1
|
Mahmoud EAM, Kishk YFM, Khalifa I, Abdel Fattah AFA, Mahdy SM. Boosting antioxidative polyphenols extraction efficiency via nano sized pomegranate peel particles. Sci Rep 2025; 15:15914. [PMID: 40335615 DOI: 10.1038/s41598-025-99051-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 04/16/2025] [Indexed: 05/09/2025] Open
Abstract
We aimed at maximizing the utilization of pomegranate peels as a phenolics-rich agro-waste and increasing their extractability. The five factors of composite design, namely methanol concentrations (C), soaking time (t), temperatures (T), powder-solvent ratio (R), and nanoparticle diameter (D) were studied. Pomegranate peel powder (PPP) and its nano-fractions (PPPN1 and PPPN2) were then prepared and characterized. The particle size, surface morphology, total phenolics, chemical structure, phenolic acids profile, radical scavenging (RSA), reducing power (RP), and ferric reducing antioxidant power (FRAP) assays were determined. PPPN1 exhibited larger particle sizes (347 nm) compared to PPPN2 (112 nm) with a spherical surface morphology. PPPN2 exhibited the highest total phenolics extractability (344 mg GAE g-1) which was proved by Fourier-transform infrared spectra. It had also the high total free, conjugated, and bound phenolic values of 59.64, 18.44, and 111.18 mg g-1, orderly. The quintic polynomial regression model predicted a phenolics yield of 406 mg GAE g-1, achieved at 75% C, 45 min, 80 °C, 16.7% R, and 112 nm D. PPPN2 extract exhibited high RSA, RP, and FRAP values compared to butylated hydroxytoluene. This work enhanced pomegranate peel phenolic extraction, highlighting their potential for food manufacture and requiring additional investigation.
Collapse
Affiliation(s)
- Eman A M Mahmoud
- Department of Food Science and Technology, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Yasser F M Kishk
- Department of Food Science, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Ibrahim Khalifa
- Food Technology Department, Faculty of Agriculture, Benha University, Moshtohor, Qaliuobia, 13736, Egypt.
| | | | - Samar M Mahdy
- Department of Food Science, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| |
Collapse
|
2
|
Ashiagbor K, Jayan H, Gao S, Amaglo NK, Adade SYSS, El-Seedi HR, Khalifa SAM, Zou X, Guo Z. Recent advances in photoelectric methods application for cooking oil quality and safety evaluation: a review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025. [PMID: 40219683 DOI: 10.1002/jsfa.14276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 02/20/2025] [Accepted: 02/23/2025] [Indexed: 04/14/2025]
Abstract
Cooking oil is used daily in consumed food and culinary applications; therefore, its safety and quality are very important. Notably, susceptibility to contamination at each processing stage poses threats to living organisms. This review discusses the parameters of oil quality, as well as the role of the various non-destructive photoelectric techniques with respect to its quality and safety, including near-infrared spectroscopy (NIR), mid-infrared spectroscopy, Fourier transform near-infrared spectroscopy, Raman spectroscopy and fluorescence spectroscopy. Data on cooking oil quality, such as values of the following parameters, notably peroxides, thiobarbituric acid, anisidine, iodine, trans-fat and fatty acid profile, carbonyl compounds, adulteration and total polar components, are also demonstrated. Photoelectric methods are rapid and efficient tools for the preliminary screening of cooking oil when aiming to determine its quality before its entry into the food chain. Primarily, NIR has been used to predict most of the cooking oil safety and quality parameters, and thus is considered as the most convenient non-destructive method to be recommended. Accordingly, deep insight into state-of-the-art photoelectric/spectral technologies and the varieties of techniques available provides an opportunity to detect and predict the safety parameters of products prior to their processing and distribution. In this review, we highlight these perspectives with particular emphasis on the cooking oil. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kwami Ashiagbor
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Heera Jayan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Shipeng Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Newton K Amaglo
- Department of Horticulture, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | | - Hesham R El-Seedi
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
- Department of Pharmaceutical Biosciences, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Shaden A M Khalifa
- Department of Pharmaceutical Biosciences, Biomedical Centre, Uppsala University, Uppsala, Sweden
- Psychiatry and Neurology Department, Capio Saint Göran's Hospital, Stockholm, Sweden
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Department of Pharmaceutical Biosciences, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Zhiming Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, Jiangsu University, Zhenjiang, China
| |
Collapse
|
3
|
Deng S, Li J, Luo T, Zheng L, Deng Z. Effect of reduced flaxseed cyclic peptide [1-9-NαC]-linusorb B2 (CLB) and its oxidized form on the oxidative stability of flaxseed oil. Food Chem 2025; 465:142011. [PMID: 39561593 DOI: 10.1016/j.foodchem.2024.142011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/19/2024] [Accepted: 11/10/2024] [Indexed: 11/21/2024]
Abstract
This study aimed to explore the antioxidant capacity and mechanism of cyclic peptide [1-9-NαC]-linusorb B2 (CLB) and its oxidized form ([1-9-NαC],[1-MetO]-linusorb B2 (CLC),[1-9-NαC],[1-MetO2]-linusorb B2 (CLK)) in flaxseed oil (FSO). The results showed that CLB delayed the oxidation of FSO (containing Cu2+) in the initial stage of accelerated oxidation, whereas CLK accelerated the oxidation, leading to an increase of 25 % in AV and 33 % in POV (P < 0.05). In molecular docking, the binding ability of cyclic peptides to metal ions and intermediate oxidative products such as aldehydes tends to decrease when CLB oxidized to CLC, then CLK. CLK had the poorest binding capacity with the most serious oxidation on FSO. In conclusion, the antioxidant capacities of CLB and its oxidized form were contributed by their reducing ability as well as their binding ability to metal ions and intermediate oxidative products of fatty acids.
Collapse
Affiliation(s)
- Shilu Deng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China; International Institute of Food Innovation, Nanchang University, Nanchang 330051, Jiangxi, China
| | - Jing Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China; International Institute of Food Innovation, Nanchang University, Nanchang 330051, Jiangxi, China
| | - Ting Luo
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China; International Institute of Food Innovation, Nanchang University, Nanchang 330051, Jiangxi, China
| | - Liufeng Zheng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China; International Institute of Food Innovation, Nanchang University, Nanchang 330051, Jiangxi, China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China; International Institute of Food Innovation, Nanchang University, Nanchang 330051, Jiangxi, China; The College of Science and Technology, Nanchang University, 332020, Gongqing, Jiangxi, China.
| |
Collapse
|
4
|
Oubannin S, Asbbane A, Goh KW, Singh J, Zafar I, Bouyahya A, Gharby S. Green enrichment of argan oil ( Argania spinosa L.) with thyme ( Thymus vulgaris L.) and oregano ( Origanum vulgare L.) leaves: Evaluating quality and stability improvements. Food Chem X 2024; 24:101818. [PMID: 39310893 PMCID: PMC11415880 DOI: 10.1016/j.fochx.2024.101818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
This study aimed to assess the impact of enriching argan oil (AO) (Argania spinosa L.) using the maceration technique with thyme (Thymus vulgaris L.) and oregano (Origanum vulgare L.) leaves (TL and OL) at two proportions (5 and 10%). The oxidative stability of the control and enriched oils was examined under accelerated conditions at a temperature of 60 °C for 120 days (4 months). Quality indices (Free fatty acids (FFA), peroxide value (PV), p-anisidine value (p-AV), ultraviolet absoptions (K232 and K270), Rancimat test, fatty acids composition, sensory attributes, simple phenolic contents (SPC) and antioxidant activity (DPPH•) were determined. As a simple, inexpensive and green method, enrichment by maceration yielded advantageous results. Compared to the control (68.05 ± 1.10 mg GAE/kg), the SPC significantly increased in enriched oils reaching notably 250.9 ± 9.1 mg GAE/kg when adding 10% of TL. Also, the enriched oil samples showed the lowest PV, p-AV and ultraviolet absorptions compared with the control. However, no noticeable changes were reported in fatty acids composition and iodine value. In terms of sensory attributes, enrichment by maceration masked the rancid odour caused by oxidation. These scientific discoveries inherently yield economic advantages by enabling the diversification of product offerings, simultaneously catering to a broader market seeking high-quality oils infused with herbs, including both AO and aromatic plants.
Collapse
Affiliation(s)
- Samira Oubannin
- Biotechnology, Analytical Sciences and Quality Control Team, Polydisciplinary Faculty of Taroudant, University Ibnou Zohr, Agadir, Morocco
| | - Abderrahim Asbbane
- Biotechnology, Analytical Sciences and Quality Control Team, Polydisciplinary Faculty of Taroudant, University Ibnou Zohr, Agadir, Morocco
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai, Malaysia
- Faculty of Engineering, Shinawatra University, Samkhok, Pathum Thani, Thailand
| | - Jyoti Singh
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Iqbal Zafar
- Department of Surgery, College of Medicine, King Saud University, Saudi Arabia
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Morocco
| | - Said Gharby
- Biotechnology, Analytical Sciences and Quality Control Team, Polydisciplinary Faculty of Taroudant, University Ibnou Zohr, Agadir, Morocco
| |
Collapse
|
5
|
Dogara AM, Hama HA, Ozdemir D. Update on the Potential of Punica granatum L. Traditional Uses and Pharmacological Uses: A Review. Adv Pharmacol Pharm Sci 2024; 2024:6523809. [PMID: 39649727 PMCID: PMC11625089 DOI: 10.1155/adpp/6523809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/17/2024] [Accepted: 11/18/2024] [Indexed: 12/11/2024] Open
Abstract
Since the dawn of civilization, humans have turned to plants as a reliable source of safe and efficient treatment for a wide variety of medical conditions. The medicinal value of Punica granatum has been recognized for some time. Inflammation, diabetes, parasitic infections, cancer, and many other diseases have all been treated with its components. This review provides a comprehensive overview of the current biological data (those from 2018 to 2023 are included in the preclinical studies while articles of clinical studies have no limit due to their scarcity) and explores the potential applications of P. granatum as a novel platform for treating various disease conditions. Electronic searches for scholarly articles were performed using Elsevier, Springer, Google Scholar, Taylor & Francis, PubMed, and Scopus. Research the following terms: "Punica granatum," "chemical composition," "antioxidant," "antibacterial," "anti-diabetic," "anticancer," and other relevant terms. It has been scientifically proven that the fruit peel exhibits antioxidant, anti-inflammatory, antimicrobial, antiparasitic, antidiabetic, hepatoprotective, nerve-recovery, antihypertensive, anti-asthma, wound healing, and anticancer activities. Based on both preclinical and clinical experimentation on P. granatum, there is considerable evidence that supports the use of P. granatum extract as therapeutic agent for different ailments. The review paved the ground to precursor evidence of P. granatum extract benefits with its antioxidant, anti-inflammatory, antimicrobial, and antidiabetic properties. Furthermore, clinical trials stand out as a substrate supporting these effects with the enhancements of ailments including post menstrual, menstrual pain, semen quality, knee joint arthritis, and cardiovascular-related diseases. Nonetheless, more controlled large-scale clinical trials are needed for all the conditions to determine the effectiveness and risk benefit profile of P. granatum extract for these diseases.
Collapse
Affiliation(s)
| | - Harmand A. Hama
- Biology Education Department, Tishk International University, Erbil, Iraq
| | - Dogan Ozdemir
- Biology Education Department, Tishk International University, Erbil, Iraq
| |
Collapse
|
6
|
Peña-Vázquez GI, Serrano-Sandoval SN, Rodríguez-Rodríguez J, Antunes-Ricardo M, Guajardo-Flores D. Anti-inflammatory and antioxidant activity of functional lipids extracted through sustainable technologies from Mexican Opuntia ficus-indica seeds. Food Chem 2024; 467:142258. [PMID: 39637671 DOI: 10.1016/j.foodchem.2024.142258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 11/12/2024] [Accepted: 11/23/2024] [Indexed: 12/07/2024]
Abstract
Opuntia ficus-indica (OFI) seeds are a rich source of functional lipids, yet research on Mexican cultivars remains limited. This study evaluated the antioxidant and anti-inflammatory properties of lipids extracted through subcritical fluid and supercritical fluid extraction with carbon dioxide (SCE-CO₂ and SFE-CO₂) from Mexican OFI Villanueva and Rojo Vigor seeds with and without enzymatic pretreatment. SCE OFI Villanueva oil showed higher extraction efficiency of linoleic (45.86 mg/g), and oleic (9.86 mg/g) acids purified more than 5.47 and 1.18 times, respectively. Additionally, SCE oils exhibited the highest antioxidant potential (68 %) and anti-inflammatory activity (45 %) at the evaluated doses. In conclusion, SCE-CO₂ enhanced the extraction efficiency of unsaturated fatty acids, improving their potential biological effects, while enzymatic pretreatment did not positively impact on results, suggesting reduced extraction efficiency and bioactivity. These findings suggest that OFI seeds can serve as a valuable source of functional ingredients for the development of value-added food products.
Collapse
Affiliation(s)
- Gloria Itzel Peña-Vázquez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología FEMSA, Av. Eugenio Garza Sada 2501 Sur, Monterrey, NL 64849, Mexico; Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, Av. Eugenio Garza Sada 2501 Sur, 64849 Monterrey, NL, Mexico.
| | - Sayra N Serrano-Sandoval
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología FEMSA, Av. Eugenio Garza Sada 2501 Sur, Monterrey, NL 64849, Mexico; Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, Av. Eugenio Garza Sada 2501 Sur, 64849 Monterrey, NL, Mexico.
| | - José Rodríguez-Rodríguez
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. Eugenio Garza Sada 2501 Sur, Monterrey, NL 64849, Mexico.
| | - Marilena Antunes-Ricardo
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología FEMSA, Av. Eugenio Garza Sada 2501 Sur, Monterrey, NL 64849, Mexico; Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, Av. Eugenio Garza Sada 2501 Sur, 64849 Monterrey, NL, Mexico.
| | - Daniel Guajardo-Flores
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología FEMSA, Av. Eugenio Garza Sada 2501 Sur, Monterrey, NL 64849, Mexico.
| |
Collapse
|
7
|
Pan L, Xu W, Gao Y, Ouyang H, Liu X, Wang P, Yu X, Xie T, Li S. Exploring the lipid oxidation mechanisms during pumpkin seed kernels storage based on lipidomics: From phenomena, substances, and metabolic mechanisms. Food Chem 2024; 455:139808. [PMID: 38897071 DOI: 10.1016/j.foodchem.2024.139808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/18/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024]
Abstract
The study investigated the lipid oxidation of pumpkin seed kernels (PSK) under different storage conditions (room temperature, vacuum-room temperature, refrigeration, and vacuum-refrigeration) using HPLC-MS and GC-MS. Experimental results found the vacuum-refrigeration group showed the lowest PV (0.24 g/100 g), diene (8.68), hexanal (356.64 ± 16.06 ng/g), and nonanal (132.05 ± 8.38 ng/g) after a 9-month storage. A total of 586 lipids, including 6 classes and 27 subclasses, were detected, 46 of which showed significant differences. Refrigeration samples had the highest diacylglycerol content, while room temperature samples demonstrated the highest triacylglycerol and phosphatidylcholine content. Differential lipid metabolite analyses indicated that storage conditions mainly affected glycerolipid metabolism, glycerophospholipid metabolism, and sphingolipid metabolism pathways in PSK, while glycerolipid and glycerophospholipid metabolism were still dominant. It revealed that refrigeration was more effective than vacuum in inhibiting the oxidation of PSK. These findings could offer valuable references for the storage, transportation, preservation, and the development and utilization of PSK.
Collapse
Affiliation(s)
- Li Pan
- Engineering Research Center of Bio-process, Ministry of Education/Key Laboratory for Agricultural Products Processing of Anhui Province/School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Weijian Xu
- Engineering Research Center of Bio-process, Ministry of Education/Key Laboratory for Agricultural Products Processing of Anhui Province/School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Ying Gao
- Engineering Research Center of Bio-process, Ministry of Education/Key Laboratory for Agricultural Products Processing of Anhui Province/School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Hui Ouyang
- Engineering Research Center of Bio-process, Ministry of Education/Key Laboratory for Agricultural Products Processing of Anhui Province/School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Xiaolong Liu
- Engineering Research Center of Bio-process, Ministry of Education/Key Laboratory for Agricultural Products Processing of Anhui Province/School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Ping Wang
- Construction Corps Key Laboratory of Deep Processing on Featured Agricultural Products in South Xinjiang, Tarim University, Alar, 843300, China
| | - Xiongwei Yu
- Wuhan Xudong Food Co., Ltd., Wuhan 430000, China
| | | | - Shugang Li
- Engineering Research Center of Bio-process, Ministry of Education/Key Laboratory for Agricultural Products Processing of Anhui Province/School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China.
| |
Collapse
|
8
|
Fathollahy I, Ghaffari B. Using rice bran as a press aid during the cold-pressing of sesame seeds improved the extraction yield and quality of the resultant oil. Food Sci Nutr 2024; 12:7766-7775. [PMID: 39479658 PMCID: PMC11521660 DOI: 10.1002/fsn3.4359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/13/2024] [Accepted: 07/11/2024] [Indexed: 11/02/2024] Open
Abstract
Simple, cost-effective, and practical techniques can enhance the shelf life of cold-pressed oils. This study evaluated sesame seed (SS) cold-pressed oil with various percentages of rice bran (RB) as press aid, including 0% (control or TSSO), 1% (T1), 2.5% (T2.5), 5% (T5), 7.5% (T7.5), and 10% (T10) w/w. The results demonstrated that adding RB considerably boosted extraction yields (p < .05), with 5% RB constituting the ideal combination. Adding 7.5% and 10% RB to the SS reduced free fatty acid (FFA) levels compared to the control sample. The oxidative stability index (OSI) and peroxide value (PV), however, significantly increased at combination ratios ranging from 2.5% to 10% (p < .05). Rice bran oil (TRBO) had the greatest OSI of all the studied oils, with 18.99 h, while the extracted oils showed an increase in OSI as RB contents rose. Total phenolic compounds (TPC), tocopherols, γ-oryzanol content, and total antioxidant activity (TAA) increased directly with the RB level. Despite the addition of RB altering the fatty acids concentration, linoleic and oleic acids continued to be the predominant fatty acids in TSSO, TRBO, and other extracted oil samples. Increasing the combination ratio increased the palmitic, palmitoleic, oleic, and linolenic acid content and decreased the stearic and linoleic acid content. In summary, the study demonstrated that the simultaneous cold-pressing of oil-bearing seeds and agro-industrial by-products is a potentially advantageous technique to increase the extraction yield, qualitative attributes, and shelf life of the extracted oils without the addition of synthetic antioxidants.
Collapse
Affiliation(s)
- Isa Fathollahy
- Department of Food Science and Technology, Mamaghan branchIslamic Azad UniversityMamaghanIran
| | - Behnam Ghaffari
- Department of Food Science and Technology, Mamaghan branchIslamic Azad UniversityMamaghanIran
| |
Collapse
|
9
|
Zhao Y, Ma X, Wang G, Gao L, Zhang M, Ding Y, Lv S. Pomegranate peel extract incorporated soy protein isolate/Artemisia sphaerocephala Krasch. gum composite films for fresh-cut apples preservation. Int J Biol Macromol 2024; 280:135649. [PMID: 39284472 DOI: 10.1016/j.ijbiomac.2024.135649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/05/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
The objective of this study was to prepare an active packaging film using phosphorylated soy protein isolate (PPS) and Artemisia sphaerocephala Krasch. gum (ASKG) as film matrices, with the incorporation of pomegranate peel extract (PPE) to preserve fresh-cut apples. The results showed that PA-PPE (PPS/ASKG-PPE) films significantly increased thickness by 24.47 %, tensile strength by 58.76 %, and elongation at break by 30.48 %. Additionally, water vapor permeability and oxygen permeability decreased significantly to 6.17 × 10-13 and 0.62 × 10-13 Kg•m•m-2•s-1•Pa-1, respectively. FTIR, XRD, and SEM analyses confirmed the formation of intermolecular hydrogen bonds between PPS, ASKG, and polyphenols extracted from pomegranate peel, indicating excellent compatibility. Furthermore, radical scavenging activity experiments demonstrated that these films exhibited a remarkable ability to scavenge DPPH and ABTS+ radicals up to 70.44 % and 74.28 %, respectively, when the PPE content was at 3 wt%. Moreover, PPS could achieve a sustained release effect on polyphenols with a relatively low release rate (63.83 %) even after seven days' time elapsed. Finally, the PA-PPE film displayed superior performance in reducing the weight loss and browning index of fresh-cut apples within 24 h of storage. The development of PA-PPE film could promote sustainable resource protection and demonstrate promising prospects in the field of fresh-cut fruit packaging.
Collapse
Affiliation(s)
- Yucong Zhao
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Xueli Ma
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Guohua Wang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Le Gao
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Mengyao Zhang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Yong Ding
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Shenghua Lv
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China.
| |
Collapse
|
10
|
Yoon S, Jeong H, Hong SJ, Jo SM, Park H, Ban Y, Youn MY, Shin EC. Oven-Roasting Effects the Fatty Acid Composition, Antioxidant Properties, and Oxidative Stability of Pomegranate ( Punica granatum L.) Seed Oil. Prev Nutr Food Sci 2024; 29:190-198. [PMID: 38974588 PMCID: PMC11223916 DOI: 10.3746/pnf.2024.29.2.190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 07/09/2024] Open
Abstract
In this study, we investigated the effect of roasting conditions and time on the physicochemical properties of pomegranate seed oil. We analyzed the fatty acid, total phenolic, flavonoid, tocopherol, and phytosterol contents of pomegranate seed oil extracted under four conditions: raw, heated at 160°C for 15 min, heated at 160°C for 20 min, and heated at 180°C for 10 min, which included three that were well-established to enhance nutritional and flavor properties. Furthermore, the oxidative stability was evaluated based on the acid value, peroxide value, and induction period. Roasting significantly decreased the contents of punicic acid, polyunsaturated fatty acids, tocopherol, and phytosterol and the 2,2-diphenyl-1-picrylhydrazyl radical scavenging capacity (P<0.05) of the oil. Conversely, saturated fatty acids, monounsaturated fatty acids, acid value, peroxide value, total phenolic and flavonoid contents, and induction period were significantly increased (P<0.05). Our results suggest that the roasting conditions were nutritionally and oxidatively stable, thereby enhancing the roasting process and providing a database for essential roasting treatments for pomegranate seed oil.
Collapse
Affiliation(s)
- Sojeong Yoon
- Department of GreenBio Science/Food Science and Technology, Gyeongsang National University, Gyeongnam 52725, Korea
| | - Hyangyeon Jeong
- Department of GreenBio Science/Food Science and Technology, Gyeongsang National University, Gyeongnam 52725, Korea
| | - Seong Jun Hong
- Department of GreenBio Science/Food Science and Technology, Gyeongsang National University, Gyeongnam 52725, Korea
| | - Seong Min Jo
- Department of GreenBio Science/Food Science and Technology, Gyeongsang National University, Gyeongnam 52725, Korea
| | - Hyunjin Park
- Department of GreenBio Science/Food Science and Technology, Gyeongsang National University, Gyeongnam 52725, Korea
| | - Younglan Ban
- Department of GreenBio Science/Food Science and Technology, Gyeongsang National University, Gyeongnam 52725, Korea
| | - Moon Yeon Youn
- Department of GreenBio Science/Food Science and Technology, Gyeongsang National University, Gyeongnam 52725, Korea
| | - Eui-Cheol Shin
- Department of GreenBio Science/Food Science and Technology, Gyeongsang National University, Gyeongnam 52725, Korea
| |
Collapse
|
11
|
Piravi-Vanak Z, Dadazadeh A, Azadmard-Damirchi S, Torbati M, Martinez F. The Effect of Extraction by Pressing at Different Temperatures on Sesame Oil Quality Characteristics. Foods 2024; 13:1472. [PMID: 38790772 PMCID: PMC11119096 DOI: 10.3390/foods13101472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/01/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Sesame oil has been widely used in the daily diet due to its high nutritional value. Sesame oil is extracted at industrial scales and also in small scale by cold pressing at different temperatures. In this research, sesame oil was extracted by pressing at four temperatures, namely, 30 (control sample), 60, 90 and 120 °C, to evaluate its effects on the quality of extracted oils. Oil extraction yields were increased from 38 to 51% by increasing the pressing temperature. The highest amount of peroxide and acid values were related to the oil extracted at 120 °C. Tocopherols and total phenol content were reduced by the increasing the pressing temperature, and the highest amounts of these bioactive components were related to the control sample. The results of the fatty acids profile showed that the composition of oils extracted at different temperatures did not differ significantly (p > 0.05). The results of the present study give a clear picture about the effects of different pressing temperatures on the sesame oil quality and extraction yield, and can be useful in the extraction unit optimization.
Collapse
Affiliation(s)
- Zahra Piravi-Vanak
- Food, Halal, and Agricultural Products Research Group, Food Technology and Agricultural Products Research Center, Standard Research Institute (SRI), Karaj 31745, Iran
| | - Abdolah Dadazadeh
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz 51666, Iran;
| | - Sodeif Azadmard-Damirchi
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz 51666, Iran;
| | - Mohammadali Torbati
- Department of Food Science and Technology, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz 15731, Iran;
| | - Fleming Martinez
- Pharmaceutical-Physicochemical Research Group, Department of Pharmacy, Faculty of Science, The National University of Colombia, Bogotá 11001, Colombia;
| |
Collapse
|
12
|
Agah MS, Azadmard‐Damirchi S, Bodbodak S. Quality of oil extracted by cold press from Nigella sativa seeds conditioned and pre-treated by microwave. Food Sci Nutr 2024; 12:3529-3537. [PMID: 38726440 PMCID: PMC11077178 DOI: 10.1002/fsn3.4021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/13/2023] [Accepted: 01/28/2024] [Indexed: 05/12/2024] Open
Abstract
Black cumin (Nigella sativa) seed (BS) oil has received much interest in the food and pharmaceutical industries due to its valuable nutritional properties, but this oil has low oxidative stability. The effect of microwave pre-treatment at 0 to 2.5 min and conditioning with different buffers at pH 3 to 9 of BS, before oil extraction by cold press, were investigated. The oil extraction yield was higher; acid value (AV) and peroxide value (PV) were lower in the oil extracted from seeds, which were first microwaved and then moisturized and vice versa. BS with pH 3, microwave time of 1.25 min, and moisturizing level of 5%, which gave oil extraction yield of 27.2%, AV of (2.9 mg NaOH/g oil), and PV of (8.3 meq O2/kg oil), was selected as an optimum sample and its quality changes were investigated during storage compared with the oil extracted from the control sample (without any pre-treatment). In conclusion, the oil extracted from the pre-treated BS had higher bioactive components and lower AV and PV during the storage; therefore, microwave radiation and pH adjustment before oil extraction from BS by cold press are recommended.
Collapse
Affiliation(s)
- Mina Sanati Agah
- Department of Food Science and Technology, Faculty of AgricultureUniversity of TabrizTabrizIran
| | | | - Samad Bodbodak
- Department of Food Science and Technology, Faculty of AgricultureUniversity of TabrizTabrizIran
| |
Collapse
|
13
|
Siol M, Dudek A, Bryś J, Mańko-Jurkowska D, Gruczyńska-Sękowska E, Makouie S, Palani BK, Obranović M, Koczoń P. Chromatographic and Thermal Characteristics, and Hydrolytic and Oxidative Stability of Commercial Pomegranate Seed Oil. Foods 2024; 13:1370. [PMID: 38731741 PMCID: PMC11083541 DOI: 10.3390/foods13091370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/18/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
The current investigations were aimed at the determination of the hydrolytic and oxidative stability of commercial pomegranate seed oils provided by four different producers, and to assess the oils' primary quality parameters. During storage, many changes occur in oils that can significantly affect their quality. The oils were tested for acid and peroxide values, fatty acid profile, and their distribution between the sn-1,3 and sn-2 positions of triacylglycerols. The oxidative stability was also determined, and melting curves were plotted for the oils. The analyzed oils were stored for one month in a dark place at refrigerator temperature. Based on the obtained results, it was found that the acid values for most oils did not exceed the permissible level determined by the Codex Alimentarius. However, in all oils, the peroxide value exceeded the permissible level set by the standard EN ISO 3960:2017-03 and the Codex Alimentarius after the one-month storage period. The examined pomegranate seed oils were found to be valuable sources of polyunsaturated fatty acids, especially punicic acid, which was the most abundant fatty acid present in these oils. In all analyzed oils, linoleic acid predominated in the sn-2 position of the triacylglycerols. Pomegranate seed oils did not exhibit good oxidative stability, as the oxidation induction times for all tested oils were very short. The storage period significantly affected the content of the primary oxidation products and oxidative stability of the oils.
Collapse
Affiliation(s)
- Marta Siol
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska St. 159c, 02-787 Warsaw, Poland; (M.S.); (A.D.); (J.B.); (D.M.-J.); (E.G.-S.); (S.M.); (B.K.P.)
| | - Agnieszka Dudek
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska St. 159c, 02-787 Warsaw, Poland; (M.S.); (A.D.); (J.B.); (D.M.-J.); (E.G.-S.); (S.M.); (B.K.P.)
| | - Joanna Bryś
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska St. 159c, 02-787 Warsaw, Poland; (M.S.); (A.D.); (J.B.); (D.M.-J.); (E.G.-S.); (S.M.); (B.K.P.)
| | - Diana Mańko-Jurkowska
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska St. 159c, 02-787 Warsaw, Poland; (M.S.); (A.D.); (J.B.); (D.M.-J.); (E.G.-S.); (S.M.); (B.K.P.)
| | - Eliza Gruczyńska-Sękowska
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska St. 159c, 02-787 Warsaw, Poland; (M.S.); (A.D.); (J.B.); (D.M.-J.); (E.G.-S.); (S.M.); (B.K.P.)
| | - Sina Makouie
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska St. 159c, 02-787 Warsaw, Poland; (M.S.); (A.D.); (J.B.); (D.M.-J.); (E.G.-S.); (S.M.); (B.K.P.)
| | - Bharani Kumar Palani
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska St. 159c, 02-787 Warsaw, Poland; (M.S.); (A.D.); (J.B.); (D.M.-J.); (E.G.-S.); (S.M.); (B.K.P.)
| | - Marko Obranović
- Department of Food Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia;
| | - Piotr Koczoń
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska St. 159c, 02-787 Warsaw, Poland; (M.S.); (A.D.); (J.B.); (D.M.-J.); (E.G.-S.); (S.M.); (B.K.P.)
| |
Collapse
|
14
|
Tavakoli J, Ghorbani A, Hematian Sourki A, Ghani A, Zarei Jelyani A, Kowalczewski PŁ, Aliyeva A, Mousavi Khaneghah A. Thermal processing of pomegranate seed oils underscores their antioxidant stability and nutritional value: Comparison of pomegranate seed oil with sesame seed oil. Food Sci Nutr 2024; 12:2166-2181. [PMID: 38455193 PMCID: PMC10916621 DOI: 10.1002/fsn3.3918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/06/2023] [Accepted: 12/13/2023] [Indexed: 03/09/2024] Open
Abstract
In the present study, the oxidative stability and antioxidant activity of seed oils were investigated in three Iranian pomegranate cultivars, Shirin Khafr, Torsh Sabz, and Rabab, along with the sesame (Sesamum indicume L. cv Dezful) seed oil. Punicic acid was the primary fatty acid in the pomegranate seed oils, with contents ranging from 75.5 to 80.9% (w/w). The tocopherol levels in pomegranate seed oils ranged from 1439 to 2053 mg/kg, whereas the phenolics ranged from 130 to 199.3 mg/kg, respectively. Comparatively, in the seed oil of sesame "Dezful," these substances' contents were 1053 and 79 mg/kg, respectively. Contrary to common perception, the seed oil of the three pomegranate cultivars cultivated in Iran had high oxidative stability and antioxidative activity during the 32 h of thermal processing at 170°C. The oxidation stability assayed by peroxide value, p-anisidine value, and TOTOX index revealed that the pomegranate seed oils had a much higher resistance to the oxidation process than the sesame oil. The content of tocopherols increased during thermal processing due to the regeneration phenomenon. Tocopherols are not always free and may form a matrix with themselves or other compounds. Changes in the antioxidant activity during the thermal processing assessed by DPPH free radical scavenging power and by the FRAP test were consistent with those for the antioxidants. Therefore, these oils can be added to other edible oils as a natural antioxidant to improve their oxidative stability.
Collapse
Affiliation(s)
- Javad Tavakoli
- Department of Food Science and Technology, Faculty of AgricultureJahrom UniversityJahromFarsIran
| | - Afsaneh Ghorbani
- Department of Food Science and Technology, Faculty of AgricultureJahrom UniversityJahromFarsIran
| | - Abdollah Hematian Sourki
- Department of Food Science and Technology, Faculty of AgricultureJahrom UniversityJahromFarsIran
| | - Askar Ghani
- Department of Horticultural Science, Faculty of AgricultureJahrom UniversityJahromFarsIran
| | | | | | - Aynura Aliyeva
- Department of Technology of ChemistryAzerbaijan State Oil and Industry UniversityBakuAzerbaijan
| | - Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product TechnologyProf. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology – State Research InstituteWarsawPoland
| |
Collapse
|
15
|
Nid Ahmed M, Abourat K, Gagour J, Sakar EH, Majourhat K, Koubachi J, Gharby S. Valorization of saffron ( Crocus sativus L.) stigma as a potential natural antioxidant for soybean ( Glycine max L.) oil stabilization. Heliyon 2024; 10:e25875. [PMID: 38370196 PMCID: PMC10869852 DOI: 10.1016/j.heliyon.2024.e25875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/20/2024] Open
Abstract
Synthetic antioxidants are known for their efficiency to improve vegetable oil oxidative stability. But owing to their harmful effects on human health, edible oil industry is seeking for safe and healthy natural antioxidants. The present work was setup with the aim of improving soybean oil (SO) oxidative stability by using saffron (Crocus sativus L.) stigmas collected in Morocco. Saffron stigmas were used as a natural antioxidant at various concentrations (0.2, 0.3, and 0.6%) in soybean oil compared to tocobiol (0.3%) as a synthetic antioxidant (the positive control). Performances of such natural and synthetic antioxidants were evaluated by measuring oil basic quality indices under accelerated storage at 60 °C for 12 weeks. Such indices consisted of free fatty acids (FFA), peroxide value (PV), anisidine value (p-AV), total oxidation value (TOTOX), UV extinction coefficients (K232 and K270), fatty acids composition (FA), and iodine value (IV). The obtained data show that there were significant (p < 0.05) increases in FFA, PV, p-AV, K232, K270, and TOTOX but no much variations were observed for FA and IV especially in saffron stigmas fortified oils across storage times. However, in the case of oils fortified with saffron stigmas at different doses, such an increase was of a lesser magnitude (for FFA, PV, p-AV, K270, and TOTOX) as compared to tocobiol. These outcomes were confirmed by principal component analysis with strong positive correlations (p < 0.001) among FFA, PV, p-AV, K232, K270, and TOTOX. The most important, for which determination coefficient R2 > 0.9, were modeled through simple regressions. In conclusion, saffron stigmas with the different doses performed better than the positive control (tocobiol) regardless of the storage time. It could be concluded that saffron stigmas are a promising natural antioxidant, alternative to synthetic antioxidants, to enhance the oxidative stability of edible oils.
Collapse
Affiliation(s)
- Moussa Nid Ahmed
- Biotechnology, Analytical Sciences and Quality Control team Faculty Polydisciplinary of Taroudant, University Ibn Zohr, Morocco
| | - Karima Abourat
- Biotechnology, Analytical Sciences and Quality Control team Faculty Polydisciplinary of Taroudant, University Ibn Zohr, Morocco
| | - Jamila Gagour
- Biotechnology, Analytical Sciences and Quality Control team Faculty Polydisciplinary of Taroudant, University Ibn Zohr, Morocco
| | - El Hassan Sakar
- Laboratory of Biology, Ecology and Health, FS, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Khalid Majourhat
- Biotechnology, Analytical Sciences and Quality Control team Faculty Polydisciplinary of Taroudant, University Ibn Zohr, Morocco
- Geo-Bio-Environmental Engineering and Innovation Laboratory, Molecular Engineering, Biotechnology and Innovation Team, Polydisciplinary Faculty of Taroudant, University Ibn Zohr, Agadir, Morocco
| | - Jamal Koubachi
- Biotechnology, Analytical Sciences and Quality Control team Faculty Polydisciplinary of Taroudant, University Ibn Zohr, Morocco
| | - Said Gharby
- Biotechnology, Analytical Sciences and Quality Control team Faculty Polydisciplinary of Taroudant, University Ibn Zohr, Morocco
| |
Collapse
|
16
|
Tolkou AK, Tsoutsa EK, Kyzas GZ, Katsoyiannis IA. Sustainable use of low-cost adsorbents prepared from waste fruit peels for the removal of selected reactive and basic dyes found in wastewaters. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:14662-14689. [PMID: 38280170 PMCID: PMC10884073 DOI: 10.1007/s11356-024-31868-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/29/2023] [Indexed: 01/29/2024]
Abstract
Agricultural wastes are potential sustainable adsorbents since they are available in large quantities, are low-cost, and may require little or no treatment, in some cases. In this study, several fruit peels, such as banana, orange, and pomegranate, were collected from local markets and prepared by a simple and eco-friendly method and used as natural adsorbents for the removal of both anionic (Reactive Red 120 (RR120), Reactive Black 5 (RB5), Remazol Brilliant Blue R (RBBR)) and cationic Methylene Blue (MB) dyes found in wastewaters. Many industries, such as leather and textiles, can release huge amounts of synthetic dyes into the wastewater during dyeing processes. These are one of the most important pollutants of water pollution as they cause enormous damage to the water body and also affect the health of organisms due to their toxicity and carcinogenicity. The search for a sustainable and at the same time efficient material for the removal of a wide variety of dyes is the innovation of this work. These peels were prepared by washing, drying, grinding, and finally sieving, under natural sustainable conditions. Porosometry (BET analysis), FTIR, SEM/EDS, and XRD techniques were used to characterize the fruit peels before and after the adsorption process. Factors affecting the adsorption of dyes (adsorbent dosage, pH solution, initial concentration of dyes, contact time, and temperature) were investigated. According to the results, in terms of the effectiveness of fruit peels as (natural) adsorbent materials, for anionic dyes, 5.0-6.0 g/L of banana or orange dry peels was sufficient to remove near or even more than 90% anionic dyes at pH 2.0, and 4.0 g/L was sufficient to remove 98% of cationic MB dye at pH 9.0. Similar amount of pomegranate peels had lower efficiency for anionic dyes (50-70%), while cationic MB was still efficiently removed (98%) at pH 9.0. Moreover, the adsorption process in all cases was found to better fit to pseudo-second-order model, in comparison to pseudo-first-order model. According to isotherms, Freundlich model fitted better in some cases to the equilibrium data, while the Langmuir model in others. Finally, this study demonstrates the viability of reusing the banana, orange, and pomegranate peel adsorbents for eight, four, and five cycles, showing a gradual reduction of around 50% of their effectiveness.
Collapse
Affiliation(s)
- Athanasia K Tolkou
- Department of Chemistry, International Hellenic University, 65404, Kavala, Greece
| | - Eleftheria K Tsoutsa
- Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - George Z Kyzas
- Department of Chemistry, International Hellenic University, 65404, Kavala, Greece
| | - Ioannis A Katsoyiannis
- Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| |
Collapse
|
17
|
Ahmadian S, Kenari RE, Amiri ZR, Sohbatzadeh F, Khodaparast MHH. Fabrication of double nano-emulsions loaded with hyssop (Hyssopus officinalis L.) extract stabilized with soy protein isolate alone and combined with chia seed gum in controlling the oxidative stability of canola oil. Food Chem 2024; 430:137093. [PMID: 37562266 DOI: 10.1016/j.foodchem.2023.137093] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/23/2023] [Accepted: 08/01/2023] [Indexed: 08/12/2023]
Abstract
The aim of this study was to encapsulate hyssop (Hyssopus officinalis L.) extract obtained through ultrasound-assisted cold plasma pretreatment extraction within a double emulsion stabilized by soy protein isolate alone (SPI) and combined with chia seed gum (CSG) in the external aqueous phase on the stabilization of canola oil. FTIR analysis verified that there were electrostatic interactions between CSG and SPI. The SPI/CSG-stabilized emulsion demonstrated lower viscosity, smaller droplets, higher ζ-potential, and encapsulation efficiency compared to the SPI-stabilized emulsion. Non-Newtonian, pseudoplastic behaviors were shown by emulsions. Also, according to the dynamic rheological parameters (G' and G''), the SPI/CSG-stabilized emulsion had elastic behavior with weak gel properties. The antioxidant activity of the encapsulated extract at 1500 ppm during the storage in canola oil was investigated and compared to unencapsulated extract and TBHQ. The results showed that oil containing encapsulated extract had lower oxidative alterations than the unencapsulated form.
Collapse
Affiliation(s)
- Soheila Ahmadian
- Department of Food Science and Technology, Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University, Km 9 Farah Abad Road, Sari, Iran
| | - Reza Esmaeilzadeh Kenari
- Department of Food Science and Technology, Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University, Km 9 Farah Abad Road, Sari, Iran.
| | - Zeynab Raftani Amiri
- Department of Food Science and Technology, Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University, Km 9 Farah Abad Road, Sari, Iran
| | - Farshad Sohbatzadeh
- Department of Atomic and Molecular Physics, Faculty of Science, University of Mazandaran, Babolsar, Iran
| | | |
Collapse
|
18
|
Zamankhani M, Moeini S, Mahasti Shotorbani P, MirsaeedGhazi H, Jafarpour A. Improvement of the oxidative stability of instant fried noodles using free and microencapsulated borage ( Echium amoenum) and black hollyhock ( Altaea rosea var nigra) extracts. Food Sci Nutr 2024; 12:508-525. [PMID: 38268865 PMCID: PMC10804102 DOI: 10.1002/fsn3.3788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/10/2023] [Accepted: 10/08/2023] [Indexed: 01/26/2024] Open
Abstract
This study investigated the oxidative stability of instant fried noodles by applying free and microencapsulated black hollyhock extracts (BHE) and borage extracts (BE) (BE, BHE, ME-BE and ME-BHE). At first, the BE and BHE were encapsulated with whey protein and maltodextrin at a 90:10 ratio through a spray dryer. After evaluating particle characteristics (including anthocyanin content, zeta potential, polydispersity index (PDI), particle size, and morphology), they were added to the noodle formulation (wheat flour 78.5%, NaCl 0.78%, and water 21.21%) at 1% w/w level, and the physicochemical (proximate analysis, pH, color, cooking loss, and texture), sensory properties (taste, odor, color, texture, and overall acceptability), and oxidative stability (acid value, peroxide value, anisidine index, thiobarbituric acid index, conjugated dienes) of the fried noodles were studied. The results showed that the microcapsules had uneven shapes with angular surfaces. There was no significant difference between the zeta potential, particle size, PDI, and encapsulation efficiency of BE- and BHE-loaded microcapsules, and the values reported fell between -34.96 and -34.84 mV, 1.128 and 1.195 μm, 0.247 and 0.283, and 80.08% and 83.47%, respectively. Adding extracts to the functional noodles decreased cooking loss and pH compared to the control. The noodles exhibited a darker color. BE and BHE reduced the oxidation of fried noodle oil, with microencapsulated extracts showing stronger effects during storage (p < .05). Sensory evaluation indicated high acceptability for all samples. Encapsulation effectively preserves the natural antioxidant activities of BE and BHE, providing potential benefits for food processing and storage.
Collapse
Affiliation(s)
- Mahshid Zamankhani
- Department of Food Science and Technology, North Tehran BranchIslamic Azad UniversityTehranIran
| | - Sohrab Moeini
- Department of Food Science and Technology, North Tehran BranchIslamic Azad UniversityTehranIran
| | - Peyman Mahasti Shotorbani
- Department of Food Quality Control and Hygiene, Science and Research BranchIslamic Azad UniversityTehranIran
| | - Hossein MirsaeedGhazi
- Department of Food Technology, College of AbouraihanUniversity of TehranPakdashtTehranIran
| | - Afshin Jafarpour
- Department of Food Science & Technology, Garmsar BranchIslamic Azad UniversityGarmsarIran
| |
Collapse
|
19
|
Castaño-Ángel CC, Tarapues-Cuasapud JA, Bravo-Gómez JE, Solanilla-Duque JF, Roa-Acosta DF. Preliminary study of physicochemical, thermal, rheological, and interfacial properties of quinoa oil. F1000Res 2023; 12:1477. [PMID: 38854700 PMCID: PMC11162528 DOI: 10.12688/f1000research.134134.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/15/2023] [Indexed: 06/11/2024] Open
Abstract
Background: The growing popularity of nutrient-rich foods, among which is quinoa, is due to the increasing demand for healthier choices. Oils and hydrolyzed proteins from these foods may help prevent various health issues. The objective of this work was to perform extraction from the endosperm of the grain from high-protein quinoa flour by physical means via a differential abrasive milling process and extracting the oil using an automatic auger extractor at 160°C, as well as characterizing extracted oil. Methods: Quinoa oil extraction and physicochemical characterization were carried out. Chemical and physical quality indexes of quinoa oil were established, and both characterizations were conducted based on international and Columbian standards. Thermal properties were evaluated by differential scanning calorimetry, and rheological and interfacial properties of the oil were evaluated using hybrid rheometers and Drop Tensiometers, respectively, to determine its potential for obtaining functional foods. Results: The result was 10.5 g of oil/ 100 g of endosperm, with a moisture content of 0.12%, insoluble impurities of 0.017%, peroxide index of 18.5 meq O 2/kg of oil, saponification index of 189.6 mg potassium hydroxide/g of oil, refractive index of 1.401, and a density of 0.9179 g/cm 3 at 20°C. Regarding contaminating metals, it presented 7 mg of iron/kg of oil, a value higher than previously established limits of 5 mg of iron/kg of oil. The oil contained 24.9% oleic acid, 55.3% linoleic acid, and 4% linolenic acid, demonstrating antioxidant capacity. Quinoa oil showed thermal properties similar to other commercial oils. Conclusions: The interfacial and rheological properties were suitable for the stabilization of emulsions, gels, and foams, which are important in various industrial applications and could facilitate the development of new products. The extracted quinoa oil presented similar characteristics to other commercial oils, which could make it a potential product for commercialization and application in different industries.
Collapse
Affiliation(s)
| | | | - Jesús Eduardo Bravo-Gómez
- Departamento de Agroindustria, Facultad de Ciencias Agrarias, Universidad del Cauca, Comuna 1, Cauca, 190001, Colombia
| | - Jose Fernando Solanilla-Duque
- Departamento de Agroindustria, Facultad de Ciencias Agrarias, Universidad del Cauca, Comuna 1, Cauca, 190001, Colombia
| | - Diego Fernando Roa-Acosta
- Departamento de Agroindustria, Facultad de Ciencias Agrarias, Universidad del Cauca, Comuna 1, Cauca, 190001, Colombia
| |
Collapse
|
20
|
Rahim MA, Ayub H, Sehrish A, Ambreen S, Khan FA, Itrat N, Nazir A, Shoukat A, Shoukat A, Ejaz A, Özogul F, Bartkiene E, Rocha JM. Essential Components from Plant Source Oils: A Review on Extraction, Detection, Identification, and Quantification. Molecules 2023; 28:6881. [PMID: 37836725 PMCID: PMC10574037 DOI: 10.3390/molecules28196881] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/24/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Oils derived from plant sources, mainly fixed oils from seeds and essential oil from other parts of the plant, are gaining interest as they are the rich source of beneficial compounds that possess potential applications in different industries due to their preventive and therapeutic actions. The essential oils are used in food, medicine, cosmetics, and agriculture industries as they possess antimicrobial, anticarcinogenic, anti-inflammatory and immunomodulatory properties. Plant based oils contain polyphenols, phytochemicals, and bioactive compounds which show high antioxidant activity. The extractions of these oils are a crucial step in terms of the yield and quality attributes of plant oils. This review paper outlines the different modern extraction techniques used for the extraction of different seed oils, including microwave-assisted extraction (MAE), pressurized liquid extraction (PLE), cold-pressed extraction (CPE), ultrasound-assisted extraction (UAE), supercritical-fluid extraction (SFE), enzyme-assisted extraction (EAE), and pulsed electric field-assisted extraction (PEF). For the identification and quantification of essential and bioactive compounds present in seed oils, different modern techniques-such as high-performance liquid chromatography (HPLC), gas chromatography-mass spectrometry (GC-MS), Fourier transform infrared spectroscopy (FTIR), gas chromatography-infrared spectroscopy (GC-IR), atomic fluorescence spectroscopy (AFS), and electron microscopy (EM)-are highlighted in this review along with the beneficial effects of these essential components in different in vivo and in vitro studies and in different applications. The primary goal of this research article is to pique the attention of researchers towards the different sources, potential uses and applications of oils in different industries.
Collapse
Affiliation(s)
- Muhammad Abdul Rahim
- Department of Food Science, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan; (F.A.K.); (A.E.)
| | - Hudda Ayub
- National Institute of Food Science & Technology, University of Agriculture, Faisalabad 38000, Pakistan; (H.A.); (A.S.); (A.S.)
| | - Aqeela Sehrish
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA;
| | - Saadia Ambreen
- University Institute of Food Science and Technology, The University of Lahore, Lahore 54590, Pakistan;
| | - Faima Atta Khan
- Department of Food Science, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan; (F.A.K.); (A.E.)
| | - Nizwa Itrat
- Department of Nutrition and Dietetics, The University of Faisalabad, Faisalabad 38000, Pakistan; (N.I.); (A.N.)
| | - Anum Nazir
- Department of Nutrition and Dietetics, The University of Faisalabad, Faisalabad 38000, Pakistan; (N.I.); (A.N.)
| | - Aurbab Shoukat
- National Institute of Food Science & Technology, University of Agriculture, Faisalabad 38000, Pakistan; (H.A.); (A.S.); (A.S.)
| | - Amna Shoukat
- National Institute of Food Science & Technology, University of Agriculture, Faisalabad 38000, Pakistan; (H.A.); (A.S.); (A.S.)
| | - Afaf Ejaz
- Department of Food Science, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan; (F.A.K.); (A.E.)
| | - Fatih Özogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Balcali, Adana 01330, Türkiye;
- Biotechnology Research and Application Center, Cukurova University, Balcali, Adana 01330, Türkiye
| | - Elena Bartkiene
- Department of Food Safety and Quality, Faculty of Veterinary, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania;
- Faculty of Animal Sciences, Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
| | - João Miguel Rocha
- Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| |
Collapse
|
21
|
Jeong H, Huh CK, Ha HK, Kim J, Oh I. Development of an Emulsion Gel Containing Peanut Sprout Oil as a Fat Replacer in Muffins: Physicochemical, Tomographic, and Texture Properties. Gels 2023; 9:783. [PMID: 37888356 PMCID: PMC10606939 DOI: 10.3390/gels9100783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023] Open
Abstract
Peanut sprouts are known to increase their resveratrol content during germination, leading to cultivation in smart farms. Recently, peanut sprout oil extraction and sales have gained traction; however, processed foods utilizing peanut sprout oil have yet to be developed. In this study, water-in-oil (W/O) emulsion gels were structured with water, peanut sprout oil (PSO), sorbitan monostearate (SMS), and candelilla wax (CW) in different ratios, and their potential as shortening substitutes in muffins was evaluated on physicochemical and sensory properties. PSO comprised 67% unsaturated fatty acids and had higher phospholipid (17.97%) and resveratrol (15.95 µg/L) contents and antioxidant activity (71.52%) compared to peanut oil. The PSO emulsion gels were physically structured without changing their chemical compositions. The SMS and CW ratios were found to have a significant influence on the textural properties, solid fat content, rheology, and crystallization of the emulsion gels. The viscoelastic properties of the emulsion gels showed a higher storage modulus than loss modulus and increased with increasing gelator content. Muffins prepared with emulsion gels were characterized by a harder texture and larger pore size, while in the case of muffins mixed with a ratio of 25% SMS and 75% CW, there was no significant difference in overall preference of sensory evaluation compared to shortening muffins. Thus, these findings reveal the potential utility of PSO as a fat substitute and indicate that W/O emulsion gels are suitable for producing muffins without a loss of quality.
Collapse
Affiliation(s)
- Hyunjin Jeong
- Department of Food Science & Technology, Sunchon National University, Suncheon 57922, Republic of Korea; (H.J.); (C.-K.H.)
| | - Chang-Ki Huh
- Department of Food Science & Technology, Sunchon National University, Suncheon 57922, Republic of Korea; (H.J.); (C.-K.H.)
| | - Ho-Kyung Ha
- Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Republic of Korea;
| | - Jungsil Kim
- Department of Bio-Industrial Machinery Engineering, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Imkyung Oh
- Department of Food Science & Technology, Sunchon National University, Suncheon 57922, Republic of Korea; (H.J.); (C.-K.H.)
| |
Collapse
|
22
|
Tian M, Bai Y, Tian H, Zhao X. The Chemical Composition and Health-Promoting Benefits of Vegetable Oils-A Review. Molecules 2023; 28:6393. [PMID: 37687222 PMCID: PMC10489903 DOI: 10.3390/molecules28176393] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/02/2023] [Accepted: 08/08/2023] [Indexed: 09/10/2023] Open
Abstract
With population and economic development increasing worldwide, the public is increasingly concerned with the health benefits and nutritional properties of vegetable oils (VOs). In this review, the chemical composition and health-promoting benefits of 39 kinds of VOs were selected and summarized using Web of Science TM as the main bibliographic databases. The characteristic chemical compositions were analyzed from fatty acid composition, tocols, phytosterols, squalene, carotenoids, phenolics, and phospholipids. Health benefits including antioxidant activity, prevention of cardiovascular disease (CVD), anti-inflammatory, anti-obesity, anti-cancer, diabetes treatment, and kidney and liver protection were examined according to the key components in representative VOs. Every type of vegetable oil has shown its own unique chemical composition with significant variation in each key component and thereby illustrated their own specific advantages and health effects. Therefore, different types of VOs can be selected to meet individual needs accordingly. For example, to prevent CVD, more unsaturated fatty acids and phytosterols should be supplied by consuming pomegranate seed oil, flaxseed oil, or rice bran oil, while coconut oil or perilla seed oil have higher contents of total phenolics and might be better choices for diabetics. Several oils such as olive oil, corn oil, cress oil, and rice bran oil were recommended for their abundant nutritional ingredients, but the intake of only one type of vegetable oil might have drawbacks. This review increases the comprehensive understanding of the correlation between health effects and the characteristic composition of VOs, and provides future trends towards their utilization for the general public's nutrition, balanced diet, and as a reference for disease prevention. Nevertheless, some VOs are in the early stages of research and lack enough reliable data and long-term or large consumption information of the effect on the human body, therefore further investigations will be needed for their health benefits.
Collapse
Affiliation(s)
- Mingke Tian
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, China
| | - Yuchen Bai
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, China
| | - Hongyu Tian
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, China
| | - Xuebing Zhao
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing 100084, China;
- Institute of Applied Chemistry, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
23
|
Machado M, Sousa SC, Rodríguez-Alcalá LM, Pintado M, Gomes AM. Bigels as Delivery Systems of Bioactive Fatty Acids Present in Functional Edible Oils: Coconut, Avocado, and Pomegranate. Gels 2023; 9:gels9040349. [PMID: 37102961 PMCID: PMC10137725 DOI: 10.3390/gels9040349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/06/2023] [Accepted: 04/19/2023] [Indexed: 04/28/2023] Open
Abstract
Bioactive fatty acids possess several benefits for human health; however, these molecules show a reduced oxidative stability and consequently reduced bioavailability. This work aimed to develop novel bigels as a strategy to protect bioactive fatty acids present in three different vegetable oils with nutritional attributes (coconut oil, avocado oil, and pomegranate oil) during passage through the gastrointestinal tract (GIT). Bigels were prepared using monoglycerides-vegetable oil oleogel and carboxymethyl cellulose hydrogel. These bigels were analyzed in terms of structure and rheological characteristics. According to the rheological properties, bigels exhibited a solid-like behavior since G' was higher than G". The results showed that the proportion of oleogel was essential to the viscosity of the final formulation as an increase in this fraction was responsible for an increase in viscosity. The fatty acids profile was evaluated before and after simulated GIT. The bigels protected the fatty acids against degradation; in the case of coconut oil, the reduction of key fatty acids was 3 times lower; for avocado oil, 2 times lower; and for pomegranate oil, 1.7 times lower. These results suggest that bigels can be used as part of an important strategy for bioactive fatty acid delivery for food applications.
Collapse
Affiliation(s)
- Manuela Machado
- CBQF Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Sérgio Cruz Sousa
- CBQF Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Luís Miguel Rodríguez-Alcalá
- CBQF Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Manuela Pintado
- CBQF Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Ana Maria Gomes
- CBQF Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| |
Collapse
|
24
|
Li H, Tan X, Huang W, Zhu X, Yang X, Shen Y, Yan R. Enzymatic Acylation of Flavonoids from Bamboo Leaves: Improved Lipophilicity and Antioxidant Activity for Oil-Based Foods. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4817-4824. [PMID: 36935587 DOI: 10.1021/acs.jafc.2c07673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The goal of this study was to expand the applications of bamboo leaf flavonoids (BLFs) by improving their lipophilicity through enzymatic acylation with vinyl cinnamate. Characterization of the acylated BLFs using Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, high-resolution electrospray ionization mass spectrometry, electrospray ionization with tandem mass spectrometry, and 1H nuclear magnetic resonance spectroscopy indicated that acylation occurred at the C6-OH position of glucoside moieties. The highest degree of acylation (18.61%) was obtained by reacting BLFs with vinyl cinnamate (1:5, w/w) at 60 °C for 48 h. Acylation significantly improved the lipophilicity of BLFs and their capacity to inhibit lipid peroxidation, as evidenced by the reduced production of lipid hydroperoxides and malondialdehyde in rapeseed oil and rapeseed oil-in-water emulsions during storage at 37 °C for 15 days. The study findings provide important data that will enable the use of BLFs in lipid or lipophilic matrices, such as oil-based foods.
Collapse
Affiliation(s)
- Haimei Li
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Xinjia Tan
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Wenjing Huang
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Xucheng Zhu
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Xinquan Yang
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Yingbin Shen
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Rian Yan
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| |
Collapse
|
25
|
Kiani Aliabadi F, Ahmadi Dastgerdi A, Tabatabaeian Nimavard J. The Oxidative Stability of Chia Seed Oil Enriched with Oregano (Origanum vulgare L.) and Yarrow (Achillea millefolium) Extracts. J FOOD QUALITY 2023. [DOI: 10.1155/2023/6263692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
Oxidative stability of chia seed oil enriched with oregano (Origanum vulgare L.) and yarrow (Achillea millefolium) extracts at different concentrations (600, 1200, and 1800 ppm) was evaluated under accelerated oxidation conditions for 5 days. The total phenolic compounds and antioxidant activity of oregano extract were higher than the yarrow extract. With decreasing concentrations of extracts and increasing time, the oxidative stability of chia seed oil decreased significantly (
). At the first day, the acid value of chia seed oil did not show a significant difference, and the highest acid value was related to the control sample at the end of the storage period. The oil containing 1200 and 1800 ppm of oregano extract had the lowest acid, peroxide, anisidine, and Totox values. In the rancimat, the highest oxidative stability index (OSI) was shown in the sample containing 1800 ppm oregano extract, followed by yarrow extract. Our findings showed the potential of oregano and yarrow extracts by improving the oxidative stability of chia seed oil, especially at 1200 and 1800 ppm. At similar concentrations, oregano extract was more successful than yarrow extract in reducing the oxidation rate.
Collapse
|
26
|
Pappas A, Charisi A, Chatziantoniou CM, Giamouri E, Mitsiopoulou C, Moschopoulos V, Christodoulou C, Papadomichelakis G, Kotsampasi B, Mitsopoulos I, Tsiplakou E, Bampidis V. Effects of dietary pomegranate seed oil addition to diets for laying hens on fatty acid profile of eggs. Anim Feed Sci Technol 2023. [DOI: 10.1016/j.anifeedsci.2023.115643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
27
|
Kariminejad M, Naimabadi A, Morshedi A, Mohammadi-Moghaddam T, Shokuhi A, Bordbar M. Oxidative stability of sunflower and soybean oils enriched with black plum peel extract in comparison with synthetic antioxidants. PLoS One 2023; 18:e0279735. [PMID: 36662706 PMCID: PMC9858042 DOI: 10.1371/journal.pone.0279735] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 12/13/2022] [Indexed: 01/21/2023] Open
Abstract
Black plum peel is the by-product of plum processing and is a valuable source of antioxidants and phenolic compounds. In this research, total phenolic compounds, total flavonoid content and antioxidant activity of black plum peel were measured. After that, black plum peel extract (in concentrations 0, 400, 800, 1200 and 2000 ppm) as a natural antioxidant for improving the stability of soybean and sunflower oil was used. The oxidative stability parameters of oils (peroxide value, free fatty acids, thiobarbituric acid, conjugated dienes, and carbonyl value) were measured at 60 °C for 4-16 days. Antioxidant activity, total phenolic compounds and total flavonoid content of black plum peel were 86.87% and 100.53 mg GA /g and 871.062 mg Quercetin/g respectively. Black plum peel extract could have a significant positive effect (P<0.05) on improvement of the quality and stability parameters of soybean oil and sunflower oil. The oxidative stability parameters for commercial oils and samples containing black plum peel extract were near each other and in an acceptable range. So, black plum peel is recommended as an oxidative stabilizer of oils and alternative synthetic antioxidants.
Collapse
Affiliation(s)
- Mohaddeseh Kariminejad
- Department of Food Science and Technology, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Abolfazl Naimabadi
- Department of Environmental Health Engineering, School of Public Health, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Afsaneh Morshedi
- Department of Food Science and Technology, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Abolfazl Shokuhi
- Student Research Committee, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Mahsa Bordbar
- Student Research Committee, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
28
|
Pantiora PD, Balaouras AI, Mina IK, Freris CI, Pappas AC, Danezis GP, Zoidis E, Georgiou CA. The Therapeutic Alliance between Pomegranate and Health Emphasizing on Anticancer Properties. Antioxidants (Basel) 2023; 12:187. [PMID: 36671048 PMCID: PMC9855163 DOI: 10.3390/antiox12010187] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Pomegranate is a fruit bearing-plant that is well known for its medicinal properties. Pomegranate is a good source of phenolic acids, tannins, and flavonoids. Pomegranate juice and by-products have attracted the scientific interest due to their potential health benefits. Currently, the medical community has showed great interest in exploiting pomegranate potential as a protective agent against several human diseases including cancer. This is demonstrated by the fact that there are more than 800 reports in the literature reporting pomegranate's anticancer properties. This review is an update on the research outcomes of pomegranate's potential against different types of human diseases, emphasizing on cancer. In addition, perspectives of potential applications of pomegranate, as a natural additive aiming to improve the quality of animal products, are discussed.
Collapse
Affiliation(s)
- Panagiota D. Pantiora
- Department of Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | | | - Ioanna K. Mina
- Department of Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Christoforos I. Freris
- Department of Chemistry, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Athanasios C. Pappas
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece
| | - Georgios P. Danezis
- Chemistry Laboratory, Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece
| | - Evangelos Zoidis
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece
| | - Constantinos A. Georgiou
- Chemistry Laboratory, Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece
| |
Collapse
|
29
|
Wang Q, Yuan T, Zhu X, Song G, Wang D, Li L, Huang M, Gong J. The phenolics, antioxidant activity and in vitro digestion of pomegranate ( Punica granatum L.) peels: an investigation of steam explosion pre-treatment. Front Nutr 2023; 10:1161970. [PMID: 37139452 PMCID: PMC10149855 DOI: 10.3389/fnut.2023.1161970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/03/2023] [Indexed: 05/05/2023] Open
Abstract
Pomegranate peels, the main byproduct of pomegranate production, are rich in phenolic compounds that are known for their effective antioxidant properties and have vast application prospects. In this study, steam explosion, an environmentally friendly technique, was applied to pretreat pomegranate peels for phenol extraction. We investigated the effects of explosion pressure, duration, and particle size on the content of total and individual phenolics, and antioxidant activity of pomegranate peels before and after in vitro digestion. The optimal conditions for a steam explosion for pomegranate peels in terms of total phenol content were a pressure of 1.5 MPa, a maintenance time of 90 s, and a particle size of 40 mesh. Under these conditions, pomegranate peel extract presented a higher yield of total phenols, gallic acid, and ellagic acid. However, it also had a lower content of punicalin and punicalagin, compared to the unexploded peels. There was no improvement in the antioxidant activity of pomegranate peels after the steam explosion. Moreover, the content of total phenol, gallic acid, ellagic acid, punicalin, and punicalagin, as well as the antioxidant activity of pomegranate peels, all increased after gastric digestion. Nevertheless, there was a large variation in the pomegranate peel processed by different pressure, duration, and sieve fractions. Overall, this study demonstrated that steam explosion pre-treatment could be an efficient method for improving the release of phenolics, especially gallic acid, and ellagic acid, from pomegranate peels.
Collapse
Affiliation(s)
- Qi Wang
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang, China
| | - Tinglan Yuan
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang, China
| | - Xiaohuan Zhu
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang, China
| | - Gongshuai Song
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang, China
| | - Danli Wang
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang, China
| | - Ling Li
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang, China
| | - Mingquan Huang
- Key Laboratory of Alcoholic Beverages Quality and Safety of China Light Industry, Beijing Technology and Business University, Beijing, China
- Mingquan Huang,
| | - Jinyan Gong
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang, China
- *Correspondence: Jinyan Gong,
| |
Collapse
|
30
|
Deng S, Li J, Luo T, Deng Z. Flaxseed Cyclic Peptide [1-9-NαC]-Linusorb B3 (CLA) Improves Oxidative Stability of Flaxseed Oil by Chelating Metal Ions and Intermediate Oxidative Products. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15776-15786. [PMID: 36374563 DOI: 10.1021/acs.jafc.2c06102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Oxidative rancidity is a major issue limiting the utilization of flaxseed oil (FSO). Peptides possess an antioxidant effect; however, the flax cyclic peptide, a unique ingredient in FSO, has an obscure influence on the oxidation of FSO. Therefore, this study is aimed to investigate the effects of [1-9-NαC]-linusorb B3 (CLA) on the accelerated oxidation of FSO and the underlying mechanism. We found that CLA increased the antioxidant stability of refined flaxseed oil (RFO), indicated by the improved parameters involved in the oxidation after the addition of CLA. After accelerated oxidation, the acid value (AV) of the RFO was increased by 24.14 times, whereas that of the RFO with CLA (CLA-RFO) increased only by 7.21 times. Similarly, the peroxide value (POV) and P-anisidine value (P-AV) of CLA-RFO were significantly decreased. Besides, CLA influenced metal ions-induced oxidation. In the Cu2+ group, the addition of CLA reduced the AV by 18% and the POV by 20%. The results of the molecular docking analysis and fluorescence quenching showed that the metal ions and propionaldehyde interacted with the cavity of CLA, and propionaldehyde had the most stable binding configuration with CLA, indicating that CLA may slow down the oxidation of FSO by chelating the metal ions and the intermediate oxidative products.
Collapse
Affiliation(s)
- Shilu Deng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi330047, China
| | - Jing Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi330047, China
| | - Ting Luo
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi330047, China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi330047, China
| |
Collapse
|
31
|
Abdo EM, Shaltout OES, Mansour HM. Natural antioxidants from agro-wastes enhanced the oxidative stability of soybean oil during deep-frying. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
32
|
Adel F, Shaaban AFF, El-Dougdoug W, Tantawy AH, Metwally AM. Novel synthesized amide-incorporating copolymeric surfactants based on natural wastes as petro-dispersing agents: Design, synthesis, and characterizations. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
33
|
Chemical characterization of pomegranate and alfalfa seed oils obtained by a two-step sequential extraction procedure of expeller and supercritical CO2 technologies. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.105040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
34
|
Red Raspberry Seed Oil Low Energy Nanoemulsions: Influence of Surfactants, Antioxidants, and Temperature on Oxidative Stability. Antioxidants (Basel) 2022; 11:antiox11101898. [PMID: 36290621 PMCID: PMC9598911 DOI: 10.3390/antiox11101898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to assess and improve the oxidative stability of red raspberry seed oil−RO, a potential topical ingredient derived from food industry by-products, on its own and when incorporated in low energy nanoemulsion (NE). The RO’s oxidative stability was assessed at 5, 25, and 40 °C during one month of storage and expressed in: peroxide value, p-anisidine, and thiobarbituric reactive substances—TBARS value, while for NEs, lipid hydroperoxides and TBARS values were monitored. Both synthetic (butylated hydroxytoluene—BHT and ethylenediaminetetraacetic acid—EDTA), and natural (oregano essential oil—ORE and oak fruit extract—OAK) antioxidants were used. Pure RO and RO with BHT or ORE were stable at 5 °C and 25 °C, but at 40 °C BHT showed only moderate protection, while ORE was prooxidant. NEs prepared with new biodegradable polyglycerol esters-based surfactants, with droplet sizes of < 50 nm and narrow size distribution, showed improved physicochemical stability at room temperature, and especially at 40 °C, compared to NEs with polysorbate 80, which required the addition of antioxidants to preserve their stability. Natural antioxidants ORE and OAK were compatible with all NEs; therefore, their use is proposed as an effective alternative to synthetic antioxidants.
Collapse
|
35
|
Physical, Chemical, and Antioxidant Characterization of Nano-Pomegranate Peel and Its Impact on Lipid Oxidation of Refrigerated Meat Ball. J FOOD QUALITY 2022. [DOI: 10.1155/2022/4625528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pomegranate peel (CPP), enriched with bioactive constituents, had potent antioxidant features. Therefore, it is worth finding out functional and antioxidant features of the nanoscale pomegranate peel. The nanoscale of pomegranate peel was prepared by ultrafine grinding in a ball mill for 45 min (NPP45) and 90 min (NPP90). The physical (SEM, TEM, FTIR, and XRD) and chemical characteristics (phenolics, flavonoids, DPPH scavenging activity, FRAP, and reducing power) of nanoparticles were studied. The quality aspects of cold stored (5 ± 2°C) meatballs formulated with 0.5% (W/W) of nano-peel powder were evaluated. Similarly, FTIR spectra and XRD patterns were recorded for nano and crude pomegranate peel samples. Generally, grinding the crude peel for 45 and 90 min enhanced its scavenging activity, reducing power, FRAP, total phenolic, and flavonoid by a range of 12.58 to 20.37 and 20.57% to 35.18%, respectively. The addition of crude/nanosized peel to the meat ball diminish (
) formation of thiobarbituric acid (TBARS), peroxide (PV), and volatile nitrogen and kept the sensory attributes up to 9 days of cold storage. No significant differences were noticed in PV and TBARS of meatballs formulated with 0.5% NPP90 and 0.1% BHT, which suggests the potential use of nanoscale pomegranate peel as natural substitutes to BHT in meat products.
Collapse
|
36
|
Mansour HMM, El-Sohaimy SA, Zeitoun AM, Abdo EM. Effect of Natural Antioxidants from Fruit Leaves on the Oxidative Stability of Soybean Oil during Accelerated Storage. Antioxidants (Basel) 2022; 11:antiox11091691. [PMID: 36139765 PMCID: PMC9495815 DOI: 10.3390/antiox11091691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/15/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Plant by-products are safe, sustainable, and abundant natural antioxidant sources. Here we investigated the antioxidant activity of a mixture of lyophilized pomegranate, guava, and grape (PGG) leaves water extract (1:1:1) and examined its ability to retard the rancidity of soybean oil during accelerated storage at 65 °C for 30 days. To achieve this, we evaluated the oxidative stability of soybean oil enriched with PGG extract at 200, 400, and 800 ppm. We also compared the effect of PGG extract with butylated hydroxytoluene (BHT) (400/100 ppm) with that of only BHT (200 ppm). We observed that 8.19 and 1.78 µg/mL of the extract could scavenge 50% of DPPH• and ABTS•, respectively, indicating its enhanced antioxidant activity. Enriching soyabean oil with the extract at 800 ppm improved its oxidative stability by reducing the acid value to 1.71 mg/g and the total oxidation to 99.87 compared to 2.27 mg/g and 150.32 in the raw oil, respectively. Moreover, PGG-800 ppm inhibited oxidation by 46.07%. Similarly, PGG-400 ppm reinforced BHT (100 ppm) to provide oxidative stability as BHT (p > 0.05), with TOTOX values of 87.93 and 79.23, respectively. PGG-800 ppm and PGG/BHT mix potently inhibited the transformation of polyunsaturated fatty acids into saturated ones. Therefore, the PGG extract might be an efficient substitute for BHT (partially or totally) during industrial processes.
Collapse
Affiliation(s)
- Hanem M. M. Mansour
- Department of Food Technology, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El Arab, Alexandria P.O. Box 21934, Egypt or
| | - Sobhy Ahmed El-Sohaimy
- Department of Food Technology, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El Arab, Alexandria P.O. Box 21934, Egypt or
- Department of Technology and Organization of Public Catering, Institute of Sport, Tourism and Service, South Ural State University (SUSU), 454080 Chelyabinsk, Russia
| | - Ahmed M. Zeitoun
- Department of Food Science, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria P.O. Box 21531, Egypt
| | - Eman M. Abdo
- Department of Food Science, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria P.O. Box 21531, Egypt
- Correspondence:
| |
Collapse
|
37
|
Pomegranate (Punica granatum L.) Peel Extracts as Antimicrobial and Antioxidant Additives Used in Alfalfa Sprouts. Foods 2022; 11:foods11172588. [PMID: 36076774 PMCID: PMC9455905 DOI: 10.3390/foods11172588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Aqueous and ethanolic pomegranate peel extracts (PPE) were studied as a source of phenolic compounds with antimicrobial, anti-quorum sensing, and antioxidant properties. The aqueous extract showed higher total phenolic and flavonoid content (153.43 mg GAE/g and 45.74, respectively) and antioxidant capacity (DPPH radical inhibition: 86.12%, ABTS radical scavenging capacity: 958.21 mg TE/dw) compared to the ethanolic extract. The main phenolic compounds identified by UPLC-DAD were chlorogenic and gallic acids. The aqueous PPE extract showed antimicrobial activity against Listeria monocytogenes, Salmonella Typhimurium, Candida tropicalis (MICs 19–30 mg/mL), and anti-quorum sensing activity expressed as inhibition of Chromobacterium violaceum violacein production (%). The aqueous PPE extracts at 25 mg/mL applied on alfalfa sprouts reduced psychrophilic bacteria (1.12 Log CFU/100 g) and total coliforms (1.23 Log CFU/100 g) and increased the antioxidant capacity of the treated sprouts (55.13 µmol TE/100 g (DPPH) and 126.56 µmol TE/100 g (ABTS)) compared to untreated alfalfa. This study emphasizes PPE’s antioxidant and antimicrobial activities in alfalfa sprouts preservation.
Collapse
|
38
|
Jin F, Wang Y, Huang R, Li B, Zhou Y, Pei D. Phenolic extracts from colored-walnut pellicles: antioxidant efficiency in walnut oil preservation. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2082466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Feng Jin
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, P. R. China
| | - Yaping Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, P. R. China
| | - Ruimin Huang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, P. R. China
| | - Baoxin Li
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, P. R. China
| | - Ye Zhou
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, P. R. China
| | - Dong Pei
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, P. R. China
| |
Collapse
|
39
|
Kumar N, Daniloski D, Pratibha, Neeraj, D'Cunha NM, Naumovski N, Petkoska AT. Pomegranate peel extract – A natural bioactive addition to novel active edible packaging. Food Res Int 2022; 156:111378. [DOI: 10.1016/j.foodres.2022.111378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/30/2022] [Accepted: 05/11/2022] [Indexed: 01/24/2023]
|
40
|
Zhang Y, Yun Z, Zhu M, Liu Z, Huang Y. Oxidation and flavor changes in smoked bacon cured using bamboo extract concentrate combined with bamboo poles during storage. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Yunqi Zhang
- College of Life Science and Engineering Southwest University of Science and Technology Mianyang PR China
| | - Zhoumiao Yun
- College of Life Science and Engineering Southwest University of Science and Technology Mianyang PR China
| | - Meilin Zhu
- College of Life Science and Engineering Southwest University of Science and Technology Mianyang PR China
| | - Zhijun Liu
- College of Life Science and Engineering Southwest University of Science and Technology Mianyang PR China
| | - Yechuan Huang
- College of Biological Engineering Jingchu University of Technology Jingmen PR China
| |
Collapse
|
41
|
Ran J, Zhu Y, Ren T, Qin L. Effects of Geographic Region and Cultivar on Fatty Acid Profile and Thermal Stability of Zanthoxylum bungeanum Seed Oil. J Oleo Sci 2022; 71:631-639. [PMID: 35387915 DOI: 10.5650/jos.ess21398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Fatty acid profile and thermal stability of 7 varieties zanthoxylum bungeanum (GZF, GDJ, CJJ, SHY, SMN, SJY, GTS) seed oils (ZBO) were studied. Fatty acid profile, thermal stability were determined using gas chromatography equipped with flame ionization detector (GC-FID) and thermogravimetry analysis (TGA), respectively. Chemical properties, total phenolics and antioxidant activities of ZBO were determined as well. Palmitoleic acid and oleic acid (OA) were the dominant fatty acids, the ratio of ω-6/ω-3 polyunsaturated fatty acids (PUFA) of ZBO ranged from 0.66 ± 0.01 to 1.17 ± 0.01, seven varieties ZBO showed a higher thermal stability, with the 50% mass loss temperature ranged from 397.35 ± 4.02°C to 412.50 ± 2.35°C, GZF seed oil showed a balance fatty acid profile, the ratio of ω-6/ω-3 PUFA was 0.90 ± 0.01, GDJ seed oil showed a higher thermal stability, which the 50% mass loss temperature was 412.50 ± 2.35°C. These results suggested that fatty acid profile and thermal stability of ZBO were affected by cultivars and geographic region, and it may serve as a functional dietary oil.
Collapse
Affiliation(s)
- Jingqi Ran
- School of Liquor and Food Engineering, Guizhou University
| | - Yong Zhu
- School of Liquor and Food Engineering, Guizhou University
| | - Tingyuan Ren
- School of Liquor and Food Engineering, Guizhou University
| | - Likang Qin
- School of Liquor and Food Engineering, Guizhou University
| |
Collapse
|
42
|
An Efficient Deacidification Process for Safflower Seed Oil with High Nutritional Property through Optimized Ultrasonic-Assisted Technology. Molecules 2022; 27:molecules27072305. [PMID: 35408704 PMCID: PMC9000557 DOI: 10.3390/molecules27072305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 12/10/2022] Open
Abstract
Safflower seed oil (SSO) is considered to be an excellent edible oil since it contains abundant essential unsaturated fatty acids and lipid concomitants. However, the traditional alkali-refined deacidification process of SSO results in a serious loss of bioactive components of the oil and also yields massive amounts of wastewater. In this study, SSO was first extracted by ultrasonic-assisted ethanol extraction (UAEE), and the extraction process was optimized using random centroid optimization. By exploring the effects of ethanol concentration, solid−liquid ratio, ultrasonic time, and the number of deacidification times, the optimum conditions for the deacidification of safflower seed oil were obtained as follows: ethanol concentration 100%, solid−liquid ratio 1:4, ultrasonic time 29 min, and number of deacidification cycles (×2). The deacidification rate was 97.13% ± 0.70%, better than alkali-refining (72.16% ± 0.13%). The values of acid, peroxide, anisidine and total oxidation of UAEE-deacidified SSO were significantly lower than those of alkali-deacidified SSO (p < 0.05). The contents of the main lipid concomitants such as tocopherols, polyphenols, and phytosterols in UAEE-decidified SSO were significantly higher than those of the latter (p < 0.05). For instance, the DPPH radical scavenging capacity of UAEE-processed SSO was significantly higher than that of alkali refining (p < 0.05). The Pearson bivariate correlation analysis before and after the deacidification process demonstrated that the three main lipid concomitants in SSO were negatively correlated with the index of peroxide, anisidine, and total oxidation values. The purpose of this study was to provide an alternative method for the deacidification of SSO that can effectively remove free fatty acids while maintaining the nutritional characteristics, physicochemical properties, and antioxidant capacity of SSO.
Collapse
|
43
|
Zhou D, Zhao M, Wang J, Faiza M, Chen X, Cui J, Liu N, Li D. A novel and efficient method for punicic acid-enriched diacylglycerol preparation: Enzymatic ethanolysis of pomegranate seed oil catalyzed by Lipozyme 435. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
44
|
Sun X, Zhang B, Han J, Wei C, Liu W. Effect of roasting temperature and time on volatile compounds, total tocopherols, and fatty acids of flaxseed oil. J Food Sci 2022; 87:1624-1638. [DOI: 10.1111/1750-3841.16073] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/16/2021] [Accepted: 01/11/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Xuelian Sun
- School of Food Science and Technology/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education Shihezi University Shihezi P. R. China
| | - Bo Zhang
- Walnut Research Institution Longnan Economic Forest Research Institute Longnan P. R. China
| | - Jiajia Han
- School of Food Science and Technology/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education Shihezi University Shihezi P. R. China
| | - Changqing Wei
- School of Food Science and Technology/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education Shihezi University Shihezi P. R. China
| | - Wenyu Liu
- School of Food Science and Technology/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education Shihezi University Shihezi P. R. China
| |
Collapse
|
45
|
Nardella S, Conte A, Del Nobile MA. State-of-Art on the Recycling of By-Products from Fruits and Vegetables of Mediterranean Countries to Prolong Food Shelf Life. Foods 2022; 11:foods11050665. [PMID: 35267298 PMCID: PMC8909788 DOI: 10.3390/foods11050665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/08/2022] [Accepted: 02/16/2022] [Indexed: 12/12/2022] Open
Abstract
Annually, 1.3 billion tons of food are wasted and this plays a major role in increasing pollution. Food waste increases domestic greenhouse gas emissions mainly due to the gas emissions associated with its production. Fruit and vegetable industrial by-products occur in the form of leaves, peel, seeds, pulp, as well as a mixture of them and represent the most abundant food waste. The disposal of agricultural by-products costs a large amount of money under certain governmental regulations. However, fruit and vegetable by-products are rich in valuable bioactive compounds, thus justifying their use as food fortifier, active food packaging or as food ingredients to preserve food quality over time. The present review collects the most recent utilization carried out at lab-scale on Mediterranean fruit and vegetable by-products as valid components to prolong food shelf life, providing a detailed picture of the state-of-art of literature on the topic. Bibliographic research was conducted by applying many keywords and filters in the last 10 years. Several scientific findings demonstrate that by-products, and in particular their extracts, are effectively capable of prolonging the shelf life of dairy food, fresh-cut produce, meat and fish-based products, oil, wine, paste and bakery products. All of the studies provide clear advances in terms of food sustainability, highlight the potential of by-products as a source of bioactive compounds, and promote a culture in which foods are intended to receive a second useful life. The same final considerations were also included regarding the current situation, which still limits by-products diffusion. In addition, a conclusion on a future perspective for by-products recycling was provided. The most important efforts have to be conducted by research since only a multidisciplinary approach for an advantageous investigation could be an efficient method to promote the scale up of by-products and encourage their adoption at the industrial level.
Collapse
|
46
|
Rasuli N, Bintoro VP, Purnomoadi A, Nurwantoro N. The shelf life of buffalo meat marinated with pomegranate ( Punica granatum) peel extract. J Adv Vet Anim Res 2022; 8:612-618. [PMID: 35106301 PMCID: PMC8757661 DOI: 10.5455/javar.2021.h552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/09/2021] [Accepted: 09/16/2021] [Indexed: 12/03/2022] Open
Abstract
Objective: The purpose of this study was to investigate how pomegranate peel extract (PPE) can prevent lipid oxidation, peroxide value, and pathogenic bacteria growth in buffalo meat. Materials and Methods: PPE and buffalo meat were employed in this investigation. The buffalo meat marinated with PPE was evaluated by refrigerating it at a temperature of 5°C ± 1°C on days 0, 4, 8, 12, and 16. PPE was added to buffalo meat at a rate of 0% as a control (K0), 0.50% (K1), 1.00% (K2), 1.50% (K3), and 2.00% (K4). Results: The addition of PPE lowered the total plate count, peroxide value, lipid, and pH between treatments and storage period (p < 0.05). PPE’s high concentration of polyphenols, flavonoids, antioxidants, and antibacterial substances may decrease lipid oxidation, peroxide production, and bacterial growth rate. Conclusions: Marinating buffalo meat in PPE may help maintain the meat’s freshness while being stored at a refrigerator temperature (5°C ± 1°C).
Collapse
Affiliation(s)
- Nur Rasuli
- Department of Animal Science, Faculty of Animal and Agricultural Sciences, Diponegoro University, Semarang, Indonesia
| | - Valentinus Priyo Bintoro
- Department of Animal Science, Faculty of Animal and Agricultural Sciences, Diponegoro University, Semarang, Indonesia
| | - Agung Purnomoadi
- Department of Animal Science, Faculty of Animal and Agricultural Sciences, Diponegoro University, Semarang, Indonesia
| | - Nurwantoro Nurwantoro
- Department of Animal Science, Faculty of Animal and Agricultural Sciences, Diponegoro University, Semarang, Indonesia
| |
Collapse
|
47
|
Kutlu N, Meral R, Ekin MM, Erim Kose Y, Ceylan Z. A new application for the valorisation of pomegranate seed oil: nanoencapsulation of pomegranate seed oil into electrospun nanomats for food preservation. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Nazan Kutlu
- Institute of Science Van Yüzüncü Yıl University Van 65080 Turkey
- Department of Food Engineering Faculty of Engineering Van Yüzüncü Yıl University Van 65080 Turkey
| | - Raciye Meral
- Department of Food Engineering Faculty of Engineering Van Yüzüncü Yıl University Van 65080 Turkey
| | - Mehmet Mustafa Ekin
- Department of Food Engineering Faculty of Engineering Van Yüzüncü Yıl University Van 65080 Turkey
- Food Technology Program Özalp Vocational School Van Yüzüncü Yıl University Van 65080 Turkey
| | - Yagmur Erim Kose
- Department of Food Engineering Faculty of Engineering Van Yüzüncü Yıl University Van 65080 Turkey
| | - Zafer Ceylan
- Department of Gastronomy and Culinary Arts Faculty of Tourism Van Yüzüncü Yıl University Van 65080 Turkey
| |
Collapse
|
48
|
Innovative and Sustainable Technologies to Enhance the Oxidative Stability of Vegetable Oils. SUSTAINABILITY 2022. [DOI: 10.3390/su14020849] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
To meet consumers’ demand for natural foods, edible oil producers and food processing industries are searching for alternatives to synthetic antioxidants to protect oils against oxidation. Antioxidant compounds extracted from different plant parts (e.g., flowers, leaves, roots, and seeds) or sourced from agri-food industries, including residues left after food processing, attract consumers for their health properties and natural origins. This review, starting from a literature research analysis, highlights the role of natural antioxidants in the protection of edible oils against oxidation, with an emphasis on the emerging and sustainable strategies to preserve oils against oxidative damage. Sustainability and health are the main concerns of food processing industries. In this context, the aim of this review is to highlight the emerging strategies for the enrichment of edible oils with biomolecules or extracts recovered from plant sources. The use of extracts obtained from vegetable wastes and by-products and the blending with oils extracted from various oil-bearing seeds is also pointed out as a sustainable approach. The safety concerns linked to the use of natural antioxidants for human health are also discussed. This review, using a multidisciplinary approach, provides an updated overview of the chemical, technological, sustainability, and safety aspects linked to oil protection.
Collapse
|
49
|
Kahraman G, Özdemir KS. Effects of black elderberry and spirulina extracts on the chemical stability of cold pressed flaxseed oil during accelerated storage. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01004-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
50
|
Novel extraction methods and potential applications of polyphenols in fruit waste: a review. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00901-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|