1
|
Wu Y, Ma D, Zhu X, Xia F. A Novel Aggregation-Induced Emission-Based Electrochemiluminescence Aptamer Sensor Utilizing Red-Emissive Sulfur Quantum Dots for Rapid and Sensitive Malathion Detection. BIOSENSORS 2025; 15:64. [PMID: 39852115 PMCID: PMC11763466 DOI: 10.3390/bios15010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/17/2025] [Accepted: 01/18/2025] [Indexed: 01/26/2025]
Abstract
Rapid, effective, and cost-effective methods for large-scale screening of pesticide residues in the environment and agricultural products are important for assessing potential environmental risks and safeguarding human health. Here, we constructed a novel aggregation-induced emission (AIE) electrochemical aptamer (Apt) sensor based on red-emissive sulfur quantum dots (SQDs), which aimed at the rapid screening and quantitative detection of malathion. SQDs were prepared using a two-step oxidation method with good electrochemiluminescence (ECL) optical properties. These SQDs were modified onto the electrode surface to serve as ECL luminophores. Subsequently, Apt was introduced and modified to form a double-helix structure with the complementary chain (cDNA). The ECL signal was reduced because the biomolecules had poor electrical conductivity and inefficient electron transfer. When the target malathion was added, the double helix structure was unraveled, the malathion Apt fell off the electrode surface, and the ECL signal was restored. The linear range of detection was 1.0 × 10-13-1.0 × 10-8 mol·L-1, and the detection limit was 0.219 fM. The successful preparation of the sensor not only develops the ECL optical properties of SQDs but also expands the application of SQDs in ECL sensing.
Collapse
Affiliation(s)
| | | | | | - Fangquan Xia
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China; (Y.W.); (D.M.); (X.Z.)
| |
Collapse
|
2
|
Sundararaman S, Kumar KS, Siddharth U, Prabu D, Karthikeyan M, Rajasimman M, Thamarai P, Saravanan A, Kumar JA, Vasseghian Y. Sustainable approach for the expulsion of metaldehyde: risk, interactions, and mitigation: a review. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:248. [PMID: 38874631 DOI: 10.1007/s10653-024-02001-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 04/16/2024] [Indexed: 06/15/2024]
Abstract
All pests can be eliminated with the help of pesticides, which can be either natural or synthetic. Because of the excessive use of pesticides, it is harmful to both ecology and people's health. Pesticides are categorised according to several criteria: their chemical composition, method of action, effects, timing of use, source of manufacture, and formulations. Many aquatic animals, birds, and critters live in danger owing to hazardous pesticides. Metaldehyde is available in various forms and causes significant impact even when small amounts are ingested. Metaldehyde can harm wildlife, including dogs, cats, and birds. This review discusses pesticides, their types and potential environmental issues, and metaldehyde's long-term effects. In addition, it examines ways to eliminate metaldehyde from the aquatic ecosystem before concluding by anticipating how pesticides may affect society. The metal-organic framework and other biosorbents have been appropriately synthesized and subsequently represent the amazing removal of pesticides from effluent as an enhanced adsorbent, such as magnetic nano adsorbents. A revision of the risk assessment for metaldehyde residuals in aqueous sources is also attempted.
Collapse
Affiliation(s)
- Sathish Sundararaman
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, 600119, India.
| | - K Satish Kumar
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, 600119, India
| | - U Siddharth
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, 600119, India
| | - D Prabu
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, 600119, India
| | - M Karthikeyan
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, 600119, India
| | - M Rajasimman
- Department of Chemical Engineering, Annamalai University, Annamalainagar, Chidambaram, 608002, India
| | - P Thamarai
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Saveetha University, Chennai, Tamilnadu, 602105, India
| | - A Saravanan
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Saveetha University, Chennai, Tamilnadu, 602105, India
| | - J Aravind Kumar
- Department of Energy and Environmental Engineering, Saveetha School of Engineering, SIMATS, Saveetha University, Chennai, India
| | - Yasser Vasseghian
- Department of Chemical Engineering and Material Science, Yuan Ze University, Taoyuan, Taiwan.
| |
Collapse
|
3
|
Ruan W, Peng Y, Liao R, Man Y, Tai Y, Tam NFY, Zhang L, Dai Y, Yang Y. Removal, transformation and ecological risk assessment of pesticide in rural wastewater by field-scale horizontal flow constructed wetlands of treated effluent. WATER RESEARCH 2024; 256:121568. [PMID: 38593607 DOI: 10.1016/j.watres.2024.121568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/26/2024] [Accepted: 04/02/2024] [Indexed: 04/11/2024]
Abstract
Constructed wetlands (CWs) are widely used in sewage treatment in rural areas, but there are only a few studies on field-scale CWs in treating wastewater-borne pesticides. In this study, the treatment and metabolic transformation of 29 pesticides in rural domestic sewage by 10 field-scale horizontal flow CWs (HF-CWs), each with a treatment scale of 36‒5000 m3/d and operated for 2‒10 years, in Guangzhou, Southern China was investigated. The risk of pesticides in treated effluent and main factors influencing such risk were evaluated. Results demonstrated that HF-CWs could remove pesticides in sewage and reduce their ecological risk in effluent, but the degree varied among types of pesticides. Herbicides had the highest mean removal rate (67.35 %) followed by insecticides (60.13 %), and the least was fungicides (53.22 %). In terms of single pesticide compounds, the mean removal rate of butachlor was the highest (73.32 %), then acetochlor (69.41 %), atrazine (68.28 %), metolachlor (58.40 %), and oxadixyl (53.28 %). The overall removal rates of targeted pesticides in each HF-CWs ranged from 11 %‒57 %, excluding two HF-CWs showing increases in pesticides in treated effluent. Residues of malathion, phorate, and endosulfan in effluent had high-risks (RQ > 5). The pesticide concentration in effluent was mainly affected by that in influent (P = 0.042), and source control was the key to reducing risk. The main metabolic pathways of pesticide in HF-CWs were oxidation, with hydroxyl group to carbonyl group or to form sulfones, the second pathways by hydrolysis, aerobic condition was conducive to the transformation of pesticides. Sulfones were generally more toxic than the metabolites produced by hydrolytic pathways. The present study provides a reference on pesticides for the purification performance improvement, long-term maintenance, and practical sustainable application of field-scale HF-CWs.
Collapse
Affiliation(s)
- Weifeng Ruan
- Institute of Hydrobiology and Department of Ecology, Jinan University, Guangzhou 510632, China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, China
| | - Yanqin Peng
- Institute of Hydrobiology and Department of Ecology, Jinan University, Guangzhou 510632, China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, China
| | - Ruomei Liao
- Institute of Hydrobiology and Department of Ecology, Jinan University, Guangzhou 510632, China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, China
| | - Ying Man
- Institute of Hydrobiology and Department of Ecology, Jinan University, Guangzhou 510632, China; School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yiping Tai
- Institute of Hydrobiology and Department of Ecology, Jinan University, Guangzhou 510632, China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, China.
| | - Nora Fung-Yee Tam
- School of Science and Technology, The Hong Kong Metropolitan University, Ho Man Tin, Kowloon 999077, Hong Kong, China
| | - Longzhen Zhang
- Institute of Hydrobiology and Department of Ecology, Jinan University, Guangzhou 510632, China
| | - Yunv Dai
- Institute of Hydrobiology and Department of Ecology, Jinan University, Guangzhou 510632, China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, China
| | - Yang Yang
- Institute of Hydrobiology and Department of Ecology, Jinan University, Guangzhou 510632, China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, China.
| |
Collapse
|
4
|
Li X, Liu C, Liu F, Zhang X, Chen X, Peng Q, Wu G, Zhao Z. Substantial removal of four pesticide residues in three fruits with ozone microbubbles. Food Chem 2024; 441:138293. [PMID: 38183718 DOI: 10.1016/j.foodchem.2023.138293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/25/2023] [Accepted: 12/26/2023] [Indexed: 01/08/2024]
Abstract
Developing a straightforward method to remove pesticide residues from fruits is essential for food safety. In this study, ozone microbubble treatment was performed on three fruits (strawberry, cherry, and apricot) to remove four pesticide residues (emamectin benzoate, azoxystrobin, boscalid, and difenoconazole) while comparing removal efficiency. The concentration of hydroxyl radicals in different washing orientations was homogeneous at a concentration ranging between 8.9 and 10.2 μmol·L-1. Under long washing time (18 min), strawberry, cherry, and apricot obtained higher removal rates of 51 %∼65 %, 51 %∼59 % and 24 %∼70 %, respectively. Moreover, scanning electron microscopy (SEM) and contact angle (CA) revealed that apricot has better hydrophobicity, leading to a higher pesticide removal of 45 ∼ 84 % with less water and more vigorous washing. Notably, vitamin C content in fruits remain largely unchanged following ozone microbubble treatment. This study demonstrated the effectiveness of ozone microbubble treatment as pollution-free method for enhancing food safety by removing pesticide residues on fruits.
Collapse
Affiliation(s)
- Xiaohan Li
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| | - Chengcheng Liu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| | - Fengmao Liu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| | - Xianzhao Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| | - Xuehui Chen
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| | - Qingrong Peng
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| | - Ge Wu
- Infinitus China Co. Ltd, Guangzhou, 510663, China.
| | | |
Collapse
|
5
|
SUDSIRI CJ, JUMPA N, RITCHIE RJ. Magnetically treated water for removal of surface contamination by Malathion on Chinese Kale (Brassica oleracea L.). PLoS One 2024; 19:e0298371. [PMID: 38758738 PMCID: PMC11101036 DOI: 10.1371/journal.pone.0298371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 01/24/2024] [Indexed: 05/19/2024] Open
Abstract
Malathion® is a persistent organophosphate pesticide used against biting and chewing insects on vegetables. It is a difficult-to-remove surface contaminant of vegetables and contaminates surface and ground water and soils. Malathion® is only partially water soluble, but use of detergent carriers makes adhering Malathion® residues difficult to subsequently remove. Magnetically treated water (MTW) successfully removed Malathion® from Chinese Kale (Brassica oleracea L.), meeting Maximum Residue Load (MRL) standards. Samples were soaked in MTW for 30 min prior to detection with GC/MS/MS, 98.5±3.02% of Malathion® was removed after washing by MTW. Removal by simple washing was only ≈42±1.2% which was not nearly sufficient to meet MRL criteria.
Collapse
Affiliation(s)
- Chadapust J. SUDSIRI
- Faculty of Sciences and Industrial Technology Prince of Songkla University in Suratthani, Suratthani, Thailand
| | - Nattawat JUMPA
- Sciences Laboratory and Equipment Centre, Prince of Songkla University in Suratthani, Suratthani, Thailand
| | - Raymond J. RITCHIE
- Biotechnology of Electromechanics Research Unit, Faculty of Technology and Environment, Prince of Songkla University in Phuket, Phuket, Thailand
| |
Collapse
|
6
|
Naderi N, Ganjali F, Eivazzadeh-Keihan R, Maleki A, Sillanpää M. Applications of hollow nanostructures in water treatment considering organic, inorganic, and bacterial pollutants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120670. [PMID: 38531142 DOI: 10.1016/j.jenvman.2024.120670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/03/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024]
Abstract
One of the major issues of modern society is water contamination with different organic, inorganic, and contaminants bacteria. Finding cost-effective and efficient materials and methods for water treatment and environment remediation is among the scientists' most important considerations. Hollow-structured nanomaterials, including hollow fiber membranes, hollow spheres, hollow nanoboxes, etc., have shown an exciting capability for wastewater refinement approaches, including membrane technology, adsorption, and photocatalytic procedure due to their extremely high specific surface area, high porosity, unique morphology, and low density. Diverse hollow nanostructures could potentially eliminate organic contaminants, including dyes, antibiotics, oil/water emulsions, pesticides, and other phenolic compounds, inorganic pollutants, such as heavy metal ions, salts, phosphate, bromate, and other ions, and bacteria contaminations. Here, a comprehensive overview of hollow nanostructures' fabrication and modification, water contaminant classification, and recent studies in the water treatment field using hollow-structured nanomaterials with a comparative attitude have been provided, indicating the privilege abd detriments of this class of nanomaterials. Eventually, the future outlook of employing hollow nanomaterials in water refinery systems and the upcoming challenges arising in scaling up are also propounded.
Collapse
Affiliation(s)
- Nooshin Naderi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Fatemeh Ganjali
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Reza Eivazzadeh-Keihan
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein, 2028, South Africa; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, 173212, Himachal Pradesh, India; Department of Biological and Chemical Engineering, Aarhus University, Nørrebrogade 44, 8000, Aarhus C, Denmark; Department of Civil Engineering, University Centre for Research & Development, Chandigarh University, Gharuan, Mohali, Punjab, India.
| |
Collapse
|
7
|
Chaudhary V, Kumar M, Chauhan C, Sirohi U, Srivastav AL, Rani L. Strategies for mitigation of pesticides from the environment through alternative approaches: A review of recent developments and future prospects. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120326. [PMID: 38387349 DOI: 10.1016/j.jenvman.2024.120326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/14/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024]
Abstract
Chemical-based peticides are having negative impacts on both the healths of human beings and plants as well. The World Health Organisation (WHO), reported that each year, >25 million individuals in poor nations are having acute pesticide poisoning cases along with 20,000 fatal injuries at global level. Normally, only ∼0.1% of the pesticide reaches to the intended targets, and rest amount is expected to come into the food chain/environment for a longer period of time. Therefore, it is crucial to reduce the amounts of pesticides present in the soil. Physical or chemical treatments are either expensive or incapable to do so. Hence, pesticide detoxification can be achieved through bioremediation/biotechnologies, including nano-based methodologies, integrated approaches etc. These are relatively affordable, efficient and environmentally sound methods. Therefore, alternate strategies like as advanced biotechnological tools like as CRISPR Cas system, RNAi and genetic engineering for development of insects and pest resistant plants which are directly involved in the development of disease- and pest-resistant plants and indirectly reduce the use of pesticides. Omics tools and multi omics approaches like metagenomics, genomics, transcriptomics, proteomics, and metabolomics for the efficient functional gene mining and their validation for bioremediation of pesticides also discussed from the literatures. Overall, the review focuses on the most recent advancements in bioremediation methods to lessen the effects of pesticides along with the role of microorganisms in pesticides elimination. Further, pesticide detection is also a big challenge which can be done by using HPLC, GC, SERS, and LSPR ELISA etc. which have also been described in this review.
Collapse
Affiliation(s)
- Veena Chaudhary
- Department of Chemistry, Meerut College, Meerut, Uttar-Pradesh, India
| | - Mukesh Kumar
- Department of Floriculture and Landscaping Architecture, College of Horticulture, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh, India
| | - Chetan Chauhan
- Department of Floriculture and Landscaping Architecture, College of Horticulture, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh, India
| | - Ujjwal Sirohi
- National Institute of Plant Genome Research, New Delhi, India
| | - Arun Lal Srivastav
- Chitkara University School of Engineering and Technology, Chitkara University, Himachal Pradesh, India.
| | - Lata Rani
- Chitkara School of Pharmacy, Chitkara University, Himachal Pradesh, India
| |
Collapse
|
8
|
Caponio G, Vendemia M, Mallardi D, Marsico AD, Alba V, Gentilesco G, Forte G, Velasco R, Coletta A. Pesticide Residues and Berry Microbiome after Ozonated Water Washing in Table Grape Storage. Foods 2023; 12:3144. [PMID: 37685075 PMCID: PMC10486638 DOI: 10.3390/foods12173144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/04/2023] [Accepted: 08/14/2023] [Indexed: 09/10/2023] Open
Abstract
Nowadays, different systems for reducing pesticides in table grapes are being tested at different production stages either in the field or in postharvest. The present study tested ozonated water treatments at the beginning of the cold storage of the Princess® seedless table grape variety to reduce the residue contents of some pesticides and to evaluate their effect on gray mold and the berry microbiome. An ozone generator capable of producing an ozone concentration ranging from 18 to 65 Nm3 was utilized for obtaining three ozone concentration levels in water: 3, 5 and 10 mg/L. Ozonated water was placed in a 70 L plastic box where 500 g grape samples closed in perforated plastic clamshell containers were immersed utilizing two washing times (5 and 10 min). Overall, six ozonated water treatments were tested. After the ozonated water treatments, all samples were stored for 30 days at 2 °C and 95% relative humidity to simulate commercial practices. The pesticide residue contents were determined before the ozonated water treatments (T0) and 30 days after the cold storage (T1). The treatments with ozonated water washing reduced the pesticide residues up to 100%, while the SO2 control treatment reduced the pesticide residues ranging from 20.7 to 60.7%. Using 3 mg/L ozonated water to wash grapes for 5 min represented the optimal degradation conditions for all of the analyzed pesticides, except for fludioxonil, which degraded better with a washing time of 10 min. The ozone treatments did not significantly reduce the gray mold and the fungal and bacterial microbiome, while a relevant reduction was observed in the yeast population.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Antonio Coletta
- CREA, Council for Agricultural Research and Economics, Research Center for Viticulture and Enology, 70010 Turi, Italy; (G.C.); (M.V.); (D.M.); (A.D.M.); (V.A.); (G.G.); (G.F.); (R.V.)
| |
Collapse
|
9
|
Bae JY, Lee DY, Oh KY, Jeong DK, Lee DY, Kim JH. Photochemical advanced oxidative process treatment effect on the pesticide residues reduction and quality changes in dried red peppers. Sci Rep 2023; 13:4444. [PMID: 36932134 PMCID: PMC10023666 DOI: 10.1038/s41598-023-31650-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Pesticide residues in crops are widely monitored, and the residue reduction techniques at the post-harvest stage are important to maintain food safety. In dried crops, pesticide residues can be concentrated after dehydration, which increases concerns regarding residue risk. Therefore, the residue reduction effects of ultraviolet (UV), ozone, and photochemical advanced oxidative process (pAOP) were investigated for dried peppers at the post-harvest stage. UV254 treatment reduced 59.7% of the residue concentration on average, while UV360 showed a reduction of only 13.3% under 9.6 W m-2 of UV exposure for 24 h. Gaseous ozone treatments reduced the residue concentrations up to 57.9% on average. In contrast, the pAOP treatment reduced the concentration up to 97% and was superior to UV or ozone treatment alone. Increased drying temperature under pAOP condition resulted in higher reduction ratios at 40-80 °C. The pAOP conditions with 12 and 24 µmol/mol of ozone and UV254 irradiation for 24-48 h reduced the residue concentrations to 39-67%. Particularly, difenoconazole, fludioxonil, imidacloprid, and thiamethoxam residue concentrations were drastically reduced by over 50% under 12 µmol/mol ozone of the pAOP condition, while carbendazim, fluquinconazole, and pyrimethanil were relatively stable and their concentrations reduced below 50% under 24 µmol/mol ozone of the pAOP treatment. Various drying-related quality parameters of drying peppers such as water-soluble color, capsanthin, capsaicinoids, acid value, peroxide value, and thiobarbituric acid value were slightly altered, but not significantly, under 12 µmol/mol ozone of the pAOP condition, while the peroxide value was significantly altered under the higher ozone conditions. Therefore, pAOP treatment combined with gaseous ozone can be used for reducing residual pesticides in peppers without greatly reducing quality.
Collapse
Affiliation(s)
- Ji-Yeon Bae
- Department of Agricultural Chemistry, Institutes of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Deuk-Yeong Lee
- Department of Agricultural Chemistry, Institutes of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Kyeong-Yeol Oh
- Department of Agricultural Chemistry, Institutes of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Dong-Kyu Jeong
- Department of Agricultural Chemistry, Institutes of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, 52727, Republic of Korea
- Anti-Aging Research Group, Gyeongnam Oriental Anti-Aging Institute, Sancheong, 52215, Republic of Korea
| | - Dong-Yeol Lee
- Department of Agricultural Chemistry, Institutes of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, 52727, Republic of Korea
- Anti-Aging Research Group, Gyeongnam Oriental Anti-Aging Institute, Sancheong, 52215, Republic of Korea
| | - Jin-Hyo Kim
- Department of Agricultural Chemistry, Institutes of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, 52727, Republic of Korea.
| |
Collapse
|
10
|
Li X, Liu C, Liu F, Zhang X, Peng Q, Wu G, Lin J, Zhao Z. Accelerated removal of five pesticide residues in three vegetables with ozone microbubbles. Food Chem 2023; 403:134386. [DOI: 10.1016/j.foodchem.2022.134386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 09/09/2022] [Accepted: 09/20/2022] [Indexed: 10/14/2022]
|
11
|
Wang S, Li C, Wang J, Wu Z, Bai B, Tian J, Wu Z. Degradation of malathion and carbosulfan by ozone water and analysis of their by-products. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:7072-7078. [PMID: 35690892 DOI: 10.1002/jsfa.12068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/14/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Treatment by ozone water is an emerging technology for the degradation of pesticide residues in vegetables. The ozone dissolved in water generates hydroxyl radicals (· OH), which are highly effective in decomposing organic substances, such as malathion and carbosulfan. RESULTS We found that washing pak choi with 2.0 mg L-1 ozone water for 30 min resulted in 58.3% and 38.2% degradation of the malathion and carbosulfan contents respectively, and the degradation rates of these pure pesticides were 83.0% and 66.3% respectively. In addition, the 'first + first'-order reaction kinetic model was found to predict the trend in the pesticide content during ozone water treatment. Based on investigations by gas chromatography-mass spectrometry combined with the structures of the pesticides, the by-products generated were identified. More specifically, the ozonation-based degradation of carbosulfan generated carbofuran and benzofuranol, whereas malathion produced succinic acid and phosphoric acid. Although some new harmful compounds were formed during degradation of the parent pesticides, these were only present in trace quantities and were transient intermediates that eventually disappeared during the reaction. CONCLUSION Our results, therefore, indicate that ozone water treatment technology for pesticide residue degradation is worthy of popularization and application. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shan Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Chen Li
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Jiayi Wang
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang, China
| | - Zhaohui Wu
- lnstitute of Food Processing, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Bing Bai
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Jinlong Tian
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Zhaoxia Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
12
|
Accelerated degradation of groundwater-containing malathion using persulfate activated magnetic Fe3O4/graphene oxide nanocomposite for advanced water treatment. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
13
|
Li Y, Sun J, Huang L, Liu S, Wang S, Zhang D, Zhu M, Wang J. Nanozyme-encoded luminescent detection for food safety analysis: An overview of mechanisms and recent applications. Compr Rev Food Sci Food Saf 2022; 21:5077-5108. [PMID: 36200572 DOI: 10.1111/1541-4337.13055] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 08/25/2022] [Accepted: 09/06/2022] [Indexed: 01/28/2023]
Abstract
With the rapid growth in global food production, delivery, and consumption, reformative food analytical techniques are required to satisfy the monitoring requirements of speed and high sensitivity. Nanozyme-encoded luminescent detections (NLDs) integrating nanozyme-based rapid detections with luminescent output signals have emerged as powerful methods for food safety monitoring, not only because of their preeminent performance in analysis, such as rapid, facile, low background signal, and ultrasensitive, but also due to their strong attractiveness for future sensing research. However, the lack of a full understanding of the fundamentals of NLDs for food safety detection technologies limits their further application. In this review, a systematic overview of the mechanisms of NLDs and their applications in the food industry is summarized, which covers the nanozyme-mimicking types and their luminescent signal generation mechanisms, as well as their applications in monitoring common foodborne contaminants. As demonstrated by previous studies, NLDs are bridging the gap to practical-oriented food analytical technologies and various opportunities to improve their food analytical performance to be considered in the future are proposed.
Collapse
Affiliation(s)
- Yuechun Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Jing Sun
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Lunjie Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Sijie Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Shaochi Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Daohong Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Mingqiang Zhu
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
14
|
Dissipation and processing factors of emamectin benzoate and tolfenpyrad in tea (Camellia Sinensis). JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01639-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
|
15
|
Siddique Z, Malik AU. Fruits and vegetables are the major source of food safety issues need to overcome at household level (traditional vs. green technologies): A comparative review. J Food Saf 2022. [DOI: 10.1111/jfs.13003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zarghona Siddique
- Postharvest Research and Training Centre, Institute of Horticultural Sciences University of Agriculture Faisalabad Pakistan
| | - Aman Ullah Malik
- Postharvest Research and Training Centre, Institute of Horticultural Sciences University of Agriculture Faisalabad Pakistan
| |
Collapse
|
16
|
Lamb RW, McAlexander H, Woodley CM, Shukla MK. Towards a comprehensive understanding of malathion degradation: comparison of degradation reactions under alkaline and radical conditions. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:1026-1036. [PMID: 35575998 DOI: 10.1039/d2em00050d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Malathion is a commercially available insecticide that functions by acting as an acetylcholinesterase inhibitor. Of significant concern, if left in the environment, some of the products observed from the degradation of malathion can function as more potent toxins than the parent compound. Accordingly, there are numerous studies revolving around possible degradation strategies to remove malathion from various environmental media. One of the possible approaches is the degradation of malathion by OH˙ radicals which could be produced from both artificial and biological means in the environment. While there is plenty of evidence that OH˙ does in fact degrade malathion, there is little understanding of the underlying mechanism by which OH˙ reacts with malathion. Moreover, it is not known how competitive the radical degradation pathway is with analogous alkaline degradation pathways. Even less is known about the reaction of additional OH˙ radicals with the degradation byproducts themselves. Herein, we demonstrate that OH˙ induced degradation pathways have variable competitiveness with OH- driven degradation pathways and, in some cases, produce quite different reactivity.
Collapse
Affiliation(s)
- Robert W Lamb
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Harley McAlexander
- US Army Engineer Research and Development Center, Environmental Laboratory, 3909 Halls Ferry Road, Vicksburg, MS 39180, USA.
| | - Christa M Woodley
- US Army Engineer Research and Development Center, Environmental Laboratory, 3909 Halls Ferry Road, Vicksburg, MS 39180, USA.
| | - Manoj K Shukla
- US Army Engineer Research and Development Center, Environmental Laboratory, 3909 Halls Ferry Road, Vicksburg, MS 39180, USA.
| |
Collapse
|
17
|
Sun Y, Wu Z, Zhang Y, Wang J. Use of aqueous ozone rinsing to improve the disinfection efficacy and shorten the processing time of ultrasound-assisted washing of fresh produce. ULTRASONICS SONOCHEMISTRY 2022; 83:105931. [PMID: 35092941 PMCID: PMC8801763 DOI: 10.1016/j.ultsonch.2022.105931] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/13/2022] [Accepted: 01/20/2022] [Indexed: 05/16/2023]
Abstract
In minimal processing industry, chlorine is widely used in the disinfection process and ultrasound (US) increases the disinfection efficacy of chlorine and reduces the cross-contamination incidence during washing. Tap water (TW), which has no disinfection effect, is generally used to rinse off sanitizer residues on the surface of disinfected fresh-cut vegetables. In this study, aqueous ozone (AO), a low-cost and residue-free sanitizer, was used to replace TW rinsing in combination with US (28 kHz)-chlorine (free chlorine [FC] at 10 ppm, a concentration recommended for industrial use) for the disinfection of fresh-cut lettuce as a model. US-chlorine (40 s) + 2.0 ppm AO (60 s) treatment resulted in browning spots on lettuce surface at the end of storage. In contrast, US-chlorine (40 s) + 1.0 ppm AO (60 s) did not lead to deterioration of the sensory quality (sensory crispness, color, and flavor) and a change in total color difference, and the activities of browning-related enzymes were significantly lower. Moreover, US-chlorine (40 s) + 1.0 ppm of AO (60 s) treatment led to significantly lower counts of Escherichia coli O157:H7, Salmonella Typhimurium, aerobic mesophilic (AMC), and molds and yeasts (M&Y) on days 0-7 than US-chlorine (60 s) + TW (60 s) and single 1.0 ppm AO (120 s) treatments, suggesting that AO provided an additional disinfection effect over TW, while reducing the overall processing time by 20 s. Cell membrane permeability analysis (alkaline phosphatase, protein, nucleotide, and adenosine triphosphate leakage) showed that the combination with 1.0 ppm AO caused more severe cell membrane damage in E. coli O157:H7 and S. Typhimurium, explaining the higher disinfection efficacy. 16S rRNA sequencing revealed that following US-chlorine (40 s) + 1.0 ppm of AO (60 s) treatment, Massilia and Acinetobacter had higher relative abundances (RAs) on day 7 than after US-chlorine (60 s) + TW (60 s) treatment, whereas the RAs of Escherichia-Shigella was significantly lower, indicating that the former treatment has a superior capacity in maintaining a stable microbial composition. This explains from an ecological point of view why US-chlorine (40 s) + 1.0 ppm of AO (60 s) led to the lowest AMC and M&Y counts during storage. The study results provide evidence that AO has potential as an alternative to TW rinsing to increase the disinfection efficacy of US-chlorine.
Collapse
Affiliation(s)
- Yeting Sun
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Zhaoxia Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110000, China
| | - Yangyang Zhang
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China
| | - Jiayi Wang
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China.
| |
Collapse
|
18
|
Premjit Y, Sruthi NU, Pandiselvam R, Kothakota A. Aqueous ozone: Chemistry, physiochemical properties, microbial inactivation, factors influencing antimicrobial effectiveness, and application in food. Compr Rev Food Sci Food Saf 2022; 21:1054-1085. [DOI: 10.1111/1541-4337.12886] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 11/04/2021] [Accepted: 11/25/2021] [Indexed: 12/29/2022]
Affiliation(s)
- Yashaswini Premjit
- Agricultural & Food Engineering Department Indian Institute of Technology Kharagpur West Bengal India
| | - N. U. Sruthi
- Agricultural & Food Engineering Department Indian Institute of Technology Kharagpur West Bengal India
| | - R. Pandiselvam
- Physiology, Biochemistry and Post Harvest Technology Division ICAR‐Central Plantation Crops Research Institute (CPCRI) Kasaragod Kerala India
| | - Anjineyulu Kothakota
- Agro‐Processing & Technology Division CSIR‐National Institute for Interdisciplinary Science and Technology (NIIST) Trivandrum Kerala India
| |
Collapse
|
19
|
The efficacy of washing strategies in the elimination of fungicide residues and the alterations on the quality of bell peppers. Food Res Int 2021; 147:110579. [PMID: 34399550 DOI: 10.1016/j.foodres.2021.110579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 06/22/2021] [Accepted: 06/27/2021] [Indexed: 11/20/2022]
Abstract
Food safety problems caused by pesticide residues in vegetables have become a top issue to raise public concern. In this study, bell peppers were grown in an experimental field and sprayed with two systemic (azoxystrobin and difenoconazole) and one contact (chlorothalonil) fungicides. Ozone (ozonated water and water continuously bubble with ozone) or conventional domestic (washing with distilled water, detergent, acetic acid, sodium bicarbonate, and sodium hypochlorite solutions) procedures were investigated to identify the most effective way to remove fungicide residues in bell peppers. The residues in the fruits and the washing solutions were determined by solid-liquid extraction with a low-temperature partition (SLE/LTP) and liquid-liquid extraction with a low-temperature partition (LLE/LTP), respectively, and analyzed by gas chromatography. Water continuously bubbled with ozone a concentration of 3 mg L-1 was the most efficient treatment with removal of fungicides residues ranging from 67% to 87%. However, similar treatment at a lower concentration (1 mg L-1) did not only efficiently removed fungicide residues (between 53% and 75%) but also preserving the quality of the fruit along a storage time of 13 days. Among the conventional solutions, sodium bicarbonate at 5% showed good efficiency removing between 60% and 81% of the fungicide residues from bell peppers, affecting the color quality of the fruit. Overall, the most affected physicochemical parameters in bell peppers after the treatments were weight loss, color, and vitamin C content.
Collapse
|
20
|
Non-destructive detection and recognition of pesticide residues on garlic chive (Allium tuberosum) leaves based on short wave infrared hyperspectral imaging and one-dimensional convolutional neural network. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01012-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|