1
|
Sang X, Zhen F, Lv P, Zhang Z, Qu B, Wang Y. Green and chemical-free pretreatment of flavonoids in tea plant seed husk using ultrasound-cold isostatic pressure synergistic extraction. Food Chem 2025; 478:143725. [PMID: 40073604 DOI: 10.1016/j.foodchem.2025.143725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 02/17/2025] [Accepted: 03/02/2025] [Indexed: 03/14/2025]
Abstract
A new method was established to extract flavonoids from tea plant seed husk: ultrasonic-cold isostatic pressure synergistic extraction. The effects of pressure, ethanol concentration, tea plant seed husk addition and treatment time on the extraction of flavonoids were investigated. The optimal extraction process was determined as follows: applied pressure 468.440 MPa, 31.169 g of tea plant seed husk, ethanol concentration 69.067 %, and processing time 10.916 min. Characterization experiments demonstrated that ultrasonic synergistic cold isostatic pressure extraction could effectively destroy the plant structure and promote the efflux of active ingredients. Then, the flavonoid extracts were analyzed qualitatively and quantitatively by LC-MS/MS, and three flavonoids were identified and found to be higher in the ultrasonic-cold isostatic pressure synergistic extraction group. Finally, the antioxidant, anti-inflammatory and bacteriostatic tests revealed that the activity of the extract was higher in the ultrasonic-cold isostatic pressure synergistic extraction group and did not destroy the activity of extraction.
Collapse
Affiliation(s)
- Xueting Sang
- College of Art and Science, Northeast Agr Univ, Harbin 150030, China
| | - Feng Zhen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Peng Lv
- Heihe Customs Technical Center, Heihe 164300, China
| | - Zhiyun Zhang
- College of Animal Medicine, Northeast Agr Univ, Harbin 150030, China
| | - Bin Qu
- College of Art and Science, Northeast Agr Univ, Harbin 150030, China.
| | - Yuxin Wang
- College of Art and Science, Northeast Agr Univ, Harbin 150030, China
| |
Collapse
|
2
|
Xu G, Yu Z, Zhao W. The synergistic immunomodulatory activity of Lycium barbarum glycopeptide and isochlorogenic acid A on RAW264.7 cells. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:1961-1969. [PMID: 39435522 DOI: 10.1002/jsfa.13972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/15/2024] [Accepted: 10/04/2024] [Indexed: 10/23/2024]
Abstract
BACKGROUND Regulation of the immune system to maintain homeostasis in the organism has become a focus of research, and the synergistic effect of multi-component complexes will effectively improve the immunomodulatory activity. The present study aimed to investigate the interaction and synergistic immunomodulatory activity of isochlorogenic acid A (IAA) and Lycium barbarum glycopeptide (LbGp). RESULTS The results obtained indicated that non-covalent intermolecular interactions were employed to form the LbGp-IAA complex, with a binding ratio of 135.15 mg g-1. The formation of LbGp-IAA complex altered the conformation of LbGp, and IAA was mainly bound to LbGp by van der Waals forces and hydrogen bonds. In addition, LbGp-IAA promoted the proliferation of RAW264.7 cells. The IAA and LbGp interaction had a synergistic effect on the promotion of phagocytosis and the expression of nitric oxide, tumor necrosis faction-α and interleukin-1β, which improved the immunomodulatory effect of LbGp. Furthermore, the combination of LbGp and IAA synergistically inhibited lipopolysaccharide-induced inflammatory response. CONCLUSION In summary, the binding of IAA enhanced the immunomodulatory activity of LbGp and coordinated the immune response, and did not trigger an inflammatory response, which was potentially attributed to the alteration of spatial structure of LbGp through the binding of IAA. The results provide new perspectives for the study of glycopeptide-polyphenol interactions. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ge Xu
- School of Food Science and Engineering, Hainan University, Haikou, China
| | - Zhipeng Yu
- School of Food Science and Engineering, Hainan University, Haikou, China
| | - Wenzhu Zhao
- School of Food Science and Engineering, Hainan University, Haikou, China
| |
Collapse
|
3
|
Sang X, Zhen F, Li H, Zhang Z, Wang Y, Qu B, Sun Y. Effect of cellulase-assisted cold isostatic pressure extraction on the characteristics and functional properties of polyphenol extracts from camellia sinensis seeds. Int J Biol Macromol 2024; 282:137384. [PMID: 39521203 DOI: 10.1016/j.ijbiomac.2024.137384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/03/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
In this experiment, polyphenolic substances were extracted from Camellia sinensis seeds (CSS) using a synergistic treatment of cold isostatic pressure (CIP) and cellulase. The effects of pressure, treatment time, and cellulase addition on the experiment were investigated. And the optimal extraction conditions were established by single factor experiment and Box-benhken experiments: the pressure applied by CIP was 408.649 MPa, the treatment time was 10.995 min, and the cellulase addition was 4.098 %. The polyphenols in the extract were characterized and quantified using LC-MS/MS. By comparing the different treatments, it was found that the synergistic treatment of CIP and cellulase resulted in a higher extraction yield. FTIR, XRD and SEM mapping showed that CIP synergistic pretreatment with cellulase was able to disrupt the microstructure of the plant and promote the influx of the active ingredients into solution. Finally, the activity of the extracts was detected by using in vitro antioxidant experiments and RAW264.7 cellular anti-inflammatory experiments, which indicated that CIP and cellulase synergistically treated polyphenol extracts had high antioxidant and anti-inflammatory capacity. This experiment provides a new pretreatment method for extracting active substances from CSS.
Collapse
Affiliation(s)
- Xueting Sang
- College of Art and Science, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Feng Zhen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China
| | - Hongru Li
- College of Art and Science, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Zhiyun Zhang
- College of Animal Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Yuxin Wang
- College of Art and Science, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Bin Qu
- College of Art and Science, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| | - Yongming Sun
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China
| |
Collapse
|
4
|
Nafeh AAESAEK, Mohamed IMAEA, Foda MF. Ultrasonication-Assisted Green Synthesis and Physicochemical and Cytotoxic Activity Characterization of Protein-Based Nanoparticles from Moringa oleifera Seeds. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1254. [PMID: 39120359 PMCID: PMC11313732 DOI: 10.3390/nano14151254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 08/10/2024]
Abstract
Moringa oleifera (M. oleifera) is globally recognized for its medicinal properties and offers high-quality, protein-rich seeds. This study aimed to explore the potential of M. oleifera seeds as a significant source of protein-based nanoparticles (PBNPs) using the ultrasonication technique after desolvation and to evaluate their cytotoxicity in the human leukemia cell line (THP-1) for the first time. The properties of the PBNPs were confirmed by dynamic light scattering (DLS), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FT-IR). The extracted protein from moringa seed cake flour had a significant protein content of 54.20%, and the resulting PBNPs had an average size of 134.3 ± 0.47 nm with a robust zeta potential of -43.15 mV. Notably, our study revealed that PBNPs exhibited cytotoxic potential at high concentrations, especially against the THP-1 human leukemia cell line, which is widely used to study immunomodulatory properties. The inhibitory effect of PBNPs was quantitatively evidenced by a cytotoxicity assay, which showed that a concentration of 206.5 μg mL-1 (log conc. 2.315) was required to inhibit 50% of biological activity. In conclusion, our findings highlight the potential of M. oleifera seeds as a valuable resource in the innovative field of eco-friendly PBNPs by combining traditional medicinal applications with contemporary advancements in protein nanotechnology. However, further studies are required to ensure their biocompatibility.
Collapse
Affiliation(s)
| | | | - Mohamed Frahat Foda
- Department of Biochemistry, Faculty of Agriculture, Benha University, Moshtohor, Toukh 13736, Egypt
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
5
|
Wang W, Pan Y, Lin Y, Zhao J, Liu M, Wang G, Li S. Network pharmacology combined with an experimental validation study to reveal the effect and mechanism of Lonicera japonica Thunb. extracts against immunomodulation. J Food Sci 2024; 89:3829-3846. [PMID: 38745368 DOI: 10.1111/1750-3841.17074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 05/16/2024]
Abstract
Lonicera japonica Thunb. (LJT) is known for its valuable medicinal properties that highlight its potential application in the pharmaceutical and health food industry. We predict that LJT polyphenols by network pharmacology may be involved in immunomodulation, and the study of LJT polyphenols regulating immunity is still insufficient; therefore, we experimentally found that LJT enhances immunity by promoting the proliferation and phagocytic activity of RAW246.7 cells. A model of an immunosuppressed mouse was constructed using cyclophosphamide-induced, and LJT was extracted for the intervention. We found that LJT restored immune homeostasis in immune deficiency mice by inhibiting the abnormal apoptosis in lymphocytes, enhancing natural killer cell cytotoxicity, promoting T lymphocyte proliferation, and increasing the CD4+ and CD8+ T lymphocytes in quantity. Moreover, LJT treatment modulates immunity by significantly downregulating lipopolysaccharide-induced inflammation and oxidative stress levels. We verified the immunomodulatory function of LJT through both cell and animal experiments. The combination of potential-protein interactions and molecular docking later revealed that LJT polyphenols were associated with immunomodulatory effects on MAPK1; together, LJT intervention significantly modulates the immune, with the activation of MAPK1 as the underlying mechanism of action, which provided evidence for the utilization of LJT as a nutraceutical in immune function.
Collapse
Affiliation(s)
- Wei Wang
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai, People's Republic of China
| | - Yunan Pan
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai, People's Republic of China
| | - Yucheng Lin
- Shanghai JAKA Biotech Co., Ltd., Shanghai, People's Republic of China
| | - Junjie Zhao
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai, People's Republic of China
| | - Meimei Liu
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai, People's Republic of China
| | - Guangyu Wang
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai, People's Republic of China
| | - Shanshan Li
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai, People's Republic of China
| |
Collapse
|
6
|
Li Z, Abou-Elsoud M, Chen H, Shu D, Ren S, Ahn DU, Huang X. Identification and Molecular Mechanism of Novel Two-Way Immunomodulatory Peptides from Ovalbumin: In Vitro Cell Experiments, De Novo Sequencing, and Molecular Docking. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:9856-9866. [PMID: 38635925 DOI: 10.1021/acs.jafc.4c00203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
The purpose of this study was to identify ovalbumin-derived immunomodulatory peptides by in vitro cell experiments, de novo sequencing, and molecular docking. Ovalbumin hydrolysates were prepared by two enzymes (alkaline protease and papain) individually, sequentially, or simultaneously, respectively. The simultaneous enzymatic hydrolysate (OVAH) had a high degree of hydrolysis (38.12 ± 0.48%) and exhibited immune-enhancing and anti-inflammatory activities. A total of 160 peptides were identified by LC-MS/MS in OVAH. Three novel peptides NVMEERKIK, ADQARELINS, and WEKAFKDE bound to TLR4-MD2 through hydrogen bonds and hydrophobic interactions with high binding affinity and binding energies of -181.40, -178.03, and -168.12 kcal/mol, respectively. These three peptides were synthesized and validated for two-way immunomodulatory activity. NVMEERKIK exhibiting the strongest immunomodulatory activity, increased NO and TNF-α levels by 128.69 and 38.01%, respectively, in normal RAW264.7 cells and reduced NO and TNF-α levels by 27.31 and 39.13%, respectively, in lipopolysaccharide-induced inflammatory RAW264.7 cells. Overall, this study first revealed that ovalbumin could be used as an immunomodulatory source for controlling inflammatory factor secretion.
Collapse
Affiliation(s)
- Zuyue Li
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Mahmoud Abou-Elsoud
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
- Food Industries and Nutrition Research Institute, National Research Centre, Cairo 12622, Egypt
| | - Hang Chen
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Dewei Shu
- Zaozhuang Key Laboratory of Egg Nutrition and Health, Zaozhuang Jensur Bio-pharmaceutical Co., Ltd, Shandong 277000, PR China
| | - Shuze Ren
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Dong Uk Ahn
- Animal Science Department, Iowa State University, Ames, Iowa 50011, United States
| | - Xi Huang
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| |
Collapse
|
7
|
Li P, Jing Y, Qiu X, Xiao H, Zheng Y, Wu L. Structural characterization and immunomodulatory activity of a polysaccharide from Dioscotea opposita. Int J Biol Macromol 2024; 265:130734. [PMID: 38462105 DOI: 10.1016/j.ijbiomac.2024.130734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/29/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024]
Abstract
The purified polysaccharides fraction, DOP-2, was prepared from Dioscorea opposita Thunb (D. opposita). This study combined in vitro and in vivo experiments to comprehensively investigate the index changes in RAW264.7 cells and immunocompromised mice under DOP-2 intervention, aiming to elucidate the potential mechanisms of immunomodulatory effects of DOP-2. DOP-2 (10 ∼ 500 μg/mL) significantly elevated the levels of NO, interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) factors secreted by RAW264.7 cells, and restored the body weight of immunosuppressed mice and improve the degree of injury to the immune organ index, resulting in significant immunomodulatory effects. Notably, DOP-2 promoted the production of short-chain fatty acids (SCFAs) in immunosuppressed mice and modulated the composition of their gut microflora. These findings highlight the potential benefits of DOP-2 therapy in improving immune function and gut health, and will provide a theoretical basis for the application of D. opposita polysaccharides as an immunomodulatory adjuvant.
Collapse
Affiliation(s)
- Pengyue Li
- College of Pharmacy, Hebei University of Chinese Medicine, 3 Xingyuan Road, Shijiazhuang 050200, China; Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, 3 Xingyuan Road, Shijiazhuang 050200, China
| | - Yongshuai Jing
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, China
| | - Xiaoyue Qiu
- College of Pharmacy, Hebei University of Chinese Medicine, 3 Xingyuan Road, Shijiazhuang 050200, China
| | - Huina Xiao
- College of Pharmacy, Hebei University of Chinese Medicine, 3 Xingyuan Road, Shijiazhuang 050200, China
| | - Yuguang Zheng
- College of Pharmacy, Hebei University of Chinese Medicine, 3 Xingyuan Road, Shijiazhuang 050200, China; Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, 3 Xingyuan Road, Shijiazhuang 050200, China.
| | - Lanfang Wu
- College of Pharmacy, Hebei University of Chinese Medicine, 3 Xingyuan Road, Shijiazhuang 050200, China; Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, 3 Xingyuan Road, Shijiazhuang 050200, China.
| |
Collapse
|
8
|
Zhang J, Wu Y, Wang C, Xu W, Zhang Z, Zhang S, Guan X, Wang X. The antioxidant, anti-inflammatory and analgesic activity effect of ethyl acetate extract from the flowers of Syringa pubescens Turcz. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117561. [PMID: 38072290 DOI: 10.1016/j.jep.2023.117561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Syringa Pubescens Turcz. (SP), a member of the Oleaceae family, is a species of plant known as Syringa. Flowers, as the medicinal part, are commonly used in the treatment of hepatitis and tonsillitis. AIM OF THE STUDY The research was the first to assess the antioxidant and anti-inflammatory potential of different parts of SP flowers (SPF) in vitro. The most promising fraction was ethyl acetate fraction of SP flower (SPFEA). The antioxidant, anti-inflammatory and analgesic activities of SPFEA were further studied, and the chemical components were identified. METHODS HPLC was used to identify the major components in various fraction of SPF. DPPH and ABTS + radical scavenging assays as well as FRAP test and β-carotene bleaching test were employed to assess the antioxidant potential of SPF fraction in vitro. The inhibitory effect on NO production in LPS-treated RAW264.7 cells and heat-induced protein denaturation test were used to evaluate the anti-inflammatory potential of SPF fraction. Further analysis of the biological activity of SPFEA was performed. Acute toxicity test was conducted to assess the toxicity of SPFEA. The anti-inflammatory effect was assessed by utilizing xylene induced ear edema model, carrageenan-induced foot edema model and peritonitis model in vivo. The analgesic effect of SPFEA was evaluated using hot plate test, tail immersion test, formaldehyde test as well as acetic acid-induced abdominal writhing pain experiment in vivo. In carrageenan induced foot edema model, ELISA kits were employed to measure levels of inflammation factors (NO, TNF-α, IL-6, COX-2, IL-1β) in foot tissue as well as MDA, CAT, SOD, GSH-PX levels in liver tissue. RESULTS HPLC results showed that there were significant differences in bioactive substances among different fractions of SPF, and SPFEA was rich in bioacitve components. Compared with other fractions of SPF, SPFEA exhibited better antioxidant and anti-inflammatory abilities. The 3000 mg/kg SPFEA group in mice had no obvious side effects. The xylene-induced ear edema model, carrageenan-induced foot edema and peritonitis models demonstrated that the SPFEA had significant anti-inflammatory effect. Moreover, inflammation factors including NO, TNF-α, IL-6, COX-2, IL-1β were significantly reduced in SPFEA groups in foot tissue induced by carrageenan. Additionally, SPFEA effectively decreased liver tissue oxidative stress levels (MDA, SOD, GSH-PX and CAT). The bioactivities of SPFEA demonstrated a clear dose-dependent relationship. The results of the hot plate test, tail immersion test, formaldehyde test and acetic acid-induced abdominal writhing pain experiments indicated the SPFEA possessed an excellent analgesic effect, and this effect was in dose-dependent manner. CONCLUSION The study provides a scientific foundation for understanding the pharmacological action of SPFEA. It has been indicated that SPFEA has excellent antioxidant, analgesic and anti-inflammatory effects.
Collapse
Affiliation(s)
- Jiameng Zhang
- College of Chemistry and Chemical Engineering, Henan University of Science and Technology, 471000, Luoyang, China
| | - Yanfang Wu
- College of Basic Medical Sciences, Henan University of Science and Technology, 471000, Luoyang, China.
| | - Chenyu Wang
- College of Chemistry and Chemical Engineering, Henan University of Science and Technology, 471000, Luoyang, China
| | - Weidong Xu
- College of Chemistry and Chemical Engineering, Henan University of Science and Technology, 471000, Luoyang, China
| | - Zichen Zhang
- College of Chemistry and Chemical Engineering, Henan University of Science and Technology, 471000, Luoyang, China
| | - Suya Zhang
- College of Chemistry and Chemical Engineering, Henan University of Science and Technology, 471000, Luoyang, China
| | - Xinyi Guan
- College of Chemistry and Chemical Engineering, Henan University of Science and Technology, 471000, Luoyang, China
| | - Xinsheng Wang
- College of Chemistry and Chemical Engineering, Henan University of Science and Technology, 471000, Luoyang, China.
| |
Collapse
|
9
|
Yu A, Ji Y, Ma G, Xu J, Hu Q. Identification and preparation of selenium-containing peptides from selenium-enriched Pleurotus eryngii and their protective effect on lead-induced oxidative damage in NCTC1469 hepatocytes. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4522-4534. [PMID: 36851873 DOI: 10.1002/jsfa.12529] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 02/21/2023] [Accepted: 02/27/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND Lead (Pb) is a highly toxic and persistent substance that easily accumulates in living organisms, eliciting cellular toxicity and oxidative stress. Some selenium-containing proteins and peptides prepared from plant extracts are beneficial for protecting the body's health and resisting external disturbances. In the present study, selenium-containing peptide species were prepared from selenium-enriched Pleurotus eryngii protein hydrolysates and to evaluate the benefits of selenium-containing peptides on Pb-induced oxidative stress in NCTC1469 hepatocytes. RESULTS Trypsin was selected as primary enzyme to hydrolyze the selenium-enriched protein (SPH). The optimal hydrolysis conditions were: hydrolysis time, 1.5 h; initial pH 8.0. The SPH was digested by trypsin and then purified by ultrafiltration, gel filtration chromatography and reversed-phase HPLC to obtain the selenium-containing peptides SPH-I-2. Furthermore, SPH-I-2 was analyzed and a number of total 12 selenium-containing peptides were identified by liquid chromatography-tandem mass spectroscopy. The NCTC1469 cell culture study showed that selenium-containing peptides were capable of reducing reactive oxygen species levels and regulating the Keap1/Nrf2 pathway by upregulating Nrf2, HO-1, GCLC, GCLM and NQO1 genes and downregulating Keap1 genes. Moreover, selenium-containing peptides were also able to suppress Pb-induced elevated levels of nitric oxide (NO), lactate dehydrogenase (LDH), malondialdehyde (MDA), increase antioxidant enzyme activity and alleviate cell apoptosis. CONCLUSION The present study indicated that the selenium-containing peptides could protect cells from Pb2+ -induced oxidative stress. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Anqi Yu
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Yang Ji
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Gaoxing Ma
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Juan Xu
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Qiuhui Hu
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| |
Collapse
|
10
|
Teng S, He J, Wang X, Li Y, Khan A, Zhao T, Wang Y, Cheng G, Liu Y. A molecular networking-based isolation of gardneria alkaloids from Gardneria distincta and their anti-inflammatory activity. PHYTOCHEMISTRY 2023; 209:113639. [PMID: 36889562 DOI: 10.1016/j.phytochem.2023.113639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Gardneria distincta P. T. Li is traditionally applied as a herbal medicine for treatment various ailments, and is mainly distributed in Southwestern China. Under the guided separation of MS/MS-based molecular networking, eight undescribed oxindole alkaloids, gardistines A-H, as well as 17 known alkaloids were discovered from the whole parts of Gardneria distincta. Structural elucidation of these undescribed alkaloids was performed by various spectroscopic methods. Gardistine A is a rare oxindole gardneria alkaloid bearing an ester carbonyl group attached to C-18, which is the second reported alkaloid of oxindole gardneria-type. All of the identified monoterpene indole alkaloids were investigated for their anti-inflammatory activity in LPS-induced RAW 264.7 cells. Gardistines A-B and akuammidine demonstrated significant inhibitory effects on the expressions of nitric oxide, tumor necrosis factor alpha, and interleukin-6 at 20 μM.
Collapse
Affiliation(s)
- Sifan Teng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Junjie He
- Zhejiang Starry Pharmaceutical Cp., LTD, Taizhou, 317306, China
| | - Xiaoqian Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yiqian Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Afsar Khan
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Tianrui Zhao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yudan Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China; Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming, 650500, Yunnan, China
| | - Guiguang Cheng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Yaping Liu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
11
|
Hu J, Bi J, Li X, Wu X, Wang W, Yu Q. Understanding the impact of pectin on browning of polyphenol oxidation system in thermal and storage processing. Carbohydr Polym 2023; 307:120641. [PMID: 36781270 DOI: 10.1016/j.carbpol.2023.120641] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/05/2023] [Accepted: 01/27/2023] [Indexed: 02/01/2023]
Abstract
Browning of some processed fruit products was affected not only by polyphenol oxidation but also by cell wall polysaccharides (pectin). The study was performed to understand the mechanism of browning in the pectin system. The catechin/chlorogenic acid oxidation system in three pectins significantly enhanced their browning during thermal storage with pectin structure- and concentration-dependent. Particularly, the structural and physicochemical properties of pectin were examined to determine its effects on the kinetics of polyphenol oxidation and the stability of free polyphenols. Moreover, pectin impacted the fluorescence characteristics of polyphenols by cross-linking with the aromatic ring of polyphenols. In turn, the interaction between polyphenols and pectin impacted the chemical bond vibration of pectin, thereby affecting its optical features and browning. The correlation analysis revealed that the monosaccharide composition, Ratio 1, Ratio 2, Ratio 3, methyl esterification, ζ-potential, and polydispersity index of pectin were significantly correlated with the browning of the pectin-polyphenol oxidation system.
Collapse
Affiliation(s)
- Jiaxing Hu
- Institute of Food Science and Technology, CAAS, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing 100193, China
| | - Jinfeng Bi
- Institute of Food Science and Technology, CAAS, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing 100193, China.
| | - Xuan Li
- Institute of Food Science and Technology, CAAS, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing 100193, China.
| | - Xinye Wu
- Institute of Food Science and Technology, CAAS, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing 100193, China
| | - Wenyue Wang
- Institute of Food Science and Technology, CAAS, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing 100193, China
| | - Qingting Yu
- Institute of Food Science and Technology, CAAS, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing 100193, China
| |
Collapse
|
12
|
Niu X, Yao Y, Li Y, Li C, Pan X, Han L. The role of the ferroptosis pathway in the regulation of polysaccharides for human health: A review. Int J Biol Macromol 2023; 231:123349. [PMID: 36669310 DOI: 10.1016/j.ijbiomac.2023.123349] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023]
Abstract
Polysaccharides are natural polymers with ketone or aldehyde groups that are widely found in plants, animals, and microorganisms. They exhibit various biological activities and have potential development value in the food and pharmaceutical fields. Ferroptosis is a recently discovered modality that modulates cell death and has attracted considerable attention because it is considered to be involved in many pathophysiological processes. The inhibition of ferroptosis by reducing intracellular iron accumulation and lipid peroxidation may provide potential protective strategies against related pathologies. Ferroptosis is also involved in the physiological activities of polysaccharides, and its regulatory mechanism varies according to different physiological activities. However, a systematic summary on the involvement of ferroptosis in the physiological activities of polysaccharides is currently lacking. Therefore, this review systematically summarized the relationship between the physiological activities of polysaccharides and ferroptosis and focused on the regulatory mechanism of ferroptosis, with respect to the anti-cancer, anti-inflammatory, antioxidant, and immunomodulatory activities of all polysaccharides. The primary objective was to find new polysaccharide-related therapeutic breakthroughs for related diseases and to provide a reference for further research on polysaccharides-based therapeutics.
Collapse
Affiliation(s)
- Xiaoyan Niu
- Key Laboratory of Public Health Safety of Hebei Province, Ministry of Education, College of Public Health, Hebei University, Baoding 071002, China
| | - Yupei Yao
- Key Laboratory of Public Health Safety of Hebei Province, Ministry of Education, College of Public Health, Hebei University, Baoding 071002, China
| | - Yaping Li
- Key Laboratory of Public Health Safety of Hebei Province, Ministry of Education, College of Public Health, Hebei University, Baoding 071002, China
| | - Cuiping Li
- Key Laboratory of Public Health Safety of Hebei Province, Ministry of Education, College of Public Health, Hebei University, Baoding 071002, China
| | - Xiao Pan
- Key Laboratory of Public Health Safety of Hebei Province, Ministry of Education, College of Public Health, Hebei University, Baoding 071002, China
| | - Lirong Han
- Key Laboratory of Public Health Safety of Hebei Province, Ministry of Education, College of Public Health, Hebei University, Baoding 071002, China.
| |
Collapse
|
13
|
Immunomodulatory Effects of Spherical Date Seed Pills Industrially Fabricated on RAW264.7 Cells. Foods 2023; 12:foods12040784. [PMID: 36832859 PMCID: PMC9956016 DOI: 10.3390/foods12040784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/02/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
Dates have been demonstrated to display a variety of bioactivities and are rich in polyphenols. In this work, we assessed the underlying immunomodulatory effects of date seed polyphenol extracts that had been industrially encapsulated and fabricated into commercial pills in RAW264.7 macrophages using the NF-κB and Nrf2 signaling pathways. The outcomes showed that in RAW264.7 cells, the date seed pills effectively stimulated nuclear translocation of NF-E2-related factor 2 (Nrf2) and NF-κB, along with downstream cytokines (IL-1β, TNF-α, IL-6, and IFN-γ), ROS ratios, and SOD activity. It is interesting to note that the encapsulated pills activated Nrf2 nuclear translocation more effectively than the non-encapsulated ones did. Additionally, pills at 50 µg mL-1 improved immunological responses, but pills at 1000 µg mL-1 prevented macrophages from becoming inflamed. These results showed that the immunomodulatory effects were differently impacted by commercial date seed pills, a finding which was related to the large-scale manufacturing of the pills and the incubation concentrations used. These results also shed light on a new trend of using food byproducts as an innovative supplement.
Collapse
|
14
|
Zhang B, Zhang Y, Liu X, Zhao C, Yin J, Li X, Zhang X, Wang J, Wang S. Distinctive anti-inflammatory effects of resveratrol, dihydroresveratrol, and 3-(4-hydroxyphenyl)-propionic acid on DSS-induced colitis in pseudo-germ-free mice. Food Chem 2023; 400:133904. [PMID: 36055136 DOI: 10.1016/j.foodchem.2022.133904] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/09/2022] [Accepted: 08/07/2022] [Indexed: 10/15/2022]
Abstract
Resveratrol is a dietary polyphenol that interacts with gut microbiota to possess various biological activities. To identify the microbial metabolites of resveratrol, fresh feces from 12 volunteers were cultured in vitro. Their urine samples were collected after taking a commercial capsule containing 600 mg of resveratrol. Metabolites were characterized and quantified by UPLC-Q-Exactive plus orbitrap MS/MS. The results showed that dihydroresveratrol, 3-(4-hydroxyphenyl)-propionic acid, and lunularin were the major microbial metabolites of RSV with interindividual differences. 3-(4-Hydroxyphenyl)-propionic acid significantly attenuated the inflammatory response of LPS-treated RAW264.7 cells and DSS-induced colitis in antibiotics-treated pseudo-germ-free mice by regulating MAPK and NF-κB pathways. In contrast, dihydroresveratrol did not exhibit significant anti-inflammatory effects, and lunularin exhibited pro-inflammatory effects in cells. This study may help to better understand the health effects of resveratrol and its microbial metabolites.
Collapse
Affiliation(s)
- Bowei Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Yunhui Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Xiaoxia Liu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Congying Zhao
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Jia Yin
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Xiang Li
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Xuejiao Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Jin Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China.
| |
Collapse
|
15
|
The effect of three pectin fractions variation on the browning of different dried apple products. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Zhong J, Wang Y, Li C, Yu Q, Xie J, Dong R, Xie Y, Li B, Tian J, Chen Y. Natural variation on free, esterified, glycosylated and insoluble-bound phenolics of Rubus chingii Hu: Correlation between phenolic constituents and antioxidant activities. Food Res Int 2022; 162:112043. [DOI: 10.1016/j.foodres.2022.112043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/18/2022] [Accepted: 10/10/2022] [Indexed: 11/29/2022]
|
17
|
Xia Y, Zhai X, Qiu Y, Lu X, Jiao Y. The Nrf2 in Obesity: A Friend or Foe? Antioxidants (Basel) 2022; 11:antiox11102067. [PMID: 36290791 PMCID: PMC9598341 DOI: 10.3390/antiox11102067] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 11/17/2022] Open
Abstract
Obesity and its complications have become serious global health concerns recently and increasing work has been carried out to explicate the underlying mechanism of the disease development. The recognized correlations suggest oxidative stress and inflammation in expanding adipose tissue with excessive fat accumulation play important roles in the pathogenesis of obesity, as well as its associated metabolic syndromes. In adipose tissue, obesity-mediated insulin resistance strongly correlates with increased oxidative stress and inflammation. Nuclear factor erythroid 2-related factor 2 (Nrf2) has been described as a key modulator of antioxidant signaling, which regulates the transcription of various genes coding antioxidant enzymes and cytoprotective proteins. Furthermore, an increasing number of studies have demonstrated that Nrf2 is a pivotal target of obesity and its related metabolic disorders. However, its effects are controversial and even contradictory. This review aims to clarify the complicated interplay among Nrf2, oxidative stress, lipid metabolism, insulin signaling and chronic inflammation in obesity. Elucidating the implications of Nrf2 modulation on obesity would provide novel insights for potential therapeutic approaches in obesity and its comorbidities.
Collapse
|
18
|
Neuroprotective Potential of Thinned Peaches Extracts Obtained by Pressurized Liquid Extraction after Different Drying Processes. Foods 2022; 11:foods11162464. [PMID: 36010464 PMCID: PMC9407205 DOI: 10.3390/foods11162464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/20/2022] [Accepted: 08/12/2022] [Indexed: 12/03/2022] Open
Abstract
Genetic, environmental and nutritional factors are suggested as primary factors of Alzheimer’s disease (AD), and secondary metabolites such as polyphenols present in thinned peaches are considered as good candidates for AD prevention. Thinned peaches are usually dried to avoid putrefaction, but the effects of the drying method and the extraction process on the polyphenol composition and the neuroprotective potential have never been addressed. In this work, a pressurized liquid extraction (PLE) method was optimized and applied to thinned peaches dried under different conditions, and their neuroprotective potential was evaluated in vitro. In addition, the PLE extracts were characterized via HPLC-Q-TOF-MS/MS, and a permeability assay was performed to evaluate the ability of the identified metabolites to cross the blood–brain barrier (BBB). The PLE extracts obtained from freeze-dried (FD) samples with 50% ethanol in water at 180 °C showed the best neuroprotective potential. Finally, among the 81 metabolites identified, isoferulic acid, 4-methyldaphnetin, coniferyl aldehyde and 3,4-dihydroxyacetophenone were found at higher concentrations in FD extracts. These metabolites are able to cross the BBB and are positively correlated with the neuroprotective potential, suggesting FD together with PLE extraction as the best combination to exploit the neuroprotective capacity of thinned peaches.
Collapse
|
19
|
Li XY, Wang Z, Jiang JG, Shen CY. Role of polyphenols from Polygonum multiflorum Caulis in obesity-related disorders. JOURNAL OF ETHNOPHARMACOLOGY 2022; 294:115378. [PMID: 35562092 DOI: 10.1016/j.jep.2022.115378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/17/2022] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Polygoni Multiflori Caulis (PMC) has been widely consumed as folk medicine in China for anti-obesity, sleep-enhancing and many other pharmacological effects. However, the material basis and underlying mechanism of PMC on obesity-related disorders were still not clear. AIM OF THE STUDY To screen active constituents from PMC and explore their multitarget mechanisms in the treatment of obesity and its associated disorders. MATERIALS AND METHODS Several major constituents were extracted from PMC and LC-MS assay were used to identify the compounds. The lipase inhibitory activity and lipid accumulation in 3T3-L1 preadipocytes were determined. Furthermore, Caenorhabditis elegans (C. elegans) and high-fat diet (HFD)-induced mice were established to explore the potential pharmacological functions and related mechanisms using kits, RT-qPCR and biochemical analysis. RESULTS Regarding the lipase inhibitory activity, the inhibition rate of EA and n-Bu extracts at 4 mg/mL reached over 80%. Effects on 3T3-L1 preadipocytes proliferation and differentiation were also obvious, indicating that EA and n-Bu extracts might exert potential anti-obesity functions. LC-MS assay further showed that polyphenols including emodin and physcion comprised majority of EA and n-Bu extracts. EA and n-Bu extracts treatment could significantly modulate the antioxidant response and lipid accumulation in C. elegans, as evidenced by increased SOD and CAT contents, reduced MDA levels, higher TG contents and changes of related mRNA expression levels. In HFD-induced mice, the inhibition ratio of body weight as well as the histological and biochemical indexes of liver, plasma and epididymal adipose tissues were also reversed by EA and n-Bu extracts treatment. Moreover, EA and n-Bu extracts administration increased the microbial diversity, reshaped the microbiota structure and enhanced the relative abundance of Bifidobacterium. CONCLUSIONS This study demonstrated the multicomponent and multitarget characteristics of PMC in preventing obesity related disorders. The results provided novel insights for the development and utilization of PMC.
Collapse
Affiliation(s)
- Xiao-Yi Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, 510515, PR China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou, 510515, PR China
| | - Zheng Wang
- College of Food and Bioengineering, South China University of Technology, Guangzhou, 510640, China
| | - Jian-Guo Jiang
- College of Food and Bioengineering, South China University of Technology, Guangzhou, 510640, China.
| | - Chun-Yan Shen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, 510515, PR China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou, 510515, PR China.
| |
Collapse
|
20
|
Qu T, He S, Ni C, Wu Y, Xu Z, Chen ML, Li H, Cheng Y, Wen L. In Vitro Anti-Inflammatory Activity of Three Peptides Derived from the Byproduct of Rice Processing. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2022; 77:172-180. [PMID: 35449430 DOI: 10.1007/s11130-022-00963-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Inflammation is a contributing factor to the initiation and progression of many diseases, and some food-derived biofunctional peptides show high anti-inflammatory activity. In our previous study, we demonstrated that peptides derived from trypsin hydrolysis of rice protein show good immunological activity. In the present study, proteins of broken rice were extracted and identified by macroporous resin fractionation and liquid chromatography/tandem mass spectrometry (LC-MS/MS). Subsequently, a bioinformatics prediction and in silico simulation approach was used to screen for peptides showing anti-inflammatory activity, including inhibition of the production of nitric oxide and proinflammatory cytokines (interleukin-1β, interleukin-6, and tumor necrosis factor-α) by lipopolysaccharide-stimulated RAW264.7 mice macrophages. Three peptides (DNIQGITKPAIR, IAFKTNPNSMVSHIAGK, and IGVAMDYSASSKR) that demonstrated the highest binding affinity were synthesized, and their in vitro anti-inflammatory activity was investigated. This is the first study that integrates LC-MS/MS identification and bioinformatics prediction for reporting the anti-inflammatory activity of anti-inflammatory peptides derived from broken rice protein. The study findings revealed that the peptides derived from the byproduct of rice milling could be potentially used as natural anti-inflammatory alternativities.
Collapse
Affiliation(s)
- Tingmin Qu
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, 410114, China
| | - Shuwen He
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, 410114, China
| | - Ce Ni
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, 410114, China
| | - Ying Wu
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, 410114, China
| | - Zhou Xu
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, 410114, China
| | - Mao-Long Chen
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, 410114, China
| | - Honghui Li
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, 410114, China
| | - Yunhui Cheng
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, 410114, China.
| | - Li Wen
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, 410114, China.
| |
Collapse
|
21
|
Chojnacka K, Lewandowska U. Inhibition of Pro-Inflammatory Cytokine Secretion by Polyphenol-Rich Extracts in Macrophages via NF-κB Pathway. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2071936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
22
|
Khatua S, Simal-Gandara J, Acharya K. Understanding immune-modulatory efficacy in vitro. Chem Biol Interact 2022; 352:109776. [PMID: 34906553 PMCID: PMC8665649 DOI: 10.1016/j.cbi.2021.109776] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 11/19/2021] [Accepted: 12/07/2021] [Indexed: 01/07/2023]
Abstract
Boosting or suppressing our immune system represents an attractive adjunct in the treatment of infections including SARS-CoV-2, cancer, AIDS, malnutrition, age related problems and some inflammatory disorders. Thus, there has been a growing interest in exploring and developing novel drugs, natural or synthetic, that can manipulate our defence mechanism. Many of such studies, reported till date, have been designed to explore effect of the therapeutic on function of macrophages, being a key component in innate immune system. Indeed, RAW264.7, J774A.1, THP-1 and U937 cell lines act as ideal model systems for preliminary investigation and selection of dose for in vivo studies. Several bioassays have been standardized so far where many techniques require high throughput instruments, cost effective reagents and technical assistance that may hinder many scholars to perform a method demanding compilation of available protocols. In this review, we have taken an attempt for the first time to congregate commonly used in vitro immune-modulating techniques explaining their principles. The study detected that among about 40 different assays and more than 150 sets of primers, the methods of cell proliferation by MTT, phagocytosis by neutral red, NO detection by Griess reaction and estimation of expression of TLRs, COX-2, iNOS, TNF-α, IL-6 and IL-1β by PCR have been the most widely used to screen the therapeutics under investigation.
Collapse
Affiliation(s)
- Somanjana Khatua
- Molecular and Applied Mycology and Plant Pathology Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India,Department of Botany, Krishnagar Government College, Krishnagar, Nadia, 741101, West Bengal, India
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E-32004, Ourense, Spain,Corresponding author
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India,Corresponding author
| |
Collapse
|
23
|
Chu CC, Chen SY, Chyau CC, Wang SC, Chu HL, Duh PD. Djulis ( Chenopodium formosanum) and Its Bioactive Compounds Protect Human Lung Epithelial A549 Cells from Oxidative Injury Induced by Particulate Matter via Nrf2 Signaling Pathway. Molecules 2021; 27:253. [PMID: 35011484 PMCID: PMC8746626 DOI: 10.3390/molecules27010253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/28/2021] [Accepted: 12/28/2021] [Indexed: 11/16/2022] Open
Abstract
The protective effects of water extracts of djulis (Chenopodium formosanum) (WECF) and their bioactive compounds on particulate matter (PM)-induced oxidative injury in A549 cells via the nuclear factor-erythroid 2-related factor 2 (Nrf2) signaling were investigated. WECF at 50-300 µg/mL protected A549 cells from PM-induced cytotoxicity. The cytoprotection of WECF was associated with decreases in reactive oxygen species (ROS) generation, thiobarbituric acid reactive substances (TBARS) formation, and increases in superoxide dismutase (SOD) activity and glutathione (GSH) contents. WECF increased Nrf2 and heme oxygenase-1 (HO-1) expression in A549 cells exposed to PM. SP600125 (a JNK inhibitor) and U0126 (an ERK inhibitor) attenuated the WECF-induced Nrf2 and HO-1 expression. According to the HPLC-MS/MS analysis, rutin (2219.7 µg/g) and quercetin derivatives (2648.2 µg/g) were the most abundant bioactive compounds present in WECF. Rutin and quercetin ameliorated PM-induced oxidative stress in the cells. Collectively, the bioactive compounds present in WECF can protect A549 cells from PM-induced oxidative injury by upregulating Nrf2 and HO-1 via activation of the ERK and JUN signaling pathways.
Collapse
Affiliation(s)
- Chin-Chen Chu
- Department of Anesthesiology, Chi-Mei Medical Center, Tainan 710402, Taiwan;
| | - Shih-Ying Chen
- Department of Health and Nutrition, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan;
| | - Charng-Cherng Chyau
- Research Institute of Biotechnology, Hungkuang University, 34 Chung-Chie Road, Shalu County, Taichung 43302, Taiwan;
| | - Shu-Chen Wang
- Department of Food Science and Technology, Chia Nan University of Pharmacy and Science, 60 Erh-Jen Road, Section 1, Pao-An, Jen-Te District, Tainan 71710, Taiwan; (S.-C.W.); (H.-L.C.)
| | - Heuy-Ling Chu
- Department of Food Science and Technology, Chia Nan University of Pharmacy and Science, 60 Erh-Jen Road, Section 1, Pao-An, Jen-Te District, Tainan 71710, Taiwan; (S.-C.W.); (H.-L.C.)
| | - Pin-Der Duh
- Department of Food Science and Technology, Chia Nan University of Pharmacy and Science, 60 Erh-Jen Road, Section 1, Pao-An, Jen-Te District, Tainan 71710, Taiwan; (S.-C.W.); (H.-L.C.)
| |
Collapse
|
24
|
Guo C, Bi J, Li X, Lyu J, Liu X, Liu J, Xu Y, Hu J. Effects of isomerisation and oxidation on the immunomodulatory activity of chlorogenic acid in RAW264.7 macrophages. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Chongting Guo
- Department of Food Science Shenyang Agricultural University Shenyang 110866 China
- Institute of Food Science and Technology Key Laboratory of Agro‐Products Processing Ministry of Agriculture and Rural Affairs Chinese Academy of Agricultural Sciences (CAAS) Beijing 100193 China
| | - Jinfeng Bi
- Department of Food Science Shenyang Agricultural University Shenyang 110866 China
- Institute of Food Science and Technology Key Laboratory of Agro‐Products Processing Ministry of Agriculture and Rural Affairs Chinese Academy of Agricultural Sciences (CAAS) Beijing 100193 China
| | - Xuan Li
- Institute of Food Science and Technology Key Laboratory of Agro‐Products Processing Ministry of Agriculture and Rural Affairs Chinese Academy of Agricultural Sciences (CAAS) Beijing 100193 China
| | - Jian Lyu
- Institute of Food Science and Technology Key Laboratory of Agro‐Products Processing Ministry of Agriculture and Rural Affairs Chinese Academy of Agricultural Sciences (CAAS) Beijing 100193 China
| | - Xuan Liu
- Institute of Food Science and Technology Key Laboratory of Agro‐Products Processing Ministry of Agriculture and Rural Affairs Chinese Academy of Agricultural Sciences (CAAS) Beijing 100193 China
| | - Jianing Liu
- Institute of Food Science and Technology Key Laboratory of Agro‐Products Processing Ministry of Agriculture and Rural Affairs Chinese Academy of Agricultural Sciences (CAAS) Beijing 100193 China
| | - Ye Xu
- Institute of Food Science and Technology Key Laboratory of Agro‐Products Processing Ministry of Agriculture and Rural Affairs Chinese Academy of Agricultural Sciences (CAAS) Beijing 100193 China
| | - Jiaxing Hu
- Institute of Food Science and Technology Key Laboratory of Agro‐Products Processing Ministry of Agriculture and Rural Affairs Chinese Academy of Agricultural Sciences (CAAS) Beijing 100193 China
| |
Collapse
|
25
|
Biomimetic amphiphilic FAAP NPs nanoparticles: Synthesis, characterization and antivirus activity. Int Immunopharmacol 2021; 101:108047. [PMID: 34619499 DOI: 10.1016/j.intimp.2021.108047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/19/2021] [Accepted: 08/02/2021] [Indexed: 11/23/2022]
Abstract
Antiviral agents based on natural products have attracted substantial attention in clinical applications for their distinct biological activities,molecular structuralmultiformities, and low biotoxicities. Ferulic acid (FA) with apigenin propaneto form an esterified FA derivative (FAAP).Herein, we designed a CsPbBr3-modified chitosan oligosaccharide, a biomimetic nanoplatform that could load with FAAP. After self-assembly by combining FAAP with CsPbBr3-modified chitosan oligosaccharide (FAAP NPs), the resulting nanoparticles (FAAP NPs) showed high antioxidant and anti-inflammatory activities for enhancing the inhibition of porcineparvovirus.FAAP NPs exhibited no signs of acute toxicity in vitro or in vivo. DPPH and ABST are widely used for quantitative determination of antioxidant capacity. FAAP NPs exhibited excellent DPPH and ABTS radical scavenging abilities. In addition, we found that FAAP NPs inhibited PPV infection-induced PK-15 cell apoptosis, which was associated with regulating antioxidant and anti-inflammatory signaling pathways. Importantly, we showed that FAAP NPs blocked PPV infection-induced mitochondrial apoptosis in PK-15 cells via a p53/BH3 domain molecular-dependent mechanism.
Collapse
|
26
|
Wang Q, Zhi T, Han P, Li S, Xia J, Chen Z, Wang C, Wu Y, Jia Y, Ma A. Potential anti-inflammatory activity of walnut protein derived peptide leucine-proline-phenylalanine in lipopolysaccharides-irritated RAW264.7 cells. FOOD AGR IMMUNOL 2021. [DOI: 10.1080/09540105.2021.1982870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Qinghua Wang
- School of Food and Health, Beijing Technology and Business University, Beijing, People’s Republic of China
- Hebei Yangyuan ZhiHui Beverage Co., Ltd., Hengshui, People’s Republic of China
| | - Tongxin Zhi
- School of Food and Health, Beijing Technology and Business University, Beijing, People’s Republic of China
| | - Panpan Han
- School of Food and Health, Beijing Technology and Business University, Beijing, People’s Republic of China
| | - Siting Li
- School of Food and Health, Beijing Technology and Business University, Beijing, People’s Republic of China
| | - Junxia Xia
- Hebei Yangyuan ZhiHui Beverage Co., Ltd., Hengshui, People’s Republic of China
- Institution of Chinese Walnut Industry, Hengshui, People’s Republic of China
- Hebei Key Laboratory of Walnut Nutritional Function and Processing Technology, Hengshui, People’s Republic of China
| | - Zhou Chen
- School of Food and Health, Beijing Technology and Business University, Beijing, People’s Republic of China
| | - Chong Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, People’s Republic of China
| | - Yongling Wu
- School of Food and Health, Beijing Technology and Business University, Beijing, People’s Republic of China
| | - Yingmin Jia
- School of Food and Health, Beijing Technology and Business University, Beijing, People’s Republic of China
| | - Aijin Ma
- School of Food and Health, Beijing Technology and Business University, Beijing, People’s Republic of China
- Institution of Chinese Walnut Industry, Hengshui, People’s Republic of China
| |
Collapse
|
27
|
Zhou T, Jiang Y, Wen L, Yang B. Characterization of polysaccharide structure in Citrus reticulate 'Chachi' peel during storage and their bioactivity. Carbohydr Res 2021; 508:108398. [PMID: 34274819 DOI: 10.1016/j.carres.2021.108398] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/03/2021] [Accepted: 07/07/2021] [Indexed: 12/18/2022]
Abstract
The peel of Citrus reticulate 'Chachiennsis' (Chachi) is widely accepted as a functional food. It is generally recognized that its health benefits are dependent on storage time. However, the chemicals responsible for this phenomonon remain unclear. As bioactive polysaccharides are dominant in Chachi, Chachi polysaccharides with various storage times (5-20 years) were prepared. The monosaccharide composition was analyzed by GC-MS. NMR data revealed that Chachi polysaccharides were mainly consisted of arabinogalacturonan and another pectin with side chain of →4)-β-D-Galp-(1 → . α-L-Araf-(1→, →5)-α-L-Araf-(1→, →4)-α-D-GalpA-(1→, →4)-α-D-GalpAMe-(1→, →4)-β-D-Galp-(1→ and →4)-β-D-Glcp-(1→ were detected. The molecular weight of Chachi polysaccharides decreased along with the extension of storage time. However, the basic structure characteristics remained stable. The immumomodulatory activities of Chachi polysaccharides were improved as the storage time extended. The change of molecular weight was responsible for the improved immunomodulatory activity. The results explained how polysaccharides contributed to the enhanced health benefits of Chachi during storage.
Collapse
Affiliation(s)
- Ting Zhou
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yueming Jiang
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lingrong Wen
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Bao Yang
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
28
|
Zhou JT, Ren KD, Hou J, Chen J, Yang G. α‑rhamnrtin‑3‑α‑rhamnoside exerts anti‑inflammatory effects on lipopolysaccharide‑stimulated RAW264.7 cells by abrogating NF‑κB and activating the Nrf2 signaling pathway. Mol Med Rep 2021; 24:799. [PMID: 34523697 PMCID: PMC8456313 DOI: 10.3892/mmr.2021.12439] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 08/11/2021] [Indexed: 01/03/2023] Open
Abstract
α-rhamnrtin-3-α-rhamnoside (ARR) is the principal compound extracted from Loranthus tanakae Franch. & Sav. However, its underlying pharmacological properties remain undetermined. Inflammation is a defense mechanism of the body; however, the excessive activation of the inflammatory response can result in physical injury. The present study aimed to investigate the effects of ARR on lipopolysaccharide (LPS)-induced RAW264.7 macrophages and to determine the underlying molecular mechanism. A Cell Counting Kit-8 assay was performed to assess cytotoxicity. Nitric oxide (NO) production was measured via a NO colorimetric kit. Levels of prostaglandin E2 (PGE2) and proinflammatory cytokines, IL-1β and IL-6, were detected using ELISAs. Reverse transcription-quantitative (RT-q)PCR analysis was performed to detect the mRNA expression levels of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), IL-6 and IL-1β in LPS-induced RAW246.7 cells. Western blotting, immunofluorescence and immunohistochemistry analyses were performed to measure the expression levels of NF-κB and nuclear factor-erythroid 2-related factor 2 (Nrf2) signaling pathway-related proteins to elucidate the molecular mechanisms of the inflammatory response. The results of the cytotoxicity assay revealed that doses of ARR ≤200 µg/ml exhibited no significant effect on the viability of RAW264.7 cells. The results of the Griess assay demonstrated that ARR inhibited the production of NO. In addition, the results of the ELISAs and RT-qPCR analysis discovered that ARR reduced the production of the proinflammatory cytokines, IL-1β and IL-6, as well as the proinflammatory mediators, PGE2, iNOS and COX-2, in LPS-induced RAW264.7 cells. Immunohistochemical analysis demonstrated that ARR inhibited LPS-induced activation of TNF-associated factor 6 (TRAF6) and NF-κB p65 signaling molecules, while reversing the downregulation of the NOD-like receptor family CARD domain containing 3 (NLRC3) signaling molecule, which was consistent with the results of the western blotting analysis. Immunofluorescence results indicated that ARR reduced the increase of NF-κB p65 nuclear expression induced by LPS. Furthermore, the results of the western blotting experiments also revealed that ARR upregulated heme oxygenase-1, NAD(P)H quinone dehydrogenase 1 and Nrf2 pathway molecules. In conclusion, the results of the present study suggested that ARR may exert anti-inflammatory effects by downregulating NF-κB and activating Nrf2-mediated inflammatory responses, suggesting that ARR may be an attractive anti-inflammatory candidate drug.
Collapse
Affiliation(s)
- Jiang Tao Zhou
- Department of Chinese Medicine, School of Pharmaceutical Science, Shanxi Medical University, Jinzhong, Shanxi 030600, P.R. China
| | - Kai Da Ren
- Department of Chinese Medicine, School of Pharmaceutical Science, Shanxi Medical University, Jinzhong, Shanxi 030600, P.R. China
| | - Jing Hou
- Department of Chinese Medicine, School of Pharmaceutical Science, Shanxi Medical University, Jinzhong, Shanxi 030600, P.R. China
| | - Jie Chen
- Department of Chinese Medicine, School of Pharmaceutical Science, Shanxi Medical University, Jinzhong, Shanxi 030600, P.R. China
| | - Guan'e Yang
- Department of Chinese Medicine, School of Pharmaceutical Science, Shanxi Medical University, Jinzhong, Shanxi 030600, P.R. China
| |
Collapse
|
29
|
New peptides with immunomodulatory activity identified from rice proteins through peptidomic and in silico analysis. Food Chem 2021; 364:130357. [PMID: 34174647 DOI: 10.1016/j.foodchem.2021.130357] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 12/22/2022]
Abstract
The new food-derived bio-functional peptides are urgently needed globally, but the separation and purification process for obtaining the immunopeptides from food is low efficiency and highly time-consuming. In the present study, rice proteins were extracted and identified by using liquid chromatography/tandem mass spectrometry (LC-MS/MS). Furthermore, a strategy combining immuno-prediction and in silico simulation was used to screen for peptides showing immunomodulatory activity, including inhibition of the release of nitric oxide, tumor necrosis factor-α, and the interleukins IL-6 and IL-1β in lipopolysaccharide-induced RAW264.7 mouse macrophages. This LC-MS/MS identification and immuno-prediction method may provide insights for the potential identification of more food-derived immunopeptides.
Collapse
|
30
|
Chen H, Ma D, Zhang H, Tang Y, Wang J, Li R, Wen W, Zhang Y. Antinociceptive effects of oleuropein in experimental models of neuropathic pain in male rats. Korean J Pain 2021; 34:35-46. [PMID: 33380566 PMCID: PMC7783854 DOI: 10.3344/kjp.2021.34.1.35] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/30/2022] Open
Abstract
Background The present investigation explored the therapeutic actions of oleuropein along with the possible signaling pathway involved in attenuating neuropathic pain in chronic constriction injury (CCI) and vincristine-induced neuropathic pain in male rats. Methods Four loose ligatures were placed around the sciatic nerve to induce CCI, and vincristine (50 μg/kg) was injected for 10 days to develop neuropathic pain. The development of cold allodynia, mechanical allodynia, and mechanical hyperalgesia was assessed using different pain-related behavioral tests. The levels of H2S, cystathionine-γ-lyase (CSE), cystathionine-β-synthase (CBS), orexin, and nuclear factor erythroid-2-related factor 2 (Nrf2) were measured in the sciatic nerve. Results Treatment with oleuropein for 14 days led to significant amelioration of behavioral manifestations of neuropathic pain in two pain models. Moreover, oleuropein restored both CCI and vincristine-induced decreases in H2S, CSE, CBS, orexin, and Nrf2 levels. Co-administration of suvorexant, an orexin receptor antagonist, significantly counteracted the pain-attenuating actions of oleuropein and Nrf2 levels without modulating H2S, CSE and CBS. Conclusions Oleuropein has therapeutic potential to attenuate the pain manifestations in CCI and vincristine-induced neuropathic pain, possibly by restoring the CSE, CBS, and H2S, which may subsequently increase the expression of orexin and Nrf2 to ameliorate behavioral manifestations of pain.
Collapse
Affiliation(s)
- Huayong Chen
- Department of Anesthesiology, Yidu Central Hospital of Weifang, Weifang, Shandong, China
| | - Dandan Ma
- Department of Anesthesiology, Yidu Central Hospital of Weifang, Weifang, Shandong, China
| | - Huapeng Zhang
- Department of Anesthesiology, Yidu Central Hospital of Weifang, Weifang, Shandong, China
| | - Yanhong Tang
- Department of Anesthesiology, Hospital T.C.M Affiliated to Southwest Medical University, Luzhou, Sichuan, China
| | - Jun Wang
- Orbital Disease and Ophthalmoplasty, Department of Ophthalmological Hospital, The Second Hospital of Jilin, Changchun, Jilin, China
| | - Renhu Li
- Department of Anesthesiology, The Lu'an Affiliated Hospital of Anhui Medical University, Lu'an, Anhui Province, China
| | - Wen Wen
- Department of Anesthesiology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Yi Zhang
- Department of Anesthesiology, Tongji Hospital Affiliated Tongji Medical College, Huazhong Science and Technology University, Wuhan, Hubei, China
| |
Collapse
|