1
|
Li ZL, Qi XR, Xu YH, Zhao JQ, Zuo GF, Wang MM. Highly efficient and convenient QuEChERS using ZIF-67 derived magnetic nanoporous carbon for determination of carbamate pesticides in various vegetable and fruit samples. Food Chem 2025; 472:142904. [PMID: 39848044 DOI: 10.1016/j.foodchem.2025.142904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/05/2025] [Accepted: 01/12/2025] [Indexed: 01/25/2025]
Abstract
Effective and convenient QuEChERS of lipophilic pesticides with wide pKa range from strongly pigment-rich food samples remains a great challenge. Here, a ZIF-67 derived magnetic nanoporous carbon (Co@MPC) was firstly proposed for modified QuEChERS of carbamate pesticides (pKa 4.3-12.3) in various vegetable and fruit samples prior to LC-MS/MS. This sorbent offered superior adsorption capacities of 29.89 mg/g and 22.28 mg/g towards chlorophyll and lutein via π-π and hydrophobic interactions. The present method exhibited acceptable matrix effect of -4.8 %-14.4 %, low detection limits of 0.003-0.02 μg/kg and satisfactory recoveries of 80.2 %-108 % in celery, cabbage, Chinese cabbage, apple, banana and orange samples. 10 mg of Co@MPC enabled highly efficient matrix purification and isolation in 20 s, offering low-cost and facile clean-up process. The study highlighted great potential of Co@MPC as QuEChERS sorbent, and demonstrated its wide applicability and broad application prospects to monitor the contaminants in food items.
Collapse
Affiliation(s)
- Zi-Ling Li
- School of Public Health, Hebei Key Laboratory of Occupational Health and Safety for Coal Industry, North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Xiao-Run Qi
- School of Public Health, Hebei Key Laboratory of Occupational Health and Safety for Coal Industry, North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Yi-Heng Xu
- School of Public Health, Hebei Key Laboratory of Occupational Health and Safety for Coal Industry, North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Jia-Qi Zhao
- School of Public Health, Hebei Key Laboratory of Occupational Health and Safety for Coal Industry, North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Gui-Fu Zuo
- College of Materials Science and Engineering, North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Man-Man Wang
- School of Public Health, Hebei Key Laboratory of Occupational Health and Safety for Coal Industry, North China University of Science and Technology, Tangshan 063210, Hebei, China.
| |
Collapse
|
2
|
Wang J, Yang HY, Fan JJ, Xu ZH, Pang ZH, Feng Y, Wei N. A QuEChERS method based on octadecyl-bonded hectorite for the determination of ten mycotoxins in yak ghee. ANAL SCI 2025; 41:13-21. [PMID: 39259471 DOI: 10.1007/s44211-024-00667-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024]
Abstract
To develop a clean-up material suitable for high-fat food matrices for detecting mycotoxins in yak ghee, an octadecyl-bonded hectorite (Hectorite@NHCO(CH2)17CH3) was synthesized through multi-step chemical reactions. A modified QuEChERS-HPLC-MS/MS method for detecting ten mycotoxins in sesame oil in yak ghee was established using Hectorite@NHCO(CH2)17CH3 as clean-up agent. It involved extracting mycotoxin contaminants using acidified acetonitrile and employing the Hectorite@NHCO(CH2)17CH3 to remove interfering substances from the extract. The purified samples were then analyzed using HPLC-MS/MS. Within a linear range of 1.0-500 μg/kg, there was a good linear relationship between the quantification ion peak area of the target analytes and the corresponding concentrations (R2 ≥ 0.9991). The limit of detection (LOD) ranged from 0.10 μg/kg to 18.62 μg/kg and the limit of quantitation (LOQ) ranged 0.32-62.07 μg/kg. The recoveries at low, medium and high concentrations (25, 100 and 500 μg/kg) ranged from 72.2% to 113.9%, with relative standard deviations (RSD) between 3.2% and 17.5%. The intra-day and inter-day precision met experimental requirements. The proposed method was characterized by a high accuracy and precision, and it could cater to the current demand for detecting ten mycotoxins in yak ghee.
Collapse
Affiliation(s)
- Jun Wang
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, 473004, China
| | - Hai-Yan Yang
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, 473004, China
| | - Jia-Jia Fan
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, 473004, China
| | - Zi-Han Xu
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, 473004, China
| | - Zai-Hui Pang
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, 473004, China
| | - Yuan Feng
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, 473004, China
| | - Na Wei
- Institute of Agricultural Product Quality Standard and Testing Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850032, China.
| |
Collapse
|
3
|
Zhu J, Dong Y, Wang Q, Han J, Li Z, Xu D, Fischer L, Ulbricht M, Ren Z. Advancements in magnetic catalysts: Preparation, modification, and applications in photocatalytic and environmental remediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177595. [PMID: 39571808 DOI: 10.1016/j.scitotenv.2024.177595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 12/06/2024]
Abstract
Owing to their widely available source materials, simple magnetic separation, and low cost, magnetic catalysts have demonstrated considerable application potential in modern photocatalysis technologies and environmental remediation. This review summarizes the synthesis and modification methods of magnetic catalysts and describes recent advances using different synthesis methods. Several key problems still need to be solved in the existing progress, such as the fact that the catalytic activity of magnetic catalysts decreases over time. Under an external magnetic field, magnetic catalysts exhibit satisfactory energy bandgaps and charge transfer rates for photocatalysis, enabling wide and comprehensive photocatalytic applications. In addition, they are strong candidate materials for wastewater treatment and new-energy applications. In summary, the review provides future directions for the development of novel magnetic catalysts, contaminant removal, and even large-scale practical applications.
Collapse
Affiliation(s)
- Jinyu Zhu
- Tianjin Key Laboratory of Clean Energy and Pollutant Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Yilin Dong
- Tianjin Key Laboratory of Clean Energy and Pollutant Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Qiuwen Wang
- Tianjin Key Laboratory of Clean Energy and Pollutant Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Jinlong Han
- Tianjin Key Laboratory of Clean Energy and Pollutant Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Zexun Li
- Tianjin Key Laboratory of Clean Energy and Pollutant Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Dongyu Xu
- Tianjin Key Laboratory of Clean Energy and Pollutant Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Lukas Fischer
- Lehrstuhl für Technische Chemie II and Center for Envirommental Research (ZWU), Universität Duisburg-Essen, 45117 Essen, Germany
| | - Mathias Ulbricht
- Lehrstuhl für Technische Chemie II and Center for Envirommental Research (ZWU), Universität Duisburg-Essen, 45117 Essen, Germany
| | - Zhijun Ren
- Tianjin Key Laboratory of Clean Energy and Pollutant Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China; School of Chemical Engineering and Technology, Xinjiang University, Xinjiang 830017, China.
| |
Collapse
|
4
|
Bai R, Chang Q, Zhang H, Wang X, Chen H, Bai Y, Qiu G, Pang G, Wang K, Zhao M, Zhang X. Simultaneous determination of pesticides, mycotoxins and ferulic acid in Angelica sinensis by GC/LC-Q-TOF/MS. J Chromatogr A 2024; 1737:465437. [PMID: 39418934 DOI: 10.1016/j.chroma.2024.465437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024]
Abstract
In this study, a strong applicable method that could determine a total of 33 pesticides (54 compounds), 11 mycotoxins and functional components (ferulic acid) simultaneously in Angelica sinensis was developed. The compatibility of the sample pretreatment method for pesticides, mycotoxins, and functional components was improved by optimizing the acidity of extraction solvents, the sequence of ice bath and oscillation, the volumetric solution, and so on. The PRiME HLB SPE pretreatment method was chosen as the optimal one when comparing four pretreatment methods. Among the 65 contaminants, 38 of those determined by liquid chromatography and 41 of those by gas chromatography, which showed good linearity (R2 > 0.9801), 97 % of them had a limit of quantitation (LOQ) of lower than 0.02 mg kg-1. The recovery of all compounds were suited between 70 % to 120 % and the RSD were all lower than 20 % at the spiked levels of LOQ, 2 × LOQ, and 10 × LOQ. For ferulic acid, the LOQ was 50 ng/mL, and it showed good linearity (R2=0.9988) within the range of 0.5 to 10 μg/mL. The recovery and RSD were 98.1 %, and 3.2 % (n = 6), respectively. The simultaneous determination of cross-category compounds in a single sample preparation was obtained by the combination of SPE and GC/LC-Q-TOF/MS. Therefore, this study could not only shorten the time for data acquisition and data analysis, but also improve the experimental efficiency.
Collapse
Affiliation(s)
- Ruobin Bai
- Food Laboratory of Zhongyuan, Henan, China
| | - Qiaoying Chang
- Chinese Academy of Inspection and Quarantine, Beijing, China.
| | - Hongyan Zhang
- Lanzhou Institute for Food and Drug Control, Lanzhou, Gansu, China
| | - Xiaofang Wang
- Gansu Pharmaceutical Group Science and Technology Research Institute Co.Ltd., Gansu,China.
| | - Hui Chen
- Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Yuting Bai
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China
| | - Guoyu Qiu
- Gansu Pharmaceutical Group Science and Technology Research Institute Co.Ltd., Gansu,China
| | - Guofang Pang
- Food Laboratory of Zhongyuan, Henan, China; Chinese Academy of Inspection and Quarantine, Beijing, China
| | | | | | | |
Collapse
|
5
|
Zhu S, Wang T, Xu Q, Wu Y, Gan N. Magnetic covalent organic framework as an absorbent coupled with a portable mass spectrometer for rapid detection of malachite green and its metabolite residues. J Chromatogr A 2024; 1736:465407. [PMID: 39368192 DOI: 10.1016/j.chroma.2024.465407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/15/2024] [Accepted: 09/28/2024] [Indexed: 10/07/2024]
Abstract
It is important to develop specific adsorbents for malachite green and other fish drug residues. Herein, a simple strategy for synthesizing a novel magnetic covalent organic frameworks (rFe3O4@Py-COF) has been studied, and the materials were used as a magnetic absorbent for solid phase extraction (MSPE) of malachite green (MG) and its metabolite as leucomalachite green (LMG) in fishes. In this study, the mild reduction program of formic acid replacing traditional sodium borohydride as a reducing agent has been adopted to increase the stability of the framework, which can maintain the original high crystallinity and surface area of the reduced COF. The secondary amine bond is expected to be used as the reaction center for further functionalization of COF pore wall. Subsequently, rFe3O4@Py-COF (rmCOF) obtained after reduction was used as MSPE materials to detect MG and LMG by a portable mass spectrometer. After optimizing the conditions, the linearity is good within the range of 1.25∼100 μg/kg (R2≥0.9954), the limits of detection (LODs) are 0.31∼0.44 μg/kg with satisfactory recovery (85.0 %∼106.0 %). These results indicate that the assay is suitable for monitoring MG and LMG in complex aquatic foods, providing protection for food safety.
Collapse
Affiliation(s)
- Shanshan Zhu
- Faculty of material science and chemical engineering, Ningbo University, Ningbo 315211, Zhejiang, PR China; Faculty of information science and engineering, Ningbo University, Ningbo 315211, Zhejiang, PR China
| | - Tianliang Wang
- Faculty of material science and chemical engineering, Ningbo University, Ningbo 315211, Zhejiang, PR China
| | - Qing Xu
- Faculty of material science and chemical engineering, Ningbo University, Ningbo 315211, Zhejiang, PR China
| | - Yongxiang Wu
- Faculty of material science and chemical engineering, Ningbo University, Ningbo 315211, Zhejiang, PR China
| | - Ning Gan
- Faculty of material science and chemical engineering, Ningbo University, Ningbo 315211, Zhejiang, PR China.
| |
Collapse
|
6
|
Wang Q, Jiu R, Wang Y, Li Z, Chen J, Liu H, Liu J, Cao J. Degradation and detection of organophosphorus pesticides based on peptides and MXene-peptide composite materials. Analyst 2024; 149:3951-3960. [PMID: 38940008 DOI: 10.1039/d4an00674g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Safety problems caused by organophosphorus pesticide (OP) residues are constantly occurring, so the development of new methods for the degradation and detection of OPs is of great scientific significance. In the present study, β-sheet peptides and β-hairpin peptides for catalyzing the hydrolysis of OPs were designed and synthesized. The peptide sequences with the highest hydrolytic activity (EHSGGVTVDPPLTVEHSAG) were screened by investigating the effect of the location of the active sites of the peptide and the peptide's structure on the degradation of OPs. In addition, the relationship between the peptides' conformation and hydrolytic activity was further analyzed based on density functional theory calculations. The noncovalent interactions of the peptides with the OPs and the electrostatic potential on the molecular surface and molecular docking properties were also investigated. It was found that peptides with approximate active amino acids consisting of the catalytic triad and with the hairpin structure had enhanced hydrolytic activity toward the hydrolysis of OPs. To develop an electrochemical sensor technique to detect OPs, the conductive MXene (Ti3C2) material was first immobilized with a caffeic acid monolayer via enediol-metal complex chemistry and then bound with the β-hairpin peptide (EHSGGVTVDPPLTVEHSAG) via carboxy-amine condensation chemistry between the -COOH of caffeic acid and the -NH2 of the peptide to prepare a MXene-peptide composite. Then, the prepared composite was modified on the surface of a glassy carbon electrode to construct an electrochemical sensor for the detection of OPs. The developed technique could be used to monitor OPs within 15 min with a two orders of linear working range and with a detection limit of 0.15 μM. Meanwhile, the sensor showed good reliability for the detection of OPs in real vegetables.
Collapse
Affiliation(s)
- Qiuying Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Healthy of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Ruiqing Jiu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Healthy of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Yunyao Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Healthy of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Zongda Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Healthy of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Jianan Chen
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Healthy of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Haochi Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Healthy of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Jifeng Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Healthy of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Jia Cao
- Tianjin Vocational College of Bioengineering, China
| |
Collapse
|
7
|
Li X, Zhang L, Yang M, Wang R, Zong S, Ning X, Lv Y, Wang X, Ji W. Synthesis of an ordered macroporous metal-organic framework for efficient solid-phase extraction of aflatoxins from milk products. J Chromatogr A 2024; 1713:464520. [PMID: 37995545 DOI: 10.1016/j.chroma.2023.464520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
Aflatoxins (AFs) exhibit hepatotoxicity, immunotoxicity, and carcinogenicity, and their detection in food has attracted widespread concern. An ordered macroporous metal-organic framework (OM-ZIF-8) based on solid-phase extraction (SPE) was used to extract six AFs from milk products. The SPE conditions, including eluting solvent, eluting volume, amounts of OM-ZIF-8, pH of loading solution, loading solvent, ionic strength, loading flow rate, and elution flow rate, were exhaustively optimized. Under optimal parameters, the six AFs were detected by ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). The OM-ZIF-8 exhibited satisfactory AFs extraction performance through ordered macropore structure, π-π interaction, coordination interaction, and electrostatic interaction. Furthermore, linearity in the range of 0.01-100 ng mL-1 with low detection limits of 0.002-0.0150 ng mL-1 was obtained, and the relative recoveries of AFs were 80.3-110 % with relative standard deviation ≤8.7 %. Thus, this research provides a promising platform for the analysis of trace AFs in complex foods.
Collapse
Affiliation(s)
- Xuemei Li
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Lidan Zhang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Mingzhu Yang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Rongyu Wang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China.
| | - Shaojun Zong
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Xiaobei Ning
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Yingchao Lv
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Xiao Wang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China; Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Wenhua Ji
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China; Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China.
| |
Collapse
|
8
|
Song L, Zhang Q, Min L, Guo X, Gao W, Cui L, Zhang CY. Electrochemiluminescence enhanced by isolating ACQphores in imine-linked covalent organic framework for organophosphorus pesticide assay. Talanta 2024; 266:124964. [PMID: 37481885 DOI: 10.1016/j.talanta.2023.124964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/04/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
Most of covalent organic frameworks (COFs) are non or weakly emissive due to either the molecular thermal motion-mediated energy dissipation or the aggregation-caused quenching (ACQ) effect. Herein, we synthesize an imine-linked COF (TFPPy-TPh-COF) with high electrochemiluminescence (ECL) emission and the capability of eliminating the ACQ effect and further construct an ECL sensor for malathion detection. The imine-linked COF is obtained by the condensation reaction of (1,1':3',1″-terphenyl)-4,4″-diamine (TPh) and 1,3,6,8-tetrakis(p-formylphenyl)pyrene (TFPPy), and it has higher ECL efficiency than TFPPy aggregates due to the separation of ACQ luminophores (i.e., TFPPy) from each other by TPh and the restriction of intramolecular motions of TFPPy and TPh to reduce the nonradiative decay. The efficient quenching of ECL is achieved by electrochemiluminescence resonance energy transfer (ERET) from the excited state of the TFPPy-TPh-COF to zeolite imidazolate framework-8 (ZIF-8) and the steric hindrance of ZIF-8. Acetylcholinesterase (AChE) can enzymatically hydrolyze acetylcholine (ACh) to generate acetic acid. The resultant acetic acid can trigger the dissolution of ZIF-8 to produce an enhanced ECL signal. Malathion as an organophosphorus pesticide serves as an AChE inhibitor to prevent the production of acetic acid, inducing the decrease of ECL signal. This sensor displays a limit of detection (LOD) of 2.44 pg/mL and a wide dynamic detection range of 0.01-1000 ng/mL. Furthermore, it can be used to detect other organophosphates pesticides (e.g., methidathion, chlorpyrifos, and paraoxon) and measure malathion in real samples (i.e., pakchoi, lettuce, and apples).
Collapse
Affiliation(s)
- Linlin Song
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China
| | - Qian Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China
| | - Lei Min
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China
| | - Xinyu Guo
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China
| | - Wenqiang Gao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Lin Cui
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China.
| | - Chun-Yang Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
9
|
Lin X, Xing Y, Chen H, Zhou Y, Zhang X, Liu P, Li J, Lee HK, Huang Z. Characteristic and health risk of per- and polyfluoroalkyl substances from cosmetics via dermal exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122685. [PMID: 37804905 DOI: 10.1016/j.envpol.2023.122685] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/30/2023] [Accepted: 10/02/2023] [Indexed: 10/09/2023]
Abstract
In this work, 45 cosmetic samples were collected from China, and 27 target per- and polyfluoroalkyl substances (PFAS) were analyzed by ultrahigh-performance liquid chromatography-high resolution mass spectrometry. PFAS were found in all samples, including the products marketed for pregnant women, and the total concentrations of PFAS measured in each sample were in the range of 4.05 - 94.9 ng/g. Short-chain perfluorinated carboxylic acids were the dominant compounds contributing to over 60% of the total content. Perfluorobutanoic acid, with high placental transfer efficiency, was the major PFAS in cosmetics for pregnant women. Three emerging PFAS, 2-perfluorohexyl ethanoic acid, 3-perfluoropentyl propanoic acid (5:3) and perfluoro-2-propoxypropanoic acid, were also identified in the cosmetic samples at quantifiable levels. Significantly, positive correlations between individual PFAS were observed, indicating that there may be a common source for PFAS in these samples. Statistical analyses suggested that using plastic containers and precursor substances may be potential sources of PFAS in terminal products, and product aging may increase PFAS levels. From the PFAS analysis of the cosmetics, the margin of safety (MoS) and hazard quotient (HQ) were calculated to assess human health risks through dermal exposure by using these products. Although the MoS and HQ values obtained were deemed acceptable, the cumulative effect caused by composite and long-term exposure to these contaminants needs to be given greater attention by health authorities.
Collapse
Affiliation(s)
- Xia Lin
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, 430071, PR China
| | - Yudong Xing
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, 430071, PR China
| | - Huijun Chen
- Department of Gynecology and Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China
| | - Yan Zhou
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, 430071, PR China
| | - Xin Zhang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, 430071, PR China
| | - Peng Liu
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, 430071, PR China
| | - Jiaoyang Li
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, 430071, PR China
| | - Hian Kee Lee
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Zhenzhen Huang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, 430071, PR China.
| |
Collapse
|
10
|
Qi P, Wang J, Liu Z, Zhao H, Wang Z, Di S, Wang X. Fabrication of poly-dopamine-modified magnetic nanomaterial and development of integrated QuEChERS method for 122 pesticides residue analysis in fruits. J Chromatogr A 2023; 1708:464336. [PMID: 37660563 DOI: 10.1016/j.chroma.2023.464336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/26/2023] [Accepted: 08/26/2023] [Indexed: 09/05/2023]
Abstract
A rapid and accurate integrated QuEChERS method was established for the determination of multi-pesticide residues in fruits. Poly-dopamine-modified magnetic nanomaterial (Fe3O4-pDA) was homemade and characterized. The prepared Fe3O4-pDA has the functional group of absorbing the saccharides, and can be used as co-adsorbent with 3-(N, n‑diethyl amino) propyl trimethoxy-silane (PSA) in the developed integrated QuEChERS method to purify the fruit matrix, thus achieve the accurate determination of multi-pesticides residue. Grape was used as the representative sample to explore the influence of the salting out agent and each purification adsorbent on the pesticide recoveries. Under the optimized conditions, the proposed method showed good linearity for 92.6% of pesticides in the concentration range of 1-150 μg L-1 with method limit of quantitative (mLOQs) ranged from 10 to 18 μg kg-1. Spiked recoveries experiments were performed on four kinds of grapes and other fruits (apple, watermelon, pear, jujube and peach), in which satisfactory recoveries and precision were obtained for most of the pesticides. Meanwhile, comparison experiments also verified this method was superior to the traditional QuEChERS method in terms of convenient operation, high efficiency and low reagent consumption. The further real sample analysis was performed using this method, and the overall detection rate was 52%, while 2% of samples were exceeding the maximum residue limits. All results confirmed that the proposed method could be used for the rapid, simple, low-costing and effective analyses of trace multi-pesticides residue in fruit samples.
Collapse
Affiliation(s)
- Peipei Qi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products & Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, China; Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Hangzhou 310021, China
| | - Jiao Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products & Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Zhenzhen Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products & Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Huiyu Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products & Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, China; Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Hangzhou 310021, China
| | - Zhiwei Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products & Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, China; Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Hangzhou 310021, China
| | - Shanshan Di
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products & Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, China; Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Hangzhou 310021, China
| | - Xinquan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products & Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, China; Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Hangzhou 310021, China.
| |
Collapse
|
11
|
Xu J, Li Y, Yu L, Pang Y, Shen X, Liu J. Metal-organic frameworks modified melamine foam in pipette-tip for rapid solid-phase extraction of organophosphorus pesticides in fruits and vegetables. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:108774-108782. [PMID: 37755595 DOI: 10.1007/s11356-023-30055-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/20/2023] [Indexed: 09/28/2023]
Abstract
In this work, metal-organic frameworks (MOFs) including Fe-MIL-101 and Ti-MIL-125 were prepared and fixed on the melamine foam (MF) by polyvinylidene fluoride (PVDF) to prepare MF/PVDF/MOFs, which was used as adsorbents in pipette-tip solid-phase extraction (PT-SPE) for rapid extraction of organophosphorus pesticides (OPPs). Then, a gas chromatograph-flame thermionic detector (GC-FTD) was used for simultaneous analysis of Dimethoate (DMT), Iprobenfos (IBF), Parathion-methyl (PAM), and Chlorpyrifos (CPF). The morphology, crystal structure, and functional groups of MF/PVDF/MOFs were characterized, indicating that Ti-MIL-125 and Fe-MIL-101 were successfully synthesized and distributed on MF. The Fe-MIL-101 and Ti-MIL-125 showed good extraction ability for OPPs, which was mainly due to the π-π interaction and the multiple porous structures. Under the optimal conditions, the limit of detection (LODs) of four OPPs was 0.03-0.14 μg L-1 and the RSDs were less than 9.9%. The developed PT-SPE method showed a short extraction time (<3 min). The recoveries in fruits and vegetables (Celery, cabbages, and oranges) ranged from 75.3%-118.8% (RSDs<9.6%). The prepared MF/PVDF/MOFs demonstrated the efficient extraction performance of OPPs, contributing to the rapid pretreatment of OPPs from food and the environment.
Collapse
Affiliation(s)
- Jinjie Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
| | - Yongli Li
- Technology Center of Chengdu Customs, Chengdu, 610041, China
| | - Lihong Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
| | - Yuehong Pang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
| | - Xiaofang Shen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China.
| | - Jun Liu
- Technology Center of Chengdu Customs, Chengdu, 610041, China
| |
Collapse
|
12
|
Yang F, Cui H, Wang C, Wang Y, Zhu W, Deng H, Liu S, Bian Z, Lu J, Tang G, Ji Y. Comparison of supercritical fluid chromatography-tandem mass spectrometry and liquid chromatography-tandem mass spectrometry for the stereoselective analysis of chlorfenvinphos and dimethylvinphos in tobacco. J Sep Sci 2023; 46:e2300449. [PMID: 37582637 DOI: 10.1002/jssc.202300449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/27/2023] [Accepted: 07/29/2023] [Indexed: 08/17/2023]
Abstract
This study used reversed-phase liquid chromatography-tandem mass spectrometry and supercritical fluid chromatography-tandem mass spectrometry for determination of the stereoisomers of chlorfenvinphos and dimethylvinphos in tobacco. Tobacco samples were extracted and purified with a modified quick, easy, cheap, effective, rugged, and safe technique using spherical carbon. The performance of both methodologies was comprehensively compared in terms of methods validation parameters (separation efficiency, linearity, selectivity, recovery, repeatability, sensitivity, matrix effect, etc.). Under optimized conditions, the calibration curves of the stereoisomers of chlorfenvinphos and dimethylvinphos in the range of 10-500 ng/mL showed excellent linearity with R2 ≥ 0.997 in both methods. The adequate recoveries of analytes from three different spiked tobaccos were obtained using reversed-phase liquid chromatography-tandem mass spectrometry (86.1-95.7%) as well as supercritical fluid chromatography-tandem mass spectrometry (86.5-94.0%). The relative standard deviations for spiked samples were all below 7.0%. Compared with supercritical fluid chromatography-tandem mass spectrometry, lower matrix effects and LODs can be obtained in reversed-phase liquid chromatography-tandem mass spectrometry.
Collapse
Affiliation(s)
- Fei Yang
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, P. R. China
| | - Haozhe Cui
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | - Chunqiong Wang
- Yunnan Tobacco Quality Supervision and Test Station, Kunming, P. R. China
| | - Ying Wang
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, P. R. China
| | - Wenjing Zhu
- Guizhou Tobacco Quality Supervision and Test Station, Guiyang, P. R. China
| | - Huimin Deng
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, P. R. China
| | - Shanshan Liu
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, P. R. China
| | - Zhaoyang Bian
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, P. R. China
| | - Junli Lu
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, P. R. China
| | - Gangling Tang
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, P. R. China
| | - Yuan Ji
- Shandong Institute for Food and Drug Control, Jinan, P. R. China
| |
Collapse
|
13
|
Qi P, Wang J, Liu Z, Wang Z, Di S, Zhao H, Wang X. Fabrication of magnetic magnesium oxide cleanup adsorbent for high-throughput pesticides residue analysis coupled with supercritical fluid chromatography-tandem mass spectrometry. Anal Chim Acta 2023; 1265:341266. [PMID: 37230563 DOI: 10.1016/j.aca.2023.341266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/23/2023] [Indexed: 05/27/2023]
Abstract
A rapid and accurate analytical method was established for multiple pesticide residues in complex matrices based on magnetic dispersive solid phase extraction (d-SPE) and supercritical fluid chromatography-tandem mass spectrometry (SFC-MS/MS). To develop an efficient magnetic d-SPE method, magnetic adsorbent modified with magnesium oxide (Fe3O4-MgO) was prepared via layer-by-layer modification and used as cleanup adsorbent for removal of interferences that contain a large number of hydroxyl or carboxyl groups in the complex matrix. The obtained Fe3O4-MgO coupled with 3-(N,N-Diethylamino)-propyltrimethoxysilane (PSA) and octadecyl (C18) were used as d-SPE purification adsorbents and their dosages were systematically optimized with Paeoniae radix alba as the matrix model. Combined with SFC-MS/MS, rapid and accurate determination of 126 pesticide residues in the complex matrix was achieved. Further systematic method validation showed good linearity, satisfactory recovery, and wide applicability. The average recoveries of the pesticides at 20, 50, 80, and 200 μg kg-1 were 110, 105, 108, and 109%, respectively. The proposed method was applied to complex medicinal and edible root plants, such as Puerariae lobate radix, Platycodonis radix, Polygonati odorati rhizoma, Glycyrrhizae radix, and Codonopsis radix. The average recoveries of the pesticides at 80 μg kg-1 in these matrices were 106, 106, 105, 103, and 105%, respectively with an average relative standard deviation range of 8.24-10.2%. The results demonstrated the feasibility and wide matrix applicability of the proposed method, which is promising for pesticide residue analysis in complex samples.
Collapse
Affiliation(s)
- Peipei Qi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products & Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou, 310021, PR China; Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Hangzhou, 310021, PR China
| | - Jiao Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products & Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China
| | - Zhenzhen Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products & Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China
| | - Zhiwei Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products & Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou, 310021, PR China; Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Hangzhou, 310021, PR China
| | - Shanshan Di
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products & Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou, 310021, PR China; Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Hangzhou, 310021, PR China
| | - Huiyu Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products & Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou, 310021, PR China; Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Hangzhou, 310021, PR China
| | - Xinquan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products & Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou, 310021, PR China; Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Hangzhou, 310021, PR China.
| |
Collapse
|
14
|
Li W, Wang XH, Liu JQ, Jiang HX, Cao DX, Tang AN, Kong DM. Efficient food safety analysis for vegetables by a heteropore covalent organic framework derived silicone tube with flow-through purification. Talanta 2023; 265:124880. [PMID: 37393713 DOI: 10.1016/j.talanta.2023.124880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/23/2023] [Accepted: 06/23/2023] [Indexed: 07/04/2023]
Abstract
A heteropore covalent organic framework incorporated silicone tube (S-tube@PDA@COF) was used as adsorbent to purify the matrices in vegetable extracts. The S-tube@PDA@COF was fabricated by a facile in-situ growth method and characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction and N2 adsorption-desorption. The as-prepared composite exhibited high removal efficiency of phytochromes and recovery (81.13-116.62%) of 15 chemical hazards from 5 representative vegetable samples. This study opens a promising avenue toward the facile synthesis of covalent organic frameworks (COFs)-derived silicone tubes for streamline operation in food sample pretreatment.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xiao-Han Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Jing-Qi Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Hong-Xin Jiang
- Agro-Environmental Protection Institute, Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Laboratory of Environmental Factors Risk Assessment of Agro-Product Quality Safety, Ministry of Agriculture, Tianjin, 300191, China
| | - Dong-Xiao Cao
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - An-Na Tang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, 300071, China.
| | - De-Ming Kong
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
15
|
Zhou Q, Yu C, Meng L, Ji W, Liu S, Pan C, Lan T, Wang L, Qu B. Research progress of applications for nano-materials in improved QuEChERS method. Crit Rev Food Sci Nutr 2023; 64:10517-10536. [PMID: 37345873 DOI: 10.1080/10408398.2023.2225613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
The quick, easy, cheap, effective, rugged, and safe (QuEChERS) approach is widely used in sample pretreatment in agricultural products, food, environment, etc. And nano-materials are widely used in QuEChERS method due to its small size and large specific surface area. In this review, we examine the typical applications of several commonly used nano-materials in improved QuEChERS method. These materials include multi-walled carbon nanotubes (MWCNTs) and their derivatives, magnetic nanoparticles (MNPs), metal organic frameworks (MOFs), covalent organic frameworks (COFs), graphene oxide (GO), lipid and protein adsorbent (LPAS), cucurbituril (CBs), and carbon nano-cages (CNCs), and so on. The strengths and weaknesses of each nano-material are presented, as well as the challenging aspects that need to be addressed in future research. By comparing the applications and the current technology development, this review suggests utilizing artificial intelligence (AI) to screen suitable combinations of purification agents and performing virtual simulation experiments to verify the reliability of this methodology. By doing so, we aim to accelerate the development of new products and decrease the cost of innovation. It also recommends designing smarter pretreatment instruments to enhance the convenience and automation of the sample pretreatment process and reduce the margin for human error.
Collapse
Affiliation(s)
- Qi Zhou
- College of Pharmacy, Jiamusi University, Jiamusi, China
- China National Institute of Standardization, Beijing, PR China
| | - Congcong Yu
- China National Institute of Standardization, Beijing, PR China
| | - Lingling Meng
- China National Institute of Standardization, Beijing, PR China
| | - Wenhua Ji
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Songnan Liu
- Beijing Tea Quality Supervision and Inspection Station, Beijing, China
| | - Canping Pan
- College of Science, China Agricultural University, Beijing, China
| | - Tao Lan
- China National Institute of Standardization, Beijing, PR China
| | - Lihong Wang
- College of Pharmacy, Jiamusi University, Jiamusi, China
| | - Bin Qu
- Beijing Knorth Co. Ltd, Beijing, China
| |
Collapse
|
16
|
Mou B, Zuo C, Chen L, Xie H, Zhang W, Wang Q, Wen L, Gan N. On-site Simultaneous Determination of Neonicotinoids, Carbamates, and Phenyl Pyrazole Insecticides in Vegetables by QuEChERS Extraction on Nitrogen and Sulfur co-doped Carbon Dots and Portable Mass Spectrometry. J Chromatogr A 2023; 1689:463744. [PMID: 36610187 DOI: 10.1016/j.chroma.2022.463744] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/07/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
In food safety monitoring, on-site and simultaneous detection of a variety of insecticides with different concentrations in the same matrix is necessary. However, the task remains challenging. In this study, a novel nitrogen and sulfur co-doped carbon dot (N, S-CD) was synthesized and used as a QuEChERS clean-up reagent to reduce matrix interferences in the determination of insecticides in vegetables. In addition, a portable mass spectrometer (µ-MS) was employed, without chromatography separation, to directly determine neonicotinoids, carbamates, and benzopyrazole insecticides (with acetamiprid, imidacloprid, thiamethoxam, fipronil, and carbofuran as models) in the pretreated samples. The N,S-CD µ-MS method exhibited effective clean-up performance with satisfactory matrix effects between -15.2% and 15.7%. The recoveries of spiked vegetable samples ranged from 82.2% to 109.7% for the five target insecticides, and the relative standard deviations (RSDs) ranged from 3.8% to 16.5%. The linear ranges were from 2.0 to 5.0 ng/g, with low detection limits (LOD) from 0.5 to 1.0 ng/g. Moreover, the total pretreatment and detection time was within 20 min. Thus, the incorporation of N,S-CD with QuEChERS extraction, together with the portable µ-MS system, could be a promising and feasible strategy for on-site, rapid, and simultaneous detection of various insecticides in vegetables.
Collapse
Affiliation(s)
- Binglin Mou
- Faculty of material science and chemical engineering, Ningbo University, Ningbo, 315211, China; College of food and pharmaceutical science, Ningbo University, Ningbo, 315211,China
| | - Chengyi Zuo
- Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - La Chen
- The research institute of advanced technologies, Ningbo University, Ningbo, 315211,China; China Innovation Instrument Co., Ltd, Ningbo, 315000, China
| | - Hongzhen Xie
- Faculty of material science and chemical engineering, Ningbo University, Ningbo, 315211, China
| | - Wentian Zhang
- China Innovation Instrument Co., Ltd, Ningbo, 315000, China
| | - Qiqin Wang
- Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Luhong Wen
- The research institute of advanced technologies, Ningbo University, Ningbo, 315211,China; China Innovation Instrument Co., Ltd, Ningbo, 315000, China; Guangzhou Hua Yue Hang Instrument Co., Ltd, Guangzhou, 510000, China.
| | - Ning Gan
- Faculty of material science and chemical engineering, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
17
|
Li M, Wang P, Zhang X, Wang H, Li K, Bai Y. Development of a Modified QuEChERS Method Based on Magnetic Multi-Walled Carbon Nanotubes as a Clean-Up Adsorbent for the Analysis of Heterocyclic Aromatic Amines in Braised Sauce Beef. Foods 2022; 12:foods12010138. [PMID: 36613354 PMCID: PMC9818259 DOI: 10.3390/foods12010138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/18/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
Heterocyclic aromatic amines (HAAs) generated during the cooking of meats cause adverse effects on human health. The purpose of the current research was to develop a modified QuEChERS (Quick, Easy, Cheap, Effective, Rugged, Safe) method using magnetic multi-walled carbon nanotubes (Fe3O4-MWCNTs) as clean-up adsorbents for the rapid determination of HAAs in braised sauce beef. The significant parameters in extraction and clean-up processes were screened and optimized. Under optimal conditions, the LODs ranged from 3.0 ng/g to 4.2 ng/g. The recoveries (78.5−103.2%) and relative standard deviations RSDs (<4.6%) of five HAAs were obtained. These are in accordance with the validation criteria (recovery in the range of 70−120% with RSD less than 20%). Compared with conventional clean-up adsorbents (PSA or C18), Fe3O4-MWCNTs displayed equivalent or better matrix removal efficiency, while making the pretreatment process easier and more time-saving through magnetic separation. Less usage of adsorbent makes the method possess another advantage of being lower in cost per sample. The method developed was successfully applied to analyze real samples collected from local deli counters, demonstrating Fe3O4-MWCNTs could be considered as an effective alternative adsorbent with great potential in the QuEChERS process.
Collapse
Affiliation(s)
- Min Li
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450001, China
| | - Pengxiang Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Xu Zhang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Hongyu Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Ke Li
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450001, China
| | - Yanhong Bai
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450001, China
- Correspondence:
| |
Collapse
|
18
|
A simple approach for pesticide residues determination in green vegetables based on QuEChERS and gas chromatography tandem mass spectrometry. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Li S, Meng Z, Liu Y, Liu D, Xu Z. Rapid analysis of residual pinoxaden and its metabolites in wheat (Triticum aestivum L.) using the QuEChERS method with HPLC-MS/MS. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Mishra S, Mishra S, Patel SS, Singh SP, Kumar P, Khan MA, Awasthi H, Singh S. Carbon nanomaterials for the detection of pesticide residues in food: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119804. [PMID: 35926736 DOI: 10.1016/j.envpol.2022.119804] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/02/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
In agricultural fields, pesticides are widely used, but their residual presence in the environment poses a threat to humans, animals, insects, and ecosystems. The overuse of pesticides for pest control, enhancement of crop yield, etc. leaves behind a significant residual amount in the environment. Various robust, reliable, and reusable methods using a wide class of composites have been developed for the monitoring and controlling of pesticides. Researchers have discovered that carbon nanomaterials have a wide range of characteristics such as high porosity, conductivity and easy electron transfer that can be successfully used to detect pesticide residues from food. This review emphasizes the role of carbon nanomaterials in the field of pesticide residue analysis in different food matrices. The carbon nanomaterials including carbon nanotubes, carbon dots, carbon nanofibers, graphene/graphene oxides, and activated carbon fibres are discussed in the review. In addition, the review examines future prospects in this research area to help improve detection techniques for pesticides analysis.
Collapse
Affiliation(s)
- Smriti Mishra
- Industrial Waste Utilization, Nano and Biomaterial Division, CSIR- Advanced Materials and Processes Research Institute (CSIR-AMPRI), Hoshangabad Road, Bhopal, Madhya Pradesh-462026, India
| | - Shivangi Mishra
- Pesticide Toxicology Laboratory & Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow-226001, Uttar Pradesh, India
| | - Shiv Singh Patel
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Water Resources Management and Rural Technology, CSIR- Advanced Materials and Processes Research Institute (CSIR-AMPRI), Hoshangabad Road, Bhopal, Madhya Pradesh- 462026, India
| | - Sheelendra Pratap Singh
- Pesticide Toxicology Laboratory & Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow-226001, Uttar Pradesh, India; Analytical Chemistry Laboratory, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow-226001, Uttar Pradesh, India
| | - Pradip Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Green Engineered Materials and Additive Manufacturing, Council of Scientific and Industrial Research- Advanced Materials and Processes Research Institute, Bhopal - 462026, India
| | - Mohd Akram Khan
- Industrial Waste Utilization, Nano and Biomaterial Division, CSIR- Advanced Materials and Processes Research Institute (CSIR-AMPRI), Hoshangabad Road, Bhopal, Madhya Pradesh-462026, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Himani Awasthi
- Hygia Institute of Pharmaceutical Education and Research, Lucknow-226020, India
| | - Shiv Singh
- Industrial Waste Utilization, Nano and Biomaterial Division, CSIR- Advanced Materials and Processes Research Institute (CSIR-AMPRI), Hoshangabad Road, Bhopal, Madhya Pradesh-462026, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
21
|
Shen Y, Xiong W, Wang Q, Zhang W, Xie H, Cao Y, Xu Q, Wen L, Gan N. Combining Portable Mass Spectrometer with Bamboo Stir Bar Sorptive Extraction for the On-site Detection of Malachite Green, Crystal Violet and Their Metabolites in Fishes. J Chromatogr A 2022; 1681:463456. [DOI: 10.1016/j.chroma.2022.463456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/16/2022] [Accepted: 08/29/2022] [Indexed: 11/24/2022]
|
22
|
Li S, Liu W, Wang Q, Xu M, An Y, Hao L, Wang C, Wu Q, Wang Z. Constructing magnetic covalent organic framework EB-COF@Fe3O4 for sensitive determination of five benzoylurea insecticides. Food Chem 2022; 382:132362. [DOI: 10.1016/j.foodchem.2022.132362] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 02/03/2022] [Accepted: 02/03/2022] [Indexed: 12/25/2022]
|
23
|
Wang Y, Han J, Zhang J, Li X, Bai R, Hu F. A monitoring survey and health risk assessment for pesticide residues on Codonopsis Radix in China. Sci Rep 2022; 12:8133. [PMID: 35581226 PMCID: PMC9114365 DOI: 10.1038/s41598-022-11428-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/30/2022] [Indexed: 11/22/2022] Open
Abstract
In recent years, the safety of Codonopsis Radix (CR) has attracted considerable attention. Pesticide residues is an important index to evaluate the safety of CR. The purpose of this study was to monitor pesticide residues in 164 batches of CR in China and assess dietary risk assessment. Firstly, a combined method of QuEChERS-GC–MS/MS and QuEChERS-LC–MS/MS was established for determination of 155 pesticide residues in CR. Second, 155 Pesticide residues in 3 CR cultivars from Gansu, Shanxi, Hubei, Guizhou and Chongqing were determined by this method. Finally, the risk score of pesticide residues in CR was evaluated, and the dietary health risk was evaluated based on the pesticide residues in CR. The results demonstrated that one or more pesticide residues were detected in 39 batches (23.78%) of 164 batches of CR. Of the 155 pesticide residues, 20 were detected. The most frequently detected pesticide residue was dimethomorph with a detection rate of 5.49%. Risk scores showed that 6 pesticides were at higher risk. Risk assessment based on the hazard quotient/hazard index (HQ/HI) approach revealed that exposure to pesticide residues which detected in CR were far below levels that might pose a health risk.
Collapse
Affiliation(s)
- Yanping Wang
- The State Key Laboratory of Applied Organic Chemistry (SKLAOC), School of Pharmacy, Lanzhou University, 199 Dong-gang Road West, Lanzhou, 730000, China
| | - Jiabin Han
- The State Key Laboratory of Applied Organic Chemistry (SKLAOC), School of Pharmacy, Lanzhou University, 199 Dong-gang Road West, Lanzhou, 730000, China
| | - Jinjin Zhang
- The State Key Laboratory of Applied Organic Chemistry (SKLAOC), School of Pharmacy, Lanzhou University, 199 Dong-gang Road West, Lanzhou, 730000, China
| | - Xue Li
- The State Key Laboratory of Applied Organic Chemistry (SKLAOC), School of Pharmacy, Lanzhou University, 199 Dong-gang Road West, Lanzhou, 730000, China
| | - Ruibin Bai
- The State Key Laboratory of Applied Organic Chemistry (SKLAOC), School of Pharmacy, Lanzhou University, 199 Dong-gang Road West, Lanzhou, 730000, China
| | - Fangdi Hu
- The State Key Laboratory of Applied Organic Chemistry (SKLAOC), School of Pharmacy, Lanzhou University, 199 Dong-gang Road West, Lanzhou, 730000, China.
| |
Collapse
|
24
|
Gao S, Yang G, Zhang X, Lu Y, Chen Y, Wu X, Song C. β-Cyclodextrin Polymer-Based Host-Guest Interaction and Fluorescence Enhancement of Pyrene for Sensitive Isocarbophos Detection. ACS OMEGA 2022; 7:12747-12752. [PMID: 35474801 PMCID: PMC9026021 DOI: 10.1021/acsomega.1c07295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 03/09/2022] [Indexed: 05/13/2023]
Abstract
The extensive use of organophosphorus pesticides in agriculture poses a high risk to human health and has boosted the demands for developing sensitive monitoring methods. Herein, we developed a facile and sensitive method for isocarbophos detection based on the remarkable fluorescence enhancement of pyrene during host-guest interaction of β-cyclodextrin polymer (β-CDP) and pyrene. The 3'-pyrene-labeled isocarbophos aptamer could be cleaved by exonuclease I to obtain free pyrene that was tagged on mononucleotides, which could enter the hydrophobic cavity of β-CDP, resulting in a prominent fluorescence enhancement. While the target isocarbophos was added, aptamer could undergo a conformational change into a hairpin complex, which prevented the cleavage and host-guest interaction because of the steric hindrance, leading to a weak fluorescence. The isocarbophos has been sensitively and selectively analyzed by detecting the system fluorescence intensity with a detection limit as low as 1.2 μg/L. In addition, we have verified the ability of our proposed method in real sample detection from fruit extract.
Collapse
Affiliation(s)
- Shanshan Gao
- Department
of Applied Chemistry, School of Science, Anhui Agricultural University, Hefei 230036, China
| | - Gege Yang
- Department
of Applied Chemistry, School of Science, Anhui Agricultural University, Hefei 230036, China
| | - Xiaohui Zhang
- Department
of Applied Chemistry, School of Science, Anhui Agricultural University, Hefei 230036, China
| | - Ying Lu
- Department
of Applied Chemistry, School of Science, Anhui Agricultural University, Hefei 230036, China
| | - Ying Chen
- Department
of Applied Chemistry, School of Science, Anhui Agricultural University, Hefei 230036, China
| | - Xiangwei Wu
- College
of Resources and Environment, Key Laboratory of Agri-food Safety of
Anhui Province, Anhui Agricultural University, Hefei 230036, China
- E-mail:
| | - Chunxia Song
- Department
of Applied Chemistry, School of Science, Anhui Agricultural University, Hefei 230036, China
- E-mail:
| |
Collapse
|
25
|
Yang Y, Hao S, Lei X, Chen J, Fang G, Liu J, Wang S, He X. Design of metalloenzyme mimics based on self-assembled peptides for organophosphorus pesticides detection. JOURNAL OF HAZARDOUS MATERIALS 2022; 428:128262. [PMID: 35051771 DOI: 10.1016/j.jhazmat.2022.128262] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Organophosphorus pesticides (OPs) detection has attracted considerable attention because of the extensive application of OPs. In this research, non-toxic and high-performance metalloenzyme mimics of Zn2+-bonding peptides were developed by obtaining inspiration from phosphotriesterase (PTE) and nanofiber formation. Furthermore, based on the electrochemical activity of p-nitrophenol (PNP), the electrochemical sensor of metalloenzyme mimics was developed. By examining the effect of the active sites of peptides and fibril formation on the degradation of OPs, the optimal metalloenzyme mimic was selected. Furthermore, optimal metalloenzyme mimics were combined with NiCo2O4 to develop an electrochemical sensor of OPs. By monitoring square wave voltammetry (SWV) signals of PNP degraded from OPs, the amounts of OPs in actual samples could be determined in 15 min. We discovered that both the active sites of α metal and β metal were required for metalloenzyme mimics; Zn2+ promoted peptide fibrosis and especially acted as a cofactor for degrading OPs. Compared to traditional methods, the electrochemical sensor of metalloenzyme mimics was sensitive, reliable, and non-toxic; furthermore, the detection limit of methyl paraoxon was as low as 0.08 µM. The metalloenzyme mimics will be a promising material for detecting OPs in the food industry and environment fields.
Collapse
Affiliation(s)
- Yayu Yang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Healthy of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Sijia Hao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Healthy of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Xiangmin Lei
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Healthy of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Jianan Chen
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Healthy of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Guozhen Fang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Healthy of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Jifeng Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Healthy of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Healthy of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China; Research Center of Food Science and Human Health, School of Medicine, Nankai University, Tianjin 300071, PR China.
| | - Xingxing He
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, PR China
| |
Collapse
|
26
|
Chen M, Chen L, Pan L, Liu R, Guo J, Fan M, Wang X, Liu H, Liu S. Simultaneous analysis of multiple pesticide residues in tobacco by magnetic carbon composite-based QuEChERS method and liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. J Chromatogr A 2022; 1668:462913. [PMID: 35247721 DOI: 10.1016/j.chroma.2022.462913] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/09/2022] [Accepted: 02/16/2022] [Indexed: 11/28/2022]
Abstract
Magnetic carbon composite (Fe3O4@C) was synthesized and applied as a reversed-dispersive solid-phase extraction sorbent for the simultaneous analysis of 40 pesticide residues in tobacco by ultrahigh-performance liquid chromatography coupled to quadrupole time-of-fight mass spectrometry. Compared to the traditional QuEChERS method, the optimized Fe3O4@C simplified clean-up process and exhibited better clean-up capability than conventional sorbents. The pesticides were qualitatively identified by accurate mass of protonated molecules, fragment ions, isotopic peak clusters, and retention time, and quantitatively determined by matrix-matched external standard method. Good linearity of the proposed method was obtained with R value greater than 0.997 for all target pesticides at concentration levels of 2-200 µg/L. The limit of detection ranged from 0.14 to 2.67 µg/kg. The recoveries and relative standard deviations of all target pesticides at three spiked concentrations of 20, 50 and 200 µg/kg were in the ranges of 80.8%-113.3% and 0.6%-16.3%, respectively. Compared with the reported methods for the analysis of multiple pesticide residues in tobacco, the proposed method has the advantages of simple to operate, high clean-up ability and less time-consuming in clean-up process.
Collapse
Affiliation(s)
- Mantang Chen
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Street #2, Zhengzhou, Henan 450001, PR China
| | - Li Chen
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Street #2, Zhengzhou, Henan 450001, PR China
| | - Lining Pan
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Street #2, Zhengzhou, Henan 450001, PR China
| | - Ruihong Liu
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Street #2, Zhengzhou, Henan 450001, PR China
| | - Junwei Guo
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Street #2, Zhengzhou, Henan 450001, PR China
| | - Meijuan Fan
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Street #2, Zhengzhou, Henan 450001, PR China
| | - Xiaoyu Wang
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Street #2, Zhengzhou, Henan 450001, PR China
| | - Huimin Liu
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Street #2, Zhengzhou, Henan 450001, PR China.
| | - Shaofeng Liu
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Street #2, Zhengzhou, Henan 450001, PR China.
| |
Collapse
|
27
|
An Y, Wang J, Jiang S, Li M, Li S, Wang Q, Hao L, Wang C, Wang Z, Zhou J, Wu Q. Synthesis of natural proanthocyanidin based novel magnetic nanoporous organic polymer as advanced sorbent for neonicotinoid insecticides. Food Chem 2022; 373:131572. [PMID: 34810015 DOI: 10.1016/j.foodchem.2021.131572] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/29/2021] [Accepted: 11/07/2021] [Indexed: 01/14/2023]
Abstract
In this work, a natural proanthocyanidin (PA) based magnetic nanoporous organic polymer (named as PA-MOP) was successfully synthesized for the first time. The PA-MOP possessed high hydrophilic-surface, good magnetic responsiveness and high affinity for neonicotinoid insecticides. It was applied as an advanced magnetic sorbent for extraction of four neonicotinoids (thiamethoxam, imidacloprid, acetamiprid and thiacloprid) from environmental water, peach juice and honey samples prior to HPLC analysis. Under optimal conditions, the limits of detection for the analytes at S/N = 3 were 0.02-0.08 ng mL-1 for water, 0.03-0.10 ng mL-1 for peach juice and 0.05-0.16 ng g-1 for honey sample. The method recoveries were 80.0%-114.8%, with the relative standard deviations below 6.8%. The values of matrix effect were from -1.5% to -9.3%. Based on theory calculation, the extraction mechanism can be attributed to multiple interactions between the PA-MOP and the neonicotinoids, in which hydrogen bonding, π-π stacking and electrostatic interactions are the major interactions.
Collapse
Affiliation(s)
- Yangjuan An
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Junmin Wang
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Sichang Jiang
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Min Li
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Shuofeng Li
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Qianqian Wang
- College of Science, Hebei Agricultural University, Baoding 071001, China; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Lin Hao
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Chun Wang
- College of Science, Hebei Agricultural University, Baoding 071001, China.
| | - Zhi Wang
- College of Science, Hebei Agricultural University, Baoding 071001, China; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Junhong Zhou
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Qiuhua Wu
- College of Science, Hebei Agricultural University, Baoding 071001, China; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
28
|
Chang Q, Ge L, Li J, Qiu G, Wu F, Zhang H, Xu F, Zhu R, Qi P, Bai R, Ren F. Automated QuEChERS for the determination of 482 pesticide residues in Radix codonopsis by GC-Q-TOF/MS and LC-Q-TOF/MS. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:5660-5669. [PMID: 34788351 DOI: 10.1039/d1ay01616d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A rapid procedure for the determination of 482 pesticide residues in Chinese Materia Medica by GC-Q-TOF/MS and LC-Q-TOF/MS (379 pesticides for LC, 327 pesticides for GC, and 226 pesticides for both) was developed. Radix codonopsis was chosen as the matrix for verification, and a comparative study on the QuEChERS sample preparation was carried out, between a fully automated workstation and manual operation, in terms of limits of quantitation, recovery rate and RSD at 3 spiked levels of 10 μg kg-1, 20 μg kg-1 and 100 μg kg-1. In the linear range of each pesticide in a concentration range of 5-100 μg L-1, the linear correlation coefficients R2 of 85% of the pesticides for GC and 88% for LC were equal to or greater than 0.990. Taking recovery 70-120% and RSD ≤ 20% as the satisfactory standard, the automated workstation performed better at 10 μg kg-1 and 20 μg kg-1 than manual operation, and the numbers of satisfactory pesticides of GC & LC were 401 and 418 for the automated approach, and 378 and 400 for manual, while the two approaches were almost even at 100 μg kg-1, 421 vs. 424. Besides, the automated workstation presented lower RSD (more pesticides ≤10%) and better recovery quality (more pesticides within 90-110%). Following the method verification, 50 Radix codonopsis samples purchased from local markets were prepared with the automated workstation and analyzed by GC and LC-Q-TOF/MS. 18 pesticides were detected in 38 samples, one of which was a highly toxic pesticide. The automated QuEChERS workstation can handle 40 samples in one cycle within 6 hours, and realize whole-process automation covering from samples after "weighing" to "injection into vials". The batch-to-batch, day-to-day, and lab-to-lab consistency and 24 × 7 workability of the automated solution have demonstrated a promising and ideal replacement for manual operation in sample preparation.
Collapse
Affiliation(s)
- Qiaoying Chang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| | - Lijuan Ge
- Beijing Uni-Star Inspection Technology Co. Ltd, Beijing 100176, China.
| | - Jian Li
- Key Laboratory of Pesticide and Veterinary Drug Monitoring for State Market Regulation, Lanzhou Institute for Food and Drug Control, Gansu, 730050, China
| | - Guoyu Qiu
- Gansu Pharmaceutical Group Science and Technology Research Institute Co. Ltd, Gansu, 730030, China
| | - Fuxiang Wu
- Key Laboratory of Pesticide and Veterinary Drug Monitoring for State Market Regulation, Lanzhou Institute for Food and Drug Control, Gansu, 730050, China
| | - Hongyan Zhang
- Key Laboratory of Pesticide and Veterinary Drug Monitoring for State Market Regulation, Lanzhou Institute for Food and Drug Control, Gansu, 730050, China
| | - Fenghua Xu
- Beijing Uni-Star Inspection Technology Co. Ltd, Beijing 100176, China.
| | - Renyuan Zhu
- Key Laboratory of Pesticide and Veterinary Drug Monitoring for State Market Regulation, Lanzhou Institute for Food and Drug Control, Gansu, 730050, China
| | - Pengfei Qi
- Key Laboratory of Pesticide and Veterinary Drug Monitoring for State Market Regulation, Lanzhou Institute for Food and Drug Control, Gansu, 730050, China
| | - Ruobin Bai
- Beijing Uni-Star Inspection Technology Co. Ltd, Beijing 100176, China.
| | - Fazheng Ren
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
29
|
Faraji M, Shirani M, Rashidi-Nodeh H. The recent advances in magnetic sorbents and their applications. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116302] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
30
|
Chen G, Liu G, Jia H, Cui X, Wang Y, Li D, Zheng W, She Y, Xu D, Huang X, Abd El-Aty AM, Sun J, Liu H, Zou Y, Wang J, Jin M, Hammock BD. A sensitive bio-barcode immunoassay based on bimetallic Au@Pt nanozyme for detection of organophosphate pesticides in various agro-products. Food Chem 2021; 362:130118. [PMID: 34082296 DOI: 10.1016/j.foodchem.2021.130118] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/08/2021] [Accepted: 05/12/2021] [Indexed: 11/16/2022]
Abstract
Organophosphate pesticides (OPs) are often used as insecticides and acaricides in agriculture, thus improving yields. OP residues may pose a serious threat, duetoinhibitionof the enzymeacetylcholinesterase(AChE). Therefore, a competitive bio-barcode immunoassay was designed for simultaneous quantification of organophosphate pesticide residues using AuNP signal amplification technology and Au@Pt catalysis. The AuNP probes were labelled with antibodies and corresponding bio-barcodes (ssDNAs), MNP probes coated with ovalbumin pesticide haptens and Au@Pt probes functionalized with the complementary ssDNAs were then prepared. Subsequently, pesticides competed with MNP probes to bind the AuNP probes. The recoveries of the developed assay were ranged from 71.26 to 117.47% with RSDs from 2.52 to 14.52%. The LODs were 9.88, 3.91, and 1.47 ng·kg-1, for parathion, triazophos, and chlorpyrifos, respectively. The assay was closely correlated with the data obtained from LC-MS/MS. Therefore, the developed method has the potential to be used as an alternative approach for detection of multiple pesticides.
Collapse
Affiliation(s)
- Ge Chen
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs China, Key Lab Vegetables Quality and Safety Control, Institute of Vegetables & Flowers, Beijing 100081, China
| | - Guangyang Liu
- Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs China, Key Lab Vegetables Quality and Safety Control, Institute of Vegetables & Flowers, Beijing 100081, China
| | - Huiyan Jia
- Ningbo Academy of Agricultural Sciences, Ningbo, Zhengjiang 315040, China
| | - Xueyan Cui
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuanshang Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Dongyang Li
- Department of Entomology & Nematology and the UC Davis Comprehensive Cancer Center, Davis, University of California, CA 95616, USA
| | - Weijia Zheng
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yongxin She
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Donghui Xu
- Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs China, Key Lab Vegetables Quality and Safety Control, Institute of Vegetables & Flowers, Beijing 100081, China
| | - Xiaodong Huang
- Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs China, Key Lab Vegetables Quality and Safety Control, Institute of Vegetables & Flowers, Beijing 100081, China
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt; Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, Erzurum, Turkey.
| | - Jianchun Sun
- Inspection and Testing Center of Agricultural and Livestock Products of Tibet, Lhasa 850000, China
| | - Haijin Liu
- Inspection and Testing Center of Agricultural and Livestock Products of Tibet, Lhasa 850000, China
| | - Yuting Zou
- Inspection and Testing Center of Agricultural and Livestock Products of Tibet, Lhasa 850000, China
| | - Jing Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Maojun Jin
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Department of Entomology & Nematology and the UC Davis Comprehensive Cancer Center, Davis, University of California, CA 95616, USA.
| | - Bruce D Hammock
- Department of Entomology & Nematology and the UC Davis Comprehensive Cancer Center, Davis, University of California, CA 95616, USA
| |
Collapse
|
31
|
Cai Y, Zhu H, Zhou W, Qiu Z, Chen C, Qileng A, Li K, Liu Y. Capsulation of AuNCs with AIE Effect into Metal–Organic Framework for the Marriage of a Fluorescence and Colorimetric Biosensor to Detect Organophosphorus Pesticides. Anal Chem 2021; 93:7275-7282. [DOI: 10.1021/acs.analchem.1c00616] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yue Cai
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, People’s Republic of China
| | - Hongshuai Zhu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, People’s Republic of China
- The Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, People’s Republic of China
| | - Weichi Zhou
- College of Mathematics and Informatics, South China Agricultural University, Guangzhou 510642, People’s Republic of China
| | - Ziyin Qiu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, People’s Republic of China
| | - Congcong Chen
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, People’s Republic of China
| | - Aori Qileng
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, People’s Republic of China
- The Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, People’s Republic of China
| | - Kangshun Li
- College of Mathematics and Informatics, South China Agricultural University, Guangzhou 510642, People’s Republic of China
| | - Yingju Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, People’s Republic of China
- The Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, People’s Republic of China
| |
Collapse
|
32
|
Zhao G, Zhou B, Wang X, Shen J, Zhao B. Detection of organophosphorus pesticides by nanogold/mercaptomethamidophos multi-residue electrochemical biosensor. Food Chem 2021; 354:129511. [PMID: 33735695 DOI: 10.1016/j.foodchem.2021.129511] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/31/2021] [Accepted: 02/28/2021] [Indexed: 12/26/2022]
Abstract
Based on the successful synthesis of mercaptomethamidophos as a substrate, a novel nanogold/mercaptomethamidophos multi-residue electrochemical biosensor was designed and fabricated by combining nanoscale effect, strong Au-S bonds as well as interaction between acetylcholinesterase (AChE) and mercaptomethamidophos, which can simultaneously detect 11 kinds of organophosphorus pesticides (OPPs) and total amount of OPPs using indirect competitive method. Electrochemical behavior of the modified electrode was characterized by differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). The AChE concentration and incubation time were optimized at 37.4 °C to achieve the best detection effect. This biosensor exhibits excellent electrochemical properties with a wider linear range of 0.1 ~ 1500 ng·mL-1, lower detection limit of 0.019 ~ 0.077 ng·mL-1, better stability and repeatability, which realizes the rapid detection of total amount of OPPs, and can simultaneously detect a large class of OPPs rather than one kind of OPP. Two OPPs (trichlorfon, dichlorvos) were detected in actual samples of apple and cabbage and achieved satisfactory test results.
Collapse
Affiliation(s)
- Guozheng Zhao
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemistry and Material Science, College of Food Science, Shanxi Normal University, Linfen 041004, China.
| | - Binhua Zhou
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Xiuwen Wang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Bo Zhao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|