1
|
Hou C, Chen Y, Zhang W, Yu J, Ji M, Cai S, Guo W, Ji X, Sun L, Liu X, Wang Y. An insight into the full aspects of bound polyphenols in dietary fiber: Interaction, composition, function and foundation as well as alteration in food processing. Food Chem 2025; 485:144553. [PMID: 40318329 DOI: 10.1016/j.foodchem.2025.144553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 04/08/2025] [Accepted: 04/26/2025] [Indexed: 05/07/2025]
Abstract
Dietary fiber (DF) and polyphenols are both bioactive compounds with various health-promoting effects while close relationship between them aroused wide concern in recent years. Abundant polyphenols combine with DF and contribute greatly to its beneficial effects. Although efforts made to uncover such bound polyphenols (BPs) from different angles before, systematic overview of full aspects is deficient. Here, more details about polyphenols conjugated in DF reported recently were summarized systematically. Meanwhile, the disposition of BPs in gastrointestinal tract and their interaction with microbiome were introduced to clarify the foundation of their functions. Moreover, considering the great impacts of food processing on polyphenols, different technics used in food handling were introduced with their effects on BPs emphatically discussed to provide guideline for reasonable application of specific technics for given materials. Our work is supposed to promote the understanding of BPs in DF and facilitate their future exploitation and application as a whole.
Collapse
Affiliation(s)
- Chunyan Hou
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Youkang Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wanting Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Jingjing Yu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Muhua Ji
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shuo Cai
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wenhao Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Xiaolong Ji
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Lijun Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Yutang Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
2
|
Chen H, Liu X, Liu J, Fan H, Ren J, Liu H, Liu T. Study on the structure and adsorption characteristics of the complex of modified Lentinus edodes stalks dietary fiber and tea polyphenol. Food Chem 2025; 468:142321. [PMID: 39732095 DOI: 10.1016/j.foodchem.2024.142321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 11/28/2024] [Accepted: 12/01/2024] [Indexed: 12/30/2024]
Abstract
The waste Lentinus edodes stalks from Lentinus edodes processing were used as raw materials by the steam explosion to prepare modified Lentinus edodes stalks dietary fiber and combined with tea polyphenols to form the SE-DF-tea polyphenols complex (SE-DF-TPC). The SE-DF-tea polyphenols mixture (SE-DF-TPM) was prepared according to the complex's optimal adsorption conditions. Fluorescence microscopy, Fourier transform infrared spectroscopy, particle size measurement, thermogravimetric analysis, and X-ray diffraction were used to analyze its structure, and the thermal stability of the complex and its adsorption capacity for lipids, cholesterol, and cholates were studied. The results indicate that dietary fiber from modified Lentinus edodes stalks and tea polyphenols form a stable complex through non-covalent bonding. In addition, the thermal stability of the phenolic substances in the complex and the adsorption capacity of the complex to fats, cholesterol, and cholates is better than modified dietary fiber and the mixture of dietary fiber and tea polyphenols.
Collapse
Affiliation(s)
- Hong Chen
- School of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China; Scientific Research Base of Edible Mushroom Processing Technology Integration of Ministry of Agriculture and Rural Affairs, Changchun 130118, China; Engineering Research Center of Grain Deep-processing and High-efficiency Utilization of Jilin Province, Changchun 130118, China
| | - Xiaolong Liu
- School of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China; Scientific Research Base of Edible Mushroom Processing Technology Integration of Ministry of Agriculture and Rural Affairs, Changchun 130118, China
| | - Junyan Liu
- School of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China; Scientific Research Base of Edible Mushroom Processing Technology Integration of Ministry of Agriculture and Rural Affairs, Changchun 130118, China
| | - Hongxiu Fan
- School of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China; Engineering Research Center of Grain Deep-processing and High-efficiency Utilization of Jilin Province, Changchun 130118, China
| | - Jiayao Ren
- School of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China
| | - Hongcheng Liu
- School of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China; Engineering Research Center of Grain Deep-processing and High-efficiency Utilization of Jilin Province, Changchun 130118, China
| | - Tingting Liu
- School of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China; Scientific Research Base of Edible Mushroom Processing Technology Integration of Ministry of Agriculture and Rural Affairs, Changchun 130118, China.
| |
Collapse
|
3
|
Yu X, Shao F, Zhang J, Long Y, Dong W. The composition and bioactivity of bound polyphenols from coffee dietary fiber during in vitro Simulating digestion. Food Res Int 2025; 199:115390. [PMID: 39658178 DOI: 10.1016/j.foodres.2024.115390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/27/2024] [Accepted: 11/14/2024] [Indexed: 12/12/2024]
Abstract
Dietary fiber from coffee peel is rich in bound polyphenols good for human health due to the antioxidant activity. In this study, we evaluated the bound polyphenol release conditions and activities in coffee peel soluble dietary fiber (CPSDF) in the process of in vitro simulation digestion. The CPSDF structure became loose and porous due to simulated digestion but retained the polysaccharide backbone. Widely-targeted metabolomics analysis identified 550 metabolites, with phenolic acids and flavonoids being main differentially expressed metabolites in digested products (82.18% in total). The most significant increase in the 5,7,8,3',4'-pentamethoxyflavanone content and decrease in the 3,5-dihydroxyacetophenone content were observed after digestion (undigested vs S-intestine). Additionally, the changes in antioxidant and enzyme inhibitory activities followed the same pattern as that observed for total phenolic content. The enzyme inhibitory and antioxidant activities of gastric digestion products were greater than those of the oral and small intestinal digestion products. The present work provided the theoretical foundation for developing high-value CPSDF products and reusing coffee peel waste.
Collapse
Affiliation(s)
- Xinxin Yu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, National Center of Important Tropical Crops Engineering and Technology Research, Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning 571533, Hainan, China; Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572000, Hainan, China
| | - Fangfang Shao
- College of Food and Wine, Ningxia University, Yinchuan 750021, China
| | - Jiyue Zhang
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, National Center of Important Tropical Crops Engineering and Technology Research, Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning 571533, Hainan, China; Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572000, Hainan, China
| | - Yuzhou Long
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, National Center of Important Tropical Crops Engineering and Technology Research, Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning 571533, Hainan, China; Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572000, Hainan, China
| | - Wenjiang Dong
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, National Center of Important Tropical Crops Engineering and Technology Research, Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning 571533, Hainan, China; Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572000, Hainan, China.
| |
Collapse
|
4
|
Jiang C, Wei X, Liu X, Wang J, Zheng X. Multivariate analysis of structural and functional properties of soluble dietary fiber from corn bran using different modification methods. Food Chem 2025; 462:140989. [PMID: 39226641 DOI: 10.1016/j.foodchem.2024.140989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/01/2024] [Accepted: 08/23/2024] [Indexed: 09/05/2024]
Abstract
This study comprehensively investigated the effects of high-temperature cooking (HT), complex enzyme hydrolysis (CE), and high-temperature cooking combined enzymatic hydrolysis (HE) on the chemical composition, microstructure, and functional attributes of soluble dietary fiber (SDF) extracted from corn bran. The results demonstrated that HE-SDF yielded the highest output at 13.80 ± 0.20 g/100 g, with enhancements in thermal stability, viscosity, hydration properties, adsorption capacity, and antioxidant activity. Cluster analysis revealed three distinct categories of SDF's physicochemical properties. Principal component analysis (PCA) confirmed the superior functional properties of HE-SDF. Correlation analysis showed positive relationships between the monosaccharide composition, purity, and viscosity of SDF and most of its functional attributes, whereas particle size and zeta potential were inversely correlated. Furthermore, a highly significant positive correlation was observed between crystallinity and thermal properties. These findings suggest that the HE method constitutes a viable strategy for enhancing the quality of SDF sourced from corn bran.
Collapse
Affiliation(s)
- Caixia Jiang
- National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing 163319, China; College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Xuyao Wei
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Xiaolan Liu
- Heilongjiang Key Laboratory of Corn Deep Processing Theory and Technology, College of Food and Biological Engineering, Qiqihar University, Qiqihar 161006, China.
| | - Juntong Wang
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Xiqun Zheng
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, China; Engineering Research Center of Processing and Utilization of Grain By-products and Utilization of Ministry of Education, Daqing 163319, China.
| |
Collapse
|
5
|
Li M, Ma S. Effects of interaction between wheat bran dietary fiber and gluten protein on gluten protein aggregation behavior. Int J Biol Macromol 2024; 283:137692. [PMID: 39549795 DOI: 10.1016/j.ijbiomac.2024.137692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/27/2024] [Accepted: 11/13/2024] [Indexed: 11/18/2024]
Abstract
Effects of wheat bran dietary fiber (WBDF) as a nutritional additive on flour products quality mainly depends on the interaction between WBDF and gluten protein. In this study, the effects and mechanisms of WBDF with different particle sizes and additive amounts on gluten protein aggregation behavior were investigated. The results showed that the addition of WBDF led to a decrease in free sulfhydryl content, particle size, molecular weight and gluten macromer (GMP) content, an increase in zeta potential and SDS-extractable protein content, and a deterioration in the gluten network morphology compared to the control group, suggesting that the aggregation behavior of gluten protein was inhibited. When WBDF was added at 3 % and 6 %, dilution effect, mechanical shear, steric hindrance, and non-covalent binding were the main mechanisms leading to depolymerization. Further addition of WBDF (9 %, 12 %) inhibited the depolymerization of gluten protein due to competitive hydration and non-covalent binding. However, when WBDF was added at 15 %, the dilution effect, mechanical shear and steric hindrance of WBDF (88 μm < particle size<150 μm) dominated, and their inhibitory of aggregation induced the formation of a loose gluten network structure. In contrast, the weaker mechanical shear and steric hindrance effects of WBDF (particle size<88 μm) mitigated the degradation of gluten network structures by WBDF.
Collapse
Affiliation(s)
- Mengyuan Li
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Sen Ma
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China.
| |
Collapse
|
6
|
Zheng H, Xu Y, Wu Y, Huangfu X, Chen W, He K, Yang Y. Effects of Three Modification Methods on the In Vitro Gastrointestinal Digestion and Colonic Fermentation of Dietary Fiber from Lotus Leaves. Foods 2024; 13:3768. [PMID: 39682840 DOI: 10.3390/foods13233768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/22/2024] [Accepted: 11/23/2024] [Indexed: 12/18/2024] Open
Abstract
Shear emulsifying (SE), ball milling (BM), and autoclave treatment (AT) were utilized for the modification of lotus leaves, and the effects on in vitro gastrointestinal digestion and colonic fermentation of insoluble dietary fiber (IDF) from lotus leaves were compared. Compared with SEIDF and ATIDF, BMIDF released more polyphenols and exhibited better antioxidant capacity during in vitro gastrointestinal digestion. The IDF of lotus leaves changed the gut microbiota composition during in vitro colonic fermentation. SEIDF was beneficial to the diversity of gut microbiota compared with BMIDF and ATIDF. Among the three IDF groups of lotus leaves, six significant differences of OTUs were all in ATIDF; however there was the highest relative abundance of Escherichia-Shigella in ATIDF. In addition, the concentrations of butyric acid and valeric acid produced by SEIDF were significantly higher than that of BMIDF and ATIDF. Overall, SE modification improved the colonic fermentation characteristics of IDFs in lotus leaves more effectively; while BM modification helped to promote the release of polyphenols from IDFs in lotus leaves during in vitro gastrointestinal digestion. The research lays the foundation for the application of the dietary fiber of lotus leaves as a premium fiber additive in functional food.
Collapse
Affiliation(s)
- Hui Zheng
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yao Xu
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yuhang Wu
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Xuantong Huangfu
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Wenxiu Chen
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Kai He
- School of Pharmaceutical Science, Hunan University of Medicine, Huaihua 418000, China
| | - Yong Yang
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| |
Collapse
|
7
|
Leo CH, Ong ES. Recent advances in the combination of organic solvent-free extraction, chemical standardization, antioxidant assay, and cell culture metabolomics for functional food and its by-product. Crit Rev Food Sci Nutr 2024; 64:11919-11933. [PMID: 37574586 DOI: 10.1080/10408398.2023.2245040] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Functional foods and their by-products contain a wide range of bioactive components with an array of health benefits and were proposed to improve public health, well-being, and others. To achieve a circular economy, the processing and extraction of flavonoids, phenolic compounds, and others from functional food and agri-food wastes will require the use of environmentally friendly, sustainable, and a low-cost solution. Extraction methods that can eliminate the use of organic solvents, suitable for use in the laboratory and production of extracts will be covered. This will include subcritical water extraction (SBE), pressurized hot water extraction (PHWE), supercritical fluid extraction (SFE), and others. Based on the selected analytical methods, the determination of the marker or bioactive compounds and chemical fingerprints will provide the control measures to identify the batch-to-batch variation of the composition of the functional food products obtained. The combination of chemical standardization with antioxidant assay, such as DPPH and ABTS+ will provide further information on the quality of the extracts. Lastly, to ascertain the biological and physiological relevance of the antioxidant properties of the target sample, treatment of the antioxidant compounds or extracts was carried out using cellular models, and validated using other experimental endpoints, such as metabolomics.
Collapse
Affiliation(s)
- Chen Huei Leo
- Department of Science, Math & Technology, Singapore University of Technology & Design, Singapore, Singapore
- Center for Healthcare Education, Entrepreneurship and Research (CHEERS), Singapore University of Technology & Design, Singapore, Singapore
| | - Eng Shi Ong
- Department of Science, Math & Technology, Singapore University of Technology & Design, Singapore, Singapore
| |
Collapse
|
8
|
Hou C, Zhao L, Ji M, Yu J, Di Y, Liu Q, Zhang Z, Sun L, Liu X, Wang Y. Liberated bioactive bound phenolics during in vitro gastrointestinal digestion and colonic fermentation boost the prebiotic effects of triticale insoluble dietary fiber. Food Chem 2024; 457:140124. [PMID: 38908239 DOI: 10.1016/j.foodchem.2024.140124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/10/2024] [Accepted: 06/13/2024] [Indexed: 06/24/2024]
Abstract
Phenolics in bound form extensively exist in cereal dietary fiber, especially insoluble fiber, while their release profile in gastrointestinal tract and contribution to the potential positive effects of dietary fiber in modulating gut microbiota still needs to be disclosed. In this work, the composition of bound phenolics (BPs) in triticale insoluble dietary fiber (TIDF) was studied, and in vitro gastrointestinal digestion as well as colonic fermentation were performed to investigate BPs liberation and their role in regulating intestinal flora of TIDF. It turned out that most BPs were unaccessible in digestion but partly released continuously during fermentation. 16 s rRNA sequencing demonstrated that TIDF possessed prebiotic effects by promoting anti-inflammatory while inhibiting proinflammatory bacteria alongside boosting SCFAs production and antioxidative BPs contributed a lot to these effects. Results indicated that TIDF held capabilities to regulate intestinal flora and BPs were important functional components to the health benefits of cereal dietary fiber.
Collapse
Affiliation(s)
- Chunyan Hou
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lianjia Zhao
- Research Institute of Crop Germplasm Resources, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, Xinjiang, China
| | - Muhua Ji
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jingjing Yu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yan Di
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Qian Liu
- College of Food Science and Technology, Northwest University, Xi'an 710127, Shaanxi, China.
| | - Zhengmao Zhang
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Lijun Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Yutang Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
9
|
Yin J, Liu W, Wu M, Chen M, Pei X, He Y, Shen F, Zhang R, He J. Characterization of selenium-containing broccoli (Brassica oleracea L. var. italica planch) proteins and evaluation of antioxidant activity by electron spin resonance. Food Chem 2024; 456:140065. [PMID: 38878541 DOI: 10.1016/j.foodchem.2024.140065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 06/07/2024] [Accepted: 06/09/2024] [Indexed: 07/24/2024]
Abstract
Selenoproteins found in selenium (Se)-enriched vegetables play a vital role in maintaining human health. In this study, four Se-containing broccoli proteins (Se-BP: albumin, globulin, prolamin, and glutelin) were continuous extracted by Osborne method. Three ultrafiltered fractions were subsequently obtained from the glutelin hydrolysate, composed of Se-contained broccoli peptides (Se-Bp) with different molecular weights (MW), namely, < 1 kDa, 1-3 kDa, and 3-10 kDa. Glutelin exhibited the highest protein yield (65.60 ± 1.07%), purity (78.39 ± 0.95%), nutritional value, organic Se content (88.05 ± 0.32% of total Se content), and Se speciation distribution (selenocystine, selenomethionine, methylselenocysteine, and selenoethionine). Additionally, the antioxidant activity of different MW of Se-Bp was assessed using electron spin resonance spectroscopy. The results revealed that antioxidant activity of the candidate peptide is dependent upon its Se content, amino acid composition, and MW, especially Se-Bp with MW of 1-3 kDa displayed the strongest free radical scavenging ability.
Collapse
Affiliation(s)
- Jinjing Yin
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Wei Liu
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Muci Wu
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Ming Chen
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xun Pei
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yuzhen He
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | | | - Rui Zhang
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China.
| | - Jingren He
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China.
| |
Collapse
|
10
|
Bolat E, Sarıtaş S, Duman H, Eker F, Akdaşçi E, Karav S, Witkowska AM. Polyphenols: Secondary Metabolites with a Biological Impression. Nutrients 2024; 16:2550. [PMID: 39125431 PMCID: PMC11314462 DOI: 10.3390/nu16152550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Polyphenols are natural compounds which are plant-based bioactive molecules, and have been the subject of growing interest in recent years. Characterized by multiple varieties, polyphenols are mostly found in fruits and vegetables. Currently, many diseases are waiting for a cure or a solution to reduce their symptoms. However, drug or other chemical strategies have limitations for using a treatment agent or still detection tool of many diseases, and thus researchers still need to investigate preventive or improving treatment. Therefore, it is of interest to elucidate polyphenols, their bioactivity effects, supplementation, and consumption. The disadvantage of polyphenols is that they have a limited bioavailability, although they have multiple beneficial outcomes with their bioactive roles. In this context, several different strategies have been developed to improve bioavailability, particularly liposomal and nanoparticles. As nutrition is one of the most important factors in improving health, the inclusion of plant-based molecules in the daily diet is significant and continues to be enthusiastically researched. Nutrition, which is important for individuals of all ages, is the key to the bioactivity of polyphenols.
Collapse
Affiliation(s)
- Ecem Bolat
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye; (E.B.); (S.S.); (H.D.); (F.E.); (E.A.)
| | - Sümeyye Sarıtaş
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye; (E.B.); (S.S.); (H.D.); (F.E.); (E.A.)
| | - Hatice Duman
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye; (E.B.); (S.S.); (H.D.); (F.E.); (E.A.)
| | - Furkan Eker
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye; (E.B.); (S.S.); (H.D.); (F.E.); (E.A.)
| | - Emir Akdaşçi
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye; (E.B.); (S.S.); (H.D.); (F.E.); (E.A.)
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye; (E.B.); (S.S.); (H.D.); (F.E.); (E.A.)
| | - Anna Maria Witkowska
- Department of Food Biotechnology, Bialystok Medical University, 15-089 Bialystok, Poland
| |
Collapse
|
11
|
Liu S, He Y, He W, Song X, Peng Y, Hu X, Bian S, Li Y, Nie S, Yin J, Xie M. Exploring the Biogenic Transformation Mechanism of Polyphenols by Lactobacillus plantarum NCU137 Fermentation and Its Enhancement of Antioxidant Properties in Wolfberry Juice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12752-12761. [PMID: 38779924 DOI: 10.1021/acs.jafc.4c01393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
This study investigated the transformation of polyphenols, including free and bound polyphenols during the fermentation of wolfberry juice by Lactobacillus plantarum NCU137. Results indicated that fermentation significantly increased the free polyphenols content and released bound polyphenols, enhancing the antioxidant activity. Analysis showed that there were 19 free polyphenols, mainly scopoletin, pyrogallol, and dihydroferulic acid, and 16 bound polyphenols, especially p-coumaric acid, feruloyl hexoside, and caffeic acid. A significant correlation was observed between the generation and degradation of polyphenols, and specific bound polyphenols peaked during the 24-48 h fermentation. Furthermore, reduced surface roughness and galacturonic acid content in wolfberry residue, along with increased pectinase activity, suggested substantial pectin degradation in the cell wall, which may be associated with the release of polyphenols, due to pectin serving as carriers for bound polyphenols. The fermentation also increased polyphenol oxidase and peroxidase activity, contributing to polyphenol breakdown. These findings provide insights for improving wolfberry juice production.
Collapse
Affiliation(s)
- Shuai Liu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Yuxin He
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Weiwei He
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Xiaoxiao Song
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Yujia Peng
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Xiaoyi Hu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Shuigen Bian
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Yuhao Li
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Junyi Yin
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Mingyong Xie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| |
Collapse
|
12
|
Molnar M, Jakovljević Kovač M, Pavić V. A Comprehensive Analysis of Diversity, Structure, Biosynthesis and Extraction of Biologically Active Tannins from Various Plant-Based Materials Using Deep Eutectic Solvents. Molecules 2024; 29:2615. [PMID: 38893491 PMCID: PMC11173854 DOI: 10.3390/molecules29112615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
This paper explores the emerging subject of extracting tannins from various plant sources using deep eutectic solvents (DESs). Tannins are widely used in the food and feed industries as they have outstanding antioxidant qualities and greatly enhance the flavor and nutritional content of a wide range of food products. Organic solvents are frequently used in traditional extraction techniques, which raises questions about their safety for human health and the environment. DESs present a prospective substitute because of their low toxicity, adaptability, and environmental friendliness. The fundamental ideas supporting the application of DESs in the extraction of tannins from a range of plant-based materials frequently used in daily life are all well covered in this paper. Furthermore, this paper covers the impact of extraction parameters on the yield of extracted tannins, as well as possible obstacles and directions for future research in this emerging subject. This includes challenges such as high viscosity, intricated recovery of compounds, thermal degradation, and the occurrence of esterification. An extensive summary of the diversity, structure, biosynthesis, distribution, and roles of tannins in plants is given in this paper. Additionally, this paper thoroughly examines various bioactivities of tannins and their metabolites.
Collapse
Affiliation(s)
- Maja Molnar
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, 31000 Osijek, Croatia; (M.M.); (M.J.K.)
| | - Martina Jakovljević Kovač
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, 31000 Osijek, Croatia; (M.M.); (M.J.K.)
| | - Valentina Pavić
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, 31000 Osijek, Croatia
| |
Collapse
|
13
|
Zhang L, Lin L, Hu Y, Wu D, Zhang Z, Chen C, Wang L, Li J. Debittering of Emblica ( Phyllanthus emblica L.) fruit powder: Preparation and biological activity. Food Chem X 2024; 21:100853. [PMID: 38282828 PMCID: PMC10818184 DOI: 10.1016/j.fochx.2023.100853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 01/30/2024] Open
Abstract
Emblica, also known as Phyllanthus emblica L., is a drug homologous food that is rich in polyphenols with various biological activities. However, its bitterness and astringency pose a significant challenge to its utilization in food products. In this study, we aimed to identify the optimal conditions for debittering Emblica. Our findings revealed that the best debittering conditions were: temperature = 50 °C, pH = 4, α-l-rhamnosidase concentration 200 U/g, and time = 5 h. High-performance liquid chromatography (HPLC) and molecular docking analysis revealed that enzymatic hydrolysis partially removed bitterness compounds. The results of antioxidant activity, xanthine oxidase, and α-glucosidase inhibitory activity assays confirmed that the Emblica fruit powder still exhibited good biological activity after enzymatic debitterization. Moreover, gastric fluids treatment might contribute to the above enhancing effect of enzymatic hydrolysates of Emblica. This study provided a theoretical basis for promoting the processing and utilization of Emblica fruit powder, as well as understanding its biological activity.
Collapse
Affiliation(s)
- Lingyu Zhang
- College of Marine Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China
| | - Liting Lin
- College of Marine Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Yunxuan Hu
- College of Marine Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Dazhou Xinyan (Xiamen) Biotechnology Co., Ltd, Xiamen 361021, Fujian, China
| | - Daren Wu
- College of Marine Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China
| | - Zhengxiao Zhang
- College of Marine Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China
| | - Chaoxiang Chen
- College of Marine Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China
| | - Li Wang
- College of Marine Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China
| | - Jian Li
- College of Marine Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China
| |
Collapse
|
14
|
Sun N, Xie J, Zheng B, Xie J, Chen Y, Hu X, Yu Q. The inhibition mechanism of bound polyphenols extracted from mung bean coat dietary fiber on porcine pancreatic α-amylase: kinetic, spectroscopic, differential scanning calorimetric and molecular docking. Food Chem 2024; 436:137749. [PMID: 37864970 DOI: 10.1016/j.foodchem.2023.137749] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/30/2023] [Accepted: 10/11/2023] [Indexed: 10/23/2023]
Abstract
The inhibitory mechanisms of purified bound polyphenols extracted from mung bean coat dietary fiber (pMBDF-BP) on porcine pancreatic α-amylase (PPA) were investigated through inhibition kinetics, fluorescence spectroscopy, circular dichroism, differential scanning calorimetry and molecular docking. It was shown that pMBDF-BP exerted significant reversible inhibition on PPA in a mixed-type inhibition manner (IC50 = 18.57 ± 0.30 μg/mL), and the combination of the three major components exhibited a synergistic inhibitory effect on PPA. Further, pMBDF-BP bound to the active site or form a polyphenol-enzyme complex at the inactive site through hydrogen bonding and hydrophobic forces, via enhancing the hydrophobicity of the microenvironment surrounding tryptophan and tyrosine residues and promoting the secondary structure of PPA towards a more stable conformation, eventually reducing the enzyme activity. This study provided theoretical evidences for the utilization of bound polyphenols extracted from mung bean coat dietary fiber as a functional component in natural inhibitors of α-amylase.
Collapse
Affiliation(s)
- Nan Sun
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Jiayan Xie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Bing Zheng
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Yi Chen
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Xiaobo Hu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Qiang Yu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
15
|
Shi B, Wang H, Nawaz A, Khan IA, Wang Q, Zhao D, Cheng KW. Dual functional roles of nutritional additives in nutritional fortification and safety of thermally processed food: Potential, limitations, and perspectives. Compr Rev Food Sci Food Saf 2024; 23:e13268. [PMID: 38284588 DOI: 10.1111/1541-4337.13268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/09/2023] [Accepted: 10/23/2023] [Indexed: 01/30/2024]
Abstract
The Maillard reaction (MR) has been established to be a paramount contributor to the characteristic sensory property of thermally processed food products. Meanwhile, MR also gives rise to myriads of harmful byproducts (HMPs) (e.g., advanced glycation end products (AGEs) and acrylamide). Nutritional additives have attracted increasing attention in recent years owing to their potential to simultaneously improve nutritional quality and attenuate HMP formation. In this manuscript, a brief overview of various nutritional additives (vitamins, minerals, fatty acids, amino acids, dietary fibers, and miscellaneous micronutrients) in heat-processed food is provided, followed by a summary of the formation mechanisms of AGEs and acrylamide highlighting the potential crosstalk between them. The main body of the manuscript is on the capability of nutritional additives to modulate AGE and acrylamide formation besides their traditional roles as nutritional enhancers. Finally, limitations/concerns associated with their use to attenuate dietary exposure to HMPs and future perspectives are discussed. Literature data support that through careful control of the addition levels, certain nutritional additives possess promising potential for simultaneous improvement of nutritional value and reduction of AGE and acrylamide content via multiple action mechanisms. Nonetheless, there are some major concerns that may limit their wide applications for achieving such dual functions, including influence on sensory properties of food products, potential overestimation of nutrition enhancement, and introduction of hazardous alternative reaction products or derivatives. These could be overcome through comprehensive assay of dose-response relationships and systematic evaluation of the diverse combinations from the same and/or different categories of nutritional additives to establish synergistic mixtures.
Collapse
Affiliation(s)
- Baoping Shi
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| | - Huaixu Wang
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| | - Asad Nawaz
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, Hunan, China
| | - Iftikhar Ali Khan
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| | - Qi Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Danyue Zhao
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong SAR, China
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Ka-Wing Cheng
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| |
Collapse
|
16
|
Cheng M, He J, Gu Y, Wu G, Tan L, Li C, Xu F, Zhu K. Changes in Phenolic Compounds and Antioxidant Capacity of Artocarpus heterophyllus Lam. (Jackfruit) Pulp during In Vitro Gastrointestinal Digestion. Antioxidants (Basel) 2023; 13:37. [PMID: 38247464 PMCID: PMC10812572 DOI: 10.3390/antiox13010037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
An in vitro gastrointestinal digestion model was applied to investigate the effect of digestion on the phenolic compounds and antioxidant capacity of Artocarpus heterophyllus Lam. (jackfruit) pulp. The total phenol content (TPC) was determined using Folin-Ciocalteu method, and the antioxidant activities were evaluated by DPPH and ABTS assays. Phenolic compounds were analyzed using ultra-performance liquid chromatography coupled with electrospray ionization, followed by quadrupole time-of-flight mass spectrometry (UPLC-ESI-Q-TOF-MS/MS). The results showed that TPC was significantly higher after gastric digestion. Thirty phenolic compounds (hydroxybenzoic acids and derivatives, hydroxycinnamic acids and derivatives, and flavonoids) were identified. The antioxidant activities of the digested samples varied with the TPC, and there was a correlation between antioxidant activity and TPC. The present study implies that gastrointestinal digestion may improve TPC and increase the amount of free phenolic compounds, mainly related to changes in pH value and digestive enzymes.
Collapse
Affiliation(s)
- Ming Cheng
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Jiali He
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China
- College of Tropical Crop Science, Yunnan Agricultural University, Pu’er 665099, China
| | - Yu Gu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China
- Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning 571533, China
- National Center of Important Tropical Crops Engineering and Technology Research, Wanning 571533, China
| | - Gang Wu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China
- National Center of Important Tropical Crops Engineering and Technology Research, Wanning 571533, China
| | - Lehe Tan
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China
- Key Laboratory of Nutritional Quality and Health Benefits of Tropical Agricultural Products of Haikou City, Haikou 571100, China
| | - Chuan Li
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Fei Xu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China
- Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning 571533, China
- National Center of Important Tropical Crops Engineering and Technology Research, Wanning 571533, China
| | - Kexue Zhu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China
- Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning 571533, China
- National Center of Important Tropical Crops Engineering and Technology Research, Wanning 571533, China
- Key Laboratory of Nutritional Quality and Health Benefits of Tropical Agricultural Products of Haikou City, Haikou 571100, China
| |
Collapse
|
17
|
Tan Z, Meng Y, Li L, Wu Y, Liu C, Dong W, Chen C. Association of Dietary Fiber, Composite Dietary Antioxidant Index and Risk of Death in Tumor Survivors: National Health and Nutrition Examination Survey 2001-2018. Nutrients 2023; 15:2968. [PMID: 37447293 DOI: 10.3390/nu15132968] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/22/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Dietary fiber is a functional substance with strong antioxidant activity that plays an important role in human health. Dietary fiber has been shown to reduce the risks of many types of cancers, but whether it can reduce the risk of death in cancer survivors remains undetermined. METHODS This study included the dietary data of cancer survivors who participated in the National Health and Nutrition Examination Surveys from 2001 to 2018. Firstly, the relationship between fiber intake and composite dietary antioxidant index (CDAI) was explored by weighted multiple regression and smooth curve. Subsequently, multivariable Cox proportional hazards regression models were used to explore the effects of dietary fiber intake and CDAI level on the risks of all-cause, tumor, and cardiovascular death among cancer survivors. RESULTS A total of 2077 participants were included in the study, representing approximately 11,854,509 cancer survivors in the United States. The dietary fiber intake of tumor survivors had a nonlinear positive relationship with CDAI levels (β = 0.24, 95% CI: 0.08-0.40, p = 0.004). Multivariable Cox proportional hazards regression models showed that high dietary fiber intake and CDAI levels were associated with reduced risks of all-cause and tumor death in tumor survivors, but were not associated with the risk of cardiovascular death. CONCLUSION An increased dietary fiber intake can enhance the body's antioxidant capacity. A higher dietary fiber intake and CDAI level may reduce the risk of all-cause and tumor death in tumor survivors.
Collapse
Affiliation(s)
- Zongbiao Tan
- Department of Gastroenterology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, China
| | - Yang Meng
- Department of Ophthalmology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, China
| | - Lu Li
- Department of Ophthalmology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, China
| | - Yanrui Wu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, China
| | - Chuan Liu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, China
| | - Weiguo Dong
- Department of Gastroenterology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, China
| | - Changzheng Chen
- Department of Ophthalmology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, China
| |
Collapse
|
18
|
Tang W, Lin X, Walayat N, Liu J, Zhao P. Dietary fiber modification: structure, physicochemical properties, bioactivities, and application-a review. Crit Rev Food Sci Nutr 2023; 64:7895-7915. [PMID: 36995253 DOI: 10.1080/10408398.2023.2193651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
There is increasing attention on the modification of dietary fiber (DF), since its effective improvement on properties and functions of DF. Modification of DF can change their structure and functions to enhance their bioactivities, and endow them with huge application potential in the field of food and nutrition. Here, we classified and explained the different modification methods of DF, especially dietary polysaccharides. Different modification methods exert variable effects on the chemical structure of DF such as molecular weight, monosaccharide composition, functional groups, chain structure, and conformation. Moreover, we have discussed the change in physicochemical properties and biological activities of DF, resulting from alterations in the chemical structure of DF, along with a few applications of modified DF. Finally, we have summarized the modified effects of DF. This review will provide a foundation for further studies on DF modification and promote the future application of DF in food products.
Collapse
Affiliation(s)
- Wei Tang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Xinyi Lin
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Noman Walayat
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Jianhua Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Peicheng Zhao
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
| |
Collapse
|
19
|
Hernández-Cruz E, Eugenio-Pérez D, Ramírez-Magaña KJ, Pedraza-Chaverri J. Effects of Vegetal Extracts and Metabolites against Oxidative Stress and Associated Diseases: Studies in Caenorhabditis elegans. ACS OMEGA 2023; 8:8936-8959. [PMID: 36936291 PMCID: PMC10018526 DOI: 10.1021/acsomega.2c07025] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Oxidative stress is a natural physiological process where the levels of oxidants, such as reactive oxygen species (ROS) and nitrogen (RNS), exceed the strategy of antioxidant defenses, culminating in the interruption of redox signaling and control. Oxidative stress is associated with multiple pathologies, including premature aging, neurodegenerative diseases, obesity, diabetes, atherosclerosis, and arthritis. It is not yet clear whether oxidative stress is the cause or consequence of these diseases; however, it has been shown that using compounds with antioxidant properties, particularly compounds of natural origin, could prevent or slow down the progress of different pathologies. Within this context, the Caenorhabditis elegans (C. elegans) model has served to study the effect of different metabolites and natural compounds, which has helped to decipher molecular targets and the effect of these compounds on premature aging and some diseases such as neurodegenerative diseases and dyslipidemia. This article lists the studies carried out on C. elegans in which metabolites and natural extracts have been tested against oxidative stress and the pathologies associated with providing an overview of the discoveries in the redox area made with this nematode.
Collapse
Affiliation(s)
- Estefani
Yaquelin Hernández-Cruz
- Department
of Biology, Faculty of Chemistry, National
Autonomous University of Mexico, Ciudad Universitaria, 04510 Mexico City, Mexico
- Postgraduate
in Biological Sciences, National Autonomous
University of Mexico, Ciudad Universitaria, 04510 Mexico City, Mexico
| | - Dianelena Eugenio-Pérez
- Department
of Biology, Faculty of Chemistry, National
Autonomous University of Mexico, Ciudad Universitaria, 04510 Mexico City, Mexico
- Postgraduate
in Biochemical Sciences, National Autonomous
University of Mexico, Ciudad Universitaria, 04510 Mexico City, Mexico
| | - Karla Jaqueline Ramírez-Magaña
- Department
of Biology, Faculty of Chemistry, National
Autonomous University of Mexico, Ciudad Universitaria, 04510 Mexico City, Mexico
- Postgraduate
in Biochemical Sciences, National Autonomous
University of Mexico, Ciudad Universitaria, 04510 Mexico City, Mexico
| | - José Pedraza-Chaverri
- Department
of Biology, Faculty of Chemistry, National
Autonomous University of Mexico, Ciudad Universitaria, 04510 Mexico City, Mexico
| |
Collapse
|
20
|
Zheng H, Sun Y, Zheng T, Zeng Y, Fu L, Zhou T, Jia F, Xu Y, He K, Yang Y. Effects of shear emulsifying/ball milling/autoclave modification on structure, physicochemical properties, phenolic compounds, and antioxidant capacity of lotus ( Nelumbo) leaves dietary fiber. Front Nutr 2023; 10:1064662. [PMID: 36908912 PMCID: PMC9995909 DOI: 10.3389/fnut.2023.1064662] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Lotus (Nelumbo) leaves are rich in polyphenols and dietary fiber, which have the potential as a high-quality fiber material in functional food. However, lotus leaves exhibit dense structure and poor taste, it is vital to develop appropriate modification methods to improve the properties of lotus leaves dietary fiber. In this study, the effects of three modification methods with shear emulsifying (SE), ball milling (BM), and autoclave treatment (AT) on structure, physicochemical properties, phenolic compounds, and antioxidant capacity of lotus leave dietary fiber (LDF) were evaluated. SEM indicated that there were significant differences in the microstructure of modified LDFs. FT-IR spectra and X-ray diffraction pattern of modified LDFs revealed similar shapes, while the peak intensity and crystalline region changed by modification. SE showed the greatest effect on crystallization index. SE-LDF had the highest water holding capacity, water swelling capacity, and bound phenolic content in LDFs, which increased by 15.69, 12.02, and 31.81%, respectively, compared with the unmodified LDF. BM exhibited the most dramatic effect on particle size. BM-LDF had the highest free phenolic and total phenolic contents in LDFs, which increased by 32.20 and 29.05% respectively, compared with the unmodified LDF. Phenolic compounds in LDFs were mainly free phenolic, and modifications altered the concents of flavonoids. The BM-LDF and SE-LDF exhibited higher antioxidant capacity than that of AT-LDF. Overall, SE-LDF showed better physical properties, and BM-LDF showed better bioactive components. SE and BM were considered to be appropriate modification methods to enhance the properties of LDF with their own advantages.
Collapse
Affiliation(s)
- Hui Zheng
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Yan Sun
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Tao Zheng
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Yiqiong Zeng
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Liping Fu
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Tingting Zhou
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Fan Jia
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Yao Xu
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Kai He
- School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, China
| | - Yong Yang
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
21
|
Zhong J, Wang Y, Li C, Yu Q, Xie J, Dong R, Xie Y, Li B, Tian J, Chen Y. Natural variation on free, esterified, glycosylated and insoluble-bound phenolics of Rubus chingii Hu: Correlation between phenolic constituents and antioxidant activities. Food Res Int 2022; 162:112043. [DOI: 10.1016/j.foodres.2022.112043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/18/2022] [Accepted: 10/10/2022] [Indexed: 11/29/2022]
|
22
|
Qiu Y, Wang Y, Li Y. Solvent-Free Microwave Extraction of Essential Oils from Litsea cubeba (Lour.) Pers. at Different Harvesting Times and Their Skin-Whitening Cosmetic Potential. Antioxidants (Basel) 2022; 11:antiox11122389. [PMID: 36552598 PMCID: PMC9774158 DOI: 10.3390/antiox11122389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Litsea cubeba fruit, which has the highest content of essential oils in the plant, is an important woody oil plant resource. In this study, the influence of the solvent-free microwave extraction (SFME) and hydrodistillation (HD) techniques on the extraction of L. cubeba fruit essential oils was investigated in terms of yield, kinetics, and chemical composition, where the former conditions were optimized by the response surface design. The maximal essential oil yield was obtained under the optimal SFME process conditions (442 W and 24 min), where the irradiation time was the most important variable (p < 0.0001). Regardless of the extraction method used, the influence of harvesting time on L. cubeba fruit essential oils were quantitatively and qualitatively analyzed afterwards, where the SFME essential oil from July showed its superiority over the others regarding its higher extraction yield and better bioactivities. Compared with the HD method, the SFME approach could significantly enhance the yield of essential oils extracted from June to August by nearly 47% with the advantages of saving energy and low environmental impact. Interestingly, the SFME method could selectively extract monoterpene hydrocarbons such as D-limonene with relation to different compositions and bioactivities. Moreover, SFME essential oil showed a better inhibitory effect on tyrosinase and melanogenesis, indicating its skin-whitening potential as a new promising natural cosmetic ingredient.
Collapse
Affiliation(s)
- Yufei Qiu
- Guangdong International Joint Research Center for Oilseeds Biorefinery, Nutrition and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Yong Wang
- Guangdong International Joint Research Center for Oilseeds Biorefinery, Nutrition and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Ying Li
- Guangdong International Joint Research Center for Oilseeds Biorefinery, Nutrition and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
- Qingyuan Yaokang Biotechnology, Qingyuan 513200, China
- Correspondence: ; Tel.: +86-20-85220032; Fax: +86-20-8522-6630
| |
Collapse
|
23
|
Response surface methodology optimization and HPLC-ESI-QTOF-MS/MS analysis on ultrasonic-assisted extraction of phenolic compounds from okra (Abelmoschus esculentus) and their antioxidant activity. Food Chem 2022; 405:134966. [PMID: 36436230 DOI: 10.1016/j.foodchem.2022.134966] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/07/2022] [Accepted: 11/13/2022] [Indexed: 11/17/2022]
Abstract
Okra (Abelmoschus esculentus) has attracted a growing attention for its nutritional and medicinal values, while few studies focused on systemic study of okra polyphenols (OP). In order to obtain the maximum extracted efficiency, response surface methodology was used to optimize ultrasonic-assisted extraction conditions. The maximum TPC was 7.02 mg GAE/g dw under the condition of solid-liquid ratio 1:25, ethanol concentration 70 %, 40 min, and 142 W at 46 °C. Then 27 compounds in OP were identified by HPLC-ESI-QTOF-MS/MS, among which 7-hydroxycoumarin, scopoletin, luteolin and et al were firstly identified from okra. Furthermore, OP exhibited antioxidant activity in reducing power (FRAP, 9.77 mM Fe2+/g OP) and radical scavenging (DPPH, IC50 19.31 µg/mL; SARC, IC50 210.81 µg/ml). Moreover, OP significantly inhibited cell apoptosis and ROS generation, and alleviated oxidative damage in t-BHP induced HUVECs. Overall, our findings could provide perspective for further potential employments of okra as functional food.
Collapse
|
24
|
Feng Y, Yuan D, Cao C, Kong B, Sun F, Xia X, Liu Q. Changes of in vitro digestion rate and antioxidant activity of digestion products of ethanol-modified whey protein isolates. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
25
|
Ma Y, Huang H, Zhang Y, Li F, Gan B, Yu Q, Xie J, Chen Y. Soluble dietary fiber from tea residues with inhibitory effects against acrylamide and 5-hydroxymethylfurfural formation in biscuits: The role of bound polyphenols. Food Res Int 2022; 159:111595. [DOI: 10.1016/j.foodres.2022.111595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/14/2022] [Accepted: 06/27/2022] [Indexed: 11/04/2022]
|
26
|
Purification, composition and activity of bound polyphenols from mung bean coat dietary fiber. Food Res Int 2022; 162:111997. [DOI: 10.1016/j.foodres.2022.111997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/20/2022] [Accepted: 09/26/2022] [Indexed: 01/21/2023]
|
27
|
Ma H, Hou A, Tang J, Zhong A, Li K, Xiao Y, Li Z. Antioxidant Activity of Vitis davidii Foex Seed and Its Effects on Gut Microbiota during Colonic Fermentation after In Vitro Simulated Digestion. Foods 2022; 11:foods11172615. [PMID: 36076800 PMCID: PMC9455166 DOI: 10.3390/foods11172615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/16/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Vitis davidii Foex whole seed (VWS) is a by-product during the processing of grape products, which is rich in bioactive compounds that have great potential in the food industry. In this study, the bioactive compounds and antioxidant activity of VWS were determined, and their dynamic changes during in vitro colonic fermentation were also investigated after VWS subjected to in vitro simulated digestion. Results showed that VWS were rich in polyphenols (23.67 ± 0.52 mg GAE/g), flavonoids (13.13 ± 1.22 mg RE/g), and proanthocyanidins (8.36 ± 0.14 mg CE/g). It also had good DPPH and ABTS radical scavenging activity, which reached 82.10% and 76.10% at 1000 μg/mL. The alteration trend of the antioxidant activity during in vitro fermentation for 24 h was consistent with that of the content of bioactive substances, such as polyphenols, with the extension of fermentation time. The bioactive compounds and antioxidant activity showed a trend of increasing and then decreasing, reaching the highest value at 8 h. The high-throughput sequencing analysis of the regulatory effect of VWS on intestinal micro-organisms revealed that VWS influenced intestinal microbiota diversity. The relative abundance of beneficial microbiota, such as Blautia and Parabacteroides, increased by 4.1- and 1.65-fold after 24 h of fermentation compared with that of the control group. It also reduced Escherichia-Shigella by 11.23% and effectively reduced host inflammation, while increasing the contents of acetic acid, propionic acid, and other metabolites. Taken together, these results reveal the value of VWS utilization and provide new insights into the nutritional and microbiota modulation effects of VWS, which could therefore serve as a nutraceutical ingredient in health promotion.
Collapse
Affiliation(s)
- Huiqin Ma
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Aixiang Hou
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Hunan Province Key Laboratory of Food Science and Biotechnology, Changsha 410128, China
| | - Jiaojiao Tang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Aiai Zhong
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Ke Li
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Hunan Province Key Laboratory of Food Science and Biotechnology, Changsha 410128, China
| | - Yu Xiao
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory of Ministry of Education for Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
- Correspondence: (Y.X.); (Z.L.); Tel.: +86-731-8461-7007 (Z.L.)
| | - Zongjun Li
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Hunan Province Key Laboratory of Food Science and Biotechnology, Changsha 410128, China
- Correspondence: (Y.X.); (Z.L.); Tel.: +86-731-8461-7007 (Z.L.)
| |
Collapse
|
28
|
Bortolami M, Di Matteo P, Rocco D, Feroci M, Petrucci R. Metabolic Profile of Agropyron repens (L.) P. Beauv. Rhizome Herbal Tea by HPLC-PDA-ESI-MS/MS Analysis. Molecules 2022; 27:molecules27154962. [PMID: 35956912 PMCID: PMC9370816 DOI: 10.3390/molecules27154962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 07/29/2022] [Accepted: 07/31/2022] [Indexed: 11/25/2022] Open
Abstract
Agropyron repens (L.) P. Beauv. (couch grass) is a world-wide infesting rhizomatous plant with pharmacological applications. Chemical research is focused on its allelopathic and anti-inflammatory components, which are mainly present in the essential oil. Conversely, the aqueous extracts have been sparingly investigated, although the herbal tea is by far the most used formulation. To fill the gap, the metabolic profile of Agropyron repens rhizome herbal tea was investigated by electrospray ionization (ESI) tandem–mass spectrometry (MS/MS); the phenolic profile was investigated by HPLC-PDA-ESI-MS/MS. ESI-MS fingerprinting was provided, evidencing diagnostic ions for saccharides, organic acids and amino acids. The HPLC-PDA-ESI-MS/MS analysis evidenced at least 20 characteristic phenolic compounds, the most representative being caffeoyl and feruloyl quinic esters, followed by coumaric, caffeic and ferulic acids, and hesperidin among flavonoids. In addition, the essential amino acid tryptophan was identified for the first time. The results suggest new perspectives of applications for Agropyron repens rhizome.
Collapse
Affiliation(s)
- Martina Bortolami
- Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, Via del Castro Laurenziano 7, 00161 Rome, Italy
| | - Paola Di Matteo
- Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, Via del Castro Laurenziano 7, 00161 Rome, Italy
| | - Daniele Rocco
- Department of Ingegneria Meccanica ed Aerospaziale, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy
| | - Marta Feroci
- Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, Via del Castro Laurenziano 7, 00161 Rome, Italy
- Correspondence: (M.F.); (R.P.); Tel.: +39-649766736 (R.P.)
| | - Rita Petrucci
- Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, Via del Castro Laurenziano 7, 00161 Rome, Italy
- Correspondence: (M.F.); (R.P.); Tel.: +39-649766736 (R.P.)
| |
Collapse
|
29
|
Tang Z, Lin W, Yang J, Feng S, Qin Y, Xiao Y, Chen H, Liu Y, Chen H, Bu T, Li Q, Yao H, Ding C. Ultrasound-assisted extraction of Cordyceps cicadae polyphenols: Optimization, LC-MS characterization, antioxidant and DNA damage protection activity evaluation. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
30
|
Wang Z, Jin X, Zhang X, Xie X, Tu Z, He X. From Function to Metabolome: Metabolomic Analysis Reveals the Effect of Probiotic Fermentation on the Chemical Compositions and Biological Activities of Perilla frutescens Leaves. Front Nutr 2022; 9:933193. [PMID: 35898707 PMCID: PMC9309800 DOI: 10.3389/fnut.2022.933193] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/20/2022] [Indexed: 01/22/2023] Open
Abstract
This study aimed to investigate the impact of probiotic fermentation on the active components and functions of Perilla frutescens leaves (PFL). PFL was fermented for 7 days using six probiotics (Lactobacillus Plantarum SWFU D16, Lactobacillus Plantarum ATCC 8014, Lactobacillus Rhamnosus ATCC 53013, Streptococcus Thermophilus CICC 6038, Lactobacillus Casei ATCC 334, and Lactobacillus Bulgaricus CICC 6045). The total phenol and flavonoid contents, antioxidant abilities, as well as α-glucosidase and acetylcholinesterase inhibition abilities of PFL during the fermentation process were evaluated, and its bioactive compounds were further quantified by high-performance liquid chromatography (HPLC). Finally, non-targeted ultra-HPLC-tandem mass spectroscopy was used to identify the metabolites affected by fermentation and explore the possible mechanisms of the action of fermentation. The results showed that most of the active component contents and functional activities of PFL exhibited that it first increased and then decreased, and different probiotics had clearly distinguishable effects from each other, of which fermentation with ATCC 53013 for 1 day showed the highest enhancement effect. The same trend was also confirmed by the result of the changes in the contents of 12 phenolic acids and flavonoids by HPLC analysis. Further metabolomic analysis revealed significant metabolite changes under the best fermentation condition, which involved primarily the generation of fatty acids and their conjugates, flavonoids. A total of 574 and 387 metabolites were identified in positive ion and negative ion modes, respectively. Results of Spearman's analysis indicated that some primary metabolites and secondary metabolites such as flavonoids, phenols, and fatty acids might play an important role in the functional activity of PFL. Differential metabolites were subjected to the KEGG database and 97 metabolites pathways were obtained, of which biosyntheses of unsaturated fatty acids, flavonoid, and isoflavonoid were the most enriched pathways. The above results revealed the potential reason for the differences in metabolic and functional levels of PFL after fermentation. This study could provide a scientific basis for the further study of PFL, as well as novel insights into the action mechanism of probiotic fermentation on the chemical composition and biological activity of food/drug.
Collapse
Affiliation(s)
- Zhenxing Wang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
- College of Life Sciences, Southwest Forestry University, Kunming, China
- National R&D Center for Freshwater Fish Processing, College of Health, Jiangxi Normal University, Nanchang, China
| | - Ximeng Jin
- College of Life Sciences, Southwest Forestry University, Kunming, China
| | - Xuechun Zhang
- College of Life Sciences, Southwest Forestry University, Kunming, China
| | - Xing Xie
- National R&D Center for Freshwater Fish Processing, College of Health, Jiangxi Normal University, Nanchang, China
| | - Zongcai Tu
- National R&D Center for Freshwater Fish Processing, College of Health, Jiangxi Normal University, Nanchang, China
| | - Xiahong He
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
- College of Horticulture and Landscape, Southwest Forestry University, Kunming, China
| |
Collapse
|
31
|
Wan F, Feng C, Luo K, Cui W, Xia Z, Cheng A. Effect of steam explosion on phenolics and antioxidant activity in plants: A review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
32
|
Fabrication of quercetin-loaded nanoparticles based on Hohenbuehelia serotina polysaccharides and their modulatory effects on intestinal function and gut microbiota in vivo. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.102993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
33
|
YU C, Liu Y, Xuemei Z, Ma A, Jianxin T, Yiling T. Fermented Carrot Pulp Regulates the Dysfunction of Murine Intestinal Microbiota. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2479956. [PMID: 35340216 PMCID: PMC8942650 DOI: 10.1155/2022/2479956] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 01/04/2022] [Accepted: 02/10/2022] [Indexed: 11/25/2022]
Abstract
It was the focus of attention that probiotic control drink was packed with prebiotic nutrients and lactic acid bacteria. So, this study is aimed at revealing that the fermented carrot pulp regulation and protection function to the intestinal microecological disorders usually induced by antibiotic treatment. First, we study on lactobacillus fermentation conditions and effects on the secondary metabolism of fermented carrot juice, get its phenolic acids up, and get its flavonoids down. Then, establishment of the dysbacteriosis mouse model was used to validate the fermented carrot pulp prevention and treatment of intestinal microbiota imbalance. After the antibiotic treatment, the mice showed impotence, laziness, slow movement, weight loss, thin feces, dull hair, and anal redness, while the mice in the control group were all normal in terms of the mental state, diet, weight, and bowl movement. Along with the treatment, the abnormal conditions of the mice in the model group and natural recovery group improved in different degrees, indicating that the fermentation treatment is of help to the intestinal microbiota recovery. The fermentation-treated group of mice recovered close to normal that the diarrhea disappeared, and the weight gain, mental state, and the feces became normal. The serum antioxidant (SOD, GSH, and MDA) levels of the mice were checked. The superoxide dismutase (SOD) levels and glutathione (GSH) levels in the ordinary fermentation-treated group and probiotic fermentation-treated group were significantly increased compare to the natural recovery group. The malondialdehyde (MDA) levels showed great differences between the fermentation-treated groups and the blank group. At last, the 16sRNA analysis revealed that the microbiota richness and diversity in probiotic fermentation (J) are much higher than those in the model group (H), ordinary fermentation group (I), and blank group (G). Groups J and I are of significantly higher antioxidant level than group H; however, only the glutathione (GSH) level in group J increased dramatically but not those in the other three groups. Antibiotic treatment-induced mouse intestinal microecological disorder reduce the microbiota richness and diversity. Prebiotics fermented carrot pulp treatment can help in the recovery from the microbiota richness and diversity level prior to the antibiotic treatment, which suggests it can regulate and protect the murine intestinal microbiome.
Collapse
Affiliation(s)
- Chenchen YU
- College of Food Science and Technology, Hebei Agricultural University, Baoding Hebei, China
| | - Ying Liu
- College of Food Science and Technology, Hebei Agricultural University, Baoding Hebei, China
| | - Zhang Xuemei
- College of Forestry, Hebei Agricultural University, Baoding Hebei, China
| | - Aijin Ma
- School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Tan Jianxin
- College of Food Science and Technology, Hebei Agricultural University, Baoding Hebei, China
| | - Tian Yiling
- College of Food Science and Technology, Hebei Agricultural University, Baoding Hebei, China
| |
Collapse
|
34
|
Dehghanian Z, Habibi K, Dehghanian M, Aliyar S, Asgari Lajayer B, Astatkie T, Minkina T, Keswani C. Reinforcing the bulwark: unravelling the efficient applications of plant phenolics and tannins against environmental stresses. Heliyon 2022; 8:e09094. [PMID: 35309390 PMCID: PMC8927939 DOI: 10.1016/j.heliyon.2022.e09094] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/21/2021] [Accepted: 03/08/2022] [Indexed: 11/24/2022] Open
Abstract
Phenolic compounds are plant secondary metabolites that play a vital role in plant resistance. They are mainly synthetized from the amino acid L-phenylalanine, which is converted to trans-cinnamic acid in a series of biochemical reactions. These compounds take part in the regulation of seed germination and cooperate in regulating the growth of plants, also taking part in defense responses during infection, UV exposure, injuries, and heavy metal stress. The aim of this review is to discuss the role of phenolic compounds in the interactions of plants with various stress factors, both biotic and abiotic with special attention to their antioxidant properties. Therefore, understanding the biochemical potential of the phenylpropanoid derivatives would be beneficial in sustaining the metabolic processes used by plants to thrive and endure under adverse conditions.
Collapse
Affiliation(s)
- Zahra Dehghanian
- Department of Biotechnology, Faculty of Agriculture, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Khashayar Habibi
- Department of Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan, Islamic Republic of Iran
| | - Maryam Dehghanian
- Department of Biotechnology, Faculty of Agriculture, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Sajad Aliyar
- Department of Soil Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Behnam Asgari Lajayer
- Department of Soil Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Tess Astatkie
- Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, 344090, Russia
| | - Chetan Keswani
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, 344090, Russia
| |
Collapse
|
35
|
Ren SM, Zhang QZ, Jiang M, Chen ML, Xu XJ, Wang DM, Pan YN, Liu XQ. Systematic characterization of the metabolites of defatted walnut powder extract in vivo and screening of the mechanisms against NAFLD by UPLC-Q-Exactive Orbitrap MS combined with network pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2022; 285:114870. [PMID: 34848359 DOI: 10.1016/j.jep.2021.114870] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Walnut kernel, a well-known TCM, is often used after being defatted in tradition. And defatted walnut powder extract (DWPE) has the actions of tonifying the liver and kidney, dissipating stagnation and removing blood stasis, which has the effect on non-alcoholic fatty liver disease (NAFLD). However, the effective components of DWPE in vivo were unclear and the multiple mechanisms of DWPE against NAFLD have not been explored. AIM OF THE STUDY The studies were performed to screen the effective substances in vivo by identification of the metabolites of DWPE in rats and to seek the potential mechanisms of DWPE on NAFLD by construction of the network pharmacology based on metabolites and verification of the highly correlated pathway. MATERIALS AND METHODS To explore the effective substances in vivo, the metabolites of DWPE were identified in SD rats' bio-samples through UPLC-Q-Exactive Orbitrap MS. To analyze the mechanisms of DWPE on NAFLD, a Metabolite-Target-Disease network was established and the potential mechanisms were predicted. Then, highly correlated pathway was verified in animal and cells studies. RESULTS A total of 52 metabolites of DWPE were identified in vivo, which were derived from gallic acid, ellagic acid (EA) and glansreginin A (Gla A). The possible metabolic pathways were phase Ⅰ (hydroxylation, hydrolyzation, etc) and phase Ⅱ metabolic reactions (methylation, sulfation and glucuronidation). Furthermore, in the network pharmacology, 54 core targets were enriched into pathways in cancer, nitrogen metabolism and other 9 pathways, which were essential pathways of DWPE against NAFLD. And the mechanism of nitrogen metabolism was verified in both of animal and cells studies. The results showed that DWPE could decline the concentration of ammonia and increase the expressions of carbonic anhydrase 2 (CA2) and carbamoylphosphate synthetase (CPS1) in nitrogen metabolism. CONCLUSION Taken together, the study revealed the absorption components and their metabolic pathways and demonstrated the mechanism of nitrogen metabolism of DWPE on anti-NAFLD.
Collapse
Affiliation(s)
- Shu-Meng Ren
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| | - Qing-Zhu Zhang
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| | - Man Jiang
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| | - Meng-Lin Chen
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| | - Xia-Jing Xu
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| | - Dong-Mei Wang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| | - Ying-Ni Pan
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| | - Xiao-Qiu Liu
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| |
Collapse
|
36
|
Liao W, Liu S, Dong R, Xie J, Chen Y, Hu X, Xie J, Xue P, Feng L, Yu Q. Mixed solid-state fermentation for releasing bound polyphenols from insoluble dietary fiber in carrots via Trichoderma viride and Aspergillus niger. Food Funct 2022; 13:2044-2056. [PMID: 35107107 DOI: 10.1039/d1fo03107d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study aimed to explore the release mechanism of bound polyphenols (BP) from the insoluble dietary fiber (IDF) in carrots via mixed solid-state fermentation (MSF) using Trichoderma viride and Aspergillus niger. The results indicated that BP released by MSF (80.8759 mg GAE per 10 g DW) was significantly higher than that by alkaline hydrolysis. In addition, 17 polyphenols were detected and their biotransformation pathways were proposed. Quantitative analysis showed that MSF released numerous p-coumaric and organic acids, which led to both an enhancement in α-amylase inhibitory activity and elevated antioxidant enzyme activity in Caenorhabditis elegans (C. elegans). Furthermore, the dynamic changes in the carbohydrate-hydrolyzing enzymes and the structural characteristics indicated that the destruction of hemicellulose, the deposition of lignin and the secretion of xylanase were vital for the release of BP. Overall, this study demonstrated that MSF is beneficial for the release of BP from IDF, which could provide new insight into the utilization of agricultural byproducts in a more natural and economical way.
Collapse
Affiliation(s)
- Wang Liao
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Shuai Liu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Ruihong Dong
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Xiaobo Hu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Jiayan Xie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Puyou Xue
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Lei Feng
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Qiang Yu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
37
|
Fan X, Jiang C, Dai W, Jing H, Du X, Peng M, Zhang Y, Mo L, Wang L, Chen X, Lou Z, Wang H. Effects of different extraction on the antibacterial and antioxidant activities of phenolic compounds of areca nut (husks and seeds). JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-021-01244-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
38
|
Feng Y, Yuan D, Kong B, Sun F, Wang M, Wang H, Liu Q. Structural changes and exposed amino acids of ethanol-modified whey proteins isolates promote its antioxidant potential. Curr Res Food Sci 2022; 5:1386-1394. [PMID: 36110385 PMCID: PMC9468495 DOI: 10.1016/j.crfs.2022.08.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/28/2022] [Accepted: 08/18/2022] [Indexed: 11/30/2022] Open
Abstract
Whey protein isolates (WPI) were treated with different ethanol level (20, 40, 60, and 80%, v/v) to promote structural unfolding and subsequent aggregation. In general, protein aggregation gradually increased with increasing ethanol level in a dose-dependent manner, which was implied by notably increased turbidity and gradually decreased solubility. The formation of aggregates, which were confirmed by the results of circular dichroism spectrum and total sulfhydryl content, were promoted mainly through disulfide bonds and intra-molecular hydrogen bonds. Moreover, ethanol treated WPI (E-WPI) had significantly enhanced antioxidant activities over native WPI, which was mainly attribute to the higher contents of specific amino acids (such as hydrophobic amino acids, aromatic amino acids, and sulfur-containing amino acids), and E-WPI prepared with moderate ethanol concentration (40% in our present study) exhibited the highest antioxidant activities. These results reveal that antioxidant activities of WPI can be increased by ethanol treatment and are possibly achieved through molecular unfolding of native WPI. Ethanol treatment caused unfolding and aggregation of whey protein isolate (WPI). Aggregation enhanced with increasing ethanol concentration (EC). Medium EC (40%, v/v) rendered the highest antioxidant activities of WPI.
Collapse
Affiliation(s)
- Yangyang Feng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Dongxue Yuan
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Fangda Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Meijuan Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Hui Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
- Corresponding author.
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
- Heilongjiang Green Food Science & Research Institute, Harbin, Heilongjiang, 150028, China
- Corresponding author. College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
| |
Collapse
|
39
|
Plant Microbial Biostimulants as a Promising Tool to Enhance the Productivity and Quality of Carrot Root Crops. Microorganisms 2021; 9:microorganisms9091850. [PMID: 34576744 PMCID: PMC8471447 DOI: 10.3390/microorganisms9091850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 11/20/2022] Open
Abstract
The interest in studies focused on applying probiotic microorganisms is increasing due to sustainable agriculture development. In this research, we aimed to evaluate the impact of two commercial plant probiotics—ProbioHumus and NaturGel on carrot growth, yield, and quality in organic and nonorganic production systems. The research was carried out under laboratory and field conditions. Plants were treated with probiotics (2 L/ha) at the nine leaves stage. Biometrical measurements and chemical analyses were performed at a maturation stage. The average weight of carrot roots increased by 17 and 20 g in the test variant with ProbioHumus as compared to the control in the organic and nonorganic farms, respectively. Plant microbial biostimulants ProbioHumus and NaturGel had a positive effect on the quality of carrots from organic and nonorganic farms: applied in couple they promoted the accumulation of monosaccharides, ascorbic acid, carotenoids, phenols, and increased antioxidant activity. Quantitative nitrate analysis regardless of the biostimulant used revealed about twofold lower nitrate content of carrots from organic than nonorganic farms, and probiotics did not show a significant effect on nitrate accumulation. Finally, ProbioHumus and NaturGel were effective at low doses. The use of microbial biostimulants can be recommended as an element of cultivation for creating ecologically friendly technologies.
Collapse
|
40
|
Buljeta I, Pichler A, Šimunović J, Kopjar M. Polyphenols and Antioxidant Activity of Citrus Fiber/Blackberry Juice Complexes. Molecules 2021; 26:molecules26154400. [PMID: 34361554 PMCID: PMC8347997 DOI: 10.3390/molecules26154400] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 01/24/2023] Open
Abstract
The objective of this study was to investigate the use of citrus fiber as a carrier of blackberry juice polyphenols. For that purpose, freeze-dried complexes with blackberry juice and different amounts of citrus fiber (1%, 2% and 4%) were prepared. Complexes were evaluated spectrophotometrically for total polyphenols, proanthocyanidins and antioxidant activity. Analyses of individual polyphenols were performed using high-performance liquid chromatography. IR spectra were recorded to confirm encapsulation. All analyses were performed after preparation and after eight months of storage, in order to examine the stability of formed complexes. The obtained results indicated that increasing the amount of fiber led to a decrease in the concentration of polyphenols and the antioxidant activity of complexes. Cyanidin 3-glucoside was the prevalent anthocyanin in complexes (138.32–246.45 mg/100 g), while cyanidin 3-dioxalylglucoside was present at lower concentrations (22.19–31.45 mg/100 g). The other identified and quantified polyphenols were hesperidin (from citrus fiber), ellagic acid and quercetin (1317.59–1571.65 mg/100 g, 31.94–50.11 mg/100 g and 20.11–33.77 mg/100 g, respectively). Degradation of polyphenols occurred during storage. Results obtained in this study confirmed that citrus fiber could be used for the formulation of novel bioactive additives. Such additives could enhance the antioxidant potential of products to which they are added, such as baked goods, dairy, or fruit products.
Collapse
Affiliation(s)
- Ivana Buljeta
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, 31000 Osijek, Croatia; (I.B.); (A.P.)
| | - Anita Pichler
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, 31000 Osijek, Croatia; (I.B.); (A.P.)
| | - Josip Šimunović
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695, USA;
| | - Mirela Kopjar
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, 31000 Osijek, Croatia; (I.B.); (A.P.)
- Correspondence:
| |
Collapse
|
41
|
Dietary Fiber and Prebiotic Compounds in Fruits and Vegetables Food Waste. SUSTAINABILITY 2021. [DOI: 10.3390/su13137219] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The fruits and vegetables processing industry is one of the most relevant food by-products, displaying limited commercial exploitation entailing economic and environmental problems. However, these by-products present a considerable amount of dietary fiber and prebiotics with important biological activities, such as gut microbiota modulation, lowering the glycemic load and replacing some unhealthy ingredients with an impact on food texture. Therefore, the international scientific community has considered incorporating their extracts or powders to preserve or fortify food products an area of interest, mainly because nowadays consumers demand the production of safer and health-promoting foods. In the present review, literature, mainly from the last 5 years, is critically analyzed and presented. A particular focus is given to utilizing the extracted dietary fibers in different food products and their impact on their characteristics. Safety issues regarding fruits and vegetables wastes utilization and anti-nutritional compounds impact were also discussed.
Collapse
|
42
|
Dong R, Liu S, Xie J, Chen Y, Zheng Y, Zhang X, Zhao E, Wang Z, Xu H, Yu Q. The recovery, catabolism and potential bioactivity of polyphenols from carrot subjected to in vitro simulated digestion and colonic fermentation. Food Res Int 2021; 143:110263. [PMID: 33992364 DOI: 10.1016/j.foodres.2021.110263] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 02/19/2021] [Accepted: 02/21/2021] [Indexed: 12/13/2022]
Abstract
Carrot powder digestion was researched utilizing an in vitro standardized static model associated with an in vitro colonic fermentation method to analyze the recovery, catabolism, and potential bioactivity of polyphenols from carrot. Twenty-seven polyphenols and their metabolites (hydroxybenzoic acids, hydroxycinnamic acids and its derivatives, etc.) were identified in samples before and after digestion/colonic fermentation, and the possible colonic pathways for major polyphenols were proposed. Polyphenols had low recovery during different phases of in vitro digestion (oral: -51.4%; gastric: -38%; intestinal: -35.3%, respectively). However, the concentration of polyphenols (p-hydroxybenzoic acid, gallic acid and protocatechuic acid) increased significantly after colonic fermentation for 12 h with 1391.7% recovery, then significantly declined after 48 h. Meanwhile, the released and catabolized polyphenols showed antioxidant activity and α-glucosidase inhibitory capacity (IC50 = 9.91 μg GAE/mL). The microbe community structure was regulated by fecal fermented carrot powder through improving relative abundance (RA) of beneficial microbiota and suppressed RA of various harmful bacteria. This work indicated that polyphenols from carrot potentially play a role in gastrointestinal and colonic health.
Collapse
Affiliation(s)
- Ruihong Dong
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Shuai Liu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Yuting Zheng
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Xingjie Zhang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - En Zhao
- School of Food Science and Technology, Nanchang University, Nanchang 330031, China
| | - Zipei Wang
- School of Food Science and Technology, Nanchang University, Nanchang 330031, China
| | - Hongyan Xu
- School of Food Science and Technology, Nanchang University, Nanchang 330031, China
| | - Qiang Yu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
43
|
Fernández-López J, Botella-Martínez C, Navarro-Rodríguez de Vera C, Sayas-Barberá ME, Viuda-Martos M, Sánchez-Zapata E, Pérez-Álvarez JA. Vegetable Soups and Creams: Raw Materials, Processing, Health Benefits, and Innovation Trends. PLANTS 2020; 9:plants9121769. [PMID: 33327480 PMCID: PMC7764940 DOI: 10.3390/plants9121769] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/05/2020] [Accepted: 12/09/2020] [Indexed: 12/15/2022]
Abstract
Vegetable soups and creams have gained popularity among consumers worldwide due to the wide variety of raw materials (vegetable fruits, tubers, bulbs, leafy vegetables, and legumes) that can be used in their formulation which has been recognized as a healthy source of nutrients (mainly proteins, dietary fiber, other carbohydrates, vitamins, and minerals) and bioactive compounds that could help maintain the body’s health and wellbeing. In addition, they are cheap and easy to preserve and prepare at home, ready to eat, so in consequence they are very useful in the modern life rhythms that modify the habits of current consumption and that reclaim foods elaborated with natural ingredients, ecologic, vegans, less invasive production processes, agroindustry coproducts valorization, and exploring new flavors and textures. This review focuses on the nutritional and healthy properties of vegetable soups and creams (depending on the raw materials used in their production) highlighting their content in bioactive compounds and their antioxidant properties. Apart from the effect that some processing steps could have on these compounds, innovation trends for the development of healthier soups and creams adapted to specific consumer requirements have also been explored.
Collapse
Affiliation(s)
- Juana Fernández-López
- IPOA Research Group, Agro-Food Technology Department, Higher Polytechnic School of Orihuela, Miguel Hernández University, Orihuela, 03312 Alicante, Spain; (J.F.-L.); (C.B.-M.); (C.N.-R.d.V.); (M.E.S.-B.); (M.V.-M.)
| | - Carmen Botella-Martínez
- IPOA Research Group, Agro-Food Technology Department, Higher Polytechnic School of Orihuela, Miguel Hernández University, Orihuela, 03312 Alicante, Spain; (J.F.-L.); (C.B.-M.); (C.N.-R.d.V.); (M.E.S.-B.); (M.V.-M.)
| | - Casilda Navarro-Rodríguez de Vera
- IPOA Research Group, Agro-Food Technology Department, Higher Polytechnic School of Orihuela, Miguel Hernández University, Orihuela, 03312 Alicante, Spain; (J.F.-L.); (C.B.-M.); (C.N.-R.d.V.); (M.E.S.-B.); (M.V.-M.)
| | - María Estrella Sayas-Barberá
- IPOA Research Group, Agro-Food Technology Department, Higher Polytechnic School of Orihuela, Miguel Hernández University, Orihuela, 03312 Alicante, Spain; (J.F.-L.); (C.B.-M.); (C.N.-R.d.V.); (M.E.S.-B.); (M.V.-M.)
| | - Manuel Viuda-Martos
- IPOA Research Group, Agro-Food Technology Department, Higher Polytechnic School of Orihuela, Miguel Hernández University, Orihuela, 03312 Alicante, Spain; (J.F.-L.); (C.B.-M.); (C.N.-R.d.V.); (M.E.S.-B.); (M.V.-M.)
| | - Elena Sánchez-Zapata
- Research & Development Pre-Cooked Convenience Food, Surinver El Grupo S.Coop, 03191 Alicante, Spain;
| | - José Angel Pérez-Álvarez
- IPOA Research Group, Agro-Food Technology Department, Higher Polytechnic School of Orihuela, Miguel Hernández University, Orihuela, 03312 Alicante, Spain; (J.F.-L.); (C.B.-M.); (C.N.-R.d.V.); (M.E.S.-B.); (M.V.-M.)
- Correspondence: ; Tel.: +94-96-674-9739
| |
Collapse
|
44
|
Liao X, Zhu Z, Wu S, Chen M, Huang R, Wang J, Wu Q, Ding Y. Preparation of Antioxidant Protein Hydrolysates from Pleurotus geesteranus and Their Protective Effects on H 2O 2 Oxidative Damaged PC12 Cells. Molecules 2020; 25:E5408. [PMID: 33227951 PMCID: PMC7699252 DOI: 10.3390/molecules25225408] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 12/20/2022] Open
Abstract
Pleurotus geesteranus is a promising source of bioactive compounds. However, knowledge of the antioxidant behaviors of P. geesteranus protein hydrolysates (PGPHs) is limited. In this study, PGPHs were prepared with papain, alcalase, flavourzyme, pepsin, and pancreatin, respectively. The antioxidant properties and cytoprotective effects against oxidative stress of PGPHs were investigated using different chemical assays and H2O2 damaged PC12 cells, respectively. The results showed that PGPHs exhibited superior antioxidant activity. Especially, hydrolysate generated by alcalase displayed the strongest 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity (91.62%), 2,2-azino-bis (3-ethylbenzothia zoline-6-sulfonic acid) (ABTS) radical scavenging activity (90.53%), ferric reducing antioxidant power, and metal ion-chelating activity (82.16%). Analysis of amino acid composition revealed that this hydrolysate was rich in hydrophobic, negatively charged, and aromatic amino acids, contributing to its superior antioxidant properties. Additionally, alcalase hydrolysate showed cytoprotective effects on H2O2-induced oxidative stress in PC12 cells via diminishing intracellular reactive oxygen species (ROS) accumulation by stimulating antioxidant enzyme activities. Taken together, alcalase hydrolysate of P. geesteranus protein can be used as beneficial ingredients with antioxidant properties and protective effects against ROS-mediated oxidative stress.
Collapse
Affiliation(s)
- Xiyu Liao
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou 510632, China; (X.L.); (Z.Z.); (S.W.); (M.C.); (R.H.)
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China;
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
- Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Zhenjun Zhu
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou 510632, China; (X.L.); (Z.Z.); (S.W.); (M.C.); (R.H.)
| | - Shujian Wu
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou 510632, China; (X.L.); (Z.Z.); (S.W.); (M.C.); (R.H.)
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China;
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
- Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Mengfei Chen
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou 510632, China; (X.L.); (Z.Z.); (S.W.); (M.C.); (R.H.)
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China;
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
- Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Rui Huang
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou 510632, China; (X.L.); (Z.Z.); (S.W.); (M.C.); (R.H.)
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China;
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
- Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China;
| | - Qingping Wu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China;
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
- Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yu Ding
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou 510632, China; (X.L.); (Z.Z.); (S.W.); (M.C.); (R.H.)
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China;
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
- Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| |
Collapse
|
45
|
Asdaq SMB, Swathi E, Dhamanigi SS, Asad M, Ali Mohzari Y, Alrashed AA, Alotaibi AS, Mohammed Alhassan B, Nagaraja S. Role of Daucus carota in Enhancing Antiulcer Profile of Pantoprazole in Experimental Animals. MOLECULES (BASEL, SWITZERLAND) 2020; 25:molecules25225287. [PMID: 33202703 PMCID: PMC7696376 DOI: 10.3390/molecules25225287] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/30/2020] [Accepted: 11/09/2020] [Indexed: 12/25/2022]
Abstract
The carrot plant (Daucus carota) and its components are traditionally reported for the management of gastric ulcers. This study was performed to evaluate the role of carrot when administered concurrently with a conventional antiulcer treatment, pantoprazole, in alleviating gastric and duodenal ulcers in female experimental animals. The study involved standard animal models to determine the ulcer preventive effect using pylorus ligation, ethanol, and stress induced acute gastric ulcer models and duodenal ulcer models involving cysteamine. Acetic acid-induced chronic gastric ulcer and indomethacin-induced gastric ulcer models were used to evaluate the ulcer healing effect. Carrot fruit (500 mg/kg) and its co-administration with pantoprazole produced significant protection in an ethanol- and stress-induced acute gastric ulcer and cysteamine-induced duodenal ulcer. The healing of the acetic acid-induced chronic gastric ulcer was also augmented with this combination. Both total proteins and mucin contents were significantly increased in indomethacin-induced gastric ulcers. Similarly, in pylorus ligation, the pepsin content of gastric juice, total acidity, and free acidity were reduced. Overall, both ulcer preventive effects and ulcer healing properties of the pantoprazole were significantly enhanced in animals who received the co-administration of carrot fruit (500 mg/kg).
Collapse
Affiliation(s)
- Syed Mohammed Basheeruddin Asdaq
- Department of Pharmacology, College of Pharmacy, AlMaarefa University, Riyadh 13713, Saudi Arabia
- Correspondence: ; Tel.: +966-1-403555-3399
| | - Earla Swathi
- Department of Pharmacology, Krupanidhi College of Pharmacy, Bangalore 560035, India; (E.S.); (S.S.D.)
| | - Sunil S Dhamanigi
- Department of Pharmacology, Krupanidhi College of Pharmacy, Bangalore 560035, India; (E.S.); (S.S.D.)
| | - Mohammed Asad
- College of Applied Medical Sciences, Shaqra University, Shaqra 11911, Saudi Arabia;
| | - Yahya Ali Mohzari
- Clinical Pharmacy Department, King Saud Medical City, Riyadh 12746, Saudi Arabia;
| | - Ahmed A. Alrashed
- Pharmaceutical Service Department, Inpatient Pharmacy, King Fahad Medical City, Riyadh 11525, Saudi Arabia; (A.A.A.); (A.S.A.)
| | - Abdulrahman S. Alotaibi
- Pharmaceutical Service Department, Inpatient Pharmacy, King Fahad Medical City, Riyadh 11525, Saudi Arabia; (A.A.A.); (A.S.A.)
| | | | - Sreeharsha Nagaraja
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
- Department of Pharmaceutics, Vidya Siri College of Pharmacy, Off Sarjapura Road, Bangalore 560035, India
| |
Collapse
|