1
|
Zhang H, Ma W, Qiang C, Nie J, Ma L, Zhang Y, Wang K. Fe 3O 4@SiO 2-BD-DADB-COF is proposed as a novel magnetic covalent organic framework for the determination and extraction of 15 macrolide antibiotics in water and honey. RSC Adv 2025; 15:8111-8120. [PMID: 40103973 PMCID: PMC11913072 DOI: 10.1039/d5ra00080g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Accepted: 02/26/2025] [Indexed: 03/20/2025] Open
Abstract
In our research, an emerging magnetic covalent organic framework (Fe3O4@SiO2-BD-DADB-COF) was formulated through Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), etc. Several parameters affecting the extraction process were refined. Accordingly, a novel method of determining 15 macrolides (MALs) in honey and water was established through the Fe3O4@SiO2-BD-DADB-COF as a magnetic solid-phase extraction (MSPE) adsorbent and ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). In consequence, the standard curves for the 15 MALs exhibited an exceptional linearity from 0.1 to 200 μg L-1, and the correlation coefficients (R 2) varied from 0.9990 to 0.9999. The recoveries fell between 70.01% and 115.56%, with the relative standard deviations (RSDs) being below 9.93% (n = 5). The detection limits reached 0.001-0.075 μg L-1 with the quantification limits being 0.004-0.228 μg L-1. Ultimately, the method was excellently applied to the analysis of MALs in honey and water.
Collapse
Affiliation(s)
- Hao Zhang
- College of Chemistry and Materials Science, Hebei Normal University Shijiazhuang 050023 China
| | - Weihao Ma
- Shijiazhuang Center for Disease Control and Prevention Shijiazhuang 050011 China
- Shijiazhuang Technology Innovation Center for Chemical Poison Detection and Risk Early Warning Shijiazhuang 050011 China
| | - Chunyu Qiang
- College of Chemistry and Materials Science, Hebei Normal University Shijiazhuang 050023 China
| | - Jiayuan Nie
- Shijiazhuang Center for Disease Control and Prevention Shijiazhuang 050011 China
- Shijiazhuang Technology Innovation Center for Chemical Poison Detection and Risk Early Warning Shijiazhuang 050011 China
| | - Ling Ma
- Shijiazhuang Center for Disease Control and Prevention Shijiazhuang 050011 China
- Shijiazhuang Technology Innovation Center for Chemical Poison Detection and Risk Early Warning Shijiazhuang 050011 China
| | - Yawei Zhang
- Shijiazhuang Center for Disease Control and Prevention Shijiazhuang 050011 China
- Shijiazhuang Technology Innovation Center for Chemical Poison Detection and Risk Early Warning Shijiazhuang 050011 China
| | - Ke Wang
- College of Chemistry and Materials Science, Hebei Normal University Shijiazhuang 050023 China
- Shijiazhuang Center for Disease Control and Prevention Shijiazhuang 050011 China
- Shijiazhuang Technology Innovation Center for Chemical Poison Detection and Risk Early Warning Shijiazhuang 050011 China
| |
Collapse
|
2
|
Płonka J, Kostina-Bednarz M, Barchanska H. Targeted Analysis, Metabolic Profiling, and Fingerprinting Based on an LC(GC)-MS Approach for the Comprehensive Evaluation of Pesticide Content in Edible Plants. Crit Rev Anal Chem 2025:1-26. [PMID: 39784300 DOI: 10.1080/10408347.2024.2449062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Pesticides are commonly found in plant-based foods, which inevitably reduces food quality and poses significant health risks to consumers. The extensive variety of crops and the wide range of pesticides used means that no single analytical approach can provide clear and comprehensive information on the pesticide-protection status of a crop. Since most pesticide analyses in food rely on chromatographic techniques combined with various MS platforms, this article focuses exclusively on LC-MS and GC-MS system methodologies. In summary, this paper critically reviews analytical modes-specifically, multi reaction monitoring, data-dependent analysis, and data-independent analysis-and scanning regimes, including full scan, MS, MS/MS, suspect screening, and fingerprinting strategies, for pesticide detection in edible plants. The advantages and disadvantages of these methodologies, as well as their complementary applications, are thoroughly examined.
Collapse
Affiliation(s)
- Joanna Płonka
- Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, Gliwice, Poland
| | - Marianna Kostina-Bednarz
- Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, Gliwice, Poland
| | - Hanna Barchanska
- Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, Gliwice, Poland
| |
Collapse
|
3
|
Jager J, Rasker S, Arrizabalaga-Larrañaga A, Boerrigter-Eenling R, Rapallini M, Blokland M. Rapid identification of antibiotic residues in bovine kidney using coated blade spray-mass spectrometry. Anal Bioanal Chem 2024; 416:7031-7041. [PMID: 39438354 PMCID: PMC11579169 DOI: 10.1007/s00216-024-05605-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
The use of certain antibiotics in food-producing animals is allowed in Europe following Regulation (EU) 2017/625. However, use could result in antibiotic residues in foodstuffs of animal origin. Maximum residue limits (MRLs) are in place to protect consumers. For monitoring purposes, animal matrices are tested to verify their compliance with these MRLs. Initially, matrices of (slaughtered) food animals are screened, often using a microbiological assay. Faster screening tests for antibiotics would be an advantage for control laboratories. Therefore, the present study describes, for the first time, the use of coated blade spray (CBS) followed by direct mass spectrometry (MS) analysis for the screening of tetracyclines, sulfonamides, quinolones, and macrolides residues from the renal area of intact bovine kidneys. An optimized workflow using two different desorption/ionization solutions per blade allowed screening of target compounds within 1 min per sample. The proof-of-principle of the CBS-MS method is validated according to (EU) 2021/808, presenting CCβ screening values of 0.1 × MRL for 43 analytes, 0.5 × MRL for 4 analytes, and 2.5 µg kg-1 for the prohibited substance dapsone, respectively. The developed method was successfully applied to seven official control samples of bovine kidneys. One of these samples was found to be positive using the CBS-MS method, which was confirmed as a true positive by LC-MSMS analysis. The developed method demonstrates that CBS devices can directly extract and analyze kidney samples for food safety testing.
Collapse
Affiliation(s)
- Josha Jager
- Wageningen Food Safety Research (WFSR), Part of Wageningen University & Research, 6700 AE, Wageningen, The Netherlands.
| | - Sjors Rasker
- Wageningen Food Safety Research (WFSR), Part of Wageningen University & Research, 6700 AE, Wageningen, The Netherlands
| | - Ane Arrizabalaga-Larrañaga
- Wageningen Food Safety Research (WFSR), Part of Wageningen University & Research, 6700 AE, Wageningen, The Netherlands
| | - Rita Boerrigter-Eenling
- Wageningen Food Safety Research (WFSR), Part of Wageningen University & Research, 6700 AE, Wageningen, The Netherlands
| | - Michel Rapallini
- Wageningen Food Safety Research (WFSR), Part of Wageningen University & Research, 6700 AE, Wageningen, The Netherlands
| | - Marco Blokland
- Wageningen Food Safety Research (WFSR), Part of Wageningen University & Research, 6700 AE, Wageningen, The Netherlands
| |
Collapse
|
4
|
Chen J, Zhang G, Xiao X, Liu D, Peng J, Xiong Y, Lai W. Bifunctional bovine serum albumin modification driven sensitivity-enhanced lateral flow immunoassay for small molecule hazards monitoring in food. Int J Biol Macromol 2024; 282:136915. [PMID: 39476895 DOI: 10.1016/j.ijbiomac.2024.136915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/30/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Traditional lateral flow immunoassays (TLFIAs) are valued for their simplicity, speed, and user-friendliness. However, the specificity of conventional test strips often necessitates large quantities of antigen-protein conjugates for target detection, which can be resource-intensive. Here, we present a strategy aimed at enhancing the universality of test strips while reducing the consumption of antigen-protein conjugates, without compromising sensitivity. By coating streptavidin on the test line and employing bifunctional antigen-protein conjugates (competitor to target and immunoprobe linker), the test strip was thus served as a universal module. We developed three universal lateral flow immunoassays (ULFIAs) for the detection of aflatoxin B1 (AFB1), carbendazim (CBZ), and enrofloxacin (ENR). Compared to traditional methods based on the same aggregation-induced emission fluorescent microspheres, the proposed ULFIAs demonstrated a significant increase in sensitivity, with enhancements of 11.0-fold for AFB1, 10.9-fold for CBZ, and 4.1-fold for ENR. Additionally, this approach substantially reduced the consumption of antigen-protein conjugates by 19.1-fold, 40.9-fold, and 23.8-fold, respectively, thereby promoting greener detection methods. This bifunctional antigen conjugate strategy offers a promising pathway for the sensitive detection of small molecule hazards.
Collapse
Affiliation(s)
- Jiawei Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 East Nanjing Road, Nanchang 330047, China
| | - Gan Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 East Nanjing Road, Nanchang 330047, China
| | - Xiaoyue Xiao
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 East Nanjing Road, Nanchang 330047, China
| | - Daofeng Liu
- Jiangxi Province Key Laboratory of Diagnosing and Tracing of Foodborne Disease, Jiangxi Province Center for Disease Control and Prevention, 555 East Beijing Road, Nanchang 330029, China
| | - Juan Peng
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 East Nanjing Road, Nanchang 330047, China
| | - Yonghua Xiong
- Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Weihua Lai
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 East Nanjing Road, Nanchang 330047, China.
| |
Collapse
|
5
|
Millán-Santiago J, Lucena R, Cárdenas S. Nylon 6-cellulose composite hosted in a hypodermic needle: Biofluid extraction and analysis by ambient mass spectrometry in a single device. J Pharm Anal 2023; 13:1346-1352. [PMID: 38174121 PMCID: PMC10759252 DOI: 10.1016/j.jpha.2023.06.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/28/2023] [Accepted: 06/27/2023] [Indexed: 01/05/2024] Open
Abstract
This study proposes a hypodermic needle (HN) as a sorbent holder and an electrospray (ESI) emitter, thus combining extraction and analysis in a single device. A novel nylon 6-cellulose (N6-Cel) composite sorbent is proposed to extract methadone from oral fluid samples. The cellulosic substrate provides the composite with high porosity, permitting the flow-through of the sample, while the polyamide contributes to the extraction of the analyte. The low price of the devices (considering the holder and the sorbent) contributes to the affordability of the method, and their small size allows easy transportation, opening the door to on-site extractions. Under the optimum conditions, the analyte can be determined by high-resolution ambient ionization mass spectrometry at a limit of detection (LOD) as low as 0.3 μg/L and precision (expressed as relative standard deviation, RSD) better than 9.3%. The trueness, expressed as relative recovery (RR), ranged from 90% to 109%. As high-resolution mass spectrometers are not available in many laboratories, the method was also adapted to low-resolution spectrometers. In this sense, the direct infusion of the eluates in a triple quadrupole-mass spectrometry provided an LOD of 2.2 μg/L. The RSD was better than 5.3%, and the RR ranged from 96% to 121%.
Collapse
Affiliation(s)
- Jaime Millán-Santiago
- Affordable and Sustainable Sample Preparation (AS2P) Research Group, Analytical Chemistry Department, Chemical Institute for Energy and Environment (IQUEMA), University of Cordoba, E-14071, Cordoba, Spain
| | - Rafael Lucena
- Affordable and Sustainable Sample Preparation (AS2P) Research Group, Analytical Chemistry Department, Chemical Institute for Energy and Environment (IQUEMA), University of Cordoba, E-14071, Cordoba, Spain
| | - Soledad Cárdenas
- Affordable and Sustainable Sample Preparation (AS2P) Research Group, Analytical Chemistry Department, Chemical Institute for Energy and Environment (IQUEMA), University of Cordoba, E-14071, Cordoba, Spain
| |
Collapse
|
6
|
Sun H, Tian Y, Wei J, Wei W, Zhang Z, Han S, Niu W. Silver decahedral nanoparticles with uniform and adjustable sizes for surface-enhanced Raman scattering-based thiram residue detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4533-4540. [PMID: 37641926 DOI: 10.1039/d3ay01196h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Surface-enhanced Raman scattering (SERS) has been widely used as a sensitive molecular spectroscopy technology in food safety detection. Precise morphology control of plasmonic nanoparticles for high sensitivity and high uniformity SERS substrates remains challenging. Herein, silver decahedral nanoparticles (AgDeNPs) with uniform and adjustable sizes were synthesized by a photochemical seed-mediated method and utilized as SERS substrates for pesticide residue detection. The SERS sensitivity was demonstrated by using 4-mercaptobenzoic acid (4-MBA) as a typical model molecule, and the limit of detection (LOD) reached 1.0 × 10-13 M. The pesticide residue detection of thiram in aqueous solution and on fruit peels was successfully realized; the LODs were 1.0 × 10-11 M and 0.96 ng cm-2, respectively, and SERS repeatability was also proved. Overall, size-tunable AgDeNPs show attractive SERS performances and are expected to hold potential application in sensitive food and environmental safety detection.
Collapse
Affiliation(s)
- Hongda Sun
- School of Science, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Yu Tian
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- University of Science and Technology of China, Hefei 230026, China
| | - Jinping Wei
- School of Science, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Wenli Wei
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- University of Science and Technology of China, Hefei 230026, China
| | - Zhichao Zhang
- School of Science, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Shuang Han
- School of Science, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Wenxin Niu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
7
|
Calero-Cañuelo C, Casado-Carmona FA, Lucena R, Cárdenas S. Mixed-mode cationic exchange sorptive tapes combined with direct infusion mass spectrometry for determining opioids in saliva samples. J Chromatogr A 2023; 1702:464097. [PMID: 37244164 DOI: 10.1016/j.chroma.2023.464097] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/11/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023]
Abstract
This article describes the synthesis of mixed-mode cationic exchange (MCX) tapes as sorptive phases in bioanalysis, and it faces the determination of methadone and tramadol in saliva as the model analytical problem. The tapes are synthesized using aluminum foil as substrate, which is subsequently covered with double-sided adhesive tape where the MCX particles (ca. 1.4 ± 0.2 mg) finally adhere. MCX particles allow the extraction of the analytes at the physiological pH, where both drugs are positively charged, minimizing the potential co-extraction of endogenous matrix compounds. The extraction conditions were studied considering the main variables (e.g. ionic strength, extraction time, sample dilution). Under the optimum conditions and using direct infusion mass spectrometry as the instrumental technique, detection limits as low as 3.3 μg·L-1 were obtained. The precision calculated at three different levels, and expressed as relative standard deviation, was better than 3.8%. The accuracy, expressed as relative recoveries, ranged from 83 to 113%. The method was finally applied to determine tramadol in saliva samples from patients under medical treatment. This approach opens the door to easily preparing sorptive tapes based on commercial (or ad-hoc synthesized) sorbent particles.
Collapse
Affiliation(s)
- Carlos Calero-Cañuelo
- Affordable and Sustainable Sample Preparation (AS2P) research group, Departamento de Química Analítica, Instituto Químico para la Energía y el Medioambiente IQUEMA, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071, Córdoba, Spain
| | - Francisco Antonio Casado-Carmona
- Affordable and Sustainable Sample Preparation (AS2P) research group, Departamento de Química Analítica, Instituto Químico para la Energía y el Medioambiente IQUEMA, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071, Córdoba, Spain
| | - Rafael Lucena
- Affordable and Sustainable Sample Preparation (AS2P) research group, Departamento de Química Analítica, Instituto Químico para la Energía y el Medioambiente IQUEMA, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071, Córdoba, Spain.
| | - Soledad Cárdenas
- Affordable and Sustainable Sample Preparation (AS2P) research group, Departamento de Química Analítica, Instituto Químico para la Energía y el Medioambiente IQUEMA, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071, Córdoba, Spain.
| |
Collapse
|
8
|
Martín-Pozo L, Arena K, Cacciola F, Dugo P, Mondello L. Development and validation of a multi-class analysis of pesticides in corn products by comprehensive two-dimensional liquid chromatography-tandem mass spectrometry. J Chromatogr A 2023; 1701:464064. [PMID: 37201430 DOI: 10.1016/j.chroma.2023.464064] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 05/20/2023]
Abstract
Due to the growing trend of organic food, there is still concern over the use of chemicals and pesticides in agriculture. In recent years, several procedures have been validated for the control of pesticides in food. In the present research, a comprehensive two-dimensional liquid chromatography coupled with tandem mass spectrometry is proposed for the first time for a multi-class analysis of 112 pesticides in corn-based products. Notably, a "reduced" QuEChERS-based method as extraction and clean-up procedure prior to the analysis, was successfully employed. Limits of quantification values were lower than the ones fixed by the European legislation; intra-day and inter-day precision were lower than 12.9% and 15.1%, respectively (at the 500 μg/kg concentration levels). Over 70% of the analytes provided recoveries between 70% and 120% range (at 50, 500 and 1000 µg/kg concentration levels) with standard deviation values below 20%. In addition, matrix effect values were in the range between 13% to 161%. The method was applied to the analysis of real samples, and three pesticides were detected at trace levels in both samples. The findings of this work pave the way for the treatment of complex matrices such as corn products.
Collapse
Affiliation(s)
- Laura Martín-Pozo
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Campus Fuentenueva s/n, 18071 Granada, Spain; Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy
| | - Katia Arena
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy.
| | - Francesco Cacciola
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98125 Messina, Italy
| | - Paola Dugo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy; Chromaleont s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Luigi Mondello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy; Chromaleont s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy; Department of Sciences and Technologies for Human and Environment, University Campus Bio-Medico of Rome, Rome, Italy
| |
Collapse
|
9
|
Song C, Zheng J, Zhang Q, Yuan H, Yu A, Zhang W, Zhang S, Ouyang G. Multifunctionalized Covalent Organic Frameworks for Broad-Spectrum Extraction and Ultrasensitive Analysis of Per- and Polyfluoroalkyl Substances. Anal Chem 2023; 95:7770-7778. [PMID: 37154520 DOI: 10.1021/acs.analchem.3c01137] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The contamination of surface and ground water by per- and polyfluoroalkyl substances (PFASs) has become a growing concern, and the structural diversity of PFASs is the major challenge for their ubiquitous applications. Strategies for monitoring coexistent anionic, cationic, and zwitterionic PFASs even at trace levels in aquatic environments are urgently demanded for effective pollution control. Herein, novel amide group and perfluoroalkyl chain-functionalized covalent organic frameworks (COFs) named COF-NH-CO-F9 are successfully synthesized and used for highly efficient extraction of broad-spectrum PFASs, attributing to their unique structure and the multifunctional groups. Under the optimal conditions, a simple and high-sensitivity method is established to quantify 14 PFASs including anionic, cationic, and zwitterionic species by coupling solid-phase microextraction (SPME) with ultrahigh-performance liquid chromatography-triple quadrupole mass spectrometry (UHPLC-MS/MS) for the first time. The established method displays high enrichment factors (EFs) of 66-160, ultrahigh sensitivity with low limits of detection (LODs) of 0.0035-0.18 ng L-1, a wide linearity of 0.1-2000 ng L-1 with correlation coefficient (R2) ≥0.9925, and satisfactory precision with relative standard deviations (RSDs) ≤11.2%. The excellent performance is validated in real water samples with recoveries of 77.1-108% and RSDs ≤11.4%. This work highlights the potential of rational design of COFs with the desired structure and functionality for the broad-spectrum enrichment and ultrasensitive determination of PFASs in real applications.
Collapse
Affiliation(s)
- Chenchen Song
- College of Chemistry, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, P. R. China
| | - Juan Zheng
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry/School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, P. R. China
| | - Qidong Zhang
- College of Chemistry, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, P. R. China
- Zhengzhou Tobacco Research Institute, China National Tobacco Corporation, Zhengzhou, Henan 450001, P. R. China
| | - Hang Yuan
- College of Chemistry, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, P. R. China
| | - Ajuan Yu
- College of Chemistry, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, P. R. China
| | - Wenfen Zhang
- College of Chemistry, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, P. R. China
| | - Shusheng Zhang
- College of Chemistry, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, P. R. China
| | - Gangfeng Ouyang
- College of Chemistry, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, P. R. China
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry/School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, P. R. China
| |
Collapse
|
10
|
Li Y, Luo Y, Jiang J, He H, Zhang C, Zhao X. Residual behavior and risk assessment of fluopyram, acetamiprid and chlorantraniliprole used individually or in combination on strawberry. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:64700-64709. [PMID: 37072589 DOI: 10.1007/s11356-023-26544-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 03/15/2023] [Indexed: 05/03/2023]
Abstract
In this study, fluopyram (FOR), acetamiprid (ATP), and chlorantraniliprole (CAP) were used individually or in combination at the maximum recommended dose in greenhouse strawberries to research the dissipation dynamics and dietary risks. A multi-residue analytical method for FOR, ATP, and CAP in strawberries using UPLC-MS/MS integrated with the QuEChERS approach was developed with strong linearity (R2 ≧ 0.9990), accuracy (recoveries of 82.62 to 107.79%), and precision (relative standard deviations of 0.58% to 12.73%). The limits of quantification were 0.01 mg kg-1. Field results showed that the half-lives of FOR, ATP and CAP in strawberry fruits were 11.6-12.4 days, 6.1-6.7 days, and 10.9-11.7 days, respectively. The half-lives of the three investigated pesticides showed no significant difference when used individually or in combination. A risk assessment indicated that the dietary intake risks of the three pesticides in grown strawberries were 0.0041 to 7.63% whether applied alone or in combination, which demonstrated that the dietary intake risks of the three pesticides in grown strawberries could be negligible for Chinese male and female consumers, and that even though pesticides were used in combination, there was less cause for concern about the safety. This paper serves as a guide for the safe use of FOR, ATP, and CAP on greenhouse strawberries.
Collapse
Affiliation(s)
- Yanjie Li
- Ministry of Agriculture and Rural Affairs Key Laboratory for Pesticide Residue Detection, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yuqin Luo
- Ministry of Agriculture and Rural Affairs Key Laboratory for Pesticide Residue Detection, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jinhua Jiang
- Ministry of Agriculture and Rural Affairs Key Laboratory for Pesticide Residue Detection, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Hongmei He
- Ministry of Agriculture and Rural Affairs Key Laboratory for Pesticide Residue Detection, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Changpeng Zhang
- Ministry of Agriculture and Rural Affairs Key Laboratory for Pesticide Residue Detection, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Xueping Zhao
- Ministry of Agriculture and Rural Affairs Key Laboratory for Pesticide Residue Detection, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| |
Collapse
|
11
|
Mirabelli MF. Direct Coupling of SPME to Mass Spectrometry. EVOLUTION OF SOLID PHASE MICROEXTRACTION TECHNOLOGY 2023:290-314. [DOI: 10.1039/bk9781839167300-00290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Solid-phase microextraction devices are normally analyzed by gas or liquid chromatography. Their use has become increasingly widespread since their introduction in 1990, and nowadays most analytical laboratories use or have used SPME as an efficient and green method to perform analyte extraction and sample clean-up in one step. The SPME technique is intrinsically flexible, and allows for a high degree of optimization with regard to the extracting phase, as well as the way sample is analyzed. Since its introduction, researchers have been trying different ways to transfer analytes extracted from the solid phase to a mass spectrometer, with the aim to increase throughput and reduce solvent, gas usage and costs associated with conventional chromatographic techniques. Furthermore, but not less important, for pure fun of developing new, more efficient and sensitive analytical strategies! This chapter aims at providing a comprehensive overview of the most relevant non-chromatographic mass spectrometric approaches developed for SPME. Technical aspects of each SPME-MS approach will be discussed, highlighting their advantages, disadvantages and future potential developments. Particular emphasis will be given on the most recent direct coupling approaches using novel ionization approaches, and a concise overview of the existing applications will also be provided.
Collapse
|
12
|
Fernandes VC, Podlasiak M, Vieira EF, Rodrigues F, Grosso C, Moreira MM, Delerue-Matos C. Multiple Organic Contaminants Determination Including Multiclass of Pesticides, Polychlorinated Biphenyls, and Brominated Flame Retardants in Portuguese Kiwano Fruits by Gas Chromatography. Foods 2023; 12:foods12050993. [PMID: 36900510 PMCID: PMC10000518 DOI: 10.3390/foods12050993] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Global production of exotic fruits has been growing steadily over the past decade and expanded beyond the originating countries. The consumption of exotic and new fruits, such as kiwano, has increased due to their beneficial properties for human health. However, these fruits are scarcely studied in terms of chemical safety. As there are no studies on the presence of multiple contaminants in kiwano, an optimized analytical method based on the QuEChERS for the evaluation of 30 multiple contaminants (18 pesticides, 5 polychlorinated biphenyls (PCB), 7 brominated flame retardants) was developed and validated. Under the optimal conditions, satisfactory extraction efficiency was obtained with recoveries ranging from 90% to 122%, excellent sensitivity, with a quantification limit in the range of 0.6 to 7.4 µg kg-1, and good linearity ranging from 0.991 to 0.999. The relative standard deviation for precision studies was less than 15%. The assessment of the matrix effects showed enhancement for all the target compounds. The developed method was validated by analyzing samples collected from Douro Region. PCB 101 was found in trace concentration (5.1 µg kg-1). The study highlights the relevance of including other organic contaminants in monitoring studies in food samples in addition to pesticides.
Collapse
|
13
|
Mandal S, Poi R, Hazra DK, Ansary I, Bhattacharyya S, Karmakar R. Review of extraction and detection techniques for the analysis of pesticide residues in fruits to evaluate food safety and make legislative decisions: Challenges and anticipations. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1215:123587. [PMID: 36628882 DOI: 10.1016/j.jchromb.2022.123587] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/13/2022] [Accepted: 12/24/2022] [Indexed: 12/28/2022]
Abstract
Fruits are vital parts of the human diet because they include necessary nutrients that the body needs. Pesticide use has increased dramatically in recent years to combat fruit pests across the world. Pesticide usage during production, on the other hand, frequently results in undesirable residues in fruits after harvest. Consumers are concerned about pesticide residues since most of the fruits are directly consumed and even recommended for the patients as dietary supplements. As a result of this worry, pesticide residues in fruits are being randomly monitored to re-assess the food safety situation and make informed legislative decisions. To assess the degree of pesticide residues in fruits, a simple and quick analytical procedure is usually required. As a result, pesticide residue detection (using various analytical techniques: GC, LC and Biosensors) becomes critical, and regulatory directives are formed to regulate their amounts via the Maximum Residue Limit (MRL). Over the previous two decades, a variety of extraction techniques and analytical methodologies for xenobiotic's efficient extraction, identification, confirmation and quantification have been developed, ranging from traditional to advanced. The goal of this review is to give readers an overview of the evolution of numerous extraction and detection methods for pesticide residue analysis in fruits. The objective is to assist analysts in better understanding how the ever-changing regulatory landscape might drive the need for new analytical methodologies to be developed in order to comply with current standards and safeguard consumers.
Collapse
Affiliation(s)
- Swagata Mandal
- All India Network Project on Pesticide Residues, Directorate of Research, Bidhan Chandra Krishi Viswavidyalaya, Kalyani, Nadia, West Bengal, India; Department of Chemistry, Burdwan University, Burdwan, West Bengal 713104, India
| | - Rajlakshmi Poi
- All India Network Project on Pesticide Residues, Directorate of Research, Bidhan Chandra Krishi Viswavidyalaya, Kalyani, Nadia, West Bengal, India
| | - Dipak Kumar Hazra
- All India Network Project on Pesticide Residues, Directorate of Research, Bidhan Chandra Krishi Viswavidyalaya, Kalyani, Nadia, West Bengal, India
| | - Inul Ansary
- Department of Chemistry, Burdwan University, Burdwan, West Bengal 713104, India
| | - Sudip Bhattacharyya
- All India Network Project on Pesticide Residues, Directorate of Research, Bidhan Chandra Krishi Viswavidyalaya, Kalyani, Nadia, West Bengal, India
| | - Rajib Karmakar
- All India Network Project on Pesticide Residues, Directorate of Research, Bidhan Chandra Krishi Viswavidyalaya, Kalyani, Nadia, West Bengal, India.
| |
Collapse
|
14
|
Rickert D, Gómez-Ríos GA, Singh V, Pawliszyn J. Understanding the effect of spatial positioning of coated blade spray devices relative to the mass spectrometry inlet on different instrument platforms and its application to quantitative analysis of fentanyl and related analogs. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2022; 36:e9388. [PMID: 36039809 DOI: 10.1002/rcm.9388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
RATIONALE We evaluated the effect that the spatial positioning of coated-blade spray (CBS) devices with respect to the mass spectrometry (MS) inlet has when coupling to diverse MS platforms (i.e., triple quadrupole, linear ion trap and time of flight). Furthermore, as a proof of concept, we evaluated CBS-MS as a tool for quantitation of fentanyl and four analogues on said instruments. METHODS Custom-made MS interfaces were made to accurately position the blade in front of the MS inlet. CBS devices, coated with hydrophilic-lipophilic balanced particles, were used for both the optimization of the CBS position and the quantitation of fentanyl and analogues in urine and plasma samples on all instruments. RESULTS The SCIEX triple quadrupole instrument was the most sensitive to the position of the blade due to the presence of a curtain gas flowing laminarly out of the MS inlet. After optimization, the analytical capabilities of CBS on each instrument were assessed and the results obtained on both SCIEX and Waters platforms matched the performance obtained using a more advanced instrument by ThermoFisher Scientific. Furthermore, excellent figures of merit were attained for the quantitation of fentanyl and analogues on both triple quadrupole and linear ion trap platforms. CONCLUSIONS We demonstrated that optimization of MS parameters on different instrument vendors and front ends, such as the position of the CBS tip regarding the MS inlet, is vital to exploit the full quantitative potential of this technology. Application of the technology to screen and quantify fentanyl and analogues showed great potential when considering its coupling with portable mass spectrometers for therapeutic drug monitoring and point-of-care applications.
Collapse
Affiliation(s)
- Daniel Rickert
- Department of Chemistry, University of Waterloo, Waterloo, ON, Canada
| | | | - Varoon Singh
- Department of Chemistry, University of Waterloo, Waterloo, ON, Canada
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
15
|
Geballa-Koukoula A, Gerssen A, Blokland MH, Nielen MWF. Immunoaffinity Plastic Blade Spray Mass Spectrometry for Rapid Confirmatory Analysis of Food Contaminants. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:2038-2045. [PMID: 36223493 PMCID: PMC9634800 DOI: 10.1021/jasms.2c00149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 09/14/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
The lack of chromatographic separation in ambient and direct mass spectrometry (MS) ionization techniques jeopardizes the overall selectivity of the developed methods. Incorporating a biosensing element at the ionization source could compensate for that inherent lack of selectivity. Thus, a simplified immunoaffinity-direct MS technique was developed, immunoaffinity blade spray (iBS), featuring a conductive polystyrene blade material. In iBS, the generic coating used in conventional coated blade spray is replaced with a layer of highly specific monoclonal antibodies (mAbs), while the stainless steel is replaced with conductive polystyrene to allow for simple ELISA platelike hydrophobic immobilization of mAbs. Because of its high relevance for climate change-induced food safety issues, the mycotoxin deoxynivalenol (DON) was chosen as a model substance. Following a rapid extraction from wheat flour, DON is immuno-captured, and the blade is positioned in front of the MS for direct iBS-MS/MS analysis. The method's applicability was demonstrated by analyzing spiked and incurred wheat flour samples, omitting the need for time-consuming chromatographic separation. Apart from DON, cross-reacting DON conjugates could be successfully analyzed as well. The direct iBS-MS/MS method is generic and adaptable to detecting any analyte in sample extracts, provided that specific mAbs are available.
Collapse
Affiliation(s)
- Ariadni Geballa-Koukoula
- Wageningen
Food Safety Research, Wageningen University
& Research, P.O. Box 230, 6700 AE Wageningen, The Netherlands
| | - Arjen Gerssen
- Wageningen
Food Safety Research, Wageningen University
& Research, P.O. Box 230, 6700 AE Wageningen, The Netherlands
| | - Marco H. Blokland
- Wageningen
Food Safety Research, Wageningen University
& Research, P.O. Box 230, 6700 AE Wageningen, The Netherlands
| | - Michel W. F. Nielen
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
16
|
Shi L, Habib A, Bi L, Hong H, Begum R, Wen L. Ambient Ionization Mass Spectrometry: Application and Prospective. Crit Rev Anal Chem 2022; 54:1584-1633. [PMID: 36206159 DOI: 10.1080/10408347.2022.2124840] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
Abstract
Mass spectrometry (MS) is a formidable analytical tool for the analysis of non-polar to polar compounds individually and/or from mixtures, providing information on the molecular weights and chemical structures of the analytes. During the last more than one-decade, ambient ionization mass spectrometry (AIMS) has developed quickly, producing a wide range of platforms and proving scientific improvements in a variety of domains, from biological imaging to quick quality control. These methods have made it possible to detect target analytes in real time without sample preparation in an open environment, and they can be connected to any MS system with an atmospheric pressure interface. They also have the ability to analyze explosives, illicit drugs, disease diagnostics, drugs in biological samples, adulterants in food and agricultural products, reaction progress, and environmental monitoring. The development of novel ambient ionization techniques, such as probe electrospray ionization, paper spray ionization, and fiber spray ionization, employed even at picolitre to femtolitre solution levels to provide femtogram to attogram levels of the target analytes. The special characteristic of this ambient ion source, which has been extensively used, is the noninvasive property of PESI of examination of biological real samples. The results in the current review supports the idea that AIMS has emerged as a pioneer in MS-based approaches and that methods will continue to be developed along with improvements to existing ones in the near future.
Collapse
Affiliation(s)
- Lulu Shi
- Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, China
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
| | - Ahsan Habib
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
- Department of Chemistry, University of Dhaka, Dhaka, Bangladesh
| | - Lei Bi
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
| | - Huanhuan Hong
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
| | - Rockshana Begum
- Department of Chemistry, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Luhong Wen
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
17
|
Xing T, Qian Q, Ye H, Wang Z, Jin Y, Zhang N, Wang M, Zhou Y, Gao X, Wu L. Gold nanoparticles with helical surface structure transformed from chiral molecules for SERS-active substrates preparation. Biosens Bioelectron 2022; 212:114430. [DOI: 10.1016/j.bios.2022.114430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 01/29/2023]
|
18
|
García-Vara M, Postigo C, Palma P, Bleda MJ, López de Alda M. QuEChERS-based analytical methods developed for LC-MS/MS multiresidue determination of pesticides in representative crop fatty matrices: Olives and sunflower seeds. Food Chem 2022; 386:132558. [PMID: 35339080 DOI: 10.1016/j.foodchem.2022.132558] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 02/23/2022] [Accepted: 02/23/2022] [Indexed: 11/18/2022]
Abstract
Oilseed crops are greatly extended all over the world. Their high fat content can interfere during pesticide multiresidue analysis through liquid chromatography-tandem mass spectrometry (LC-MS/MS). This work aimed at overcoming this issue by developing and validating two QuEChERS-based methods for LC-MS/MS determination of 42 pesticides in two fatty food matrices: olives and sunflower seeds. Optimization of the extraction method was achieved following a 26-2 fractional factorial design in a highly cost-effective way. Validation of the multi-residue methods demonstrated improved limits of detection, below the established maximum residue levels (MRLs) for almost all compounds, good precision, and trueness, in compliance with SANTE guidelines. Application of these methods to the analysis of real samples from the Iberian Peninsula showed the presence of some pesticides of relevant environmental concern, including four compounds contained in the Pesticide Action Network International list of highly hazardous pesticides, found at levels between 0.03 ng/g and 104 ng/g.
Collapse
Affiliation(s)
- Manuel García-Vara
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C/ Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Cristina Postigo
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C/ Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Patricia Palma
- Department of Technologies and Applied Sciences, Polytechnic Institute of Beja, Portugal; Institute of Earth Sciences, University of Évora, Évora, Portugal
| | - María José Bleda
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Miren López de Alda
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C/ Jordi Girona 18-26, 08034 Barcelona, Spain.
| |
Collapse
|
19
|
Zhou W, Nazdrajić E, Pawliszyn J. Rapid Screening and Quantitation of Drugs of Abuse by Both Positive and Negative Modes via Coated Blade Spray-Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1187-1193. [PMID: 35609124 DOI: 10.1021/jasms.2c00040] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Solid-phase microextraction (SPME)-direct mass spectrometry (MS) has proven to be an efficient tool for the rapid screening and quantitation of target compounds at trace levels. However, it is challenging to perform screening using both positive and negative modes in one analytical run without compromising scanning speed and detection sensitivity. To take advantage of the special geometry of a coated blade spray (CBS) blade, which consists of two flat sides coated with the same SPME coating, we developed a CBS-MS method that enables desorption and ionization to be performed in positive ionization mode on one side of a coated blade and negative ionization mode on the other side of the same blade. By simply flipping the blade 180°, MS analysis in both ionization modes on different sides can be completed in 40 s. Combining this approach with an automated Concept 96-blade-based SPME system allowed analysis for one sample in positive and negative modes to be completed in less than 1 min. The workflow was optimized by using a biocompatible polyacrylonitrile as an undercoating layer and a binder of polyacrylonitrile/hydrophilic-lipophilic balance (HLB) particles, which enabled the rapid analysis of 20 drugs of abuse in saliva samples in both positive and negative modes. The proposed method provided low limits of quantification (between 0.005 and 10 ng/mL), with calibration linear correlation coefficients ⩾ 0.9925, accuracy between 72% and 126%, and relative precision < 15% for three validation points.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Emir Nazdrajić
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
20
|
Rafson JP, Sacks GL. Swellable Sorbent Coatings for Parallel Extraction, Storage, and Analysis of Plant Metabolites. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7805-7814. [PMID: 35699964 DOI: 10.1021/acs.jafc.2c01676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Quantitative and qualitative measurements of trace-level analytes in plants or foodstuffs, e.g., secondary metabolites like carotenoids, are often performed at centralized core facilities or off-site laboratories. However, preparation, storage, and/or transport of both intact samples and sample extracts may be cumbersome and complicated, especially for air-sensitive analytes. We describe the development of inexpensive swellable microextraction (SweME) devices for extraction and storage of nonpolar analytes. SweME devices consist of a thin layer of poly(dimethylsiloxane) (PDMS) grafted onto a stainless steel support. Pretreating the SweME device with small volumes of the organic solvent causes the PDMS to swell. The swollen SweME device can then be immersed directly into complex matrices for absorptive extraction of low-molecular-weight, nonpolar analytes. Following storage, analytes can be solvent-desorbed prior to characterization. Proof-of-principle work with carotenoids from tomatoes and carrots demonstrates that SweME is appropriate for semiquantitative analyses and increases the stability of air-sensitive analytes during storage at ambient temperatures as compared to the solvent extracts. Carotenoid profiles (fractional carotenoid contributions) from tomato and carrot samples were well correlated between SweME and liquid-liquid extraction (R2 = 0.97 and 0.94). Lycopene, the most abundant carotenoid in tomatoes, saw a less than 20% decrease in extracted mass during 1 month of ambient SweME storage. Extractions and desorptions can be run in parallel using multiwell plates. In summary, swelled sorbent extraction with SweME devices is a convenient and inexpensive approach for isolation and storage of analytes in complex matrices and may be particularly well suited for evaluating large numbers of plant samples through external laboratories.
Collapse
Affiliation(s)
- Jessica P Rafson
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, New York 14853, United States
| | - Gavin L Sacks
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, New York 14853, United States
| |
Collapse
|
21
|
Modern Analytical Methods for the Analysis of Pesticides in Grapes: A Review. Foods 2022; 11:foods11111623. [PMID: 35681373 PMCID: PMC9180315 DOI: 10.3390/foods11111623] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/18/2022] [Accepted: 05/22/2022] [Indexed: 12/10/2022] Open
Abstract
Currently, research on the determination of pesticides in food products is very popular. Information obtained from research conducted so far mainly concerns the development of a methodology to determine the content of pesticides in food products. However, they do not describe the content of the pesticide used in viticulture in the resulting product. Over the past decade, this study has examined analytical methodologies for assessing pesticide residues in grapes. Scopus, Web of Science, Science Direct, PubMed, and Springer databases were searched for relevant publications. The phrases “pesticides” and “grapes” and their combinations were used to search for articles. The titles and annotations of the extracted articles have been read and studied to ensure that they meet the review criteria. The selected articles were used to compile a systematic review based on scientific research and reliable sources. The need to study the detection of pesticide residues in grapes using advanced analytical methods is confirmed by our systematic review. This review also highlights modern methods of sample preparation, such as QuEChERS, SPME, PLE, dLLME, and ADLL-ME, as well as the most used methods of separation and identification of pesticides in grapes. An overview of the countries where residual grape pesticide amounts are most studied is presented, along with the data on commonly used pesticides to control pests and diseases in grape cultivation. Finally, future possibilities and trends in the analysis of pesticide residues in grapes are discussed by various analytical methods.
Collapse
|
22
|
Godage NH, Gionfriddo E. Biocompatible SPME coupled to GC/MS for analysis of xenobiotics in blood plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1203:123308. [DOI: 10.1016/j.jchromb.2022.123308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 10/18/2022]
|
23
|
|
24
|
Chen Y, Wu HL, Wang T, Sun XD, Liu BB, Chang YY, Chen JC, Ding YJ, Yu RQ. Quantitative analysis of carbaryl and thiabendazole in complex matrices using excitation-emission fluorescence matrices with second-order calibration methods. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 264:120267. [PMID: 34419828 DOI: 10.1016/j.saa.2021.120267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/27/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
In this paper, a fast and efficient analytical strategy was proposed that chemometrics assisted with excitation-emission fluorescence matrices was used to quantify carbaryl (CAR) and thiabendazole (TBZ) in peach, soil and sewage. Even if there are serious overlapped peaks and unknown interferences in fluorescence analysis, the second-order calibration method based on alternating trilinear decomposition (ATLD) algorithm can be used to analyze CAR and TBZ in peach, soil and sewage. The recoveries of CAR and TBZ in peach are 110.4% and 99.7% and their standard deviations are lower than 2.1% and 0.3%, respectively. In addition, the accuracy of the method was assessed with figures of merit as well as intra-day and inter-day precision. The limit of detection, the limit of quantitation of CAR and TBZ in peach are 1.2 ng mL-1 and 0.3 ng mL-1, 3.5 ng mL-1 and 0.8 ng mL-1, respectively. And their root-mean-square error of prediction are 17.0 ng mL-1 and 5.0 ng mL-1 and there are high sensitivity and selectivity in this method. Meanwhile, the results obtained by ATLD algorithm were compared with those obtained by the self-weighted alternate trilinear decomposition algorithm (SWATLD) and the parallel factor analysis (PARAFAC) algorithm, and statistical methods such as the t-test, F-test and the elliptic joint confidence region were used to evaluate for analysis. There were no significant differences among these methods. At last, high performance liquid chromatography-fluorescence detector (HPLC-FLD) was used to evaluate the accuracy and reliability of the proposed method. These results are satisfactory and indicate that the proposed method can be used for accurate and rapid determination of pesticides in complex systems.
Collapse
Affiliation(s)
- Yue Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Hai-Long Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Tong Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xiao-Dong Sun
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Bing-Bing Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yue-Yue Chang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jun-Chen Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yu-Jie Ding
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Ru-Qin Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
25
|
Kasperkiewicz A, Lendor S, Pawliszyn J. Impact of pesticide formulation excipients and employed analytical approach on relative matrix effects of pesticide determination in strawberries. Talanta 2022; 236:122825. [PMID: 34635215 DOI: 10.1016/j.talanta.2021.122825] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 01/29/2023]
Abstract
Relative matrix effects between an ambient mass spectrometric technique known as coated blade spray (CBS) and liquid chromatographic separation approach when applied to multiresidue pesticide analysis in strawberry samples are explored. Acceptable slope relative standard deviations (RSD <15 %) were observed for the 9 compounds under study for both CBS-MS/MS (2.2-12.6 %) and LC-MS/MS (2.8-12.9 %) approaches. The findings signify both the elimination of relative matrix effects with the sample preparation and matrix match calibration with internal standard correction methods employed along with no matrix effect compromise made when using the direct-to-MS approach. Similarly, slopes of pesticides spiked from commercially available formulations (containing one or two pesticides) were found to not differ significantly from slopes generated with multiresidue pesticide standards (containing 24 additional pesticides besides the target 9 analytes) with either technique, highlighting the resistance of the employed methods to the excipients present in pesticide formulations in large amounts.
Collapse
Affiliation(s)
| | - Sofia Lendor
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada.
| |
Collapse
|
26
|
Sun P, Zhao W. Strategies to Control Human Health Risks Arising from Antibiotics in the Environment: Molecular Modification of QNs for Enhanced Plant-Microbial Synergistic Degradation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:10610. [PMID: 34682354 PMCID: PMC8536065 DOI: 10.3390/ijerph182010610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 12/30/2022]
Abstract
In the present work, a comprehensive screening and evaluation system was established to improve the plant-microbial synergistic degradation effects of QNs. The study included the construction of a 3D-QSAR model, the molecular modification, environmental friendliness and functional evaluation of drugs, degradation pathway simulation, and human health risk assessment. Molecular dynamics was applied to quantify the binding capacity of QNs toward the plant degradation enzyme (peroxidase) and microbial degradation enzymes (manganese peroxidase, lignin peroxidase, and laccase). The fuzzy comprehensive evaluation method was used in combination with the weighted average method for normalization and assigning equal weights to the plant and microbial degradation effect values of the QNs. Considering the synergistic degradation effect value as the dependent variable and the molecular information of the QNs as the independent variable, a 3D-QSAR model was constructed for the plant-microbial synergistic degradation effect of QNs. The constructed model was then employed to conduct the molecular modification, environmental friendliness and functional evaluation, degradation pathway simulation, and human health risk assessment of transformation products using pharmacokinetics and toxicokinetics. The results revealed that the synergistic degradation effect 3D-QSAR (CoMSIA) model exhibited good internal and external prediction ability, fitting ability, stability, and no overfitting phenomenon. Norfloxacin (NOR) was used as the target molecule in the molecular modification. A total of 35 NOR derivatives with enhanced plant-microbial synergistic degradation effect (1.32-21.51%) were designed by introducing small-volume, strongly electronegative, and hydrophobic hydrogen bond receptor groups into the active group of the norfloxacin structure. The environment-friendliness and the functionality of NOR were evaluated prior to and after the modification, which revealed seven environment-friendly FQs derivatives exhibiting moderate improvement in stability and bactericidal efficacy. The simulation of the NOR plant and microbial degradation pathways prior to and after the modification and the calculation of the reaction energy barrier revealed Pathway A (D-17 to D-17-2) and Pathway B (D-17 to D-17-4) as the most prone degradation pathways in plants and Pathway A (D-17 to D-17-1) and Pathway B (D-17 to D-17-4) as the most prone degradation pathways in microorganisms. This demonstrated that the degradation of the modified NOR derivatives was significantly enhanced, with the hydroxylation and piperazine ring substitution reaction playing an important role in the degradation process. Finally, the parameters, including hepatotoxicity, mutagenicity, and rodent carcinogenicity, among others, predicted using the pharmacokinetics and toxicokinetics analyses revealed a significant reduction in the human health risk associated with the modified NOR, along with a considerable reduction in the toxicity of its transformation products, implying that the human health risk associated with the transformation products was reduced remarkably. The present study provides a theoretical basis for novel ideas and evaluation programs for improving the plant-microbial synergistic degradation of the QNs antibiotics for source control and drug design, thereby reducing the residues of these antibiotics and the associated hazard in the complex plant-soil environment, ultimately decreasing the potential risks to human health.
Collapse
Affiliation(s)
| | - Wenjin Zhao
- College of New Energy and Environment, Jilin University, Changchun 130012, China;
| |
Collapse
|
27
|
Determination of Pesticide Residues in Strawberries by Ultra-performance Liquid Chromatography-Tandem Mass Spectrometry. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-02102-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
28
|
Rankin‐Turner S, Heaney LM. Applications of ambient ionization mass spectrometry in 2020: An annual review. ANALYTICAL SCIENCE ADVANCES 2021; 2:193-212. [PMID: 38716454 PMCID: PMC10989608 DOI: 10.1002/ansa.202000135] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 06/26/2024]
Abstract
Recent developments in mass spectrometry (MS) analyses have seen a concerted effort to reduce the complexity of analytical workflows through the simplification (or removal) of sample preparation and the shortening of run-to-run analysis times. Ambient ionization mass spectrometry (AIMS) is an exemplar MS-based technology that has swiftly developed into a popular and powerful tool in analytical science. This increase in interest and demonstrable applications is down to its capacity to enable the rapid analysis of a diverse range of samples, typically in their native state or following a minimalistic sample preparation approach. The field of AIMS is constantly improving and expanding, with developments of powerful and novel techniques, improvements to existing instrumentation, and exciting new applications added with each year that passes. This annual review provides an overview of applications of AIMS techniques over the past year (2020), with a particular focus on the application of AIMS in a number of key fields of research including biomedical sciences, forensics and security, food sciences, the environment, and chemical synthesis. Novel ambient ionization techniques are introduced, including picolitre pressure-probe electrospray ionization and fiber spray ionization, in addition to modifications and improvements to existing techniques such as hand-held devices for ease of use, and USB-powered ion sources for on-site analysis. In all, the information provided in this review supports the view that AIMS has become a leading approach in MS-based analyses and that improvements to existing methods, alongside the development of novel approaches, will continue across the foreseeable future.
Collapse
Affiliation(s)
- Stephanie Rankin‐Turner
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public HealthJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Liam M. Heaney
- School of Sport, Exercise and Health SciencesLoughborough UniversityLoughboroughLeicestershireUK
| |
Collapse
|
29
|
Danek M, Plonka J, Barchanska H. Metabolic profiles and non-targeted LC-MS/MS approach as a complementary tool to targeted analysis in assessment of plant exposure to pesticides. Food Chem 2021; 356:129680. [PMID: 33819787 DOI: 10.1016/j.foodchem.2021.129680] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/02/2021] [Accepted: 03/19/2021] [Indexed: 10/21/2022]
Abstract
Liquid chromatography coupled with tandem mass spectrometry was employed for the detection of pesticides (thiamethoxam, lambda-cyhalothrin, deltamethrin, and metalaxyl) and their metabolites in Raphanus sativus var. longipinnatus exposed to these compounds under experimental conditions. Metalaxyl (0.008 mg/kg), metalaxyl acid (0.009 mg/kg), and (+)-trans-chrysanthemic acid (0.098 mg/kg) were identified in the plants exposed to the individual pesticides and their metabolites. Non-targeted analysis revealed the presence of thiamethoxam, lambda-cyhalothrin, and deltamethrin metabolites in plants exposed to these substances, despite the fact that the pesticide concentrations were below the analytical method's limit of quantification (0.005-0.006 mg/kg). Based on the non-targeted screening, non-specific (leucine and tyramine) and specific (epinephrine, dopamine, tryptamine, and serotonin) markers of plant exposure to the mentioned stress-inducing compounds were detected. These findings prove that non-targeted analysis is an indispensable tool for determining plants' exposure to pesticides, even when the parent compound has been completely metabolized.
Collapse
Affiliation(s)
- Magdalena Danek
- Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 6 St., 44-100 Gliwice, Poland.
| | - Joanna Plonka
- Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 6 St., 44-100 Gliwice, Poland
| | - Hanna Barchanska
- Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 6 St., 44-100 Gliwice, Poland
| |
Collapse
|
30
|
Martins RO, de Araújo GL, de Freitas CS, Silva AR, Simas RC, Vaz BG, Chaves AR. Miniaturized sample preparation techniques and ambient mass spectrometry as approaches for food residue analysis. J Chromatogr A 2021; 1640:461949. [PMID: 33556677 DOI: 10.1016/j.chroma.2021.461949] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 01/21/2023]
Abstract
Analytical methods such as liquid chromatography (LC) and mass spectrometry (MS) are widely used techniques for the analyses of different classes of compounds. This is due to their highlighted capacity for separating and identifying components in complex matrices such food samples. However, in most cases, effective analysis of the target analyte becomes challenging due to the complexity of the sample, especially for quantification of trace concentrations. In this case, miniaturized sample preparation methods have been used as a strategy for analysis of complex matrices. This involves removing the interferents and concentrating the analytes in a sample. These methods combine simplicity and effectiveness and given their miniaturized scale, they are in accordance with green chemistry precepts. Besides, ambient mass spectrometry represents a new trend in fast and rapid analyses, especially for qualitative and screening analysis. However, for complex matrix analyses, sample preparation is still a difficult step and the miniaturized sample preparation techniques show great potential for an improved and widespread use of ambient mass spectrometry techniques. . This review aims to contribute as an overview of current miniaturized sample preparation techniques and ambient mass spectrometry methods as different approaches for selective and sensitive analysis of residues in food samples.
Collapse
Affiliation(s)
| | | | | | | | | | - Boniek Gontijo Vaz
- Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil
| | | |
Collapse
|
31
|
Jager J, Gerssen A, Pawliszyn J, Sterk SS, Nielen MWF, Blokland MH. USB-Powered Coated Blade Spray Ion Source for On-Site Testing Using Transportable Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:2243-2249. [PMID: 33086002 PMCID: PMC7659368 DOI: 10.1021/jasms.0c00307] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/30/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
On-site testing in food analysis using mass spectrometry (MS) requires miniaturization of vacuum systems, mass analyzers, sample cleanup, and ionization sources. In this study, a simple coated blade spray (CBS) ion source was developed that enables high voltage generation on the blade by ubiquitous certified (micro-)USB On-The-Go devices like smartphones, tablets, and power banks. CBS is capable of performing both analyte enrichment by solid-phase microextraction (SPME) material coated on the metal substrate and direct-spray ionization. The USB-CBS device was used on two different MS systems, a transportable single-quadrupole and a benchtop triple-quadrupole tandem MS. Various characteristics of the USB-CBS device, including high voltage generation and angular positioning, were studied. The potential of the newly developed device for food safety applications is demonstrated by banned and regulated veterinary drugs such as β-agonists and sulfonamide antibiotics, covering a wide range of molecular weights and polarities. The results highlight the potential of the developed, simplified, inexpensive (less than 10 USD), and universal vendor-independent USB-powered CBS ion source coupled with MS(/MS) systems for semiquantitative applications, in laboratories, and in future on-site food quality and safety testing. Apart from that, most likely on-site environmental, biomedical, and forensic testing will also benefit from this USB-CBS instrumental development that is compatible with any atmospheric inlet MS system.
Collapse
Affiliation(s)
- Josha Jager
- Wageningen
Food Safety Research (WFSR), Part of Wageningen
University & Research, P.O. Box 230, 6700 AE Wageningen, The Netherlands
| | - Arjen Gerssen
- Wageningen
Food Safety Research (WFSR), Part of Wageningen
University & Research, P.O. Box 230, 6700 AE Wageningen, The Netherlands
| | - Janusz Pawliszyn
- Department
of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L3G1, Canada
| | - Saskia S. Sterk
- Wageningen
Food Safety Research (WFSR), Part of Wageningen
University & Research, P.O. Box 230, 6700 AE Wageningen, The Netherlands
| | - Michel W. F. Nielen
- Wageningen
Food Safety Research (WFSR), Part of Wageningen
University & Research, P.O. Box 230, 6700 AE Wageningen, The Netherlands
- Wageningen
University, Laboratory of Organic Chemistry, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Marco H. Blokland
- Wageningen
Food Safety Research (WFSR), Part of Wageningen
University & Research, P.O. Box 230, 6700 AE Wageningen, The Netherlands
| |
Collapse
|