1
|
Leal-Alcazar MC, Bautista-Palestina F, Rocha-Pizaña MDR, Mojica L, Hernández-Álvarez AJ, Luna-Vital DA. Extraction, stabilization, and health application of betalains: An update. Food Chem 2025; 481:144011. [PMID: 40184927 DOI: 10.1016/j.foodchem.2025.144011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 03/16/2025] [Accepted: 03/21/2025] [Indexed: 04/07/2025]
Abstract
Betalains are nitrogenous compounds principally produced by a select group of plants of the Caryophyllales order, characterized by the vibrant coloration on bracts, flowers, leaves, seeds, and fruits. Betalains are produced by tyrosine metabolism and derived from a common precursor: betalamic acid. They are categorized into two principal groups: betacyanins and betaxanthins. Their technological importance is of great interest to the food industry due to their role as a natural pigment. Still, in recent years, it also relied on its high biological potential such as free-radical scavenging, anti-inflammatory, anti-cancer, and anti-diabetic, among other applications. However, challenges related to their bioavailability and low stability have to be addressed. The review summarizes and analyses the most current advances in extraction methods to preserve their structure, the novel trends that guarantee their stability, and the most explored health applications of betalain extracts from various plant sources.
Collapse
Affiliation(s)
- Mariana C Leal-Alcazar
- Tecnológico de Monterrey, Institute for Obesity Research, School of Bioengineering and Science, México. Ave. Eugenio Garza Sada 2501, Monterrey, NL 64849, Mexico; Tecnológico de Monterrey, School of Engineering and Science, México. Ave. Eugenio Garza Sada 2501, Monterrey, NL 64849, Mexico
| | - Frida Bautista-Palestina
- Tecnológico de Monterrey, Institute for Obesity Research, School of Bioengineering and Science, México. Ave. Eugenio Garza Sada 2501, Monterrey, NL 64849, Mexico; Tecnológico de Monterrey, School of Engineering and Science, México. Ave. Eugenio Garza Sada 2501, Monterrey, NL 64849, Mexico
| | - María Del R Rocha-Pizaña
- Tecnológico de Monterrey, Institute for Obesity Research, School of Bioengineering and Science, México. Ave. Eugenio Garza Sada 2501, Monterrey, NL 64849, Mexico; Tecnologico de Monterrey, NatProLab, Department of Bioengineering, School of Engineering and Science, Av. Atlixcáyotl 5718, C.P, 72453, Puebla, Puebla, Mexico
| | - Luis Mojica
- Food Technology, Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C. (CIATEJ), Camino Arenero 1227, El Bajío Arenal, 45019 Zapopan, Jalisco, Mexico
| | | | - Diego A Luna-Vital
- Tecnológico de Monterrey, Institute for Obesity Research, School of Bioengineering and Science, México. Ave. Eugenio Garza Sada 2501, Monterrey, NL 64849, Mexico; Tecnológico de Monterrey, School of Engineering and Science, México. Ave. Eugenio Garza Sada 2501, Monterrey, NL 64849, Mexico; Tecnologico de Monterrey, NatProLab, Department of Bioengineering, School of Engineering and Science, Av. Atlixcáyotl 5718, C.P, 72453, Puebla, Puebla, Mexico.
| |
Collapse
|
2
|
Ştefănescu C, Voştinaru O, Mogoşan C, Crişan G, Balica G. The Neuroprotective Potential of Betalains: A Focused Review. PLANTS (BASEL, SWITZERLAND) 2025; 14:994. [PMID: 40219061 PMCID: PMC11990121 DOI: 10.3390/plants14070994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 04/14/2025]
Abstract
Betalains are natural, hydrophilic pigments present in a variety of plants from the order Caryophyllales, extensively used as non-toxic food colorants and antioxidants. In recent decades, betalains have been intensively researched, with numerous studies confirming their anti-inflammatory, antioxidant, antimicrobial, and antinociceptive properties. More recently, due to a significant increase in the aging population worldwide, there has been growing interest in the study of preventive effects of betalains on age-related, degenerative brain diseases. The aim of this review is to evaluate the potential neuroprotective role of betalains in the prevention of neurodegenerative diseases like Alzheimer's disease and Parkinson's disease, as well as other types of neurodegenerative and ischemic brain injuries. Preclinical in vivo and in vitro pharmacological studies investigating the neuroprotective effects of betalains are reviewed, with a focus on the putative mechanisms of action. Available studies in humans are also presented.
Collapse
Affiliation(s)
- Cristina Ştefănescu
- Department of Pharmaceutical Botany, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Gh. Marinescu Street, 400337 Cluj-Napoca, Romania; (C.Ş.); (G.C.); (G.B.)
| | - Oliviu Voştinaru
- Department of Pharmacology, Physiology and Physiopathology, Iuliu Hatieganu University of Medicine and Pharmacy, 6 L. Pasteur Street, 400349 Cluj-Napoca, Romania;
| | - Cristina Mogoşan
- Department of Pharmacology, Physiology and Physiopathology, Iuliu Hatieganu University of Medicine and Pharmacy, 6 L. Pasteur Street, 400349 Cluj-Napoca, Romania;
| | - Gianina Crişan
- Department of Pharmaceutical Botany, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Gh. Marinescu Street, 400337 Cluj-Napoca, Romania; (C.Ş.); (G.C.); (G.B.)
| | - Georgeta Balica
- Department of Pharmaceutical Botany, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Gh. Marinescu Street, 400337 Cluj-Napoca, Romania; (C.Ş.); (G.C.); (G.B.)
| |
Collapse
|
3
|
Abdolmaleki K, Rezaei F, Mohammadi R, Zare L, Shahmoradi S. The application of film based on gelatin/hydroxymethyl cellulose and red beetroot betalain in smart food packaging. FOOD SCI TECHNOL INT 2024:10820132241266112. [PMID: 39043221 DOI: 10.1177/10820132241266112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Edible films containing anthocyanin and betacyanin as indicators of freshness are promising systems for food smart packaging. This research aimed to develop a smart color film for food packaging using gelatin/hydroxypropylmethyl cellulose (HPMC) and red beet betalain. In this study, edible films with different ratios of gelatin to HPMC were prepared successfully, and the ratio of 3:1 was determined as optimal samples based on water vapor permeability (WVP) and mechanical properties. Betalain with different concentrations was then added to the optimal film, and the physical and mechanical properties of the resulting films were evaluated. Also, TVB-N test to assess their ability to detect beef meat and shrimp spoilage was studied. The addition of betalain improved the solubility, WVP, mechanical properties, and 2,2-diphenyl-l-picrylhydrazyl free radical scavenging activity of the film. As a final point, the incorporation of betalain into the gelatin/HPMC films can be used to indicate the freshness of food.
Collapse
Affiliation(s)
- Khadije Abdolmaleki
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Nutrition Sciences and Food Technology Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farahnaz Rezaei
- Department of Food Safety and Hygiene, School of Health, Fasa University of Medical Sciences, Fasa, Iran
| | - Reza Mohammadi
- Nutrition Sciences and Food Technology Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Leila Zare
- Student Research Committee, Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Saeed Shahmoradi
- Student Research Committee, Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
4
|
Guo C, Li Y, Zhang H, Zhang Q, Wu X, Wang Y, Sun F, Shi S, Xia X. A review on improving the sensitivity and color stability of naturally sourced pH-sensitive indicator films. Compr Rev Food Sci Food Saf 2024; 23:e13390. [PMID: 39031881 DOI: 10.1111/1541-4337.13390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/26/2024] [Accepted: 05/19/2024] [Indexed: 07/22/2024]
Abstract
Naturally sourced pH-sensitive indicator films are of interest for real-time monitoring of food freshness through color changes because of their safety. Therefore, natural pigments for indicator films are required. However, pigment stability is affected by environmental factors, which can in turn affect the sensitivity and color stability of the pH-sensitive indicator film. First, natural pigments (anthocyanin, betalain, curcumin, alizarin, and shikonin) commonly used in pH-sensitive indicator films are presented. Subsequently, the mechanisms behind the change in pigment color under different pH environments and their applications in monitoring food freshness are also described. Third, influence factors, such as the sources, types, and pH sensitivity of pigments, as well as environmental parameters (light, temperature, humidity, and oxygen) of sensitivity and color stability, are analyzed. Finally, methods for improving the pH-sensitive indicator film are explored, encapsulation of natural pigments, incorporation of a hydrophobic film-forming matrix or function material, and protective layer have been shown to enhance the color stability of indicator films, the addition of copigments or mental ions, blending of different natural pigments, and the utilization of electrospinning have been proved to increase the color sensitivity of indicator films. This review could provide theoretical support for the development of naturally sourced pH-sensitive indicator films with high stability and sensitivity and facilitate the development in the field of monitoring food freshness.
Collapse
Affiliation(s)
- Chang Guo
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Ying Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Hao Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Quanyu Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xiaodan Wu
- Heilongjiang North Fish Fishing Industry Group Co., Ltd, Daqing, Heilongjiang, China
| | - Ying Wang
- Heilongjiang North Fish Fishing Industry Group Co., Ltd, Daqing, Heilongjiang, China
| | - Fangda Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Shuo Shi
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| |
Collapse
|
5
|
Cruz S, Checa N, Tovar H, Cejudo-Bastante MJ, Heredia FJ, Hurtado N. Semisynthesis of Betaxanthins from Purified Betacyanin of Opuntia dillenii sp.: Color Stability and Antiradical Capacity. Molecules 2024; 29:2116. [PMID: 38731607 PMCID: PMC11085281 DOI: 10.3390/molecules29092116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
The availability of pure individual betalains in sufficient quantities which permit deeper understanding is still a challenge. This study investigates the high-yielding semisynthesis of betaxanthins using betalamic acid from a natural source (Opuntia dillenii), followed by condensation with ʟ-amino acids and further purification. Moreover, the color stability of the four synthesized individual betaxanthins, namely proline (ʟ-ProBX), alanine (ʟ-AlaBX), leucine (ʟ-LeuBX), and phenylalanine (ʟ-PheBX) betaxanthins, was investigated at different pHs. Their relative contribution to free radical scavenging was also scrutinized by TEAC and DPPH. ʟ-AlaBX and ʟ-LeuBx showed a significantly (p < 0.05) higher antioxidant activity, whereas ʟ-ProBX was the most resistant to the hydrolysis of betaxanthin and hence the least susceptible to color change. The color stability was strongly influenced by pH, with the color of ʟ-ProBX, ʟ-LeuBX, and ʟ-AlaBX at pH 6 being more stable, probably due to the easier hydrolysis under acid conditions. The semisynthesis and purification allowed us to have available remarkable quantities of pure individual betaxanthins of Opuntia dillenii for the first time, and to establish their color properties and antioxidant capacity. This study could be a step forward in the development of the best natural food colorant formulation, based on the betalain structure, which is of special interest in food technology.
Collapse
Affiliation(s)
- Silvia Cruz
- Grupo de Investigación en Productos de Importancia Biológica (GIPIB), Universidad de Nariño, San Juan de Pasto, Nariño 1175, Colombia; (S.C.); (N.C.); (H.T.); (N.H.)
| | - Neyder Checa
- Grupo de Investigación en Productos de Importancia Biológica (GIPIB), Universidad de Nariño, San Juan de Pasto, Nariño 1175, Colombia; (S.C.); (N.C.); (H.T.); (N.H.)
| | - Hugo Tovar
- Grupo de Investigación en Productos de Importancia Biológica (GIPIB), Universidad de Nariño, San Juan de Pasto, Nariño 1175, Colombia; (S.C.); (N.C.); (H.T.); (N.H.)
| | - María Jesús Cejudo-Bastante
- Food Colour and Quality Laboratory, Área de Nutrición y Bromatología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain;
| | - Francisco J. Heredia
- Food Colour and Quality Laboratory, Área de Nutrición y Bromatología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain;
| | - Nelson Hurtado
- Grupo de Investigación en Productos de Importancia Biológica (GIPIB), Universidad de Nariño, San Juan de Pasto, Nariño 1175, Colombia; (S.C.); (N.C.); (H.T.); (N.H.)
| |
Collapse
|
6
|
Qiu L, Zhang M, Ghazal AF, Chu Z, Luo Z. Development of 3D printed k-carrageenan-based gummy candies modified by fenugreek gum: Correlating 3D printing performance with sol-gel transition. Int J Biol Macromol 2024; 265:130865. [PMID: 38490387 DOI: 10.1016/j.ijbiomac.2024.130865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
Temperature-responsive inks were formulated using k-carrageenan, fenugreek gum (FG), rose extracts, and sugar, of which the first two were used as the gelling agents. The interactions among components in these mixed ink formulations were investigated. Sol-gel transition and rheological properties of these inks were also correlated with extrusion, shape formation, and self (shape)-supporting aspects of 3D printing. Results indicated that incorporating FG increased inks' gelation temperature from 39.7 °C to 44.7-49.6 °C, affecting the selection of printing temperature (e.g., 0 % FG: 40 °C, 0.15 % FG: 45 °C, 0.3 % FG-0.6 % FG: 50 °C). Inks in solution states with lower viscosity (<5 Pa·s) were amenable to ensure their smooth extrusion through the tip of the printing nozzle. A shorter sol-gel transition time (approximately 100 s) during the shape formation stage facilitated the solidification of inks after extrusion. The addition of FG significantly (p<0.05) improved the mechanical properties (elastic modulus, hardness, etc.) of the printed models, which facilitated their self-supporting behavior. Low field nuclear magnetic resonance indicated that the inclusion of FG progressively restricted water mobility, consequently reducing the water syneresis rate of the mixed inks by 0.86 %-3.6 %. FG enhanced hydrogen bonding interactions among the components of these mixed inks, and helped to form a denser network.
Collapse
Affiliation(s)
- Liqing Qiu
- State Key Laboratory of Food Science and Resources, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, 214122 Wuxi, Jiangsu, China; Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, 214122 Wuxi, Jiangsu, China; China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, 214122 Wuxi, Jiangsu, China.
| | - Ahmed Fathy Ghazal
- State Key Laboratory of Food Science and Resources, Jiangnan University, 214122 Wuxi, Jiangsu, China; Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Zhaoyang Chu
- Golden Monkey Food Co., 466300 Shenqiu County, Henan Province, China
| | - Zhenjiang Luo
- Haitong Foods Ninghai Co., Ltd., 315000 Ninghai, Zhejiang, China
| |
Collapse
|
7
|
Sharma M, Dash KK, Badwaik LS. Development of chewing gum model system from phytocompounds of black jamun ( Syzygium cumini) pulp and study of its dissolution kinetics. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:300-310. [PMID: 38196719 PMCID: PMC10772027 DOI: 10.1007/s13197-023-05841-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/24/2023] [Accepted: 09/05/2023] [Indexed: 01/11/2024]
Abstract
Black jamun is a rich source of polyphenol and anthocyanin that provides major potential as a natural pigment. The different concentrations of encapsulated jamun pulp phytocompounds (0, 0.5, 1, 3 and 5 g 100 g-1) were incorporated with chewing gum for the development of functional food production. The study showed among variants, 5 g 100 g-1 encapsulates of black jamun pulp extract-based chewing gum (BJE-CG) showed better color stability and texture properties caused by the availability of alginate and guar gum in the encapsulates. The results revealed the dissolution behaviour of 5 g 100 g-1 based BJE-CG has a greater (P < 0.05) dissolution of total anthocyanin (TAC) and phenolic content (TPC). The dissolution kinetics model including the Korsmeyer-Peppas model, Higuchi model and Gunes model were statistically tested the dissolution rate of TAC and TPC. The Korsmeyer-Peppas model for TAC and Gunes model for TPC were found the best suitable through R2 (0.995 and 0.991) and the lowest χ2 (0.0098 and 0.0361). The dissolution kinetics study indicated the 5 g 100 g-1 based BJE-CG has the most suitable fitting in dissolution kinetics via simulated salivary fluid at 10 min. The application of the encapsulated phytocompounds shows a better solution for food and pharma industries to deliver decent plant-based pigment and phytocompounds in the food product. Graphical abstract
Collapse
Affiliation(s)
- Maanas Sharma
- Department of Food Engineering and Technology, School of Engineering, Tezpur University, Tezpur, Assam 784028 India
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Jalandhar - Delhi, Grand Trunk Rd, Phagwara, Punjab 144411 India
| | - Kshirod K. Dash
- Department of Food Processing Technology, GKCIET, Malda, West Bengal 732141 India
| | - Laxmikant S. Badwaik
- Department of Food Engineering and Technology, School of Engineering, Tezpur University, Tezpur, Assam 784028 India
| |
Collapse
|
8
|
Figueroa-Enriquez C, Rodríguez-Félix F, Plascencia-Jatomea M, Sánchez-Escalante A, Vargas-López JM, Tapia-Hernández JA, Canizales-Rodríguez DF, Castro-Enriquez DD, Ruiz-Cruz S, Santos-Sauceda I, Burruel-Ibarra SE, Pompa-Ramos JL. Nanoparticles of Betalain-Gelatin with Antioxidant Properties by Coaxial Electrospraying: Preparation and Characterization. ACS OMEGA 2023; 8:41156-41168. [PMID: 37969967 PMCID: PMC10634192 DOI: 10.1021/acsomega.3c04021] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/16/2023] [Accepted: 10/03/2023] [Indexed: 11/17/2023]
Abstract
Betalains are bioactive compounds with attractive antioxidant properties for the food industry, endowing them with potential application in food coatings to maintain quality and extend shelf life. However, they have low stability to factors such as light, temperature, and humidity. An alternative to protect bioactive compounds is nanoencapsulation; one of the most used techniques to produce an encapsulation is coaxial electrospraying. In this research, the preparation and characterization of gelatin-betalain nanoparticles were carried out using the coaxial electrospray technique. Betalains were extracted from pitaya (Stenocereus thurberi) and encapsulated in gelatin. The obtained material was evaluated by SEM, FTIR, TGA, and DSC techniques and for its antioxidant capacity. By SEM, nanoparticles with spherical and monodisperse morphologies were observed, with betalain concentrations of 1 and 3% w/v and average diameters of 864 and 832 μm, respectively. By FTIR, the interaction between betalain and gelatin was observed through amino groups and hydrogen bonds. Likewise, the antioxidant activity of the betalains was maintained at the time of encapsulation, increasing the antioxidant activity as the concentration increased. The results of the DPPH, ABTS, and total phenols methods were 645.4592 μM T/g, 832.8863 ± 0.0110 μM T/g, and 59.8642 ± 0.0279 mg GAE/g for coaxial nanoparticles with 3% betalains, respectively. Therefore, the coaxial electrospray technique was useful for obtaining nanoparticles with good antioxidant properties, and due to the origin of its components and since the use of toxic solvents is not necessary in the technique, the material obtained can be considered food grade with potential application as a coating on functional foods.
Collapse
Affiliation(s)
- Cielo
E. Figueroa-Enriquez
- Department
of Food Research and Graduate Program, University
of Sonora, Hermosillo C.P. 83000, Sonora, Mexico
| | - Francisco Rodríguez-Félix
- Department
of Food Research and Graduate Program, University
of Sonora, Hermosillo C.P. 83000, Sonora, Mexico
| | - Maribel Plascencia-Jatomea
- Department
of Food Research and Graduate Program, University
of Sonora, Hermosillo C.P. 83000, Sonora, Mexico
| | - Armida Sánchez-Escalante
- Animal
Origin Food Technology Coordination, Food
and Development Research Center A.C., Hermosillo 83304, Sonora, Mexico
| | - Juan M. Vargas-López
- Department
of Food Research and Graduate Program, University
of Sonora, Hermosillo C.P. 83000, Sonora, Mexico
| | - José A. Tapia-Hernández
- Department
of Food Research and Graduate Program, University
of Sonora, Hermosillo C.P. 83000, Sonora, Mexico
| | | | - Daniela D. Castro-Enriquez
- Department
of Food Research and Graduate Program, University
of Sonora, Hermosillo C.P. 83000, Sonora, Mexico
| | - Saúl Ruiz-Cruz
- Department
of Food Research and Graduate Program, University
of Sonora, Hermosillo C.P. 83000, Sonora, Mexico
| | - Irela Santos-Sauceda
- Department
of Polymers and Materials Research, University
of Sonora, Hermosillo C.P. 83000, Sonora, Mexico
| | - Silvia E. Burruel-Ibarra
- Department
of Polymers and Materials Research, University
of Sonora, Hermosillo C.P. 83000, Sonora, Mexico
| | - José L. Pompa-Ramos
- Department
of Food Research and Graduate Program, University
of Sonora, Hermosillo C.P. 83000, Sonora, Mexico
| |
Collapse
|
9
|
Zannou O, Oussou KF, Chabi IB, Odouaro OBO, Deli MGEP, Goksen G, Vahid AM, Kayodé APP, Kelebek H, Selli S, Galanakis CM. A comprehensive review of recent development in extraction and encapsulation techniques of betalains. Crit Rev Food Sci Nutr 2023; 64:11263-11280. [PMID: 37477284 DOI: 10.1080/10408398.2023.2235695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Betalains are attractive natural pigments with potent antioxidant activity, mainly extracted from the roots, tubers, leaves, flowers, and fruits of certain plants and some fungi. They constitute a reliable alternative to synthetic dyes used in the food industry and are considered toxic for consumers. In addition, there is convincing evidence of their health benefits for consumers. However, betalains are highly unstable to environment factors, such as light, heat, oxygen, water activity, and pH change which can be degraded during food processing, handling, storage, or delivery. Therefore, newly developed extraction methods and micro/nano-encapsulation techniques are currently applied to enhance the extraction yield, solve their instability problems, and improve their application in the food industry. This article aims to summarize the new advanced extraction methods of betalains, discussing the recent encapsulation techniques concerning the different encapsulating materials utilization. Betalains, natural pigments with potent antioxidant activity, are increasingly extracted from the roots, tubers, leaves, flowers, and fruits of certain plants and some fungi as safe alternatives to synthetic food dyes used in the food industry. However, their susceptibility to degradation during food processing, storage, and delivery poses challenges. Recent developments in extraction methods (e.g., supercritical fluid, pressurized liquid, ultrasound- and microwave-assisted, and enzyme-assisted) enhance betalain recovery, minimizing degradation. Encapsulation techniques using biopolymers, proteins, lipids, and nanoparticles protect betalains from environmental factors, extending shelf life and enabling controlled release. These advancements offer improved extraction efficiency, reduced solvent use, shorter processing times, and enhanced stability. Integration of these techniques in the food industry presents opportunities for incorporating betalains into various products, including functional foods, beverages, and dietary supplements. By addressing stability challenges, these developments support the production of innovative, healthier food items enriched with betalains. This article provides an overview of recent advancements in betalain extraction and encapsulation, highlighting their potential applications in the food industry.
Collapse
Affiliation(s)
- Oscar Zannou
- Department of Food Engineering, Faculty of Engineering, Ondokuz Mayis University, Samsun, Türkiye
- Laboratory of Valorization and Quality Management of Food Bio-Ingredients, Faculty of Agricultural Sciences, University of Abomey-Calavi, Cotonou, Benin
| | - Kouame F Oussou
- Department of Food Engineering, Faculty of Agriculture, Çukurova University, Adana, Türkiye
| | - Ifagbémi B Chabi
- Laboratory of Valorization and Quality Management of Food Bio-Ingredients, Faculty of Agricultural Sciences, University of Abomey-Calavi, Cotonou, Benin
| | - Oscar B O Odouaro
- Laboratory of Valorization and Quality Management of Food Bio-Ingredients, Faculty of Agricultural Sciences, University of Abomey-Calavi, Cotonou, Benin
| | - Mahn G E P Deli
- Department of Food Engineering, Faculty of Agriculture, Çukurova University, Adana, Türkiye
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, Mersin, Türkiye
| | - Aïssi M Vahid
- School of Sciences and Techniques for the Conservation and Processing of Agricultural Products, National University of Agriculture, Sakété, Benin
| | - Adéchola P P Kayodé
- Laboratory of Valorization and Quality Management of Food Bio-Ingredients, Faculty of Agricultural Sciences, University of Abomey-Calavi, Cotonou, Benin
| | - Hasim Kelebek
- Department of Food Engineering, Faculty of Engineering, Adana AlparslanTurkes Science and Technology University, Adana, Türkiye
| | - Serkan Selli
- Department of Food Engineering, Faculty of Agriculture, Çukurova University, Adana, Türkiye
| | - Charis M Galanakis
- Department of Research & Innovation, Galanakis Laboratories, Chania, Greece
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
- Food Waste Recovery Group, ISEKI Food Association, Vienna, Austria
| |
Collapse
|
10
|
Kukreti N, Chitme HR, Varshney VK, Abdel-Wahab BA, Khateeb MM, Habeeb MS. Antioxidant Properties Mediate Nephroprotective and Hepatoprotective Activity of Essential Oil and Hydro-Alcoholic Extract of the High-Altitude Plant Skimmia anquetilia. Antioxidants (Basel) 2023; 12:1167. [PMID: 37371897 DOI: 10.3390/antiox12061167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/24/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
There are many high-altitude plants such as Skimmia anquetilia that are unexplored for their possible medicinal values. The present study was conducted to examine the antioxidant activities of Skimmia anquetilia (SA) using in vitro and in vivo models. The SA hydro-alcoholic extracts were investigated using LC-MS for their chemical constituents. The essential oil and hydro-alcoholic extracts of SA were evaluated for pharmacological properties. The antioxidant properties were evaluated using in vitro DPPH, reducing power, cupric reducing antioxidant power, and metal chelating assays. The anti-hemolytic activity was carried out using a human blood sample. The in vivo antioxidant activities were evaluated using CCL4-induced hepatotoxicity and nephrotoxicity assay. The in vivo evaluation included histopathological examination, tissue biochemical evaluation such as the kidney function test, catalase activity, reduced glutathione activity, and lipid peroxidation estimation. The phytochemical investigation showed that the hydro-alcoholic extract contains multiple important active constituents such as L-carnosine, acacetin, linoleic acid, leucylleucyl tyrosine, esculin sesquihydrate, etc., similar to the components of SA essential oil reported in a previous study. The high amount of total phenolic content (TPC) and total flavonoid content (TFC) reflect (p < 0.001) a high level of reducing power, cupric reducing, and metal chelating properties. This significantly (p < 0.001) inhibited enlargement of the liver, with a significant reduction in ALT (p < 0.01) and AST (p < 0.001). Highly significant improvement in the functioning of the kidney was noted using the blood urea and creatinine (p < 0.001) levels. Tissue-based activities showed a major rise in catalase, reduced glutathione, and reduced lipid peroxidation activities. We conclude from this study that the occurrence of a high quantity of flavonoid and phenolic contents had strong antioxidant properties, leading to hepatoprotective and nephroprotective activity. Further active constituent-specific activities should be evaluated.
Collapse
Affiliation(s)
- Neha Kukreti
- Faculty of Pharmacy, DIT University, Dehradun 248009, India
| | | | - Vinay K Varshney
- Chemistry & Bioprospecting Division, Forest Research Institute, Dehradun 248006, India
| | - Basel A Abdel-Wahab
- Department of Pharmacology, College of Pharmacy, Najran University, Najran P.O. Box 1988, Saudi Arabia
| | - Masood Medleri Khateeb
- Department of Pharmacology, College of Pharmacy, Najran University, Najran P.O. Box 1988, Saudi Arabia
| | | |
Collapse
|
11
|
Lan T, Qian S, Song T, Zhang H, Liu J. The chromogenic mechanism of natural pigments and the methods and techniques to improve their stability: A systematic review. Food Chem 2023; 407:134875. [PMID: 36502728 DOI: 10.1016/j.foodchem.2022.134875] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 11/13/2022]
Abstract
Pigments have become a very important part of food research, not only adding sensory properties to food, but also providing functional properties to the food system. In this paper, we review the source, structure, modification, encapsulation and current status of the three main types of natural pigments that have been studied in recent years: polyphenolic flavonoids, tetraterpenoids and betaines. By examining the modification of pigment, the improvement of their stability and the impact of new food processing methods on the pigments, a deeper understanding of the properties and applications of the three pigments is gained, the paper reviews the research status of pigments in order to promote their further research and provide new innovations and ideas for future research in this field.
Collapse
Affiliation(s)
- Tiantong Lan
- National Engineering Laboratory for Wheat and Corn Deep Processing, College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Sheng Qian
- National Engineering Laboratory for Wheat and Corn Deep Processing, College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Tingyu Song
- National Engineering Laboratory for Wheat and Corn Deep Processing, College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Hao Zhang
- National Engineering Laboratory for Wheat and Corn Deep Processing, College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China.
| | - Jingsheng Liu
- National Engineering Laboratory for Wheat and Corn Deep Processing, College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
12
|
de Deus C, Eduardo de Souza Brener C, Marques da Silva T, Somacal S, Queiroz Zepka L, Jacob Lopes E, de Bona da Silva C, Teixeira Barcia M, Lozano Sanchez J, Ragagnin de Menezes C. Co-encapsulation of Lactobacillus plantarum and bioactive compounds extracted from red beet stem (Beta vulgaris L.) by spray dryer. Food Res Int 2023; 167:112607. [PMID: 37087225 DOI: 10.1016/j.foodres.2023.112607] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/21/2023]
Abstract
Probiotic bacteria and bioactive compounds obtained from plant origin stand out as ingredients with the potential to increase the healthiness of functional foods, as there is currently a recurrent search for them. Probiotics and bioactive compounds are sensitive to intrinsic and extrinsic factors in the processing and packaging of the finished product. In this sense, the present study aims to evaluate the co-encapsulation by spray dryer (inlet air temperature 120 °C, air flow 40 L / min, pressure of 0.6 MPa and 1.5 mm nozzle diameter) of probiotic bacteria (L.plantarum) and compounds extracted from red beet stems (betalains) in order to verify the interaction between both and achieve better viability and resistance of the encapsulated material. When studying the co-encapsulation of L.plantarum and betalains extracted from beet stems, an unexpected influence was observed with a decrease in probiotic viability in the highest concentration of extract (100 %), on the other hand, the concentration of 50 % was the best enabled and maintained the survival of L.plantarum in conditions of 25 °C (63.06 %), 8 °C (88.80 %) and -18 °C (89.28 %). The viability of the betalains and the probiotic was better preserved in storage at 8 and -18 °C, where the encapsulated stability for 120 days was successfully achieved. Thus, the polyfunctional formulation developed in this study proved to be promising, as it expands the possibilities of application and development of new foods.
Collapse
|
13
|
Natural pigments: Anthocyanins, carotenoids, chlorophylls, and betalains as food colorants in food products. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
14
|
Sutor-Świeży K, Antonik M, Dziedzic E, Bieniasz M, Mielczarek P, Popenda Ł, Pasternak K, Tyszka-Czochara M, Wybraniec S. Structural Studies on Diverse Betacyanin Classes in Matured Pigment-Rich Fruits of Basella alba L. and Basella alba L. var. ‘Rubra’ (Malabar Spinach). Int J Mol Sci 2022; 23:ijms231911243. [PMID: 36232545 PMCID: PMC9570114 DOI: 10.3390/ijms231911243] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 11/20/2022] Open
Abstract
Identification of betacyanins in Basella alba L. and Basella alba L. var. ‘Rubra’ fruits was performed by low- and high-resolution mass spectrometry (LRMS and HRMS) as well as 1H, 13C and two-dimensional NMR which revealed hitherto completely not known betacyanin classes in the plant kingdom. Especially, the presence of unique nitrogenous acyl moieties in the structures of the pigments was ascertained by the HRMS Orbitrap detection. Except for detected polar betacyanin glycosylated derivatives, presence of a series of previously not reported pigments such as malonylated betanidin 6-O-β-glusosides with their acyl migration isomers along with the evidence of the 3′′-hydroxy-butyrylated betacyanins is reported. The first complete NMR data were obtained for novel and principal acylated gomphrenins with hydroxycinnamic acids: 6′-O-E-caffeoyl-gomphrenin (malabarin), 6′-O-E-sinapoyl-gomphrenin (gandolin), 6′-O-E-4-coumaroyl-gomphrenin (globosin) and 6′-O-E-feruloyl-gomphrenin (basellin).
Collapse
Affiliation(s)
- Katarzyna Sutor-Świeży
- Department C-1, Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, 31-155 Krakow, Poland
| | - Michał Antonik
- Department C-1, Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, 31-155 Krakow, Poland
| | - Ewa Dziedzic
- Faculty of Biotechnology and Horticulture, Agricultural University of Krakow, al. 29 Listopada 54, 31-425 Krakow, Poland
| | - Monika Bieniasz
- Faculty of Biotechnology and Horticulture, Agricultural University of Krakow, al. 29 Listopada 54, 31-425 Krakow, Poland
| | - Przemysław Mielczarek
- Department of Analytical Chemistry and Biochemistry, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, al. Adama Mickiewicza 30, 30-059, Krakow, Poland
- Laboratory of Proteomics and Mass Spectrometry, Maj Institute of Pharmacology, Polish Academy of Sciences, ul. Smętna 12, 31-343 Krakow, Poland
| | - Łukasz Popenda
- NanoBioMedical Centre, Adam Mickiewicz University, ul. Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland
| | - Karol Pasternak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, ul. Noskowskiego 12/14, 61-704 Poznan, Poland
| | | | - Sławomir Wybraniec
- Department C-1, Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, 31-155 Krakow, Poland
- Correspondence: ; Tel.: +48-12-628-3074; Fax: +48-12-628-2036
| |
Collapse
|
15
|
Pan LH, Wu CL, Luo SZ, Luo JP, Zheng Z, Jiang ST, Zhao YY, Zhong XY. Preparation and characteristics of sucrose-resistant emulsions and their application in soft candies with low sugar and high lutein contents and strong antioxidant activity. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Oliveira WQD, Sousa PHMD, Pastore GM. Olfactory and gustatory disorders caused by COVID-19: How to regain the pleasure of eating? Trends Food Sci Technol 2022; 122:104-109. [PMID: 35039714 PMCID: PMC8755554 DOI: 10.1016/j.tifs.2022.01.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 01/03/2022] [Accepted: 01/10/2022] [Indexed: 12/16/2022]
Abstract
Background Recently, anosmia and ageusia (and their variations) have been reported as frequent symptoms of COVID-19. Olfactory and gustatory stimuli are essential in the perception and pleasure of eating. Disorders in sensory perception may influence appetite and the intake of necessary nutrients when recovering from COVID-19. In this short commentary, taste and smell disorders were reported and correlated for the first time with food science. Scope and approach The objective of this short commentary is to report that taste and smell disorders resulted from COVID-19 may impact eating pleasure and nutrition. It also points out important technologies and trends that can be considered and improved in future studies. Key findings and conclusions Firmer food textures can stimulate the trigeminal nerve, and more vibrant colors are able to increase the modulation of brain metabolism, stimulating pleasure. Allied to this, encapsulation technology enables the production of new food formulations, producing agonist and antagonist agents to trigger or block specific sensations. Therefore, opportunities and innovations in the food industry are wide and multidisciplinary discussions are needed.
Collapse
Affiliation(s)
- Williara Queiroz de Oliveira
- Laboratory of Bioflavours and Bioactive Compounds, Department of Food Science, Faculty of Food Engineering, University of Campinas, 13083-862, Campinas, SP, Brazil
| | - Paulo Henrique Machado De Sousa
- Department of Food Technology, Federal University of Ceará, Av. Mister Hull, 2977, Pici University Campus, Fortaleza, Ceará, ZIP 60356-000, Brazil
| | - Glaucia Maria Pastore
- Laboratory of Bioflavours and Bioactive Compounds, Department of Food Science, Faculty of Food Engineering, University of Campinas, 13083-862, Campinas, SP, Brazil
| |
Collapse
|
17
|
Effects of Cryoconcentrated Blueberry Juice as Functional Ingredient for Preparation of Commercial Confectionary Hydrogels. Gels 2022; 8:gels8040217. [PMID: 35448116 PMCID: PMC9028766 DOI: 10.3390/gels8040217] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 03/22/2022] [Accepted: 03/30/2022] [Indexed: 12/13/2022] Open
Abstract
Hydrogels can absorb and/or retain components in the interstitial spaces due to the 3D cross-linked polymer network, and thus, these matrices can be used in different engineering applications. This study focuses on the physicochemical and textural properties, as well as bioactive compounds and their antioxidant activity stability of commercial hydrogels fortified with cryoconcentrated blueberry juice (CBJ) stored for 35 days. CBJ was added to commercial hydrogels (gelatin gel (GG), aerated gelatin gel (AGG), gummy (GM), and aerated gummy (AGM)). The samples showed a total polyphenol, anthocyanin, and flavonoid content ranging from 230 to 250 mg GAE/100 g, 3.5 to 3.9 mg C3G/100 g, and 120 to 136 mg CEQ/100 g, respectively, and GG and GM showed the lowest bioactive component degradation rate, while AGM presented the highest degradation. GG and GM samples could be stored for up to 21 days without significant changes, while the results indicated ≈15 days for the AGG and AGM samples. Thereby, CBJ offers enormous possibilities to be used as a functional ingredient due to the high nutritional values, and it allows enriching different hydrogel samples, and in turn, the structures of hydrogels protected components during in vitro digestion, enhancing the bioaccessibility after the digestion process.
Collapse
|
18
|
Liposomal Delivery of Plant Bioactives Enhances Potency in Food Systems: A Review. J FOOD QUALITY 2022. [DOI: 10.1155/2022/5272592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The potency of plant bioactives may decline drastically upon exposure to harsh external environments including gastrointestinal conditions. The protective role played by liposomes contributes to desirable properties including increased stability, slow/controlled release, improved bioactivity, and enhanced bioavailability of the encapsulated bioactives. Also, the incorporation of plant bioactives encapsulated liposomes in food matrices has resulted in augmented sensory attributes and improved quality of the foods further exhibiting the aptness of liposomal applications in food. Excitingly, new opportunities that circumvent the major shortfalls of utilizing liposomal formulations in the food industry have arisen paving the way to yield food products with high quality.
Collapse
|
19
|
Carreón-Hidalgo JP, Franco-Vásquez DC, Gómez-Linton DR, Pérez-Flores LJ. Betalain plant sources, biosynthesis, extraction, stability enhancement methods, bioactivity, and applications. Food Res Int 2022; 151:110821. [PMID: 34980373 DOI: 10.1016/j.foodres.2021.110821] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/20/2021] [Accepted: 11/21/2021] [Indexed: 12/16/2022]
Abstract
Betalains are plant pigments with functional properties used mainly as food dyes. However, they have been shown to be unstable to different environmental factors. This paper provides a review of (1) Betalain plant sources within several plant families such as Amaranthaceae, Basellaceae, Cactaceae, Portulacaceae, and Nyctaginaceae, (2) The biosynthesis pathway of betalains for both betacyanins and betaxanthins, (3) Betalain extraction process, including non-conventional technologies like microwave-assisted, ultrasound-assisted, and pulsed electrical field extraction, (4) Factors affecting their stability, mainly temperature, water activity, light incidence, as well as oxygen concentration, metals, and the presence of antioxidants, as well as activation energy as a mean to assess stability, and novel food-processing technologies able to prevent betalain degradation, (5) Methods to increase shelf life, mainly encapsulation by spray drying, freeze-drying, double emulsions, ionic gelation, nanoliposomes, hydrogels, co-crystallization, and unexplored methods such as complex coacervation and electrospraying, (6) Biological properties of betalains such as their antioxidant, hepatoprotective, antitumoral, and anti-inflammatory activities, among others, and (7) Applications in foods and other products such as cosmetics, textiles and solar cells, among others. Additionally, study perspectives for further research are provided for each section.
Collapse
Affiliation(s)
| | | | - Darío R Gómez-Linton
- Department of Health Science, Universidad Autónoma Metropolitana, Iztapalapa, CP 09340 Mexico City, Mexico
| | - Laura J Pérez-Flores
- Department of Health Science, Universidad Autónoma Metropolitana, Iztapalapa, CP 09340 Mexico City, Mexico.
| |
Collapse
|
20
|
Ghosh S, Sarkar T, Das A, Chakraborty R. Natural colorants from plant pigments and their encapsulation: An emerging window for the food industry. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112527] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
21
|
Kaur N, Kaur A, Sridhar K, Sharma M, Singh TP, Kumar S. Development and quality characteristics of functional
Kulfi
fortified with microencapsulated betalains. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Navneet Kaur
- Department of Food Technology Dr. Khem Singh Gill Akal College of Agriculture Eternal University Baru Sahib Himachal Pradesh 173 101 India
| | - Amandeep Kaur
- Department of Food Technology Dr. Khem Singh Gill Akal College of Agriculture Eternal University Baru Sahib Himachal Pradesh 173 101 India
| | - Kandi Sridhar
- Department of Food Science Fu Jen Catholic University New Taipei City Taipei 242 05 Taiwan
| | - Minaxi Sharma
- Department of Food Technology Dr. Khem Singh Gill Akal College of Agriculture Eternal University Baru Sahib Himachal Pradesh 173 101 India
| | - Tajendra Pal Singh
- Department of Food Technology Dr. Khem Singh Gill Akal College of Agriculture Eternal University Baru Sahib Himachal Pradesh 173 101 India
| | - Shiv Kumar
- Department of Nutrition and Dietetics Chandigarh University Mohali Punjab 140 413 India
| |
Collapse
|
22
|
Paul K, Tamili D, Bhattacharjee P. Fortification of a Desert Using Nanoencapsulated Supercritical Carbon Dioxide Extract of Small Cardamom Seeds: A Nutraceutical Custard with Antioxidant Synergy. Recent Pat Biotechnol 2021; 15:204-215. [PMID: 34517793 DOI: 10.2174/1872208315666210913100153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 07/06/2021] [Accepted: 08/02/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND 1,8 cineole-rich supercritical CO2 extract of small cardamom seeds of Alleppey green variety exhibiting prominent antioxidant property was microencapsulated and utilized in formulating an antioxidant-rich custard. However, the antioxidant potency of the prepared custard was not appreciable. To redress the phytochemical loss during custard preparation, custard using nanoliposomes was formulated. Patents related to 1,8 cineole-rich food products have been revised thoroughly. OBJECTIVE The objective of the current study is to examine whether nanoencapsulationmediated entrapment of antioxidants is more effective in fortifying a dessert, namely custard, vis-à-vis microencapsulated (spray dried)-mediated enhancement of antioxidative potency in the same. METHODS Our previous investigations have established that nanoliposome of 1,8 cineole- rich supercritical CO2 extract of small cardamom seeds effectively redresses type 2 diabetes and hypercholesterolemia. In the current investigation, this pre-characterized nanoliposome which exhibited appreciable in vitro and in vivo antioxidant efficacy has been utilized at varying concentrations for fortification of a custard. The designer custard samples have been characterized for their sensory and physicochemical properties, identification of the cardamom antioxidants therein and determination of the synergistic efficacy value of the identified antioxidants. RESULTS The custard formulated with 0.3% nanoliposomes exhibited appreciable antioxidant potency in terms of DPPH radical scavenging activity (304.58±1.09 mg/ml) and reducing power (0.020±0.001 mg BHT/g custard), conferred by its total phenolic content (0.049±0.004 mg GAE/g custard). It also had relatively more stable textural attributes vis-à-vis the control sample (formulated with the non-encapsulated native extract). GCMS analysis of the nanoliposome-fortified custard confirmed retention of the spice antioxidants, namely1,8- cineole, α-terpinyl acetate, α-terpineol and linalool and its synergistic efficacy value being greater than unity, attested to the synergistic presence of the said antioxidants therein. The newly formulated custard retained more than 4.5 times of 1,8-cineole (5.05 mg/g custard) vis-à-vis the custard sample (1.12 mg/g custard) prepared with a microencapsulated (spray-dried) formulation of the extract. Additionally, the absence of heavy metals in the formulated custard confirmed it to be safe for human consumption. CONCLUSION This is the first study on the application of nanoliposomes of spiceuticals in the formulation of a dessert, and more emphatically on use of a 'green' supercritical CO2 extract of spice antioxidants in fortification of a dessert to achieve antioxidant synergy.
Collapse
Affiliation(s)
- Kaninika Paul
- Department of Food Technology and Biochemical Engineering, Jadavpur University, Kolkata 700 032, India
| | - Dipshikha Tamili
- Department of Food Technology and Biochemical Engineering, Jadavpur University, Kolkata 700 032, India
| | - Paramita Bhattacharjee
- Department of Food Technology and Biochemical Engineering, Jadavpur University, Kolkata 700 032, India
| |
Collapse
|
23
|
Micro and Nanoencapsulation of Natural Colors: a Holistic View. Appl Biochem Biotechnol 2021; 193:3787-3811. [PMID: 34312787 DOI: 10.1007/s12010-021-03631-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/12/2021] [Indexed: 12/17/2022]
Abstract
The applications of natural plant pigments are growing rapidly with the increasing awareness of the negative health impacts of synthetic colorants. Additionally, natural pigments possess various biological properties and therapeutic activities. But their functions are hindered by their poor bioavailability, bioaccessibility, low absorption rate, and susceptibility to destructive environmental changes during processing and delivery. Encapsulation is a method of entrapment of bioactive ingredients within suitable carriers to provide protection and for the appropriate delivery into the targeted site by the formation of particles or capsules in micrometer or nanometer scales. Encapsulation imparts several benefits including improved thermal and chemical stability, preserves or masks flavor, taste, or aroma, controlled and targeted release, and enhanced bioavailability of pigments. Micro and nanoencapsulation of pigments will provide extensive and intensive platforms for the development of a new stage in the production of novel and healthy foods. This review mainly focuses on the advanced developments in the fields of micro and nanoencapsulation of pigments.
Collapse
|
24
|
Shreelakshmi SV, Chaitrashree N, Kumar SS, Shetty NP, Giridhar P. Fruits of
Ixora coccinea
are a rich source of phytoconstituents, bioactives, exhibit antioxidant activity and cytotoxicity against human prostate carcinoma cells and development of RTS beverage. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15656] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Saligrama Viswanath Shreelakshmi
- Plant Cell Biotechnology Department Council of Scientific and Industrial Research – Central Food Technological Research Institute Mysore India
| | - Nagabhushan Chaitrashree
- Plant Cell Biotechnology Department Council of Scientific and Industrial Research – Central Food Technological Research Institute Mysore India
| | - Sandopu Sravan Kumar
- Plant Cell Biotechnology Department Council of Scientific and Industrial Research – Central Food Technological Research Institute Mysore India
| | - Nandini Prasad Shetty
- Plant Cell Biotechnology Department Council of Scientific and Industrial Research – Central Food Technological Research Institute Mysore India
| | - Parvatam Giridhar
- Plant Cell Biotechnology Department Council of Scientific and Industrial Research – Central Food Technological Research Institute Mysore India
| |
Collapse
|
25
|
Li G, Li T, He F, Chen C, Xu X, Tian W, Yang Y, He X, Li H, Chen K, Hao N, Ouyang P. Microencapsulation of nattokinase from fermentation by spray drying: Optimization, comprehensive score, and stability. Food Sci Nutr 2021; 9:3906-3916. [PMID: 34262747 PMCID: PMC8269611 DOI: 10.1002/fsn3.2378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/15/2021] [Accepted: 05/12/2021] [Indexed: 12/19/2022] Open
Abstract
Nattokinase from fermentation has recently gained more attention due to its beneficial effects on cardiovascular system. However, the instability of free nattokinase limits its application. The aim of the study was to develop a spray-drying microencapsulation process to obtain the nattokinase powder with high activity, high quality, and strong storage stability. Hence, the microencapsulation process of nattokinase from fermentation by spray drying was optimized. Experiments of single-factor and response surface methodology were used to assess the comprehensive scores and nattokinase activities. According to single-factor and response surface methodology results, optimum parameters of microencapsulation process of the nattokinase power by spray drying were 30% of mass ratio of wall materials, 139°C of air inlet temperature, 8 L/h of feed rate, and 80°C of outlet temperature. The final optimized result encompassed a comprehensive score of 96, nattokinase activity of 1,340 IU/ml, and moisture content of 4.1 ± 0.1%. In addition, the microencapsulated nattokinase power showed strong storage stability in the conditions of different temperatures and pH. After 30 days of storage, the nattokinase powder was still white or light yellow, with a special smell, no peculiar smell and paste taste, and no impurity. These results build the basis of further industrialization of the nattokinase powder from fermentation broth by spray drying.
Collapse
Affiliation(s)
- Ganlu Li
- College of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingChina
| | - Tao Li
- College of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingChina
| | - Feng He
- Jiangsu Jicui Industrial Biotechnology Research Institute Co.Ltd, NanjingChina
| | - Cheng Chen
- College of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingChina
| | - Xu Xu
- College of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingChina
| | - Weilong Tian
- Jiangsu Jicui Industrial Biotechnology Research Institute Co.Ltd, NanjingChina
| | - Yue Yang
- College of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingChina
| | - Xun He
- College of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingChina
| | - Hui Li
- College of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingChina
| | - Kequan Chen
- College of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingChina
| | - Ning Hao
- College of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingChina
| | - Pingkai Ouyang
- College of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingChina
| |
Collapse
|
26
|
Micro and nanoemulsions of Carissa spinarum fruit polyphenols, enhances anthocyanin stability and anti-quorum sensing activity: Comparison of degradation kinetics. Food Chem 2021; 359:129876. [PMID: 33940472 DOI: 10.1016/j.foodchem.2021.129876] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/05/2021] [Accepted: 04/10/2021] [Indexed: 01/09/2023]
Abstract
The low stability of anthocyanins is a constraint in the food industry. The present work has been carried out to overcome this low stability by encapsulating fruit concentrate of underutilized plant Carissa spinarum (CS) with polyphenols in microemulsions (CSME) and nanoemulsions (CSNE). Increasing the amount of CS reduced the particle size from 1154 to 70-300 nm whereas addition of Tween 80 reduced it optimally to 5-25 nm. Degradation of anthocyanins in control and ME/NE proceeded with zero- and first-order reaction rates, respectively, at 28 °C (half-life 6, 25 and 40 days, respectively). The degradation kinetics of phenolics-flavonoids were also studied. CSNE exhibited higher anti-quorum sensing (QS) activity than CSME against Chromobacterium violaceum (73.7%); it inhibited biofilm formation by 70.1 and 64.4% in Pseudomonas aeruginosa, and Yersinia enterocolitica, respectively. This is the first report of using the more stable ME/NE to study anti-QS activity, an alternative to conventional antibiotics.
Collapse
|
27
|
Kumar PC, Oberoi HS, Azeez S. Basella- an Underutilized Green Leafy Vegetable with a Potential for Functional Food Development. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1874410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Pushpa Chethan Kumar
- Division of Post Harvest Technology and Agricultural Engineering, ICAR-Indian Institute of Horticultural Research, Bengaluru, India
| | - Harinder Singh Oberoi
- Division of Post Harvest Technology and Agricultural Engineering, ICAR-Indian Institute of Horticultural Research, Bengaluru, India
- Food Safety and Standards Authority of India, New Delhi, India
| | - Shamina Azeez
- Division of Basic Sciences, ICAR-Indian Institute of Horticultural Research, Bengaluru, India
| |
Collapse
|