1
|
Pei XC, Yin FW, Jin ML, Wang XM, Liu HL, Song L, Zhu BW, Zhou DY. Revealing the oxidation mechanism of Antarctic krill oil induced by metal ion: Focusing on the influence of reverse micelles. Food Chem 2025; 481:144134. [PMID: 40179508 DOI: 10.1016/j.foodchem.2025.144134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/21/2025] [Accepted: 03/29/2025] [Indexed: 04/05/2025]
Abstract
Water-soluble copper (CuSO4), oil-soluble copper and different amount of water were added to demetallized and dehydrated Antarctic krill oil (AKO) for accelerated storage. The results showed that water-soluble copper (100 μmol/kg oil) could not significantly promote the oxidation of dehydrated AKO. While water-soluble copper (100 μmol/kg oil) exhibited stronger prooxidative property than oil-soluble copper (100 μmol/kg oil) in AKOs adding water. Meantime, with prolonged storage time of AKO adding water, the size of reverse micelle increased, the electronegativity and surface tension of the oil-water interface decreased, and adding water-soluble copper ions aggravated the above changes. Therefore, it was speculated that Cu2+ is adsorbed to the oil-water interface by the action of electric charge to promote the oxidation of phospholipids containing unsaturated fatty acids (UFAs) and free UFAs present at the interface by initiating the free radical chain reaction, thereby accelerating the oxidation of AKO.
Collapse
Affiliation(s)
- Xue-Chen Pei
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Fa-Wen Yin
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Meng-Ling Jin
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Xin-Miao Wang
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Hui-Lin Liu
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Liang Song
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Bei-Wei Zhu
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Da-Yong Zhou
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China.
| |
Collapse
|
2
|
Gao X, Tang T, Li J, Gu L, Chang C, Su Y, Yang Y. Extraction of egg yolk lipids via salt-induced synergistic heat treatment: Fabrication, characterization and flavor analysis. Food Chem 2024; 461:140958. [PMID: 39191037 DOI: 10.1016/j.foodchem.2024.140958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/25/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024]
Abstract
In this study, the oxidation of egg yolk lipids (EYL) by salt-induced heat and non-heat treatments was investigated for quality and flavor. The correlation between physicochemical properties, lipid oxidation and antioxidant activity was modeled using partial least squares discriminant analysis (PLS-DA). The results indicated that the prolonged salt-induced synergistic heat treatment produced the highest level of lipid oxidation, antioxidant activity and oil exudation, along with the lowest level of polyunsaturated fatty acid content. In addition, higher contents of pyrazines and fewer acid species were detected, which was not the case with the salt-free heat treatment. In total, 14 identical volatile organic compounds (VOCs) were produced, yet their overall flavor profiles determined by the electronic nose would remain dramatically distinguished. Therefore, heat treatment was particularly critical for lipid oxidation and the generation of aromatic compounds, implying that heat-treated EYL induced by salt is a flavor component with good antioxidant potential.
Collapse
Affiliation(s)
- Xuejing Gao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Tingting Tang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Junhua Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Luping Gu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Cuihua Chang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yujie Su
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Yanjun Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
3
|
Guo Y, Pina A, Gabbanini S, Valgimigli L. Absolute kinetics of peroxidation and antioxidant protection of intact triglyceride vegetable oils. Food Chem 2024; 452:139289. [PMID: 38713979 DOI: 10.1016/j.foodchem.2024.139289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/31/2024] [Accepted: 04/07/2024] [Indexed: 05/09/2024]
Abstract
To verfy their difference from isolated fatty acids, the absolute kinetics of peroxidation was studied for seven triglyceride-based oils of olive (OLI-1, OLI-2), high-oleic sunflower (SUN-HO), high-oleic and high-linoleic safflower (SAF-HO, SAF-HL) grapeseed (GRA) and borage (BOR), by oxygen uptake monitoring, using 2,6-di-tert-butyl-4-methoxyphenol and 2,2,5,7,8-pentamethyl-6-chromanol as reference inhibitors. Propagation constants (kp/M-1 s-1 at 303 K in PhCl) were respectively 34.8 ± 2.3, 35.1 ± 1.8, 40.6 ± 5.5, 36.0 ± 7.7, 160.8 ± 5.1, 145.1 ± 24.5, 275.1 ± 63.8, while oxidizability responded to empirical equation kp(2kt)-½/M-½s-½ = 1.63 × 10-3[allyl >CH2/M] + 1.82 × 10-2[bisallyl >CH2/M], based on fatty acids residues assessed by GC-MS. Peroxidation kinetics was markedly different from that of isolated fatty acids. The H-bond basicity of all oils was measured by FT-IR affording Abraham's βH2 values in the range 0.55 ± 0.03. H-bonding explained the protection of oils measured for seven reference phenolic antioxidants, except for the catechols quercetin and caffeic acid phenethyl ester, which were 2-to-4-folds more effective than expected, supporting a proposed different mechanism.
Collapse
Affiliation(s)
- Yafang Guo
- University of Bologna, Department of Chemistry "G. Ciamician", Via P. Gobetti 85, 40129 Bologna, Italy
| | - Albert Pina
- University of Bologna, Department of Chemistry "G. Ciamician", Via P. Gobetti 85, 40129 Bologna, Italy
| | - Simone Gabbanini
- BeC s.r.l., R&D Division, Via C. Monteverdi 49, 47122 Forlì, Italy
| | - Luca Valgimigli
- University of Bologna, Department of Chemistry "G. Ciamician", Via P. Gobetti 85, 40129 Bologna, Italy; Tecnopolo di Rimini, Via Dario Campana 71, 47922 Rimini, Italy.
| |
Collapse
|
4
|
Wang X, Chen Y, McClements DJ, Meng C, Zhang M, Chen H, Deng Q. Recent advances in understanding the interfacial activity of antioxidants in association colloids in bulk oil. Adv Colloid Interface Sci 2024; 325:103117. [PMID: 38394718 DOI: 10.1016/j.cis.2024.103117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/07/2024] [Accepted: 02/18/2024] [Indexed: 02/25/2024]
Abstract
The chemical stability of edible oils rich in polyunsaturated fatty acids (PUFAs) is a major challenge within the food and supplement industries, as lipid oxidation reduces oil quality and safety. Despite appearing homogeneous to the human eye, bulk oils are actually multiphase heterogeneous systems at the nanoscale level. Association colloids, such as reverse micelles, are spontaneously formed within bulk oils due to the self-assembly of amphiphilic molecules that are present, like phospholipids, free fatty acids, and/or surfactants. In bulk oil, lipid oxidation often occurs at the oil-water interface of these association colloids because this is where different reactants accumulate, such as PUFAs, hydroperoxides, transition metals, and antioxidants. Consequently, the efficiency of antioxidants in bulk oils is governed by their chemical reactivity, but also by their ability to be located close to the site of oxidation. This review describes the impact of minor constituents in bulk oils on the nature of the association colloids formed. And then the formation of mixed reverse micelles (LOOH, (co)surfactants, or antioxidations) during the peroxidation of bulk oils, as well as changes in their composition and structure over time are also discussed. The critical importance of selecting appropriate antioxidants and surfactants for the changes of interface and colloid, as well as the inhibition of lipid oxidation is emphasized. The knowledge presented in this review article may facilitate the design of bulk oil products with improved resistance to oxidation, thereby reducing food waste and improving food quality and safety.
Collapse
Affiliation(s)
- Xintian Wang
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Science, Wuhan, China
| | - Yashu Chen
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Science, Wuhan, China
| | | | - Chen Meng
- College of Biological Engineering and Food, Hubei University of Technology, Wuhan, China
| | - Mingkai Zhang
- College of Food and Biological Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Hongjian Chen
- College of Health Science and Engineering, Hubei University, Wuhan, China.
| | - Qianchun Deng
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Science, Wuhan, China.
| |
Collapse
|
5
|
Jia W, Wu X, Kang X. Integrated the embedding delivery system and targeted oxygen scavenger enhances free radical scavenging capacity. Food Chem X 2023; 17:100558. [PMID: 36845467 PMCID: PMC9943856 DOI: 10.1016/j.fochx.2022.100558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
World trends in oil crop growing area, yield, and production over the last 10 years exhibited an increase of 48 %, 82 %, and 240 %, respectively. Concerning reduced shelf-life of oil-containing food products caused by oil oxidation and the demand for sensory quality of oil, the development of methods the improvement oil quality is urgently required. This critical review presented a concise overview of the recent literature related to the inhibition ways of oil oxidation. The mechanism of different antioxidants and nanoparticle delivery systems on oil oxidation was also explored. The current review provides scientific findings on control strategies: (i) design oxidation quality assessment model; (ii) packaging by antioxidant coatings and eco-friendly film nanocomposite: ameliorate physicochemical properties; (iii) molecular investigations on inhibitory effects of selected antioxidants and underlying mechanisms; (iv) explore the interrelationship between the cysteine/citric acid and lipoxygenase pathway in the progression of oxidative/fragmentation degradation of unsaturated fatty acid chains.
Collapse
Key Words
- Antioxidant control strategies
- Antioxidations
- BHA, butyl hydroxy anisole
- BHT, butylated hydroxytoluene
- FDA, Food and Drug Administration
- HPLC, high performance liquid chromatography
- HPODE, hydroperoxyoctadecadienoic acid
- LC, liquid chromatography
- Linoleic acid
- Lipoxygenase
- MDA, malondialdehyde
- MPN, metal-polyphenol network
- MS, mass spectrometry
- MUFA, monounsaturated fatty acid
- Nanocomposite packaging
- Nanoparticle delivery system
- PUFA, polyunsaturated fatty acid
- SFA, saturated fatty acid
- TA, tannic acid
- TBHQ, tert-butyl hydroquinone
- US FDA, US Food and Drug Administration
Collapse
Affiliation(s)
- Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xinyu Wu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xin Kang
- Department of Foot and Ankle Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
6
|
Keramat M, Ehsandoost E, Golmakani MT. Recent Trends in Improving the Oxidative Stability of Oil-Based Food Products by Inhibiting Oxidation at the Interfacial Region. Foods 2023; 12:foods12061191. [PMID: 36981117 PMCID: PMC10048451 DOI: 10.3390/foods12061191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/03/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
In recent years, new approaches have been developed to limit the oxidation of oil-based food products by inhibiting peroxidation at the interfacial region. This review article describes and discusses these particular approaches. In bulk oils, modifying the polarity of antioxidants by chemical methods (e.g., esterifying antioxidants with fatty alcohol or fatty acids) and combining antioxidants with surfactants with low hydrophilic–lipophilic balance value (e.g., lecithin and polyglycerol polyricinoleate) can be effective strategies for inhibiting peroxidation. Compared to monolayer emulsions, a thick interfacial layer in multilayer emulsions and Pickering emulsions can act as a physical barrier. Meanwhile, high viscosity of the water phase in emulsion gels tends to hinder the diffusion of pro-oxidants into the interfacial region. Furthermore, applying surface-active substances with antioxidant properties (such as proteins, peptides, polysaccharides, and complexes of protein-polysaccharide, protein-polyphenol, protein-saponin, and protein-polysaccharide-polyphenol) that adsorb at the interfacial area is another novel method for enhancing oil-in-water emulsion oxidative stability. Furthermore, localizing antioxidants at the interfacial region through lipophilization of hydrophilic antioxidants, conjugating antioxidants with surfactants, or entrapping antioxidants into Pickering particles can be considered new strategies for reducing the emulsion peroxidation.
Collapse
|
7
|
Mikołajczak N, Tańska M, Ogrodowska D, Czaplicki S. Efficacy of canolol and guaiacol in the protection of cold-pressed oils being a dietary source linoleic acid against oxidative deterioration. Food Chem 2022; 393:133390. [DOI: 10.1016/j.foodchem.2022.133390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 11/28/2022]
|
8
|
Kim S, Kim S, Oh WY, Lee Y, Lee J. Evaluation of the effects of amphiphilic compounds on oxygen solubility in bulk oil. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- SeHyeok Kim
- Department of Food Science and Biotechnology Sungkyunkwan University Suwon Republic of Korea
| | - SungHwa Kim
- Department of Food Science and Biotechnology Sungkyunkwan University Suwon Republic of Korea
| | - Won Young Oh
- Department of Food Science and Biotechnology Sungkyunkwan University Suwon Republic of Korea
| | - YoonHee Lee
- Department of Food Science and Biotechnology Sungkyunkwan University Suwon Republic of Korea
| | - JaeHwan Lee
- Department of Food Science and Biotechnology Sungkyunkwan University Suwon Republic of Korea
| |
Collapse
|
9
|
Park S, Kim MJ, Lee JH. Physicochemical properties and volatile formation mechanism of medium-chain triacylglycerols during heating. J Food Sci 2022; 87:2616-2625. [PMID: 35593269 DOI: 10.1111/1750-3841.16162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/13/2022] [Accepted: 04/08/2022] [Indexed: 11/27/2022]
Abstract
Medium-chain triacylglycerols (MCTs), including caprylic acid (C8), a mixture of caprylic acid and capric acid (C8+C10), and high-MCT coconut oil (HMCO), were heated at 180°C. Their volatile profiles were analyzed to determine the MCT degradation mechanisms. As heating time increased to 10 h, secondary oxidation products and acid value of all samples increased continuously. Ketones, alkanes, fatty acid anions, fatty acid esters, and lactones were found in all heated MCTs. 2-Hexanone and heptane were detected in C8 after 2 h of heating, and 2-heptanone, heptanal, methyl octanoate, γ-octalactone, and δ-octalactone were detected after 4 h. For the C8+C10, ketones, alkanes, and aldehydes were first observed. Hydrolysis and decarboxylation seem to occur first for ketone and alkane formation. Cracking and cyclization may occur later for fatty acid esters and lactones in heated MCTs. This result can help to understand thermal decomposition mechanisms of saturated fatty acids like MCTs. PRACTICAL APPLICATION: Medium-chain triacylglycerols (MCTs) have been used in cosmetic and fragrance industries due to their high oxidative stability, relatively high polarity, and smooth textures. In addition, MCTs have gained popularity among consumers for their health beneficial effects. MCTs could be used as major continuous phases for many food ingredients receiving high thermal energy for cooking. The results of this study can provide basic and useful information on the physicochemical properties and thermally decomposed volatile profiles from MCTs, which can help to produce stable processed products with lengthy shelf-lives in the food industry.
Collapse
Affiliation(s)
- SoYoon Park
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Mi-Ja Kim
- Department of Food and Nutrition, Kangwon National University, Samcheok, Republic of Korea
| | - Jae Hwan Lee
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
10
|
Incorporation of Trigonella Foenum-Graecum seed powder in meat emulsion systems with olive oil: effects on physicochemical, texture, and color characteristics. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:2060-2070. [PMID: 35531411 PMCID: PMC9046502 DOI: 10.1007/s13197-021-05220-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/13/2021] [Accepted: 07/25/2021] [Indexed: 10/20/2022]
Abstract
Six meat emulsion treatments were manufactured, depending on the addition of Trigonella seed powder. Meat emulsions were prepared with starch as control treatment, Trigonella seed powder (Tfg) or defatted Trigonella seed powder (Dtfg) in two percentages 2% and 4%. Cooking losses, lipid oxidation degree, meat emulsion stability through measurement of total released fluid, water released, fat released, TPA attributes and color parameters were evaluated. Cooking loss and fat, fluid releases were lower in Tfg and Dtfg samples related to Starch. Also, lipid oxidation was higher (P < 0,05) in Tfg samples than Dtfg or Starch. Hardness, chewiness and gumminess were lower (P < 0,05) in Tfg and Dtfg samples than Starch samples. The a* values in samples with starch were reduced rapidly (P < 0,05) than Tfg and Dtfg values during preservation. These results show that Trigonella Foenum-Graecum seed powder is an efficient candidate for improving quality of emulsion type meat products with vegetable oils as animal fat replacers.
Collapse
|
11
|
Bąkowska E, Siger A, Rudzińska M, Dwiecki K. Water content, critical micelle concentration of phospholipids and formation of association colloids as factors influencing autoxidation of rapeseed oil. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:488-495. [PMID: 34138466 DOI: 10.1002/jsfa.11376] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/30/2021] [Accepted: 06/17/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The exact mechanism of lipid autoxidation in vegetable oils, taking into account physical aspects of this phenomenon, including the role of association colloids, is still not fully understood. The purpose of this study was to consider changes in moisture content and DOPC phospholipid (1,2-dioleoyl-sn-glycero-3-phosphocholine) critical micelle concentration (CMC) in rapeseed oil during autoxidation as well as to find the relationship between these parameters and the accumulation of primary and secondary lipid oxidation products. RESULTS The experiments were performed at initial oil humidity 220 ppm and 700 ppm, with DOPC below and above CMC. The increase in water concentration was favored by the presence of phospholipids above CMC and, at the same time, high initial water level, which favored oxidation processes and the creation of amphiphilic autoxidation products. At relatively high water level and low amphiphilic DOPC concentration, the growth of water content does not affect the concentration of oxidation products. CONCLUSION Amphiphilic substances play a significant role in increasing the water content of oil. Autoxidation products may reduce CMC of DOPC, but water is able to compensate for the CMC-reducing effect of oxidation products. The presence of association colloids and initial water content play a crucial role in the oxidation process of rapeseed oil. The increase in water concentration does not cause a sufficiently large increase in the number of micelles or sufficiently significant changes in their structure to effect an increase in the level of oxidation products. The formation of micelles requires an appropriate content of both water and amphiphilic substances derived from seeds (phospholipids). © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ewa Bąkowska
- Department of Food Biochemistry and Analysis, Poznań University of Life Sciences, Poznań, Poland
| | - Aleksander Siger
- Department of Food Biochemistry and Analysis, Poznań University of Life Sciences, Poznań, Poland
| | - Magdalena Rudzińska
- Institute of Food Technology of Plant Origin, Poznań University of Life Sciences, Poznań, Poland
| | - Krzysztof Dwiecki
- Department of Food Biochemistry and Analysis, Poznań University of Life Sciences, Poznań, Poland
| |
Collapse
|
12
|
Villeneuve P, Bourlieu-Lacanal C, Durand E, Lecomte J, McClements DJ, Decker EA. Lipid oxidation in emulsions and bulk oils: a review of the importance of micelles. Crit Rev Food Sci Nutr 2021:1-41. [PMID: 34839769 DOI: 10.1080/10408398.2021.2006138] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Lipid oxidation is a major cause of quality deterioration in food products. In these foods, lipids are often present in a bulk or in emulsified forms. In both systems, the rate, extent and pathway of oxidation are highly dependent on the presence of colloidal structures and interfaces because these are the locations where oxidation normally occurs. In bulk oils, reverse micelles (association colloids) are present and are believed to play a crucial role on lipid oxidation. Conversely, in emulsions, surfactant micelles are present that also play a major role in lipid oxidation pathways. After a brief description of lipid oxidation and antioxidants mechanisms, this review discusses the current understanding of the influence of micellar structures on lipid oxidation. In particular, is discussed the major impact of the presence of micelles in emulsions, or reverse micelles (association colloids) in bulk oil on the oxidative stability of both systems. Indeed, both micelles in emulsions and associate colloids in bulk oils are discussed in this review as nanoscale structures that can serve as reservoirs of antioxidants and pro-oxidants and are involved in their transport within the concerned system. Their role as nanoreactors where lipid oxidation reactions occur is also commented.
Collapse
Affiliation(s)
- Pierre Villeneuve
- CIRAD, UMR QualiSud, Montpellier, France.,QualiSud, Univ Montpellier, CIRAD, Montpellier SupAgro, Université d'Avignon, Université de La Réunion, Montpellier, France
| | - Claire Bourlieu-Lacanal
- QualiSud, Univ Montpellier, CIRAD, Montpellier SupAgro, Université d'Avignon, Université de La Réunion, Montpellier, France.,UMR IATE, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
| | - Erwann Durand
- CIRAD, UMR QualiSud, Montpellier, France.,QualiSud, Univ Montpellier, CIRAD, Montpellier SupAgro, Université d'Avignon, Université de La Réunion, Montpellier, France
| | - Jérôme Lecomte
- CIRAD, UMR QualiSud, Montpellier, France.,QualiSud, Univ Montpellier, CIRAD, Montpellier SupAgro, Université d'Avignon, Université de La Réunion, Montpellier, France
| | | | - Eric A Decker
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
13
|
Kim C, Jo S, Kim S, Kim MJ, Lee J. Distribution of aldehydes compared to other oxidation parameters in oil matrices during autoxidation. Food Sci Biotechnol 2021; 30:1195-1203. [PMID: 34603819 DOI: 10.1007/s10068-021-00956-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/11/2021] [Accepted: 07/22/2021] [Indexed: 10/20/2022] Open
Abstract
Distribution of aldehydes between headspace (HS) and inner matrix (IM) of bulk oil or oil-in-water (O/W) emulsion was determined and contents of aldehydes were compared with other oxidation parameters in soybean oil or O/W emulsion during 50 °C autoxidation. Bulk oil matrix had higher portion of IM aldehydes than O/W emulsion. HS aldehydes in O/W emulsion reflected aldehyde content better than in bulk oil. Moisture content in soybean oil increased distinctively before the generation of oxidation products including hydroperoxides and volatiles. HS aldehydes and other oxidation parameters were simultaneously increased in soybean oil. In case of O/W emulsion, HS aldehydes had a sudden increase point while lipid hydroperoxides and conjugated did not show such increase during autoxidation. HS aldehydes reflected oxidation stage better in O/W emulsion than in bulk oil based on partition distribution and linear changes during autoxidation.
Collapse
Affiliation(s)
- ChanHyung Kim
- Department of Food Science and Biotechnology, Sungkyunkwan University, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419 Republic of Korea
| | - Seungbeen Jo
- Department of Food Science and Biotechnology, Sungkyunkwan University, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419 Republic of Korea
| | - SungHwa Kim
- Department of Food Science and Biotechnology, Sungkyunkwan University, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419 Republic of Korea
| | - Mi-Ja Kim
- Department of Food and Nutrition, Kangwon National University, Samcheok, Republic of Korea
| | - JaeHwan Lee
- Department of Food Science and Biotechnology, Sungkyunkwan University, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419 Republic of Korea
| |
Collapse
|