsifier, which can increase viscosity in the aqueous phase, may be needed. This study aimed to evaluate the effects of Exidia yadongensis polysaccharide (EYP) as emulsifier on the stability, aroma, and antioxidant activities of mango buffalo yogurt at 4 °C for 25 days. The yogurt with 15 g/L EYP gave a higher content of 215 g/L total solids, 11.3 g/L exopolysaccharides, 0.10 g/L total polyphenols, 630.5 g/L water-holding capacity, and 11.43 g/kg total free amino acids, and maintained better texture, DPPH scavenging activity of 54.05 % and OH scavenging rates of 67.16 %. Moreover, the EYP exhibited the expected ability to weaken postacidification, syneresis, and growth of microorganism, and greatly promote the textural, rheological properties, suspension stability, microstructure, and aroma profiles of stirred mango-flavored buffalo yogurt (p < 0.05). In addition, the addition of 15 g/L EYP can inhibit protein degradation and improve the stability of secondary structure of the protein complex in mango yogurt during 25 days of storage. Therefore, EYP (15 g/L) could be used as natural positive functional factors and emulsifiers in such fat-free stirred yogurt industry.
Collapse
Affiliation(s)
- Maoling Zhong
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry Education of China, Chengdu, Sichuan 610066, China; College of Life Sciences, Sichuan Normal University, Chengdu, Sichuan 610066, China
| | - Yuzhi Miao
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry Education of China, Chengdu, Sichuan 610066, China; College of Life Sciences, Sichuan Normal University, Chengdu, Sichuan 610066, China.
| | - Yi Lan
- College of Life Sciences, Sichuan Normal University, Chengdu, Sichuan 610066, China
| | - Qinqin Ma
- College of Life Sciences, Sichuan Normal University, Chengdu, Sichuan 610066, China
| | - Kejuan Li
- College of Life Sciences, Sichuan Normal University, Chengdu, Sichuan 610066, China
| | - Wanying Chen
- College of Life Sciences, Sichuan Normal University, Chengdu, Sichuan 610066, China
| |
Collapse
|
7
|
Akhtar N, Wani AK, Sharma NR, Sanami S, Kaleem S, Machfud M, Purbiati T, Sugiono S, Djumali D, Retnaning Prahardini PE, Purwati RD, Supriadi K, Rahayu F. Microbial exopolysaccharides: Unveiling the pharmacological aspects for therapeutic advancements. Carbohydr Res 2024; 539:109118. [PMID: 38643705 DOI: 10.1016/j.carres.2024.109118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/23/2024]
Abstract
Microbial exopolysaccharides (EPSs) have emerged as a fascinating area of research in the field of pharmacology due to their diverse and potent biological activities. This review paper aims to provide a comprehensive overview of the pharmacological properties exhibited by EPSs, shedding light on their potential applications in various therapeutic areas. The review begins by introducing EPSs, exploring their various sources, significance in microbial growth and survival, and their applications across different industries. Subsequently, a thorough examination of the pharmaceutical properties of microbial EPSs unveils their antioxidant, immunomodulatory, antimicrobial, antidepressant, antidiabetic, antiviral, antihyperlipidemic, hepatoprotective, anti-inflammatory, and anticancer activities. Mechanistic insights into how different EPSs exert these therapeutic effects have also been discussed in this review. The review also provides comprehensive information about the monosaccharide composition, backbone, branches, glycosidic bonds, and molecular weight of pharmacologically active EPSs from various microbial sources. Furthermore, the factors that can affect the pharmacological activities of EPSs and approaches to improve the EPSs' pharmacological activity have also been discussed. In conclusion, this review illuminates the immense pharmaceutical promise of microbial EPS as versatile bioactive compounds with wide-ranging therapeutic applications. By elucidating their structural features, biological activities, and potential applications, this review aims to catalyze further research and development efforts in leveraging the pharmaceutical potential of microbial EPS for the advancement of human health and well-being, while also contributing to sustainable and environmentally friendly practices in the pharmaceutical industry.
Collapse
Affiliation(s)
- Nahid Akhtar
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, (144411), Punjab, India
| | - Atif Khurshid Wani
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, (144411), Punjab, India.
| | - Neeta Raj Sharma
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, (144411), Punjab, India
| | - Samira Sanami
- Health Promotion Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Shaikh Kaleem
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, (144411), Punjab, India
| | - Moch Machfud
- Research Center for Estate Crops, National Research and Innovation Agency, Bogor, (16911), Indonesia
| | - Titiek Purbiati
- Research Center for Horticulture, National Research and Innovation Agency, Bogor, (16911), Indonesia
| | - Sugiono Sugiono
- Research Center for Horticulture, National Research and Innovation Agency, Bogor, (16911), Indonesia
| | - Djumali Djumali
- Research Center for Estate Crops, National Research and Innovation Agency, Bogor, (16911), Indonesia
| | | | - Rully Dyah Purwati
- Research Center for Estate Crops, National Research and Innovation Agency, Bogor, (16911), Indonesia
| | - Khojin Supriadi
- Research Center for Food Crops, National Research and Innovation Agency, Bogor, (16911), Indonesia
| | - Farida Rahayu
- Research Center for Genetic Engineering, National Research and Innovation Agency, Bogor, (16911), Indonesia
| |
Collapse
|
8
|
Ning Y, Cao H, Zhao S, Gao D, Zhao D. Structure and Properties of Exopolysaccharide Produced by Gluconobacter frateurii and Its Potential Applications. Polymers (Basel) 2024; 16:1004. [PMID: 38611262 PMCID: PMC11013964 DOI: 10.3390/polym16071004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024] Open
Abstract
An exopolysaccharide (EPS)-producing bacterium was isolated from apricot fermentation broth and identified as Gluconobacter frateurii HDC-08 (accession number: OK036475.1). HDC-08 EPS is a linear homopolysaccharide mainly composed of glucose linked by α-(1,6) glucoside bonds. It contains C, H, N and S elements, with a molecular weight of 4.774 × 106 Da. Microscopically, it has a smooth, glossy and compact sheet structure. It is an amorphous noncrystalline substance with irregular coils. Moreover, the EPS showed surface hydrophobicity and high thermal stability with a degradation temperature of 250.76 °C. In addition, it had strong antioxidant properties against DPPH radicals, ABPS radicals, hydroxyl radicals and H2O2. The EPS exhibited high metal-chelating activity and strong emulsifying ability for soybean oil, petroleum ether and diesel oil. The milk solidification test indicated that the EPS had good potential in fermented dairy products. In general, all the results demonstrate that HDC-08 EPS has promise for commercial applications as a food additive and antioxidant.
Collapse
Affiliation(s)
- Yingying Ning
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China; (Y.N.); (H.C.); (S.Z.)
| | - Huiying Cao
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China; (Y.N.); (H.C.); (S.Z.)
| | - Shouqi Zhao
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China; (Y.N.); (H.C.); (S.Z.)
| | - Dongni Gao
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China; (Y.N.); (H.C.); (S.Z.)
- Hebei Key Laboratory of Agroecological Safety, Hebei University of Environmental Engineering, Qinhuangdao 066102, China
| | - Dan Zhao
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China; (Y.N.); (H.C.); (S.Z.)
- Hebei Key Laboratory of Agroecological Safety, Hebei University of Environmental Engineering, Qinhuangdao 066102, China
| |
Collapse
|
9
|
Yang Y, Ye G, Qi X, Zhou B, Yu L, Song G, Du R. Exploration of Exopolysaccharide from Leuconostoc mesenteroides HDE-8: Unveiling Structure, Bioactivity, and Food Industry Applications. Polymers (Basel) 2024; 16:954. [PMID: 38611212 PMCID: PMC11013467 DOI: 10.3390/polym16070954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
A strain of Leuconostoc mesenteroides HDE-8 was isolated from homemade longan fermentation broth. The exopolysaccharide (EPS) yield of the strain was 25.1 g/L. The EPS was isolated and purified, and the structure was characterized using various techniques, including X-ray diffraction (XRD), nuclear magnetic resonance (NMR) spectroscopy, Fourier-transform infrared (FT-IR) spectroscopy, high-performance size exclusion chromatography (HPSEC), and scanning electron microscopy (SEM). The monosaccharide composition of the EPS was glucose, with a molecular weight (Mw) of 1.7 × 106 Da. NMR spectroscopy revealed that the composition of the HDE-8 EPS consisted of D-glucose pyranose linked by α-(1→4) and α-(1→6) bonds. The SEM analysis of the EPS showed an irregular sheet-like structure. Physicochemical analysis demonstrated that EPSs exhibit excellent thermal stability and high viscosity, making them suitable for fermentation in heat-processed and acidic foods. Additionally, milk coagulation tests showed that the presence of EPSs promotes milk coagulation when supplemented with sucrose. It suggests that EPSs have wide-ranging potential applications as food additives, improving the texture and taste of dairy products. This study provides practical guidance for the commercial use of HDE-8 EPSs in the food and related industries.
Collapse
Affiliation(s)
- Yi Yang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Guangbin Ye
- Institute of Life Sciences, Youjiang Medical University for Nationalities, Baise 533000, China
| | - Xintong Qi
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Bosen Zhou
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Liansheng Yu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Gang Song
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
- Hebei Key Laboratory of Agroecological Safety, Hebei University of Environmental Engineering, Qinhuangdao 066102, China
| | - Renpeng Du
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
- Hebei Key Laboratory of Agroecological Safety, Hebei University of Environmental Engineering, Qinhuangdao 066102, China
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
10
|
Zhang K, Tang H, Farid MS, Xiang F, Li B. Effect of Lactobacillus helveticus exopolysaccharides molecular weight on yogurt gel properties and its internal mechanism. Int J Biol Macromol 2024; 262:130006. [PMID: 38331067 DOI: 10.1016/j.ijbiomac.2024.130006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/04/2024] [Accepted: 02/04/2024] [Indexed: 02/10/2024]
Abstract
The processing characteristics of yogurt are closely related to the composition and arrangement of exopolysaccharides (EPS) in lactic acid bacteria (LAB). To fully understand and develop the functional properties of EPS and to study the effect of EPS molecular weight on yogurt and its mechanism, the physicochemical properties of high molecular weight EPS-LH43, medium molecular weight EPS-LH13, and low molecular weight EPS-LH23, as well as the gel properties and protein conformation of yogurt, were determined and analyzed in this experiment. The results indicate that EPS-LH43 and EPS-LH13 are both composed of mannose, rhamnose, galacturonic acid, glucose, and galactose. EPS-LH23 is composed of mannose, galacturonic acid, glucose, and galactose. Their Number-average Molecular Weight is 5.21 × 106 Da, 2.39 × 106 Da and 3.76 × 105 Da, respectively. In addition, all three types of EPS have good thermal stability and can improve the stability of casein. In addition, the analysis of the texture, particle size, potential, water holding capacity, rheology, low field nuclear magnetic resonance, microstructure, and flavor characteristics of yogurt confirmed the relationship between the molecular weight of LAB EPS and the gel properties of yogurt. Fluorescence spectrophotometer and circular dichroism analysis indicate that the different molecular weights of LAB EPS have different effects on protein structure, which is an intrinsic factor leading to significant differences in the gel properties of the three types of fermented milk. These findings provide new references for enhancing the understanding of the structure-activity relationship of EPS and indicate that EPS-LH43 can be used to improve the gel properties of dairy products.
Collapse
Affiliation(s)
- Kangyong Zhang
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Hongwei Tang
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Muhammad Salman Farid
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Fangqin Xiang
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Bailiang Li
- Food College, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
11
|
Upadhyaya C, Patel H, Patel I, Ahir P, Upadhyaya T. Development of Biological Coating from Novel Halophilic Exopolysaccharide Exerting Shelf-Life-Prolonging and Biocontrol Actions for Post-Harvest Applications. Molecules 2024; 29:695. [PMID: 38338439 PMCID: PMC10856335 DOI: 10.3390/molecules29030695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/22/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
The literature presents the preserving effect of biological coatings developed from various microbial sources. However, the presented work exhibits its uniqueness in the utilization of halophilic exopolysaccharides as food coating material. Moreover, such extremophilic exopolysaccharides are more stable and economical production is possible. Consequently, the aim of the presented research was to develop a coating material from marine exopolysaccharide (EPS). The significant EPS producers having antagonistic attributes against selected phytopathogens were screened from different marine water and soil samples. TSIS01 isolate revealed the maximum antagonism well and EPS production was selected further and characterized as Bacillus tequilensis MS01 by 16S rRNA analysis. EPS production was optimized and deproteinized EPS was assessed for biophysical properties. High performance thin layer chromatography (HPTLC) analysis revealed that EPS was a heteropolymer of glucose, galactose, mannose, and glucuronic acid. Fourier transform infrared spectroscopy, X-ray diffraction, and UV-visible spectra validated the presence of determined sugars. It showed high stability at a wide range of temperatures, pH and incubation time, ≈1.63 × 106 Da molecular weight, intermediate solubility index (48.2 ± 3.12%), low water holding capacity (12.4 ± 1.93%), and pseudoplastic rheologic shear-thinning comparable to xanthan gum. It revealed antimicrobial potential against human pathogens and antioxidants as well as anti-inflammatory potential. The biocontrol assay of EPS against phytopathogens revealed the highest activity against Alternaria solani. The EPS-coated and control tomato fruits were treated with A. solani suspension to check the % disease incidence, which revealed a significant (p < 0.001) decline compared to uncoated controls. Moreover, it revealed shelf-life prolonging action on tomatoes comparable to xanthan gum and higher than chitosan. Consequently, the presented marine EPS was elucidated as a potent coating material to mitigate post-harvest losses.
Collapse
Affiliation(s)
- Chandni Upadhyaya
- School of Sciences, P. P. Savani University, Surat 394125, Gujarat, India
| | - Hiren Patel
- School of Sciences, P. P. Savani University, Surat 394125, Gujarat, India
- School of Agriculture, P. P. Savani University, Surat 394125, Gujarat, India
| | - Ishita Patel
- Shree P. M. Patel Institute of Integrated M. Sc. in Biotechnology, Sardar Patel University, Anand 388001, Gujarat, India
| | - Parth Ahir
- Shree P. M. Patel Institute of P. G. Studies in Research and Sciences, Sardar Patel University, Anand 388001, Gujarat, India
| | - Trushit Upadhyaya
- Chandubhai S. Patel Institute of Technology, Charotar University of Science & Technology, Changa, Anand 388421, Gujarat, India;
| |
Collapse
|
12
|
Zhang F, Wang L, Zhang Z, Zheng B, Zhang Y, Pan L. A novel exopolysaccharide from Weissella cibaria FAFU821: Structural characterization and cryoprotective activity. Food Chem X 2023; 20:100955. [PMID: 38144786 PMCID: PMC10740096 DOI: 10.1016/j.fochx.2023.100955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/03/2023] [Accepted: 10/20/2023] [Indexed: 12/26/2023] Open
Abstract
Exopolysaccharides produced by Weissella cibaria has attracted increasing attention owing to their biological activity. Here, a strain was isolated from the home-made fermented octopus, which was identified as W. cibaria FAFU821. In addition, the polysaccharide were isolated and purified by cellulose DE-52 column and Sephadex G-100 column, and named EPS821-1. In this work, the structure of EPS821-1 and its cryoprotective activity on Bifidobacterium longum subsp. longum F2 were investigated in vitro. These results suggested that the EPS821-1 is a novel glucan, which mainly consists of α-(1 → 6) linkage with α-(1 → 4), α-(1 → 4,6) and α-(1 → 3,6) residue as branches. In addition, EPS821-1 existed the three-dimensional network structure and exhibited the excellent cryoprotective activities for B. longum subsp. longum F2, which was 2.75 folds higher than that of the controls. This study provided scientific evidence and insights for the application of EPS821-1 as cryoprotection in food field.
Collapse
Affiliation(s)
- Fan Zhang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Lin Wang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Zihao Zhang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Baodong Zheng
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yi Zhang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Lei Pan
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| |
Collapse
|
13
|
Elcheninov AG, Zayulina KS, Klyukina AA, Kremneva MK, Kublanov IV, Kochetkova TV. Metagenomic Insights into the Taxonomic and Functional Features of Traditional Fermented Milk Products from Russia. Microorganisms 2023; 12:16. [PMID: 38276185 PMCID: PMC10819033 DOI: 10.3390/microorganisms12010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
Fermented milk products (FMPs) contain probiotics that are live bacteria considered to be beneficial to human health due to the production of various bioactive molecules. In this study, nine artisanal FMPs (kefir, ayran, khurunga, shubat, two cottage cheeses, bryndza, khuruud and suluguni-like cheese) from different regions of Russia were characterized using metagenomics. A metagenomic sequencing of ayran, khurunga, shubat, khuruud and suluguni-like cheese was performed for the first time. The taxonomic profiling of metagenomic reads revealed that Lactococcus species, such as Lc. lactis and Lc. cremoris prevailed in khuruud, bryndza, one sample of cottage cheese and khurunga. The latter one together with suluguni-like cheese microbiome was dominated by bacteria, affiliated to Lactobacillus helveticus (32-35%). In addition, a high proportion of sequences belonging to the genera Lactobacillus, Lactococcus and Streptococcus but not classified at the species level were found in the suluguni-like cheese. Lactobacillus delbrueckii, as well as Streptococcus thermophilus constituted the majority in another cottage cheese, kefir and ayran metagenomes. The microbiome of shubat, produced from camel's milk, was significantly distinctive, and Lentilactobacillus kefiri, Lactobacillus kefiranofaciens and Bifidobacterium mongoliense represented the dominant components (42, 7.4 and 5.6%, respectively). In total, 78 metagenome-assembled genomes with a completeness ≥ 50.2% and a contamination ≤ 8.5% were recovered: 61 genomes were assigned to the Enterococcaceae, Lactobacillaceae and Streptococcaceae families (the Lactobacillales order within Firmicutes), 4 to Bifidobacteriaceae (the Actinobacteriota phylum) and 2 to Acetobacteraceae (the Proteobacteria phylum). A metagenomic analysis revealed numerous genes, from 161 to 1301 in different products, encoding glycoside hydrolases and glycosyltransferases predicted to participate in lactose, alpha-glucans and peptidoglycan hydrolysis as well as exopolysaccharides synthesis. A large number of secondary metabolite biosynthetic gene clusters, such as lanthipeptides, unclassified bacteriocins, nonribosomal peptides and polyketide synthases were also detected. Finally, the genes involved in the synthesis of bioactive compounds like β-lactones, terpenes and furans, nontypical for fermented milk products, were also found. The metagenomes of kefir, ayran and shubat was shown to contain either no or a very low count of antibiotic resistance genes. Altogether, our results show that traditional indigenous fermented products are a promising source of novel probiotic bacteria with beneficial properties for medical and food industries.
Collapse
Affiliation(s)
- Alexander G. Elcheninov
- Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 117312, Russia; (K.S.Z.); (A.A.K.); (I.V.K.); (T.V.K.)
| | - Kseniya S. Zayulina
- Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 117312, Russia; (K.S.Z.); (A.A.K.); (I.V.K.); (T.V.K.)
| | - Alexandra A. Klyukina
- Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 117312, Russia; (K.S.Z.); (A.A.K.); (I.V.K.); (T.V.K.)
| | - Mariia K. Kremneva
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia;
| | - Ilya V. Kublanov
- Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 117312, Russia; (K.S.Z.); (A.A.K.); (I.V.K.); (T.V.K.)
| | - Tatiana V. Kochetkova
- Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 117312, Russia; (K.S.Z.); (A.A.K.); (I.V.K.); (T.V.K.)
| |
Collapse
|
14
|
Guo W, Mao B, Tang X, Zhang Q, Zhao J, Zhang H, Chen W, Cui S. Improvement of inflammatory bowel disease by lactic acid bacteria-derived metabolites: a review. Crit Rev Food Sci Nutr 2023; 65:1261-1278. [PMID: 38078699 DOI: 10.1080/10408398.2023.2291188] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Lactic acid bacteria (LAB) plays a crucial role in the establishment and maintenance of host health, as well as the improvement of some diseases. One of the major modes is the secretion of metabolites that may be intermediate or end products of the LAB's metabolism. In this review, we summarized some common metabolites (particularly short-chain fatty acids [SCFAs], bacteriocin, and exopolysaccharide [EPS]) from LAB in fermented foods and the gut for the first time. The effects of LAB-derived metabolites (LABM) on inflammation, oxidative stress, the intestinal barrier, and gut microbiota in inflammatory bowel disease (IBD) model are also discussed. The discovery of LABM and identification of IBD biomarkers are mainly attributed to the development of metabolomics technologies, especially nuclear magnetic resonance (NMR), gas chromatography-mass spectrometry (GC-MS), and liquid chromatography tandem mass spectrometry (LC-MS). The application of these metabolomics technologies in identification of LABM and IBD biomarkers are also summarized and analyzed. Although the beneficial effects of some LABM have been explored, undiscovered metabolites and their functions still need further investigations.
Collapse
Affiliation(s)
- Weiling Guo
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xin Tang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Shumao Cui
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
15
|
Tang Y, Miao Y, Tan M, Ma Q, Liu C, Yang M, Su Y, Li Q. Ultrasound assisted wall-breaking extraction and primary structures, bioactivities, rheological properties of novel Exidia yadongensis polysaccharide. ULTRASONICS SONOCHEMISTRY 2023; 101:106643. [PMID: 37922721 PMCID: PMC10641719 DOI: 10.1016/j.ultsonch.2023.106643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/22/2023] [Accepted: 10/07/2023] [Indexed: 11/07/2023]
Abstract
New natural multifunctional polysaccharide and its innovatory extraction technology may be urgently needed for food industries. Our aims were to establish new extraction method and investigate the primary structures, bioactivities and rheological properties of novel E. yadongensis polysaccharide (EYP). Ultrasound assisted mechanical wall-breaking extraction (MAUE) was successfully established for the EYP extraction from a new E. yadongensis. Based on the MAUE with RSM, the polysaccharide yield of 17.92 ± 0.56 % with the optimal parameters of five extraction factors were obtained, and current MAUE was characterized by its high yield, low extraction temperature and short ultrasound time. After the isolation and purification, the EYP as a protein-bound polysaccharide was obtained. FT-IR and NMR analysis showed that the main backbone of the EYP comprised of (1 → 4)-β-D-glucopyranosyl and (1 → 6)-ɑ-D-mannopyranosyl groups; EYP exhibited significant antioxidant, antibacterial, antitumor, antidiabetic activities, and good viscoelastic properties in low pH solutions (P < 0.05). The EYP may be used as a natural functional and cohesive agent in food industries.
Collapse
Affiliation(s)
- Ying Tang
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry Education of China, Chengdu, Sichuan 610066, China; College of Life Sciences, Sichuan Normal University, Chengdu, Sichuan 610066, China
| | - Yuzhi Miao
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry Education of China, Chengdu, Sichuan 610066, China; College of Life Sciences, Sichuan Normal University, Chengdu, Sichuan 610066, China.
| | - Min Tan
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry Education of China, Chengdu, Sichuan 610066, China
| | - Qinqin Ma
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry Education of China, Chengdu, Sichuan 610066, China; College of Life Sciences, Sichuan Normal University, Chengdu, Sichuan 610066, China
| | - Chengyi Liu
- PanZhiHua City Academy of Agricultural and Forestry Sciences, Panzhihua, Sichuan 617061, China
| | - Mei Yang
- PanZhiHua City Academy of Agricultural and Forestry Sciences, Panzhihua, Sichuan 617061, China
| | - Yanqiu Su
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry Education of China, Chengdu, Sichuan 610066, China; College of Life Sciences, Sichuan Normal University, Chengdu, Sichuan 610066, China
| | - Qi Li
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry Education of China, Chengdu, Sichuan 610066, China; College of Life Sciences, Sichuan Normal University, Chengdu, Sichuan 610066, China
| |
Collapse
|
16
|
Ali AH, Alsalmi M, Alshamsi R, Tarique M, Bamigbade G, Zahid I, Nazir MH, Waseem M, Abu-Jdayil B, Kamal-Eldin A, Huppertz T, Ayyash M. Effect of whey protein isolate addition on set-type camel milk yogurt: Rheological properties and biological activities of the bioaccessible fraction. J Dairy Sci 2023; 106:8221-8238. [PMID: 37641311 DOI: 10.3168/jds.2023-23421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 05/18/2023] [Indexed: 08/31/2023]
Abstract
The manufacture of camel milk (CM) yogurt has been associated with several challenges, such as the weak structure and watery texture, thereby decreasing its acceptability. Therefore, this study aimed to investigate the effect of whey protein isolate (WPI) addition on the health-promoting benefits, texture profile, and rheological properties of CM yogurt after 1 and 15 d of storage. Yogurt was prepared from CM supplemented with 0, 3, and 5% of WPI and compared with bovine milk yogurt. The results show that the water holding capacity was affected by WPI addition representing 31.3%, 56.8%, 64.7%, and 45.1% for yogurt from CM containing 0, 3 or 5% WPI, and bovine milk yogurt, respectively, after 15 d. The addition of WPI increased yogurt hardness, adhesiveness, and decreased the resilience. CM yogurt without WPI showed lower apparent viscosity, storage modulus, and loss modulus values compared with other samples. The supplementation of CM with WPI improved the rheological properties of the obtained yogurt. Furthermore, the antioxidant activities of yogurt before and after in vitro digestion varied among yogurt treatments, which significantly increased after digestion except the superoxide anion scavenging and lipid oxidation inhibition. After in vitro digestion at d 1, the superoxide anion scavenging of the 4 yogurt treatments respectively decreased from 83.7%, 83.0%, 79.1%, and 87.4% to 36.7%, 38.3%, 44.6%, and 41.3%. The inhibition of α-amylase and α-glucosidase, angiotensin-converting enzyme inhibition, cholesterol removal, and degree of hydrolysis exhibited different values before and after in vitro digestion.
Collapse
Affiliation(s)
- Abdelmoneim H Ali
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Maitha Alsalmi
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al Ain 15551, UAE
| | - Rodah Alshamsi
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al Ain 15551, UAE
| | - Mohammed Tarique
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al Ain 15551, UAE
| | - Gafar Bamigbade
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al Ain 15551, UAE
| | - Imtisal Zahid
- Department of Chemical and Petroleum Engineering, College of Engineering, United Arab Emirates University (UAEU), Al Ain 15551, UAE
| | - Muhammad Hamza Nazir
- Department of Chemical and Petroleum Engineering, College of Engineering, United Arab Emirates University (UAEU), Al Ain 15551, UAE
| | - Muhammad Waseem
- Department of Chemical and Petroleum Engineering, College of Engineering, United Arab Emirates University (UAEU), Al Ain 15551, UAE
| | - Basim Abu-Jdayil
- Department of Chemical and Petroleum Engineering, College of Engineering, United Arab Emirates University (UAEU), Al Ain 15551, UAE
| | - Afaf Kamal-Eldin
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al Ain 15551, UAE
| | - Thom Huppertz
- FrieslandCampina, Amersfoort 1551 3800 BN, the Netherlands; Wageningen University & Research, Wageningen 6708 PB, the Netherlands
| | - Mutamed Ayyash
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al Ain 15551, UAE.
| |
Collapse
|
17
|
Bamigbade G, Ali AH, Subhash A, Tamiello-Rosa C, Al Qudsi FR, Esposito G, Hamed F, Liu SQ, Gan RY, Abu-Jdayil B, Ayyash M. Structural characterization, biofunctionality, and environmental factors impacting rheological properties of exopolysaccharide produced by probiotic Lactococcus lactis C15. Sci Rep 2023; 13:17888. [PMID: 37857676 PMCID: PMC10587178 DOI: 10.1038/s41598-023-44728-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023] Open
Abstract
Exopolysaccharides (EPSs) possess distinctive rheological and physicochemical properties and innovative functionality. This study aimed to investigate the physicochemical, bioactive, and rheological properties of an EPS secreted by Lactococcus lactis subsp. lactis C15. EPS-C15 was found to have an average molecular weight of 8.8 × 105 Da and was identified as a hetero-EPS composed of arabinose, xylose, mannose, and glucose with a molar ratio of 2.0:2.7:1.0:21.3, respectively. The particle size and zeta potential represented 311.2 nm and - 12.44 mV, respectively. FITR exhibited that EPS-C15 possessed a typical polysaccharide structure. NMR displayed that EPS-C15 structure is → 3)α-d-Glcvi (1 → 3)α-d-Xylv (1 → 6)α-d-Glciv(1 → 4)α-d-Glc(1 → 3)β-d-Man(1 → 2)α-d-Glci(1 → . EPS-C15 scavenged DPPH and ABTS free radicals with 50.3% and 46.4% capacities, respectively. Results show that the antiproliferative activities of EPS-C15 revealed inhibitions of 49.7% and 88.1% against MCF-7 and Caco-2 cells, respectively. EPS-C15 has antibacterial properties that inhibited Staphylococcus aureus (29.45%), Salmonella typhimurium (29.83%), Listeria monocytogenes (30.33%), and E. coli O157:H7 (33.57%). The viscosity of EPS-C15 decreased as the shear rate increased. The rheological properties of the EPS-C15 were affected by changes in pH levels and the addition of salts. EPS-C15 is a promising biomaterial that has potential applications in various industries, such as food, pharmaceuticals, and healthcare.
Collapse
Affiliation(s)
- Gafar Bamigbade
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al Ain, UAE
| | - Abdelmoneim H Ali
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Athira Subhash
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al Ain, UAE
| | - Camila Tamiello-Rosa
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al Ain, UAE
| | - Farah R Al Qudsi
- Department of Nutrition and Food Technology, Jordan University of Science and Technology, Irbid, 21121, Jordan
| | - Gennaro Esposito
- Science Division - New York University Abu Dhabi, NYUAD Campus, Saadiyat Island, PO Box 129188, Abu Dhabi, UAE
| | - Fathalla Hamed
- Department of Physics, College of Science, United Arab Emirates University (UAEU), PO Box 1555, Al Ain, UAE
| | - Shao-Quan Liu
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, Science Drive 2, Singapore, 117542, Singapore
| | - Ren-You Gan
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, 138669, Singapore
| | - Basim Abu-Jdayil
- Chemical and Petroleum Engineering Department, College of Engineering, United Arab Emirates University (UAEU), PO Box 15551, Al Ain, UAE.
| | - Mutamed Ayyash
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al Ain, UAE.
| |
Collapse
|
18
|
Ali AH, Abu-Jdayil B, Al Nabulsi A, Osaili T, Liu SQ, Kamal-Eldin A, Ayyash M. Fermented camel milk influenced by soy extract: Apparent viscosity, viscoelastic properties, thixotropic behavior, and biological activities. J Dairy Sci 2023; 106:6671-6687. [PMID: 37562642 DOI: 10.3168/jds.2023-23294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/23/2023] [Indexed: 08/12/2023]
Abstract
During fermentation, camel milk forms a fragile, acid-induced gel, which is less stable compared with the gel formed by bovine milk. In this study, camel milk was supplemented with different levels of soy extract, and the obtained blends were fermented with 2 different starter culture strains (a high acidic culture and a low acidic culture). The camel milk-soy extract yogurt treatments were evaluated for pH value, acidity, total phenolic compounds, antioxidant capacities, degree of hydrolysis, α-amylase and α-glucosidase inhibition, angiotensin-converting enzyme inhibition, antiproliferative activities, and rheological properties after 1 and 21 d of storage at 4°C. The results revealed that some of the investigated parameters were significantly affected by the starter culture strain and storage period. For instance, the effect of starter cultures was evident for the degree of hydrolysis, antioxidant capacities, proliferation inhibition, and rheological properties because these treatments led to different responses. Furthermore, the characteristics of camel milk-soy extract yogurt were also influenced by the supplementation level of soy extract, particularly after 21 d of storage. This study could provide valuable knowledge to the dairy industry because it highlighted the characteristics of camel milk-soy yogurt prepared with 2 different starter culture strains.
Collapse
Affiliation(s)
- Abdelmoneim H Ali
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Basim Abu-Jdayil
- Chemical and Petroleum Engineering Department, College of Engineering, United Arab Emirates University (UAEU), Al Ain 15551, United Arab Emirates
| | - Anas Al Nabulsi
- Department of Nutrition and Food Technology, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Tareq Osaili
- Department of Nutrition and Food Technology, Jordan University of Science and Technology, Irbid, 22110, Jordan; Clinical Nutrition and Dietetics, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Shao-Quan Liu
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, Singapore 117542, Singapore
| | - Afaf Kamal-Eldin
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al Ain 15551, United Arab Emirates
| | - Mutamed Ayyash
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al Ain 15551, United Arab Emirates.
| |
Collapse
|
19
|
Yue Y, Wang Y, Han Y, Zhang Y, Cao T, Huo G, Li B. Genome Analysis of Bifidobacterium Bifidum E3, Structural Characteristics, and Antioxidant Properties of Exopolysaccharides. Foods 2023; 12:2988. [PMID: 37627987 PMCID: PMC10453370 DOI: 10.3390/foods12162988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
In this study, the antioxidant properties of intact cells (IC), cell-free supernatant (CFS), and cell-free extracts (CFE) and whole genome sequencing of Bifidobacterium bifidum E3 (B. bifidum E3), as well as the structural characteristics and antioxidant properties of EPS-1, EPS-2, and EPS-3, were evaluated. The results revealed that intact cells (IC), cell-free supernatant (CFS), and cell-free extracts (CFE) had potent DPPH (1,1-Diphenyl-2-picrylhydrazyl radical), hydroxyl, and superoxide anion radical scavenging capacities, among which CFS was the best. At the genetic level, we identified a strong carbohydrate metabolism capacity, an EPS synthesis gene cluster, and five sugar nucleotides in B. bifidum E3. Therefore, we extracted cEPS from B. bifidum E3 and purified it to obtain EPS-1, EPS-2, and EPS-3. EPS-1, EPS-2, and EPS-3 were heteropolysaccharides with an average molecular weight of 4.15 × 104 Da, 3.67 × 104 Da, and 5.89 × 104 Da, respectively. The EPS-1 and EPS-2 are mainly comprised of mannose and glucose, and the EPS-3 is mainly comprised of rhamnose, mannose, and glucose. The typical characteristic absorption peaks of polysaccharides were shown in Fourier transform infrared spectroscopy (FT-IR spectroscopy). The microstructural study showed a rough surface structure for EPS-1, EPS-2, and EPS-3. Furthermore, EPS-1, EPS-2, and EPS-3 exhibited potent DPPH, hydroxyl, and superoxide anion radical scavenging capacities. Correlation analysis identified that antioxidant capacities may be influenced by various factors, especially molecular weight, chemical compositions, and monosaccharide compositions. In summary, the EPS that was produced by B. bifidum E3 may provide insights into health-promoting benefits in humans.
Collapse
Affiliation(s)
- Yingxue Yue
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China (T.C.)
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Yuqi Wang
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Yu Han
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China (T.C.)
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Yifan Zhang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China (T.C.)
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Ting Cao
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China (T.C.)
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Guicheng Huo
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China (T.C.)
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Bailiang Li
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China (T.C.)
- Food College, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
20
|
Thoda C, Touraki M. Probiotic-Derived Bioactive Compounds in Colorectal Cancer Treatment. Microorganisms 2023; 11:1898. [PMID: 37630458 PMCID: PMC10456921 DOI: 10.3390/microorganisms11081898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/14/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Colorectal cancer (CRC) is a multifactorial disease with increased morbidity and mortality rates globally. Despite advanced chemotherapeutic approaches for the treatment of CRC, low survival rates due to the regular occurrence of drug resistance and deleterious side effects render the need for alternative anticancer agents imperative. Accumulating evidence supports that gut microbiota imbalance precedes the establishment of carcinogenesis, subsequently contributing to cancer progression and response to anticancer therapy. Manipulation of the gut microbiota composition via the administration of probiotic-derived bioactive compounds has gradually attained the interest of scientific communities as a novel therapeutic strategy for CRC. These compounds encompass miscellaneous metabolic secreted products of probiotics, including bacteriocins, short-chain fatty acids (SCFAs), lactate, exopolysaccharides (EPSs), biosurfactants, and bacterial peptides, with profound anti-inflammatory and antiproliferative properties. This review provides a classification of postbiotic types and a comprehensive summary of the current state of research on their biological role against CRC. It also describes how their intricate interaction with the gut microbiota regulates the proper function of the intestinal barrier, thus eliminating gut dysbiosis and CRC development. Finally, it discusses the future perspectives in precision-medicine approaches as well as the challenges of their synthesis and optimization of administration in clinical studies.
Collapse
Affiliation(s)
| | - Maria Touraki
- Laboratory of General Biology, Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54 124 Thessaloniki, Greece;
| |
Collapse
|
21
|
Zhang J, Xiao Y, Wang H, Zhang H, Chen W, Lu W. Lactic acid bacteria-derived exopolysaccharide: Formation, immunomodulatory ability, health effects, and structure-function relationship. Microbiol Res 2023; 274:127432. [PMID: 37320895 DOI: 10.1016/j.micres.2023.127432] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/17/2023]
Abstract
Exopolysaccharides (EPSs) synthesized by lactic acid bacteria (LAB) have implications for host health and act as food ingredients. Due to the variability of LAB-EPS (lactic acid bacteria-derived exopolysaccharide) gene clusters, especially the glycosyltransferase genes that determine monosaccharide composition, the structure of EPS is very rich. EPSs are synthesized by LAB through the extracellular synthesis pathway and the Wzx/Wzy-dependent pathway. LAB-EPS has a strong immunomodulatory ability. The EPSs produced by different genera of LAB, especially Lactobacillus, Leuconostoc, and Streptococcus, have different immunomodulatory abilities because of their specific structures. LAB-EPS possesses other health effects, including antitumor, antioxidant, intestinal barrier repair, antimicrobial, antiviral, and cholesterol-lowering activities. The bioactivities of LAB-EPS are tightly related to their structures such us monosaccharide composition, glycosidic bonds, and molecular weight (MW). For the excellent physicochemical property, LAB-EPS acts as product improvers in dairy, bakery food, and meat in terms of stability, emulsification, thickening, and gelling. We systematically summarize the detailed process of EPS from synthesis to application, with emphasis on physiological mechanisms of EPS, and specific structure-function relationship, which provides theoretical support for the potential commercial value in the pharmaceutical, chemical, food, and cosmetic industries.
Collapse
Affiliation(s)
- Jie Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yue Xiao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hongchao Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
22
|
Ali AH, Bamigbade G, Tarique M, Esposito G, Obaid R, Abu-Jdayil B, Ayyash M. Physicochemical, rheological, and bioactive properties of exopolysaccharide produced by a potential probiotic Enterococcus faecalis 84B. Int J Biol Macromol 2023; 240:124425. [PMID: 37076064 DOI: 10.1016/j.ijbiomac.2023.124425] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/25/2023] [Accepted: 04/08/2023] [Indexed: 04/21/2023]
Abstract
Exopolysaccharides (EPS) have attracted a great interest due to their potential health-promoting properties and industrial applications. This study aimed to investigate the physicochemical, rheological, and biological properties of an EPS produced by a potential probiotic strain Enterococcus faecalis 84B. The results show that the extracted EPS, designated EPS-84B, had an average molecular weight of 604.8 kDa, particles size diameter of 322.0 nm, and mainly composed of arabinose and glucose with a molar ratio of 1:2. Furthermore, EPS-84B exhibited a shear-thinning behavior and had a high melting point. The rheological properties of EPS-84B were strongly influenced by the type of salt than by the pH value. EPS-84B displayed ideal viscoelastic properties, with both viscous and storage moduli increasing with frequency. The antioxidant activity of EPS-84B at a concentration of 5 mg/mL was 81.1 % against DPPH and 35.2 % against ABTS. At 5 mg/mL, the antitumor activity of EPS-84B against Caco-2 and MCF-7 cell lines was 74.6 and 38.6 %, respectively. In addition, the antidiabetic activity of EPS-84B towards α-amylase and α-glucosidase was 89.6 and 90.0 %, respectively at 100 μg/mL. The inhibition of foodborne pathogens by EPS-84B was up to 32.6 %. Overall, EPS-84B has promising properties that could be utilized in food and pharmaceutical industries.
Collapse
Affiliation(s)
- Abdelmoneim H Ali
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Gafar Bamigbade
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al Ain, P.O. Box 15551, United Arab Emirates
| | - Mohammed Tarique
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al Ain, P.O. Box 15551, United Arab Emirates
| | - Gennaro Esposito
- Science Division - New York University Abu Dhabi, NYUAD Campus, Saadiyat Island, PO Box 129188, Abu Dhabi, United Arab Emirates; Istituto Nazionale Biostrutture e Biosistemi, Viale Medaglie d'Oro 305, 00136 Roma, Italy
| | - Reyad Obaid
- Department: Clinical Nutrition and Dietetics, University of Sharjah, Sharjah, United Arab Emirates
| | - Basim Abu-Jdayil
- Chemical and Petroleum Engineering Department, College of Engineering, United Arab Emirates University (UAEU), Al Ain, P.O. Box 15551, United Arab Emirates.
| | - Mutamed Ayyash
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al Ain, P.O. Box 15551, United Arab Emirates.
| |
Collapse
|
23
|
Zhao Q, Wang Z, Yu Z, Gao Z, Mu G, Wu X. Influence on physical properties and digestive characters of fermented coconut milk with different loading proportion of skimmed coconut drink using Lactiplantibacillus plantarum MWLp-4 from human milk mixing with commercial bacteria. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
24
|
Dawadi P, Odari R, Poudel RC, Pokhrel LR, Bhatt LR. Isolation of Lactococcus garvieae NEP21 from raw cow (Bos indicus) milk in Nepal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160641. [PMID: 36470377 DOI: 10.1016/j.scitotenv.2022.160641] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Lactococcus garvieae is an emerging zoonotic pathogen impacting both humans and animals. Infection of this bacterium is known to cause mastitis in cattle, and endocarditis, osteomyelitis, liver abscess, and gastrointestinal problems are reported in immunocompromised and elderly people that regularly consume or handle raw meat, milk, dairy products, and seafood. This study aimed at investigating and detecting lactic acid bacteria in raw cow (Bos indicus) milk samples from a smallholder farm in Nepal. Based on the plate culture, biochemical tests, and molecular sequencing of 16 s ribosomal RNA coding nuclear DNA region followed by phenotypic and genotypic analyses, L. garvieae NEP21 was detected and identified for the first time in Nepal in raw cow milk samples. This finding suggests the prevalence of L. garvieae NEP21 in raw cow milk and recommends further research and surveillance for understanding the extent of its presence in Nepal and globally for informed management of its infection in cattle and humans.
Collapse
Affiliation(s)
- Prabin Dawadi
- Biological Resource Unit, Nepal Academy of Science and Technology, Khumaltar, Lalitpur, Nepal
| | - Ranjeeta Odari
- Molecular Biotechnology Unit, Nepal Academy of Science and Technology, Khumaltar, Lalitpur, Nepal
| | - Ram Chandra Poudel
- Molecular Biotechnology Unit, Nepal Academy of Science and Technology, Khumaltar, Lalitpur, Nepal
| | - Lok R Pokhrel
- Department of Public Health, The Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA.
| | - Lok Ranjan Bhatt
- Biological Resource Unit, Nepal Academy of Science and Technology, Khumaltar, Lalitpur, Nepal.
| |
Collapse
|
25
|
Metagenomic insights into bacterial communities and functional genes associated with texture characteristics of Kazakh artisanal fermented milk Ayran in Xinjiang, China. Food Res Int 2023; 164:112414. [PMID: 36737993 DOI: 10.1016/j.foodres.2022.112414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/28/2022] [Accepted: 12/25/2022] [Indexed: 12/30/2022]
Abstract
The complex microflora of traditional fermented milk is crucial to milk coagulation mainly through acid and protease production; however, it is still unclear which microbes and proteases significantly influence the texture of Ayran, a Kazakh artisanal fermented milk in Xinjiang, China. In this study, fifty-nine samples of Ayran were collected and investigated on texture properties. Finally, six Ayran samples with different texture features were screened out, and the taxonomic and functional attributes of their microbiota were characterized by metagenomics. The results showed that the hardness of the fermented milk in Yili Kazakh Autonomous Prefecture was significantly higher than that in other pasture areas. Lactobacillus and Lactococcus were the core genera that affected the coagulation quality of milk. Furthermore, we found that the proline iminopeptidase pip (EC 3.4.11.5) gene of Lactobacillus helveticus and Limosilactobacillus fermentum and the dipeptidase E pepE (EC 3.4.13.21) gene of Lactococcus lactis were most associated with the coagulation quality of fermented milk. Furthermore, positive correlations were observed among the hardness of fermented milk, the activity of the proteases, and the corresponding functional gene expressions.
Collapse
|
26
|
Cha J, Cho KM, Kwon SJ, Park SE, Kim EJ, Seo SH, Son HS. Investigation of lactic acid bacterial profiles in commercial rice wine and their effect on metabolites during low-temperature storage. Food Chem X 2022; 17:100552. [PMID: 36845507 PMCID: PMC9943863 DOI: 10.1016/j.fochx.2022.100552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/15/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022] Open
Abstract
Makgeolli, the traditional Korean rice wine, is generally considered to contain lactic acid bacteria (LAB) despite its bacterial inoculation-free brewing process. The existence of LAB in makgeolli often presents inconsistent trends in microbial profiles and cell numbers. Therefore, to establish LAB-related insights, 94 commercial non-pasteurized products were collected and microbial communities and metabolites were analyzed using 16S rRNA amplicon sequencing and GC-MS, respectively. All samples contained various LAB genera and species, with an average viable cell number of 5.61 log CFU/mL. Overall, 10 LAB genera and 25 LAB species were detected; the most abundant and frequent LAB genus was Lactobacillus. There was no significant change in the LAB composition profile or lactic acid content during low-temperature storage, indicating the presence of LAB did not significantly affect the quality of makgeolli under low-temperature storage conditions. Overall, this study contributes to understand the microbial profile and role of LAB in makgeolli.
Collapse
Affiliation(s)
- Jeongmin Cha
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | | | | | - Seong-Eun Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Eun-Ju Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | | | - Hong-Seok Son
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
- Corresponding author.
| |
Collapse
|
27
|
de Souza EL, de Oliveira KÁR, de Oliveira MEG. Influence of lactic acid bacteria metabolites on physical and chemical food properties. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
28
|
Ayyash M, Tarique M, Alaryani M, Al-Sbiei A, Masad R, Al-Saafeen B, Fernandez-Cabezudo M, Al-Ramadi B, Kizhakkayil J, Kamal-Eldin A. Bioactive properties and untargeted metabolomics analysis of bioaccessible fractions of non-fermented and fermented date fruit pomace by novel yeast isolates. Food Chem 2022; 396:133666. [PMID: 35841681 DOI: 10.1016/j.foodchem.2022.133666] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/26/2022] [Accepted: 07/07/2022] [Indexed: 12/31/2022]
Abstract
In this study, attempts were made to utilize date by-product (date fruit pomace; DFP). This study aimed to investigate the health-promoting benefits of the fermented and non-fermented DFP before in vitro digestion and after (bioaccessible fraction). Untargeted metabolomic analyses for bioaccessible fractions were performed by UPLC-QTOF. DPPH percentages were 89.7%-90.3%, 90.1%-91.3%, and 90.8%-91.3% in the control, I. orientalis, and P. kudriazevii samples, respectively, before digestion; α-glucosidase inhibition before digestion was 1.9%-24.4%, 16.3%-30.0%, and 21.3%-31.3%, respectively; antimicrobial activities were 6.1%-13.3%, 13.7%-25.7%, and 20.6%-28.0% against E. coli O157:H7 and 2.2%-11.9%, 7.2%-20.7%, and 11.9%-29.2% against L. monocytogenes, respectively. The DPPH scavenging percentages were ∼63% lower in the bioaccessible fraction. The differentially regulated metabolites classes were benzene and derivatives, amino acids, peptides and analogs, organic acids, and phenols. This study revealed that the fermented DFP exhibited higher health properties than control.
Collapse
Affiliation(s)
- Mutamed Ayyash
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al Ain, United Arab Emirates; Zayed Center for Health Sciences, United Arab Emirates University (UAEU), Al Ain, United Arab Emirates.
| | - Mohammed Tarique
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Maitha Alaryani
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Ashraf Al-Sbiei
- Department of Biochemistry & Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Razan Masad
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Besan Al-Saafeen
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Maria Fernandez-Cabezudo
- Department of Biochemistry & Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Basel Al-Ramadi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University (UAEU), Al Ain, United Arab Emirates; Zayed Center for Health Sciences, United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Jaleel Kizhakkayil
- Department of Nutrition and Health Sciences, College of Medicine and Health Sciences, United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Afaf Kamal-Eldin
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| |
Collapse
|
29
|
Derdak R, Sakoui S, Pop OL, Vodnar DC, Addoum B, Teleky BE, Elemer S, Elmakssoudi A, Suharoschi R, Soukri A, El Khalfi B. Optimisation and characterization of α-D-glucan produced by Bacillus velezensis RSDM1 and evaluation of its protective effect on oxidative stress in Tetrahymena thermophila induced by H2O2. Int J Biol Macromol 2022; 222:3229-3242. [DOI: 10.1016/j.ijbiomac.2022.10.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/03/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022]
|
30
|
Xu S, Xu J, Zeng W, Shan X, Zhou J. Efficient biosynthesis of exopolysaccharide in Candida glabrata by a fed-batch culture. Front Bioeng Biotechnol 2022; 10:987796. [PMID: 36118574 PMCID: PMC9478339 DOI: 10.3389/fbioe.2022.987796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Polysaccharides are important natural biomacromolecules. In particular, microbial exopolysaccharides have received much attention. They are produced by a variety of microorganisms, and they are widely used in the food, pharmaceutical, and chemical industries. The Candida glabrata mutant 4-C10, which has the capacity to produce exopolysaccharide, was previously obtained by random mutagenesis. In this study we aimed to further enhance exopolysaccharide production by systemic fermentation optimization. By single factor optimization and orthogonal design optimization in shaking flasks, an optimal fermentation medium composition was obtained. By optimizing agitation speed, aeration rate, and fed-batch fermentation mode, 118.6 g L−1 of exopolysaccharide was obtained by a constant rate feeding fermentation mode, with a glucose yield of 0.62 g g−1 and a productivity of 1.24 g L−1 h−1. Scaling up the established fermentation mode to a 15-L fermenter led to an exopolysaccharide yield of 113.8 g L−1, with a glucose yield of 0.60 g g−1 and a productivity of 1.29 g L−1 h−1.
Collapse
Affiliation(s)
- Sha Xu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Jinke Xu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Weizhu Zeng
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Xiaoyu Shan
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Jingwen Zhou
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- *Correspondence: Jingwen Zhou,
| |
Collapse
|
31
|
Mi H, Liu S, Hai Y, Yang G, Lu J, He F, Zhao Y, Xia M, Hou X, Fang Y. Lactococcus garvieae FUA009, a Novel Intestinal Bacterium Capable of Producing the Bioactive Metabolite Urolithin A from Ellagic Acid. Foods 2022; 11:2621. [PMID: 36076807 PMCID: PMC9455165 DOI: 10.3390/foods11172621] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/18/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
Dietary polyphenol ellagic acid has anti-cancer and anti-inflammatory activities, and these biological activities require the conversion of ellagic acid to urolithins by intestinal microbes. However, few gut microbes are capable of metabolizing ellagic acid to produce urolithins, limiting the beneficial effects of ellagic acid on health. Here, we describe an intestinal bacterium Lactococcus garvieae FUA009 isolated from the feces of a healthy volunteer. It was demonstrated via HPLC and UPLC-MS analysis that the end product of ellagic acid metabolism of FUA009 was urolithin A. In addition, we also examined the whole genome sequence of FUA009 and then assessed the safety and probiotic properties of FUA009 based on a complete genome and phenotype analysis. We indicated that FUA009 was safe, which was confirmed by FUA009 being sensitive to multiple antibiotics, having no hemolytic activity, and being free of aggressive putative virulence factors. Moreover, 19 stress-responsive protein genes and 8 adhesion-related genes were predicted in the FUA009 genome. Furthermore, we demonstrated that FUA009 was tolerant to acid and bile salt by determining the cell viability in a stress environment. In summary, Lactococcus garvieae FUA009, as a novel UA-producing bacterium, not only contributes to the study of the metabolic pathway of ellagic acid but is also expected to be a novel probiotic candidate.
Collapse
Affiliation(s)
- Haoyu Mi
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| | - Shu Liu
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
- College of Food Science and Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yang Hai
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Guang Yang
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
- College of Food Science and Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jing Lu
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
- College of Food Science and Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Fuxiang He
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yaling Zhao
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| | - Mengjie Xia
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xiaoyue Hou
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
- College of Food Science and Engineering, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Marine Resources Development Research Institute, Jiangsu Ocean University, Lianyungang 222005, China
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yaowei Fang
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Marine Resources Development Research Institute, Jiangsu Ocean University, Lianyungang 222005, China
| |
Collapse
|
32
|
Jiang G, Li R, He J, Yang L, Chen J, Xu Z, Zheng B, Yang Y, Xia Z, Tian Y. Extraction, Structural Analysis, and Biofunctional Properties of Exopolysaccharide from Lactiplantibacillus pentosus B8 Isolated from Sichuan Pickle. Foods 2022; 11:foods11152327. [PMID: 35954093 PMCID: PMC9367902 DOI: 10.3390/foods11152327] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/26/2022] [Accepted: 08/01/2022] [Indexed: 02/04/2023] Open
Abstract
Two novel exopolysaccharides, named LPB8-0 and LPB8-1, were isolated and purified from Lactiplantibacillus pentosus B8. Moreover, their structure and bioactivities were evaluated through chemical and spectral means. The study results demonstrated that LPB8-0 was primarily composed of mannose and glucose and had an average molecular weight of 1.12 × 104 Da, while LPB8-1 was composed of mannose, glucose, and galactose and had an average molecular weight of 1.78 × 105 Da. Their carbohydrate contents were 96.2% ± 1.0% and 99.1% ± 0.5%, respectively. The backbone of LPB8-1 was composed of (1→2)-linked α-D-Manp and (1→6)-linked α-D-Manp. LPB8-0 and LPB8-1 had semicrystalline structures with good thermal stability (308.3 and 311.7 °C, respectively). SEM results displayed that both LPB8-0 and LPB8-1 had irregular thin-slice shapes and spherical body structures. Additionally, an emulsifying ability assay confirmed that LPB8-0 and LPB8-1 had good emulsifying activity against several edible oils, and this activity was retained under acidic, neutral, and high temperature conditions. Furthermore, an antioxidant assay confirmed that LPB8-1 had stronger scavenging activity than LPB8-0. Overall, these results provide a theoretical basis for the potential application of these two novel exopolysaccharides as natural antioxidants and emulsifiers in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Guangyang Jiang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Ran Li
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China
| | - Juan He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Li Yang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Jia Chen
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Zhe Xu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Bijun Zheng
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Yichen Yang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Zhongmei Xia
- Institute of Biotechnology and Nucleic Technology, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Yongqiang Tian
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
- Correspondence: ; Tel.: +86-028-85461102
| |
Collapse
|
33
|
Al-Nabulsi AA, Jaradat ZW, Qudsi F, Elsalem L, Osaili TM, Olaimat AN, Esposito G, Liu SQ, Ayyash MM. Characterization and bioactive properties of exopolysaccharides produced by Streptococcus thermophilus and Lactobacillus bulgaricus isolated from labaneh. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
34
|
Heat, cold, acid, and bile salt induced differential proteomic responses of a novel potential probiotic Lactococcus garvieae C47 isolated from camel milk. Food Chem 2022; 397:133774. [PMID: 35905615 DOI: 10.1016/j.foodchem.2022.133774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 11/21/2022]
Abstract
Probiotics encounter various stresses during food processing and digestion. This study evaluated the differential proteomic responses of a newly identified potential probiotic lactic acid bacteria, Lactococcus garvieae, isolated from camel milk. Lc. garvieae C47 was exposed to heat, cold, acid, and bile conditions, and stress-responsive proteins were identified. The proteomic analysis was done using 2D-IEF SDS PAGE and nano-LC-MS/MS. Out of 91 differentially expressed proteins, 20 upregulated and 27 downregulated proteins were shared among the stresses. The multivariate data analysis revealed abundance of elongation factor Ts (spot C42), uridine phosphorylase, fructose-bisphosphate aldolase, peptidase T, cobalt ECF transporter T component CbiQ, UDP-N-acetylmuramate-l-alanine ligase, uncharacterized protein, aspartokinase, chaperone protein DnaK, IGP synthase cyclase subunit, probable nicotinate-nucleotide adenylyltransferase, NADH-quinone oxidoreductase, holo-[acyl-carrier-protein] synthase, l-lactate dehydrogenase, and uncharacterized protein. The maximum number of differentially expressed proteins belonged to carbohydrate and protein metabolism, which indicates Lc. garvieae shifts towards growth and energy metabolism for resistance against stress conditions.
Collapse
|
35
|
Liao Y, Gao M, Wang Y, Liu X, Zhong C, Jia S. Structural characterization and immunomodulatory activity of exopolysaccharide from Aureobasidium pullulans CGMCC 23063. Carbohydr Polym 2022; 288:119366. [DOI: 10.1016/j.carbpol.2022.119366] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/07/2022] [Accepted: 03/14/2022] [Indexed: 01/19/2023]
|
36
|
Jiang G, He J, Gan L, Li X, Xu Z, Yang L, Li R, Tian Y. Exopolysaccharide Produced by Pediococcus pentosaceus E8: Structure, Bio-Activities, and Its Potential Application. Front Microbiol 2022; 13:923522. [PMID: 35814643 PMCID: PMC9257109 DOI: 10.3389/fmicb.2022.923522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/16/2022] [Indexed: 11/29/2022] Open
Abstract
The novel exopolysaccharide EPS-E8, secreted by Pediococcus pentosaceus E8, was obtained by anion-exchange and gel filtration chromatography. Structural analyses identified EPS-E8 as a heteropolysaccharide containing mannose, glucose, and galactose. Its major backbone consists of →2)-α-D-Manp-(1→2,6)-α-D-Glcp-(1→6)-α-D-Manp-(1→, and its molecular weight is 5.02 × 104 g/mol. Using atomic force microscopy and scanning electron microscopy, many spherical and irregular reticular-like shapes were observed in the microstructure of EPS-E8. EPS-E8 has outstanding thermal stability (305.7°C). Both the zeta potential absolute value and average particle diameter increased gradually with increasing concentration. Moreover, at a concentration of 10 mg/ml, the antioxidant capacities of, 1-Diphenyl-2-picrylhydrazyl (DPPH), ABTS and hydroxyl radical were 50.62 ± 0.5%, 52.17 ± 1.4%, and 58.91 ± 0.7%, respectively. EPS-E8 possesses excellent emulsifying properties against several food-grade oils, and its activity is retained under various conditions (temperature, pH, and ionic strength). Finally, we found that EPS-E8 as a polysaccharide-based coating could reduce the weight loss and malondialdehyde (MDA) content of strawberry, as well as preserving the vitamin C and soluble solid content during storage at 20°C. Together, the results support the potential application of EPS-E8 as an emulsifier, and a polysaccharide-based coating in fruit preservation.
Collapse
Affiliation(s)
- Guangyang Jiang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Juan He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Longzhan Gan
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Xiaoguang Li
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Zhe Xu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Li Yang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Ran Li
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Yongqiang Tian
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
- *Correspondence: Yongqiang Tian,
| |
Collapse
|
37
|
Amini E, Salimi F, Imanparast S, Mansour FN. Isolation and characterization of exopolysaccharide derived from Lacticaseibacillus paracasei AS20(1) with probiotic potential and evaluation of its antibacterial activity. Lett Appl Microbiol 2022; 75:967-981. [PMID: 35716384 DOI: 10.1111/lam.13771] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/12/2022] [Accepted: 06/13/2022] [Indexed: 11/26/2022]
Abstract
This study was done to find exopolysaccharide (EPS)-producing lactic acid bacteria (LAB) against foodborne pathogens. Isolated LAB were screened to find the ones with the ability to produce antibacterial EPS against foodborne pathogens. Among tested EPSs, EPS of AS20(1) isolate showed inhibitory effects on the growth of Listeria monocytogenes (MIC = 0·935 mg ml-1 , MBC = 0·935 mg ml-1 ), Yersinia enterocolitica (MIC = 12·5 mg ml-1 , MBC = 50 mg ml-1 ) and Bacillus cereus (MIC = 6·25 mg ml-1 , MBC = 12·5 mg ml-1 ). According to 16S rRNA sequencing, AS20(1) showed the closest similarity to Lacticaseibacillus paracasei (100%). This antibacterial EPS showed negligible toxicity (4·4%-5·2%) against red blood cells. Lacticaseibacillus paracasei AS20(1) showed probiotic properties, including high acid resistance, hydrophobicity (47·5%), autoaggregation and coaggregation with foodborne pathogens. Also, L. paracasei AS20(1) showed no haemolysis activity and antibiotic resistance. Characterization of antibacterial EPS revealed that it is a heteropolysaccharide with various functional groups, amorphous structure, and smooth surface, sheet and compact structure, which can be suitable for food packaging. L. paracasei AS20(1) and its antimicrobial EPS can be used to make functional food.
Collapse
Affiliation(s)
- E Amini
- Faculty of Advanced Sciences and Technology, Department of Biotechnology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - F Salimi
- Department of Cellular and Molecular Biology, School of Biology, Damghan University, Damghan, Iran
| | - S Imanparast
- Department of Biotechnology, Iranian Research Organization for Science and Technology, Tehran, Iran
| | - F N Mansour
- Faculty of Advanced Sciences and Technology, Department of Biotechnology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
38
|
Ge Z, Yin D, Li Z, Chen X, Dong M. Effects of Commercial Polysaccharides Stabilizers with Different Charges on Textural, Rheological, and Microstructural Characteristics of Set Yoghurts. Foods 2022; 11:1764. [PMID: 35741960 PMCID: PMC9223107 DOI: 10.3390/foods11121764] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/30/2022] [Accepted: 06/07/2022] [Indexed: 02/05/2023] Open
Abstract
The study investigated the preparation of set yoghurts by adding three common commercial polysaccharide stabilizers, namely sodium alginate (SA), gellan gum (GG), and konjac gum (KGM), in milk fermentation to evaluate their effects on the texture, rheology, and microstructure of set yoghurts. The physicochemical properties, water-holding capacity (WHC), texture, low-field nuclear magnetic resonance (LF-NMR), rheology, and microstructure of set yoghurts added with different kinds and quantities of polysaccharides were compared and analyzed. The results showed that the set yoghurts added with anionic polysaccharide GG had more obvious effects on improving WHC, firmness, and rheological properties compared with the set yoghurt added with KGM and SA. The firmness of set yoghurts with 0.02% (w/v) GG increased from 1.17 N to 1.32 N, which significantly improved the gel structure. The transverse relaxation time (T2) of set yoghurts added with GG was the closest to that of the control. Compared with the set yoghurts added with 0.02% SA and KGM, the free water area (A23) of the one added with 0.02% GG decreased most significantly. Moreover, all samples showed shear-thinning behavior, and the apparent elastic and viscous modulus (G', G″) increased with the increase of GG concentration. The G' and G″ of set yoghurts with 0.005% SA and KGM were higher than those in the control, decreased when adding 0.010%, and then increased with the increase of SA and KGM. Additionally, the microscopic observation demonstrated that the addition of GG in set yoghurts significantly promoted the formation of larger protein clusters and showed a tighter and more uniform protein network comparing with the other two polysaccharides (SA, KGM).
Collapse
Affiliation(s)
| | | | | | | | - Mingsheng Dong
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Z.G.); (D.Y.); (Z.L.); (X.C.)
| |
Collapse
|
39
|
Zhu J, Tan Z, Zhang Z, Shi X. Characterization on structure and bioactivities of an exopolysaccharide from Lactobacillus curvatus SJTUF 62116. Int J Biol Macromol 2022; 210:504-517. [PMID: 35508227 DOI: 10.1016/j.ijbiomac.2022.04.203] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/21/2022] [Accepted: 04/27/2022] [Indexed: 12/17/2022]
Abstract
This study aimed to investigate the chemical structure, physicochemical properties, antioxidant capacity, antibacterial ability and anti-biofilm formation activity of an exopolysaccharide (EPS) produced by Lactobacillus curvatus SJTUF 62116 from the fish Gymnocypris przewalskii. The purified EPS, denoted as EPS-1, was mainly composed of glucose and mannose at a relative molar ratio of 1:1.05 with molecular weight of 31.9 kDa. The chemical structure of EPS-1 was consisted of →2)-α-D-Manp-(1→, →4)-α-D-Manp-(1→, →3,6)-α-D-Manp-(1→, T-β-D-Glcp-(1→, →6)-β-D-Glcp-(1→, and →3)-β-D-Glcp-(1→ glycosidic bonds. A sheet-like structure of dried EPS-1 was determined by scanning electron microscope (SEM), whilst a peak-shaped structure of EPS-1 was observed by atomic force microscope (AFM). The degradation temperature of EPS-1 was determined as 300.21 °C using thermogravimetric analysis (TGA). Moreover, the antioxidant capacity of EPS-1 at a concentration of 5.0 mg/mL against DPPH and ABTS was 84.50% and 92.53%, respectively. Furthermore, EPS-1 exhibited acceptable bacteriostatic efficacy against S. Enteritidis, E. coli, and S.aureus with significant inhibition of S. Enteritidis biofilm formation.
Collapse
Affiliation(s)
- Jinyu Zhu
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, State Key Lab of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhongfang Tan
- College of Agriculture Science, Zhengzhou University, Zhengzhou 450001, China
| | - Zhong Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Xianming Shi
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, State Key Lab of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
40
|
Effects of Fermented Camel Milk Supplemented with Sidr Fruit (Ziziphus spina-christi L.) Pulp on Hyperglycemia in Streptozotocin-Induced Diabetic Rats. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8060269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Diabetes is one of the most common chronic metabolic diseases, and its occurrence rate has increased in recent decades. Sidr (Ziziphus spina-christi L.) is a traditional herbaceous medicinal plant. In addition to its good flavor, sidr has antidiabetic, anti-inflammatory, sedative, analgesic, and hypoglycemic activities. Camel milk has a high nutritional and health value, but its salty taste remains the main drawback in relation to its organoleptic properties. The production of flavored or fortified camel milk products to mask the salty taste can be very beneficial. This study aimed to investigate the effects of sidr fruit pulp (SFP) on the functional and nutritional properties of fermented camel milk. SFP was added to camel milk at rates of 5%, 10%, and 15%, followed by the selection of the best-fermented product in terms of functional and nutritional properties (camel milk supplemented with 15% SFP), and an evaluation of its hypoglycemic activity in streptozotocin (STZ)-induced diabetic rats. Thirty-two male adult albino rats (weighing 150–185 g) were divided into four groups: Group 1, nontreated nondiabetic rats (negative control); Group 2, diabetic rats given STZ (60 mg/kg body weight; positive control); Group 3, diabetic rats fed a basal diet with fermented camel milk (10 g/day); and Group 4, diabetic rats fed a basal diet with fermented camel milk supplemented with 15% SFP (10 g/day). The results revealed that supplementation of camel milk with SFP increased its total solids, protein, ash, fiber, viscosity, phenolic content, and antioxidant activity, which was proportional to the supplementation ratio. Fermented camel milk supplemented with 15% SFP had the highest scores for sensory properties compared to other treatments. Fermented camel milk supplemented with 15% SFP showed significantly decreased (p < 0.05) blood glucose, malondialdehyde, low-density lipoprotein-cholesterol, cholesterol, triglycerides, aspartate aminotransferase, alanine aminotransferase, creatinine, and urea, and a significantly increased (p < 0.05) high-density lipoprotein-cholesterol, total protein content, and albumin compared to diabetic rats. The administration of fermented camel milk supplemented with 15% SFP in diabetic rats restored a series of histopathological changes alonsgside an improvement in various enzyme and liver function tests compared to the untreated group, indicating that fermented camel milk supplemented with 15% SFP might play a preventive role in such patients.
Collapse
|
41
|
Derdak R, Sakoui S, Pop OL, Cristian Vodnar D, Addoum B, Elmakssoudi A, Errachidi F, Suharoschi R, Soukri A, El Khalfi B. Screening, optimization and characterization of exopolysaccharides produced by novel strains isolated from Moroccan raw donkey milk. Food Chem X 2022; 14:100305. [PMID: 35520389 PMCID: PMC9062669 DOI: 10.1016/j.fochx.2022.100305] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/30/2022] [Accepted: 04/07/2022] [Indexed: 11/30/2022] Open
Abstract
EPS producing bacteria was isolated and identified as Leuconostoc mesenteroides SL and Enterococcus viikkiensis N5. Optimization was carried out by Response Surface Methodology using Box Behnken Design. The GC–MS, FTIR, and NMR analysis showed that the EPS-SL and EPS-N5 are heteropolysaccharides connected by α-(1 → 6) and -(1 → 3) linkages. Both EPSs has high thermal stability. EPS exhibited appreciable antibacterial and antioxidant activity.
Two exopolysaccharides (EPS) producing strains, isolated from raw donkey milk were identified as Leuconostoc mesenteroides SL and Enterococcus viikkiensis N5 using 16S rDNA sequencing. The Box Benheken design exhibited the highest yield of EPS-SL (672.342 mg/L) produced by SL and of EPS-N5 (901 mg/L) produced by N5. The molecular weight was 1.68×104 for EPS-SL and 1.55×104 Da for EPS-N5. FTIR, NMR and GC–MS analysis showed that the EPS are heteropolysaccharides. The SEM image showed that the EPS-SL was smooth and represented a lotus leaf shape and EPS-N5 revealed a stiff-like, porous appearance and was more compact than EPS-SL. The TGA analyses showed high thermal stability and degradation temperature. Additionally, the two EPSs possessed antibacterial and antioxidant activity, and the EPS-SL had the stronger antioxidant activity. Consequently, these results suggest that the functional and biological properties of EPS-SL and EPS-N5 imply the potential application in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Reda Derdak
- Laboratory of Physiopathology, Molecular Genetics & Biotechnology, Faculty of Sciences Ain Chock, Health and Biotechnology Research Centre, Hassan II University of Casablanca, Maarif B.P 5366, Casablanca, Morocco
| | - Souraya Sakoui
- Laboratory of Physiopathology, Molecular Genetics & Biotechnology, Faculty of Sciences Ain Chock, Health and Biotechnology Research Centre, Hassan II University of Casablanca, Maarif B.P 5366, Casablanca, Morocco
| | - Oana Lelia Pop
- Department of Food Science, University of Agricultural Science and Veterinary Medicine, 3-5 Calea Mănăștur, Cluj-Napoca 400372, Romania
- Molecular Nutrition and Proteomics Lab, CDS3, Life Science Institute, University of Agricultural Science and Veterinary Medicine, Calea Mănăștur 3-5, Cluj-Napoca 400372, Romania
- Corresponding authors at: Department of Food Science, University of Agricultural Science and Veterinary Medicine, 3-5 Calea Mănăștur, Cluj-Napoca 400372, Romania (O.L. Pop, R. Suharoschi). Laboratory of Physiopathology, Molecular Genetics & Biotechnology, Faculty of Sciences Ain Chock, Health and Biotechnology Research Centre, Hassan II University of Casablanca, Maarif B.P 5366, Casablanca, Morocco (B. El khalfi).
| | - Dan Cristian Vodnar
- Department of Food Science, University of Agricultural Science and Veterinary Medicine, 3-5 Calea Mănăștur, Cluj-Napoca 400372, Romania
- Food Biotechnology and Molecular Gastronomy, CDS7, Life Science Institute, University of Agricultural Science and Veterinary Medicine, Calea Mănăștur 3-5, Cluj-Napoca 400372, Romania
| | - Boutaina Addoum
- Laboratory of Physiopathology, Molecular Genetics & Biotechnology, Faculty of Sciences Ain Chock, Health and Biotechnology Research Centre, Hassan II University of Casablanca, Maarif B.P 5366, Casablanca, Morocco
| | - Abdelhakim Elmakssoudi
- Department of Chemistry, Laboratory of Organic Synthesis, Extraction, and Valorization, Faculty of Sciences Aïn Chock, Hassan II University of Casablanca, Maarif B.P 5366, Casablanca, Morocco
| | - Faouzi Errachidi
- Laboratory of Functional Ecology and Engineering Environment, Faculty of Sciences and Technologies, Sidi Mohamed Ben Abdellah University, Imouzzer Street, B.P. 2202, Fez, Morocco
| | - Ramona Suharoschi
- Department of Food Science, University of Agricultural Science and Veterinary Medicine, 3-5 Calea Mănăștur, Cluj-Napoca 400372, Romania
- Molecular Nutrition and Proteomics Lab, CDS3, Life Science Institute, University of Agricultural Science and Veterinary Medicine, Calea Mănăștur 3-5, Cluj-Napoca 400372, Romania
- Corresponding authors at: Department of Food Science, University of Agricultural Science and Veterinary Medicine, 3-5 Calea Mănăștur, Cluj-Napoca 400372, Romania (O.L. Pop, R. Suharoschi). Laboratory of Physiopathology, Molecular Genetics & Biotechnology, Faculty of Sciences Ain Chock, Health and Biotechnology Research Centre, Hassan II University of Casablanca, Maarif B.P 5366, Casablanca, Morocco (B. El khalfi).
| | - Abdelaziz Soukri
- Laboratory of Physiopathology, Molecular Genetics & Biotechnology, Faculty of Sciences Ain Chock, Health and Biotechnology Research Centre, Hassan II University of Casablanca, Maarif B.P 5366, Casablanca, Morocco
| | - Bouchra El Khalfi
- Laboratory of Physiopathology, Molecular Genetics & Biotechnology, Faculty of Sciences Ain Chock, Health and Biotechnology Research Centre, Hassan II University of Casablanca, Maarif B.P 5366, Casablanca, Morocco
- Corresponding authors at: Department of Food Science, University of Agricultural Science and Veterinary Medicine, 3-5 Calea Mănăștur, Cluj-Napoca 400372, Romania (O.L. Pop, R. Suharoschi). Laboratory of Physiopathology, Molecular Genetics & Biotechnology, Faculty of Sciences Ain Chock, Health and Biotechnology Research Centre, Hassan II University of Casablanca, Maarif B.P 5366, Casablanca, Morocco (B. El khalfi).
| |
Collapse
|
42
|
Erginkaya Z, Konuray-Altun G. Potential biotherapeutic properties of lactic acid bacteria in foods. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101544] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
43
|
AlKurd R, Hanash N, Khalid N, Abdelrahim DN, Khan MAB, Mahrous L, Radwan H, Naja F, Madkour M, Obaideen K, Abu Shihab K, Faris M. Effect of Camel Milk on Glucose Homeostasis in Patients with Diabetes: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2022; 14:1245. [PMID: 35334901 PMCID: PMC8954674 DOI: 10.3390/nu14061245] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/05/2022] [Accepted: 03/09/2022] [Indexed: 01/08/2023] Open
Abstract
The effects of camel milk (CM) intake on glycemic control in patients with diabetes are controversial. This systematic review and meta-analysis of randomized controlled trials (RCTs) was conducted to summarize the effect of CM intake on glucose homeostasis parameters in patients with both types of diabetes mellitus; T1DM and T2DM. We searched Google Scholar, PubMed/MEDLINE, EBSCO host, CINAHL, ScienceDirect, Cochrane, ProQuest Medical, Web of Science, and Scopus databases from inception until the end of November 2021. Relevant RCTs were identified, and the effect size was reported as mean difference (MD) and standard deviation (SD). Parameters of glycosylated hemoglobin (HbA1c), fasting blood glucose (FBG), postprandial blood glucose (PBG), fasting serum insulin (FI), insulin resistance (expressed in terms of HOMA-IR), insulin dose (ID) received, serum insulin antibody (IA), and C-peptide (CP) were tested. Out of 4054 collected articles, 14 RCTs (total 663 subjects) were eligible for inclusion. The pooled results obtained using a random-effects model showed a statistically significant decrease in HbA1c levels (MD, −1.24, 95% confidence interval (CI): −2.00, −0.48, p < 0.001 heterogeneity (I2) = 94%) and ID received (MD, −16.72, 95% CI: −22.09, −11.35 p < 0.00001, I2 = 90%), with a clear tendency was shown, but non-significant, to decrease FBG (MD, −23.32, 95% CI: −47.33, 0.70, p = 0.06, I2 = 98%) in patients with diabetes who consumed CM in comparison to those on usual care. Conversely, the consumption of CM did not show significant reductions in the rest of the glucose homeostasis parameters. Subgroup analysis revealed that patients with T2DM were more beneficially affected by CM intake than those with T1DM in lowering FBG, while patients with T1DM were more beneficially affected by CM intake than those with T2DM in lowering HbA1c. Both fresh and treated (pasteurized/fermented) CM gave similar beneficial effects in lowering HbA1c. Lastly, a relatively superior effect for longer duration on shorter duration (>6 months, ≤6 months, respectively) of CM intake is found in lowering HbA1c. To conclude, long-term consumption of CM by patients with diabetes could be a useful adjuvant therapy alongside classical medications, especially in lowering the required insulin dose and HbA1c. Due to the high heterogeneity observed in the included studies, more controlled trials with a larger sample size are warranted to confirm our results and to control some confounders and interfering factors existing in the analyzed articles.
Collapse
Affiliation(s)
- Refat AlKurd
- Department of Nutrition, Faculty of Pharmacy and Medical Sciences, University of Petra, P.O. Box 961343, Amman 11196, Jordan;
| | - Nivine Hanash
- Care and Public Health Research Institute (CAPHRI), Maastricht University, 6211 LM Maastricht, The Netherlands;
| | - Narmin Khalid
- Department of Clinical Nutrition and Dietetics, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (N.K.); (H.R.); (F.N.); (K.A.S.)
- Department of Nutrition and Dietetics, Bahrain Defense Force Royal Medical Services Hospital, Riffa P.O. Box 28743, Bahrain
| | - Dana N. Abdelrahim
- Clinical Nutrition and Dietetics, Faculty of Pharmacy, Applied Science Private University, Amman 11931, Jordan;
| | - Moien A. B. Khan
- Nutrition Studies Research Group, Department of Family Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates;
- Primary Care, NHS North West London, London TW3 3EB, UK
| | - Lana Mahrous
- Department of Health Sciences/Track of Clinical Nutrition, College of Health and Rehabilitation, Princess Nourah Bint Abdulrahman University, Riyadh 12461, Saudi Arabia;
| | - Hadia Radwan
- Department of Clinical Nutrition and Dietetics, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (N.K.); (H.R.); (F.N.); (K.A.S.)
| | - Farah Naja
- Department of Clinical Nutrition and Dietetics, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (N.K.); (H.R.); (F.N.); (K.A.S.)
| | - Mohamed Madkour
- Department of Medical Laboratory Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
| | - Khaled Obaideen
- Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
| | - Katia Abu Shihab
- Department of Clinical Nutrition and Dietetics, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (N.K.); (H.R.); (F.N.); (K.A.S.)
| | - MoezAlIslam Faris
- Department of Clinical Nutrition and Dietetics, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (N.K.); (H.R.); (F.N.); (K.A.S.)
| |
Collapse
|
44
|
Pourjafar H, Ansari F, Sadeghi A, Samakkhah SA, Jafari SM. Functional and health-promoting properties of probiotics' exopolysaccharides; isolation, characterization, and applications in the food industry. Crit Rev Food Sci Nutr 2022; 63:8194-8225. [PMID: 35266799 DOI: 10.1080/10408398.2022.2047883] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Exopolysaccharides (EPS) are extracellular sugar metabolites/polymers of some slim microorganisms and, a wide variety of probiotics have been broadly investigated for their ability to produce EPS. EPS originated from probiotics have potential applications in food, pharmaceutical, cosmetology, wastewater treatment, and textiles industries, nevertheless slight is recognized about their function. The present review purposes to comprehensively discuss the structure, classification, biosynthesis, extraction, purification, sources, health-promoting properties, techno-functional benefits, application in the food industry, safety, toxicology, analysis, and characterization methods of EPS originated from probiotic microorganisms. Various studies have shown that probiotic EPS used as stabilizers, emulsifiers, gelling agents, viscosifiers, and prebiotics can alter the nutritional, texture, and rheological characteristics of food and beverages and play a major role in improving the quality of these products. Numerous studies have also proven the beneficial health effects of probiotic EPS, including antioxidant, antimicrobial, anti-inflammatory, immunomodulatory, anticancer, antidiabetic, antibiofilm, antiulcer, and antitoxin activities. Although the use of probiotic EPS has health effects and improves the organoleptic and textural properties of food and pharmaceutical products and there is a high tendency for their use in related industries, the production yield of these products is low and requires basic studies to support their products in large scale.
Collapse
Affiliation(s)
- Hadi Pourjafar
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Department of Food Sciences and Nutrition, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Fereshteh Ansari
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
- Research Center for Evidence-Based Medicine, Health Management and Safety Promotion Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Iranian EBM Centre: A Joanna Briggs Institute Affiliated Group, Tabriz, Iran
| | - Alireza Sadeghi
- Department of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Shohre Alian Samakkhah
- Department of Food Hygiene and Quality Control, Faculty of Veterinary of Medicine, Amol University of Special Modern Technology, Amol, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Ourense, Spain
| |
Collapse
|
45
|
In situ exopolysaccharides produced by Lactobacillus helveticus MB2-1 and its effect on gel properties of Sayram ketteki yoghurt. Int J Biol Macromol 2022; 208:314-323. [PMID: 35278514 DOI: 10.1016/j.ijbiomac.2022.03.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 03/02/2022] [Accepted: 03/06/2022] [Indexed: 11/05/2022]
Abstract
In order to study the mechanism of high viscosity of Sayram ketteki yoghurt, the growth, acidification properties, in situ exopolysaccharides (EPS) production of Lactobacillus helveticus MB2-1 in milk medium were investigated. The microstructure of the yoghurt was analyzed. The characteristics of in situ EPS produced by this strain in yoghurt were studied by high-performance liquid chromatography (HPLC), Fourier-transform infrared spectroscopy (FT-IR), ultraviolet-visible (UV-vis) analysis. The amount of in situ EPS produced could be up to 689.47 mg/L. The micrographs of Sayram ketteki yoghurt demonstrated that the in situ EPS secreted by ropy L. helveticus MB2-1 were closely connected with proteins, effectively filling the three-dimensional network structure of casein clusters, thereby resulting in high viscosity of yoghurt. Besides, the molecular weight of in situ EPS was 9.34 × 104 Da, and the in situ EPS was determined to be a new heteropolysaccharide, containing fucose, which made it unique. Moreover, the set yoghurts added with in situ EPS were demonstrated fine effects on the texture improvement. These results illustrated that L. helveticus MB2-1 could be set as a good starter and the in situ EPS could be considered as a probiotic stabilizer substitute for fermented dairy products.
Collapse
|
46
|
Li M, Li W, Li D, Tian J, Xiao L, Kwok LY, Li W, Sun Z. Structure characterization, antioxidant capacity, rheological characteristics and expression of biosynthetic genes of exopolysaccharides produced by Lactococcus lactis subsp. lactis IMAU11823. Food Chem 2022; 384:132566. [PMID: 35247774 DOI: 10.1016/j.foodchem.2022.132566] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 02/05/2022] [Accepted: 02/23/2022] [Indexed: 11/30/2022]
Abstract
Exopolysaccharides (EPSs) from lactic acid bacteria have special functions and complex structures, but the function and structure of EPSs of the important dairy starter, Lactococcus (L.) lactis subsp. lactis, are less known. This study investigated the cytotoxicity, antioxidant capacities, rheological characteristics, chemical structure and expression of biosynthetic genes of EPSs of the L. lactis subsp. lactis IMAU11823. The EPSs showed strong reducing power and no cytotoxicity. EPS-1 comprised glucose and mannose (molar ratio of 7.01: 1.00) and molecular weight was 6.10 × 105 Da, while EPS-2 comprised mannose, glucose and rhamnose (7.45: 1.00: 2.34) and molecular weight was 2.93 × 105 Da. EPS-1 was a linear structure comprised two sugar residues, while EPS-2 was more complex, non-linear, and comprised eight sugar residues. In additions, our study proposed an EPS biosynthesis model for the IMAU11823 strain. The current findings have broadened the understanding of the formation, structure and function of complex EPSs of IMAU11823.
Collapse
Affiliation(s)
- Min Li
- Key Laboratory of Dairy Biotechnology and Engineering (Inner Mongolia Agricultural University), Ministry of Education; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, PR China
| | - Weicheng Li
- Key Laboratory of Dairy Biotechnology and Engineering (Inner Mongolia Agricultural University), Ministry of Education; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, PR China
| | - Dongyu Li
- Key Laboratory of Dairy Biotechnology and Engineering (Inner Mongolia Agricultural University), Ministry of Education; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, PR China
| | - Juanjuan Tian
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Luyao Xiao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Lai-Yu Kwok
- Key Laboratory of Dairy Biotechnology and Engineering (Inner Mongolia Agricultural University), Ministry of Education; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, PR China
| | - Wei Li
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering (Inner Mongolia Agricultural University), Ministry of Education; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, PR China.
| |
Collapse
|
47
|
Incorporation of Sukkari Date in Probiotic-Enriched Fermented Camel Milk Improves the Nutritional, Physicochemical, and Organoleptical Characteristics. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation8010005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Camel milk and dates are well-known for their great nutritional and therapeutical benefits. Therefore, the study aimed to combine the benefits of fermented camel milk (FCM) and Sukkari date (SKD) in a naturally sweetened FCM. Six treatments of FCM using ABT-5 cultures with 0, 5, 7.5, 10, 12.5, and 15% SKD were carried out. Chemical, physicochemical, rheological properties were studied, while organoleptical attributes and probiotic strains viability were monitored during cold storage (4 °C) up to 15 days. Results showed that fortification with SKD increased total solids (TS), ash, dietary fiber, and carbohydrate content compared to plain FCM. Water holding capacity (WHC) values increased with low and medium SKD levels then decreased with high SKD levels. Minerals such as K, P, Mg, Zn, Fe, and Cu were significantly increased, while Na was significantly decreased. Increased SKD levels in FCM resulted in significant increases in total phenolic content (TPC), total flavonoids (TF), total flavonols (TFL), and antioxidant activity (AOA). Instrumental color analysis exhibited a significant change in L*, b*, BI, and ∆E due to adding SKD in a dose-dependent manner. The viability of Streptococcus thermophiles, Lactobacillus acidophilus, and Bifidobacterium bifidum was increased by adding low and medium SKD levels, resulting in a higher number than the accepted threshold for a probiotic effect. Adding 10 and 12.5% SKD recorded the best-balanced flavor score at the beginning and after up to 15 days of storage, respectively. Conclusively, the current study revealed that fortification with SKD at 7.5–12.5% improved the nutritional quality without adverse effects on the technological, organoleptic characteristics, and probiotics viability and provided acceptable, nutritious, and healthy benefits to FCM.
Collapse
|
48
|
Yamane T, Handa S, Imai M, Harada N, Sakamoto T, Ishida T, Nakagaki T, Nakano Y. Exopolysaccharides from a Scandinavian fermented milk viili increase butyric acid and Muribaculum members in the mouse gut. FOOD CHEMISTRY: MOLECULAR SCIENCES 2021; 3:100042. [PMID: 35415651 PMCID: PMC8991987 DOI: 10.1016/j.fochms.2021.100042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 09/10/2021] [Accepted: 09/19/2021] [Indexed: 11/15/2022]
Abstract
Bioactivity of viili exopolysaccharide (VEPS) were determined in young male mice. Mice drank daily tap water supplemented with VEPS, stressless administration. A low dose VEPS modified mildly but significantly the gut microbiota.
Starter culture of viili contains lactic acid bacteria belonging to Lactococcus lactis. These bacteria secrete large polysaccharides (EPSs) into milk, resulting in a ropy texture of viili. In mouse experiments, a large dose of EPS (5–140 mg/day) has been shown to alleviate severity of artificially induced illness through modulation of the gut microbiota. The present study investigated whether supplementary amounts of EPS affects the gut microbiota of normal mouse. EPS with high glucosamine content (VEPS) was isolated from home-made viili. C57BL/6J male mice fed ordinary diet took 49 ± 1 μg VEPS/day for 28 days by drinking ad libitum tap water containing 8 μg/mL VEPS. The relative abundance of Muribaculum increased significantly by VEPS supplementation. The relative abundance of fecal butyric acid decreased in control mice, and VEPS prevented this decrease. These findings indicated that the gut microbiota can be modulated by a small dose of VEPS.
Collapse
Affiliation(s)
- Takuya Yamane
- Center for Research and Development Bioresources, Organization for Research Promotion, Osaka Prefecture University, Sakai 599-8570, Japan
- Department of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai 599-8531, Japan
- Institute of Food Sciences, Nakagaki Consulting Engineer and Co Ltd Nishi-ku, Sakai 593-8328, Japan
- Corresponding author at: Center for Research and Development Bioresources, Organization for Research Promotion, Osaka Prefecture University, Sakai 599-8570, Japan.
| | - Satoshi Handa
- Center for Research and Development Bioresources, Organization for Research Promotion, Osaka Prefecture University, Sakai 599-8570, Japan
- Department of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai 599-8531, Japan
| | - Momoko Imai
- Center for Research and Development Bioresources, Organization for Research Promotion, Osaka Prefecture University, Sakai 599-8570, Japan
- Faculty of Human Development, Department of Food and Nutrition Management Studies, Soai University, Osaka 559-0033, Japan
- Department of Applied Life Sciences, Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University, Habikino, Osaka 583-8555, Japan
| | - Naoki Harada
- Department of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai 599-8531, Japan
| | - Tatsuji Sakamoto
- Center for Research and Development Bioresources, Organization for Research Promotion, Osaka Prefecture University, Sakai 599-8570, Japan
- Department of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai 599-8531, Japan
| | - Tetsuo Ishida
- Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
| | - Takenori Nakagaki
- Institute of Food Sciences, Nakagaki Consulting Engineer and Co Ltd Nishi-ku, Sakai 593-8328, Japan
| | - Yoshihisa Nakano
- Center for Research and Development Bioresources, Organization for Research Promotion, Osaka Prefecture University, Sakai 599-8570, Japan
| |
Collapse
|
49
|
Jiang G, Gan L, Li X, He J, Zhang S, Chen J, Zhang R, Xu Z, Tian Y. Characterization of Structural and Physicochemical Properties of an Exopolysaccharide Produced by Enterococcus sp. F2 From Fermented Soya Beans. Front Microbiol 2021; 12:744007. [PMID: 34777291 PMCID: PMC8586432 DOI: 10.3389/fmicb.2021.744007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/04/2021] [Indexed: 11/13/2022] Open
Abstract
The present study sought to isolate a novel exopolysaccharide (EPS-F2) from Enterococcus sp. F2 through ethanol precipitation, anion-exchange, and gel-filtration chromatography and characterize the physicochemical properties by spectral techniques. EPS-F2 was identified as a neutral homo-exopolysaccharide composed of only glucose with a high molecular weight of 1.108 × 108 g/mol. It contained →6)-α-D-Glcp-(1→ linkage in the main chain and →3, 6)-α-D-Glcp-(1→ branch chain). Moreover, EPS-F2 possessed excellent thermal stability (266.6°C), water holding capacity (882.5%), oil holding capacity (1867.76%), and emulsifying activity against various edible oils. The steady shear experiments exhibited stable pseudo plasticity under various conditions (concentrations, temperatures, and pHs). The dynamic oscillatory measurements revealed that EPS-F2 showed a liquid-like behavior at a low concentration (2.5%), while a solid-like behavior at high concentrations (3.0 and 3.5%). Overall, these results suggest that EPS-F2 could be a potential alternative source of functional additives and ingredients and be applied in food industries.
Collapse
Affiliation(s)
- Guangyang Jiang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China.,Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu, China
| | - Longzhan Gan
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China.,Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu, China
| | - Xiaoguang Li
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China.,Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu, China
| | - Juan He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Shihao Zhang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China.,Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu, China
| | - Jia Chen
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China.,Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu, China
| | - Ruoshi Zhang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China.,Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu, China
| | - Zhe Xu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China.,Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu, China
| | - Yongqiang Tian
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China.,Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu, China
| |
Collapse
|
50
|
Abarquero D, Renes E, Fresno JM, Tornadijo ME. Study of exopolysaccharides from lactic acid bacteria and their industrial applications: a review. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15227] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Daniel Abarquero
- Department of Food Hygiene and Technology Faculty of Veterinary Science University of León León 24071 Spain
| | - Erica Renes
- Department of Food Hygiene and Technology Faculty of Veterinary Science University of León León 24071 Spain
| | - José María Fresno
- Department of Food Hygiene and Technology Faculty of Veterinary Science University of León León 24071 Spain
| | - María Eugenia Tornadijo
- Department of Food Hygiene and Technology Faculty of Veterinary Science University of León León 24071 Spain
| |
Collapse
|