1
|
Zhu H, Li Q, El-Sappah AH, Sun Y, Liu Y, Pan S, Zhu K, Sun X, Xiong T, Luo H, Wu T, Li L, Ma Y, Wang N. Influence of two sorghum varieties on metabolic factors, microbial community, and flavor component precursors of strong-flavor Baijiu Zaopei. Food Chem 2025; 474:143079. [PMID: 39921974 DOI: 10.1016/j.foodchem.2025.143079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/14/2025] [Accepted: 01/23/2025] [Indexed: 02/10/2025]
Abstract
As the primary raw material for Baijiu brewing, sorghum variety exerts an intricate influence on the taste profile of strong-flavor Baijiu. However, how sorghum variety comprehensively affects Baijiu flavor formation through fermentation by microorganisms and metabolites remains largely unknown. Using 16S&ITS rRNA gene sequencing and non-targeted metabolomics, in this study we comprehensively analyzed the changes in microbial communities and metabolites during fermentation of a glutinous and non-glutinous sorghum variety. The results showed that these varieties significantly affected microbial diversity and community structure, and their interactions, among which, there were particularly complex interactions among bacterial communities, while the effects of "functional differentiation" and "community aggregation" of fungal communities were prominent. Furthermore, three bacterial and nine fungal genera were identified as core microorganisms related to changes in glycerophospholipids during fermentation, that led to a change in ester content, ultimately improving Baijiu quality. These findings provide reference for the selection of brewing materials.
Collapse
Affiliation(s)
- Hui Zhu
- School of Bioengineering, Sichuan University of Science and Engineering, Yibin 644000, China; Sichuan Province Engineering Technology Research Center of Liquor-Making Grains, Yibin 644000, China; Liquor Making Biotechnology and Intelligent Manufacturing of Key Laboratory of China National Light Industry, Yibin 644000, China
| | - Qiang Li
- School of Bioengineering, Sichuan University of Science and Engineering, Yibin 644000, China; Sichuan Province Engineering Technology Research Center of Liquor-Making Grains, Yibin 644000, China; Liquor Making Biotechnology and Intelligent Manufacturing of Key Laboratory of China National Light Industry, Yibin 644000, China
| | - Ahmed H El-Sappah
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin 644000, China; Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Yong Sun
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Ying Liu
- Sichuan Yibin Hengshengfu Liquor Industry Group Co., Ltd., Yibin 644007, China
| | - Shijiang Pan
- Yibin City Agricultural and Rural Bureau, Yibin 644000, China
| | - Ke Zhu
- Cuiping District Agricultural and Rural Bureau, Yibin 644000, China
| | - Xiaoke Sun
- Sichuan Yibin Hengshengfu Liquor Industry Group Co., Ltd., Yibin 644007, China
| | - Tao Xiong
- Cuiping District Agricultural and Rural Bureau, Yibin 644000, China
| | - Huibo Luo
- School of Bioengineering, Sichuan University of Science and Engineering, Yibin 644000, China; Sichuan Province Engineering Technology Research Center of Liquor-Making Grains, Yibin 644000, China; Liquor Making Biotechnology and Intelligent Manufacturing of Key Laboratory of China National Light Industry, Yibin 644000, China
| | - Tao Wu
- School of Food and Biotechnology, Xihua University, Chengdu 610039, China
| | - Linjuan Li
- School of Bioengineering, Sichuan University of Science and Engineering, Yibin 644000, China; Sichuan Province Engineering Technology Research Center of Liquor-Making Grains, Yibin 644000, China; Liquor Making Biotechnology and Intelligent Manufacturing of Key Laboratory of China National Light Industry, Yibin 644000, China
| | - Yi Ma
- School of Bioengineering, Sichuan University of Science and Engineering, Yibin 644000, China; Sichuan Province Engineering Technology Research Center of Liquor-Making Grains, Yibin 644000, China; Liquor Making Biotechnology and Intelligent Manufacturing of Key Laboratory of China National Light Industry, Yibin 644000, China.
| | - Ning Wang
- School of Bioengineering, Sichuan University of Science and Engineering, Yibin 644000, China; Sichuan Province Engineering Technology Research Center of Liquor-Making Grains, Yibin 644000, China; Liquor Making Biotechnology and Intelligent Manufacturing of Key Laboratory of China National Light Industry, Yibin 644000, China.
| |
Collapse
|
2
|
Wang J, Zhu J, Wang X, Liu Z, Xu J, Wei C, Zhang R, Cai F, Zhu Z, Cao J, Yu Q. Enhanced production of ethyl caproate in strong-flavor Baijiu through a dual bacterial co-culture system and immobilization on natural luffa sponge. Food Res Int 2025; 208:116263. [PMID: 40263811 DOI: 10.1016/j.foodres.2025.116263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/13/2025] [Accepted: 03/11/2025] [Indexed: 04/24/2025]
Abstract
Ethyl caproate, a significant aromatic component in strong-flavor baijiu, is synthesized requiring caproic acid as an essential precursor. In this study, a novel caproic acid-producing bacteria Rummeliibacillus suwonensis J-1 was isolated from pit mud. Subsequently, a dual bacterial co-culture system (DBCS) was successfully established by combining J-1 with the acid-producing bacterium Enterococcus sp. D-1, resulting in a 21-fold increase in yield, which reached 4.41 g/L. A new immobilization strategy was developed, utilizing luffa sponge as a carrier for DBCS to facilitate pit mud-free strong-flavor baijiu production. The findings indicated a substantial increase in the ethyl caproate concentrations, with a 218 % increase, reaching 0.625 g/L. Transcriptomic analysis showed that in the two-bacterial system, crucial genes implicated in the biosynthesis pathway of caproic acid in J-1, including Crt, Scad, Ptb, pdxK, L-cysteine dehydrogenase, and l-serine decarboxylase were significantly upregulated, which enhanced the synthesis of caproic acid. These findings suggest that DBCS may have potential applications in fermentation without pit mud and could potentially enhance quality of strong-flavor baijiu.
Collapse
Affiliation(s)
- Jiangbo Wang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, 28 Nanli Road, Wuhan 430068, China
| | - Jiahao Zhu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, 28 Nanli Road, Wuhan 430068, China
| | - Xuan Wang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, 28 Nanli Road, Wuhan 430068, China
| | - Zhiwen Liu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, 28 Nanli Road, Wuhan 430068, China
| | - Jian Xu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, 28 Nanli Road, Wuhan 430068, China
| | - Chunhui Wei
- Liquor Making Biological Technology and Application of Key Laboratory of Sichuan Province, Sichuan University of Science & Engineering, 188 University Town Road, Yibin, 644000, China
| | - Ruijing Zhang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, 28 Nanli Road, Wuhan 430068, China
| | - Fengjiao Cai
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, 28 Nanli Road, Wuhan 430068, China
| | - Zhengjun Zhu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, 28 Nanli Road, Wuhan 430068, China
| | - Jinghua Cao
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, 28 Nanli Road, Wuhan 430068, China
| | - Qi Yu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, 28 Nanli Road, Wuhan 430068, China.
| |
Collapse
|
3
|
Qiu Y, Deng Q, Zhang Y, Sun B, Li W, Dong W, Sun X. Applications of Microextraction Technology for the Analysis of Alcoholic Beverages Quality: Current Perspectives and Future Directions. Foods 2025; 14:1152. [PMID: 40238322 PMCID: PMC11988442 DOI: 10.3390/foods14071152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/20/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
Alcoholic beverages are loved by the majority of consumers because of their diverse characteristics and rich nutritional value; thus, ensuring their quality is necessary for maintaining the rapid development of the alcoholic beverage industry. Due to trace levels of various quality factors and the complexity of the beverage body matrix, pretreatment is usually required before analysis. Among the many pretreatment methods available, microextraction has attracted increasing attention because it aligns with the development direction of green chemistry. This review surveys advancements in microextraction techniques pertaining to three quality aspects in the most frequently consumed alcoholic beverages: baijiu and huangjiu (spirits) and wine and beer (fermented alcoholic drinks). Furthermore, new directions in their development are discussed.
Collapse
Affiliation(s)
- Yue Qiu
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China; (Y.Q.); (Q.D.); (Y.Z.); (B.S.); (W.L.)
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Geriatric Nutrition and Health Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
| | - Qi Deng
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China; (Y.Q.); (Q.D.); (Y.Z.); (B.S.); (W.L.)
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Geriatric Nutrition and Health Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
| | - Yongqing Zhang
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China; (Y.Q.); (Q.D.); (Y.Z.); (B.S.); (W.L.)
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Geriatric Nutrition and Health Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
| | - Baoguo Sun
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China; (Y.Q.); (Q.D.); (Y.Z.); (B.S.); (W.L.)
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Geriatric Nutrition and Health Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
| | - Wenxian Li
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China; (Y.Q.); (Q.D.); (Y.Z.); (B.S.); (W.L.)
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Geriatric Nutrition and Health Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
| | - Wei Dong
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China; (Y.Q.); (Q.D.); (Y.Z.); (B.S.); (W.L.)
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Geriatric Nutrition and Health Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
| | - Xiaotao Sun
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China; (Y.Q.); (Q.D.); (Y.Z.); (B.S.); (W.L.)
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Geriatric Nutrition and Health Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
4
|
Ding Z, Zhao J, Liu R, Ni B, Wang Y, Li W, Li X. Molecular cloning, overexpression, characterization, and mechanism explanation of an esterase RasEst3 for ester synthesis under aqueous phase. Int J Biol Macromol 2025; 307:142190. [PMID: 40101817 DOI: 10.1016/j.ijbiomac.2025.142190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/17/2025] [Accepted: 03/15/2025] [Indexed: 03/20/2025]
Abstract
Fatty acid esters are widely used in fragrance compounds, solvents, lubricants, and biofuels. Enzymatic synthesis of these esters in aqueous phase is an environmentally friendly approach. In this study, an esterase RasEst3 from Rasamsonia emersonii was identified for fatty acid ester synthesis through sequence alignment. The gene encoding RasEst3 was heterologously expressed in Escherichia coli BL21(DE3), and its enzymatic properties were analyzed. The enzyme exhibited optimal activity at pH 3.5 and 30 °C, with a preference for medium-chain substrates. Structurally, RasEst3 contains a lid domain and a catalytic domain, with a catalytic triad composed of Ser146-His227-Asp214. The smaller pocket spatial site resistance and the hydrophobicity of the substrate channel facilitate effective substrate binding to the active center. Site-directed mutagenesis and molecular dynamics simulations revealed that the oxygen anion holes formed by Gly69 and Thr70, along with the π-bond stacking formed by Tyr112 and Tyr145, play crucial roles in catalysis. After removing a loop region from RasEst3, its ethyl octanoate synthesis activity increased by 253.22 % compared to the wild-type enzyme. This study not only clarifies the structure-function relationship of RasEst3 but also provides valuable insights for developing novel biocatalysts in green chemistry.
Collapse
Affiliation(s)
- Ze Ding
- Ministry of Education, Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Beijing 100048, China; China General Chamber of Commerce, Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, Beijing 100048, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Jingrong Zhao
- Ministry of Education, Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Beijing 100048, China; China General Chamber of Commerce, Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, Beijing 100048, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Ruiqi Liu
- Ministry of Education, Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Beijing 100048, China; China General Chamber of Commerce, Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, Beijing 100048, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Bingqian Ni
- Ministry of Education, Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Beijing 100048, China; China General Chamber of Commerce, Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, Beijing 100048, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Yize Wang
- Ministry of Education, Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Beijing 100048, China; China General Chamber of Commerce, Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, Beijing 100048, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Weiwei Li
- Ministry of Education, Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Beijing 100048, China; China General Chamber of Commerce, Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, Beijing 100048, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; Beijing Association for Science and Technology-Food Nutrition and Safety Professional Think Tank Base, Beijing 100048, China
| | - Xiuting Li
- Ministry of Education, Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Beijing 100048, China; China General Chamber of Commerce, Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, Beijing 100048, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; Beijing Association for Science and Technology-Food Nutrition and Safety Professional Think Tank Base, Beijing 100048, China; China Bio-Specialty Food Enzyme Technology Research Development and Promotion Center, Beijing 100048, China.
| |
Collapse
|
5
|
Zhang C, Wang C, Wang H, Ablimit A, Sun Q, Dong H, Zhang B, Hu W, Liu C, Wang C. Identification of characteristic volatiles and metabolomic pathways during the fermentation of red grapefruit by Monascus purpureus using HS-SPME-GC-MS and metabolomics. Food Chem 2025; 464:141786. [PMID: 39504903 DOI: 10.1016/j.foodchem.2024.141786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/11/2024] [Accepted: 10/24/2024] [Indexed: 11/08/2024]
Abstract
Fermentation of red grapefruit by Monascus purpureus (M. purpureus) results in complex changes in flavor compounds and metabolic profiles, but the specifics of these alterations are not well understood. This study aimed to investigate the changes in flavor compounds and metabolomic traits during this fermentation process. Using Headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) with non-targeted metabolomics, we analyzed flavor compounds and measured physicochemical indices throughout the fermentation period. We identified 23 volatile flavor metabolites before and after fermentation, focusing on acids, alcohols, and aldehydes, of these, 9 showed an upward effect and 14 showed a downward effect. Key metabolic pathways involved included butyric acid, taurine, and hypotaurine, with notable downregulation of acetone and 1-butanol in the butyric acid pathway. The study reveals that butyric acid-related metabolism influences other pathways such as glycolysis, fatty acid metabolism, and the tricarboxylic acid cycle in M. purpureus. These findings provide insights into the generation of flavor compounds during fermentation and offer a theoretical basis for the industrial production of fermented citrus fruits.
Collapse
Affiliation(s)
- Chan Zhang
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Congcong Wang
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Haijiao Wang
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Arzugul Ablimit
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Qing Sun
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Huijun Dong
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Bobo Zhang
- School of Science, Shantou University, Shantou, Guangdong 515063, China
| | - Wenlin Hu
- Guangdong Tianyi Biotechnology Co.,Ltd., Zhanjiang, Guangdong 524000, China
| | - Chengjian Liu
- Shandong Fanhui Pharmaceutical Co., Ltd., Jinan, Shandong 271100, China
| | - Chengtao Wang
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| |
Collapse
|
6
|
Liu X, Hao Q, Fan M, Teng B. Carbonaceous adsorbents in wastewater treatment: From mechanism to emerging application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177106. [PMID: 39490830 DOI: 10.1016/j.scitotenv.2024.177106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/02/2024] [Accepted: 10/19/2024] [Indexed: 11/05/2024]
Abstract
Adsorption is of great significance in the water pollution control. Carbonaceous adsorbents, such as carbon quantum dots, carbon nanotubes, graphene, and activated carbons, have long been deployed in sustainable wastewater treatment due to their excellent physical structure and strong interaction with various pollutants; these features allow them to spark greater interest in environmental remediation. Although numerous eye-catch researches on carbon materials in wastewater treatment, there is a lack of comprehensive comparison and summary of the vivid structure-activity-application relationships of different types of carbonaceous adsorbents at the molecular and atomic level. Herein, this review aims to scrutinize and contrast the adsorption mechanisms of carbonaceous adsorbents with different dimensions, analyzing the qualitative differences in adsorption capacity from microscopic perspectives, structural diversity caused by preparation methods, and environmental external factors affecting adsorption occurrence. Then, a quantitatively in-depth critical appraisal of traditional and emerging contaminants in wastewater treatment using carbonaceous adsorbents, and innovative strategies for enhancing their adsorption capacity are discussed. Finally, in the context of growing imposed circularity and zero waste wishes, this review offers some promising insights for carbonaceous adsorbents in achieving sustainable wastewater treatment.
Collapse
Affiliation(s)
- Xiao Liu
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China; State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, 300071 Tianjin, China
| | - Qinglan Hao
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Maohong Fan
- Department of Chemical & Petroleum Engineering, University of Wyoming, Laramie, WY 82071, USA.
| | - Botao Teng
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
7
|
Xiao Y, Chen H, Chen Y, Ho CT, Wang Y, Cai T, Li S, Ma J, Guo T, Zhang L, Liu Z. Effect of inoculation with different Eurotium cristatum strains on the microbial communities and volatile organic compounds of Fu brick tea. Food Res Int 2024; 197:115219. [PMID: 39593304 DOI: 10.1016/j.foodres.2024.115219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/05/2024] [Accepted: 10/17/2024] [Indexed: 11/28/2024]
Abstract
Eurotium cristatum is the primary fungus in Fu brick tea (FBT) and plays a crucial role in its special flavor. This study investigated the effect of inoculation with different E. cristatum strains (i.e., ZJ, GX, GZ, HN, and SX) on the microbial communities and volatile organic compounds (VOCs) of FBT. A total of 113 VOCs were identified in all samples, with the concentration of VOCs (alcohols, aldehydes, and ketones) significantly higher in GXE FBT than in other samples. The core VOCs of GXE (19), GZE (16), HNE (19), SXE (15), and ZJE (13) FBT were identified using orthogonal partial least squares discriminant analysis and relative odor activity value (ROAV) analysis. Methional (a27), butanal (a41), 1-octen-3-one (a69), and ethyl acetate (a77) were key markers for inoculated FBTs, and 1-octen-3-ol, dimethyl disulfide, and acetoin-M were the specific markers of HNE. Linalool and (E)-2-octenal were particularly prominent in GXE, and isoamyl acetate-D was an important aroma component of GZE. Differences in microbial diversity were observed among the different inoculated fermented FBTs, and E. cristatum inoculation remarkably influenced the richness and diversity of bacterial communities. The VOCs were closely associated with fungi and bacteria, and 19 potentially dominant microorganisms (10 fungal and 9 bacterial genera) correlated with VOCs were identified. Among them, Aspergillus (fungi) and Pseudomonas (bacteria) exerted the greatest role. The FBT inoculated with E. cristatum from ZJ had the highest content of theaflavins and theabrownins, which intensified the red and yellow colors of the tea. E. cristatum greatly decreased the free amino acids and fatty acids, contributing to the aroma formation of FBT. Therefore, inoculating FBT with E. cristatum remarkably influenced the microbial communities and improved its flavor profile. This work provides a theoretical foundation on the role of E. cristatum in the formation and regulation of FBT flavor.
Collapse
Affiliation(s)
- Yu Xiao
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; Key Laboratory of Ministry of Education for Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China.
| | - Hui Chen
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yulian Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA
| | - Yuanliang Wang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Ting Cai
- Food Microbiology Key Laboratory of Sichuan Province, Chengdu 610039, China
| | - Shi Li
- Key Laboratory of Ministry of Education for Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Jinrong Ma
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Tianyang Guo
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China.
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, China.
| | - Zhonghua Liu
- Key Laboratory of Ministry of Education for Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
8
|
Wu X, Zhao X, Wang L, Chen B, Li F, Tang Z, Wu F. Unraveling the regional environmental ecology dominated baijiu fermentation microbial community succession and associated unique flavor. Front Microbiol 2024; 15:1487359. [PMID: 39545237 PMCID: PMC11560788 DOI: 10.3389/fmicb.2024.1487359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/14/2024] [Indexed: 11/17/2024] Open
Abstract
Chinese baijiu as one of the famous distilled liquor in which fermented in open environments, with various microorganisms (i.e., bacteria, fungi, and yeast) involved in their brewing process, and created corresponding unique flavor. However, the sources of environmentally enriched microbial communities associated with liquor fermentation are still being characterized yet. Given the dependence of microbial growth and reproduction on environmental ecology, it is important to understand the correlation between baijiu fermentation microbial community and surrounding environmental ecology (i.e., temperature, humidity, wind, and precipitation). This study systematically overviewed the sources of microorganisms in the Jiang-flavor-Baijiu fermentation system. The results showed that microorganisms in baijiu brewing (i.e., mold, lactic acid bacteria, and yeast) mainly originated from surrounding environmental matrices, including the air (i.e., Yeast, Streptomyces and Bacillus), soil (i.e., Xanthomonas, Methanococcus and Comamonas) and water (i.e., Flavobacterium, Acinetobacter, and Pseudomonas) via atmospheric transport, raw material transfer and surface runoff. In addition, the unique baijiu fermentation microbial community diversity depends on local geology and meteorological conditions, highlighting that the structural stability and diversity of the microorganisms in the Baijiu brewing process dominated by local environmental ecology. We also explored the regional environmental conditions on the microbial community and found that the unique Jiang-flavor-Baijiu fermentation microbial community diversity depends on local geology and meteorological conditions. The Jiang-flavor-Baijiu workshop is located in the basin of the middle-and low latitude mountainous areas, with sufficient solar irradiation and rainfall, high air humidity, and low wind speed that favor the growth and propagation of Baijiu fermentation microorganisms. Therefore, the obtained conclusions provide new insights unraveling the key factor controlling the unique flavor of Chinese Baijiu, where protecting the ecology of baijiu brewing-regions is fundamental for maintaining the long-term quality of baijiu.
Collapse
Affiliation(s)
- Xiaowei Wu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, China
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Li Wang
- Kweichow Moutai Distillery Co., Ltd., Renhuai, China
- Chishui River Middle Basin, Watershed Ecosystem, Observation and Research Station of Guizhou Province, Guiyang, China
| | - Bi Chen
- Kweichow Moutai Distillery Co., Ltd., Renhuai, China
- Chishui River Middle Basin, Watershed Ecosystem, Observation and Research Station of Guizhou Province, Guiyang, China
| | - Fangzhou Li
- Kweichow Moutai Distillery Co., Ltd., Renhuai, China
- Chishui River Middle Basin, Watershed Ecosystem, Observation and Research Station of Guizhou Province, Guiyang, China
| | - Zhi Tang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| |
Collapse
|
9
|
Yi X, Xia H, Huang P, Ma S, Wu C. Exploring Community Succession, Assembly Patterns, and Metabolic Functions of Ester-Producing-Related Microbiota during the Production of Nongxiangxing baijiu. Foods 2024; 13:3169. [PMID: 39410204 PMCID: PMC11476053 DOI: 10.3390/foods13193169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
Esters are vital flavor compounds in Chinese Nongxiangxing baijiu and greatly affect the quality of baijiu. Microbial communities inhabiting fermented grains (FGs) have a marked impact on esters. However, the specific microorganisms and their assembly patterns remain unclear. This study utilized high-throughput sequencing and a culture-based method to reveal ester-producing microorganisms. A total of 33 esters were detected, including 19 ethyl esters, 9 linear chain esters, and 2 branched chain esters. A correlation analysis indicated that the bacterial genus Lactobacillus (relative abundance in average: 69.05%) and fungal genera Pichia (2.40%), Aspergillus (11.84%), Wickerhamomyces (0.60%), Thermomyces (3.57%), Saccharomycopsis (7.87%), Issatchenkia (0.96%), and Thermoascus (10.83%) were dominant and associated with esters production and their precursors. The numbers of esters positively correlated with them were 1, 17, 3, 2, 1, 1, 1, and 1, respectively. The modified stochasticity ratio (MST) index and Sloan neutral model revealed that bacteria were predominantly governed by deterministic processes while fungal assemblies were more stochastic. Saturnispora silvae and Zygosaccharomyces bailii were isolated and identified with ester synthesis potential. PICRUSt2 analysis showed that fungi in FG had a high potential for synthesizing ethanol, while 14 enzymes related to esters synthesis were all produced by bacteria, especially enzymes catalyzing the synthesis of acyl-CoA. In addition, ester synthesis was mainly catalyzed by carboxylesterase, acylglycerol lipase and triacylglycerol lipase. These findings may provide insights into ester production mechanism and potential strategies to improve the quality of Nongxiangxing baijiu.
Collapse
Affiliation(s)
| | | | | | | | - Chongde Wu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; (X.Y.); (H.X.); (P.H.); (S.M.)
| |
Collapse
|
10
|
Zhang Y, Zhang Z, Huang J, Zhou R, Tang Q, Jin Y. Characterizing the Contribution of Strain Specificity to the Microbiota Structure and Metabolites of Muqu and Fresh High-Temperature Daqu. Foods 2024; 13:3098. [PMID: 39410133 PMCID: PMC11475380 DOI: 10.3390/foods13193098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
In this study, the differences in physicochemical properties, microbial community structure, and metabolic characteristics between various fortified Muqu and their corresponding high-temperature Daqu (HTD) were investigated using multiphase detection methods. The results demonstrated that the physicochemical properties, community structure, dominant bacterial composition, and metabolic components varied significantly among the different types of fortified HTD. The differences between HTDs became more pronounced when fortified HTD was used as Muqu. Compared to HTD, Muqu exhibited a more complex volatile profile, while HTD contained higher levels of characteristic non-volatile components. The cultivable bacteria count in Muqu was significantly higher than that in HTD, while the cultivable fungi count was slightly lower than that in HTD. The fungal profiles in HTD were primarily associated with starch hydrolysis and ethanol synthesis, while bacterial activity was more prominent in Muqu. Additionally, pyrazine synthesis was mainly attributed to fungi in Muqu and bacteria in HTD. Source Tracker analysis indicated that 8.11% of the bacteria and 26.76% of the fungi originated from Muqu. This study provides a theoretical foundation for the controlled production of HTD, contributing to improvements in its quality and consistency.
Collapse
Affiliation(s)
| | | | | | | | | | - Yao Jin
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; (Y.Z.); (Z.Z.); (J.H.); (R.Z.); (Q.T.)
| |
Collapse
|
11
|
Dai Y, Yu L, Ao J, Wang R. Analyzing the differences and correlations between key metabolites and dominant microorganisms in different regions of Daqu based on off-target metabolomics and high-throughput sequencing. Heliyon 2024; 10:e36944. [PMID: 39286152 PMCID: PMC11402928 DOI: 10.1016/j.heliyon.2024.e36944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/19/2024] [Accepted: 08/25/2024] [Indexed: 09/19/2024] Open
Abstract
Daqu is usually produced in an open environment, which makes its quality unstable. The microbial community of Daqu largely determines its quality. Therefore, in order to improve the fermentation characteristics of Daqu, samples were collected from Jinsha County (MT1), Xishui County (MT2), and Maotai Town (MT3) in Guizhou Province to explore the microbial diversity of Daqu and its impact on Daqu's metabolites.Off-target metabolomics was used to detect metabolites, and high-throughput sequencing was used to detect microorganisms. Metabolomics results revealed that MT1 and MT2 had the highest relative fatty acid content, whereas MT3 had the highest organooxygen compound content. Principal component analysis and partial least squares discriminant analysis revealed significant differences in the metabolites among the three groups, followed by the identification of 33 differential metabolites (key metabolites) filtered using the criteria of variable importance in projection >1 and p < 0.001. According to the microbiological results, Proteobacteria was the dominant bacteria phylum in three samples. Gammaproteobacteria was the dominant class in MT1(26.84 %) and MT2(36.54 %), MT3 is Alphaproteobacteria(25.66 %). And Caulobacteraceae was the dominant family per the abundance analysis, MTI was 24.32 %, MT2 and MT3 were 33.71 % and 24.40 % respectively. Three samples dominant fungi phylum were Ascomycota, and dominant fungi family were Thermoascaceae. Pseudomonas showed a significant positive connection with various fatty acyls, according to correlation analyses between dominant microorganisms (genus level) and key metabolites. Fatty acyls and Thermomyces showed a positive correlation, but Thermoascus had the reverse relation. These findings offer a theoretical framework for future studies on the impact of metabolites on Baijiu quality during fermentation.
Collapse
Affiliation(s)
- Yijie Dai
- School of Biology and Environmental Engineering, Guiyang University, Guiyang, 550005, China
- Key Laboratory for Critical Degradation Technologies of Pesticide Residues in Superior Agricultural Products, Guiyang University, Guiyang, 550005, China
| | - Lei Yu
- Key Laboratory for Critical Degradation Technologies of Pesticide Residues in Superior Agricultural Products, Guiyang University, Guiyang, 550005, China
| | - Jintao Ao
- School of Biology and Environmental Engineering, Guiyang University, Guiyang, 550005, China
| | - Rui Wang
- Key Laboratory for Critical Degradation Technologies of Pesticide Residues in Superior Agricultural Products, Guiyang University, Guiyang, 550005, China
| |
Collapse
|
12
|
Yang S, Lv S, Xu L, Zhang F, Zhao J, Li H, Sun J, Sun B. Influences of thioalcohols on the release of aromas in sesame-flavor baijiu. Food Res Int 2024; 191:114733. [PMID: 39059966 DOI: 10.1016/j.foodres.2024.114733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/13/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024]
Abstract
This study investigated the interactions between 2-furylmethanethiol, benzenemethanethiol, and 18 skeletal aroma-active compounds as well as four aroma notes in sesame-flavor baijiu based on the Feller Additive Model, the Odor Activity Value (OAV) Approach, and the Sigma-Tau (σ-τ) plots. In addition, a predictive model for the interactions between 2-furylmethanethiol and esters was developed, and the determinants of the interaction results in complex systems were explored. The results reveal that both thioalcohols interacted with the skeletal aroma-active compounds in a similar trend, where 2-furylmethanethiol tends to enhance the release of fruit and acid aroma. Moreover, the intensity of the thiols and their intensity ratio to the notes were the determinants of the interaction results in the multivariate blended system, with the lower the concentration of the thiols, the closer the ratio was to 1, and the more likely that additive interactions would take place. Predictive modeling showed that 2-furylmethanethiols were more likely to have additive or synergistic effects with esters when the olfactory thresholds of the esters were between 75.86 and 199.53 μg/L. Conversely, masking effects were more likely.
Collapse
Affiliation(s)
- Shiqi Yang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China; Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business, University, Beijing 100048, China
| | - Silei Lv
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China; Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business, University, Beijing 100048, China
| | - Ling Xu
- Shandong Bandaojing Co Ltd, Zibo 256300, Shandong, China
| | - Fengguo Zhang
- Shandong Bandaojing Co Ltd, Zibo 256300, Shandong, China
| | - Jiwen Zhao
- Shandong Bandaojing Co Ltd, Zibo 256300, Shandong, China
| | - Hehe Li
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China; Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business, University, Beijing 100048, China.
| | - Jinyuan Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China; Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business, University, Beijing 100048, China
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China; Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business, University, Beijing 100048, China
| |
Collapse
|
13
|
Vardar-Yel N, Tütüncü HE, Sürmeli Y. Lipases for targeted industrial applications, focusing on the development of biotechnologically significant aspects: A comprehensive review of recent trends in protein engineering. Int J Biol Macromol 2024; 273:132853. [PMID: 38838897 DOI: 10.1016/j.ijbiomac.2024.132853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/26/2024] [Accepted: 05/31/2024] [Indexed: 06/07/2024]
Abstract
Lipases are remarkable biocatalysts, adept at catalyzing the breakdown of diverse compounds into glycerol, fatty acids, and mono- and di-glycerides via hydrolysis. Beyond this, they facilitate esterification, transesterification, alcoholysis, acidolysis, and more, making them versatile in industrial applications. In industrial processes, lipases that exhibit high stability are favored as they can withstand harsh conditions. However, most native lipases are unable to endure adverse conditions, making them unsuitable for industrial use. Protein engineering proves to be a potent technology in the development of lipases that can function effectively under challenging conditions and fulfill criteria for various industrial processes. This review concentrated on new trends in protein engineering to enhance the diversity of lipase genes and employed in silico methods for predicting and comprehensively analyzing target mutations in lipases. Additionally, key molecular factors associated with industrial characteristics of lipases, including thermostability, solvent tolerance, catalytic activity, and substrate preference have been elucidated. The present review delved into how industrial traits can be enhanced through directed evolution (epPCR, gene shuffling), rational design (FRESCO, ASR), combined engineering strategies (i.e. CAST, ISM, and FRISM) as protein engineering methodologies in contexts of biodiesel production, food processing, and applications of detergent, pharmaceutics, and plastic degradation.
Collapse
Affiliation(s)
- Nurcan Vardar-Yel
- Department of Medical Laboratory Techniques, Altınbaş University, 34145 İstanbul, Turkey
| | - Havva Esra Tütüncü
- Department of Nutrition and Dietetics, Malatya Turgut Özal University, 44210 Malatya, Turkey
| | - Yusuf Sürmeli
- Department of Agricultural Biotechnology, Tekirdağ Namık Kemal University, 59030 Tekirdağ, Turkey.
| |
Collapse
|
14
|
Jeon YW, Song HM, Lee KY, Kim YA, Kim HK. Synthesis of Isoamyl Fatty Acid Ester, a Flavor Compound, by Immobilized Rhodococcus Cutinase. J Microbiol Biotechnol 2024; 34:1356-1364. [PMID: 38754998 PMCID: PMC11239401 DOI: 10.4014/jmb.2402.02033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 05/18/2024]
Abstract
Isoamyl fatty acid esters (IAFEs) are widely used as fruity flavor compounds in the food industry. In this study, various IAFEs were synthesized from isoamyl alcohol and various fatty acids using a cutinase enzyme (Rcut) derived from Rhodococcus bacteria. Rcut was immobilized on methacrylate divinylbenzene beads and used to synthesize isoamyl acetate, butyrate, hexanoate, octanoate, and decanoate. Among them, Rcut synthesized isoamyl butyrate (IAB) most efficiently. Docking model studies showed that butyric acid was the most suitable substrate in terms of binding energy and distance from the active site serine (Ser114) γ-oxygen. Up to 250 mM of IAB was synthesized by adjusting reaction conditions such as substrate concentration, reaction temperature, and reaction time. When the enzyme reaction was performed by reusing the immobilized enzyme, the enzyme activity was maintained at least six times. These results demonstrate that the immobilized Rcut enzyme can be used in the food industry to synthesize a variety of fruity flavor compounds, including IAB.
Collapse
Affiliation(s)
- Ye Won Jeon
- Division of Biotechnology, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Ha Min Song
- Division of Biotechnology, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Ka Yeong Lee
- Division of Biotechnology, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Yeong A Kim
- Division of Biotechnology, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Hyung Kwoun Kim
- Division of Biotechnology, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| |
Collapse
|
15
|
Li R, Wang T, Bo N, Wang Q, Chen Q, Liang Z, Guan Y, Jiang B, Ma Y, Zhao M. The carbohydrate metabolism and expression of carbohydrate-active enzyme genes in Aspergillus luchuensis fermentation of tea leaves. Front Microbiol 2024; 15:1408645. [PMID: 38894966 PMCID: PMC11183108 DOI: 10.3389/fmicb.2024.1408645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/09/2024] [Indexed: 06/21/2024] Open
Abstract
Introduction Carbohydrates, which make up 20 to 25% of tea beverages, are responsible for their flavor and bioactivity. Carbohydrates of pu-erh tea change during microbial fermentation and require further research. In this study, we examined the carbohydrate metabolism and expression of carbohydrate-active enzyme genes during the fermentation of tea leaves with Aspergillus luchuensis. Methods Widely targeted metabolomics analysis, high-performance anion-exchange chromatography measurements, and transcriptomics were used in this study. Results After fermentation, the levels of soluble sugar, hemicellulose, lignin, eight monosaccharides, and seven sugar alcohols increased. Meanwhile, the relative contents of polysaccharides, D-sorbitol, D-glucose, and cellulose decreased. High expression of 40 genes encoding 16 carbohydrate enzymes was observed during fermentation (FPKM>10). These genes encode L-iditol 2-dehydrogenase, pectinesterase, polygalacturonase, α-amylase, glucoamylase, endoglucanase, β-glucosidase, β-galactosidase, α-galactosidase, α-glucosidase, and glucose-6-phosphate isomerase, among others. Discussion These enzymes are known to break down polysaccharides and cell wall cellulose, increasing the content of monosaccharides and soluble sugars.
Collapse
Affiliation(s)
- Ruoyu Li
- College of Tea Science, Yunnan Agricultural University, Kunming, Yunnan, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Teng Wang
- College of Tea Science, Yunnan Agricultural University, Kunming, Yunnan, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Nianguo Bo
- College of Tea Science, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Qi Wang
- College of Tea Science, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Qiuyue Chen
- College of Tea Science, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Zhengwei Liang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, China
- National-Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yanhui Guan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, China
- National-Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Bin Jiang
- College of Tea Science, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yan Ma
- College of Tea Science, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Ming Zhao
- College of Tea Science, Yunnan Agricultural University, Kunming, Yunnan, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, China
- National-Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, Yunnan, China
| |
Collapse
|
16
|
Wu C, Hu J, Xie D, Fan E, Yang J, You X, Cheng P, Huang W, Hu F, Wang D. Comparison of physicochemical parameters, microbial community composition and flavor substances during mechanical and traditional brewing process of Jiang-flavor baijiu. Food Sci Biotechnol 2024; 33:1909-1919. [PMID: 38752119 PMCID: PMC11091018 DOI: 10.1007/s10068-023-01483-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/15/2023] [Accepted: 11/09/2023] [Indexed: 05/18/2024] Open
Abstract
Mechanized, automated and intelligent brewing is an important trend of innovation and transition in Jiang-flavor baijiu industry. In this study, physicochemical parameters, microbial community composition and flavor substances during 3rd round heap fermentation between mechanical and traditional workshop were investigated and compared based on traditional culturable methods, high-throughput sequencing technology and gas chromatography analysis. The dominant bacterial and fungal genera were consistent between the two workshops, but mechanized brewing had a significant impact on the composition of fungal communities. Rhodococcus and Monascus were special genera in mechanical workshop. The interaction relationship between physicochemical parameters and dominant microorganisms in mechanized workshop was different from traditional workshop as well. This study provided a scientific basis for further analyzing the mechanism of mechanized brewing of Jiang-flavor baijiu. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01483-y.
Collapse
Affiliation(s)
- Cheng Wu
- Guizhou Xijiu Co., LTD., Xishui, 564600 Guizhou China
- Engineering Technology Research Center of Jiang-Flavor Baijiu Intelligent Brewing, China National Light Industry Council, Xishui, 564600 Guizhou China
| | - Jianfeng Hu
- Guizhou Xijiu Co., LTD., Xishui, 564600 Guizhou China
- Engineering Technology Research Center of Jiang-Flavor Baijiu Intelligent Brewing, China National Light Industry Council, Xishui, 564600 Guizhou China
| | - Dan Xie
- Guizhou Xijiu Co., LTD., Xishui, 564600 Guizhou China
- Engineering Technology Research Center of Jiang-Flavor Baijiu Intelligent Brewing, China National Light Industry Council, Xishui, 564600 Guizhou China
| | - Endi Fan
- Guizhou Xijiu Co., LTD., Xishui, 564600 Guizhou China
- Engineering Technology Research Center of Jiang-Flavor Baijiu Intelligent Brewing, China National Light Industry Council, Xishui, 564600 Guizhou China
| | - Junlin Yang
- Guizhou Xijiu Co., LTD., Xishui, 564600 Guizhou China
- Engineering Technology Research Center of Jiang-Flavor Baijiu Intelligent Brewing, China National Light Industry Council, Xishui, 564600 Guizhou China
| | - Xiaolong You
- Guizhou Xijiu Co., LTD., Xishui, 564600 Guizhou China
- Engineering Technology Research Center of Jiang-Flavor Baijiu Intelligent Brewing, China National Light Industry Council, Xishui, 564600 Guizhou China
| | - Pingyan Cheng
- Guizhou Xijiu Co., LTD., Xishui, 564600 Guizhou China
- Engineering Technology Research Center of Jiang-Flavor Baijiu Intelligent Brewing, China National Light Industry Council, Xishui, 564600 Guizhou China
| | - Wei Huang
- Guizhou Xijiu Co., LTD., Xishui, 564600 Guizhou China
- Engineering Technology Research Center of Jiang-Flavor Baijiu Intelligent Brewing, China National Light Industry Council, Xishui, 564600 Guizhou China
| | - Feng Hu
- Guizhou Xijiu Co., LTD., Xishui, 564600 Guizhou China
- Engineering Technology Research Center of Jiang-Flavor Baijiu Intelligent Brewing, China National Light Industry Council, Xishui, 564600 Guizhou China
| | - Diqiang Wang
- Guizhou Xijiu Co., LTD., Xishui, 564600 Guizhou China
- Engineering Technology Research Center of Jiang-Flavor Baijiu Intelligent Brewing, China National Light Industry Council, Xishui, 564600 Guizhou China
| |
Collapse
|
17
|
Liu Y, Zhao M, Liu X, Feng S, Zhu Q, Li S, Zhang X. N-Doping CQDs as an Efficient Fluorescence Probe Based on Dynamic Quenching for Determination of Copper Ions and Alcohol Sensing in Baijiu. J Fluoresc 2024:10.1007/s10895-024-03749-y. [PMID: 38743378 DOI: 10.1007/s10895-024-03749-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/29/2024] [Indexed: 05/16/2024]
Abstract
To address an accurate detection of heavy metal ions in Baijiu production, a nitrogen-doping carbon quantum dots (N-CQDs) was prepared by hydrothermal method from citric acid and urea. The as-prepared N-CQDs had an average particle size of 2.74 nm, and a large number of functional groups (amino, carbonyl group, etc.) attached on its surface, which obtained a 9.6% of quantum yield (QY) with relatively high and stable fluorescence performance. As a fluorescent sensor, the fluorescence of N-CQDs at 380 nm excitation wavelength could be quenched quantitatively by adding Cu2+, due to the dynamic quenching of electron transfer caused by the binding of amine groups and Cu2+, which showed excellent sensitivity and selectivity to Cu2+ in the range of 0.5-5 μM with a detection limit (LOD) of 0.032 μM. In addition, the N-CQDs as well as could be applied to quantitative determine alcohol content in the range of 10-80 V/V% depending on the fluorescence enhancement. Upon the experiment, the fluorescent mechanism was studied by Molecular dynamics (MD) simulations, which demonstrated that solvent effect played an influential role on sensing alcohol content in Baijiu. Overall, the work provided a theoretically guide for the design of fluorescence sensors to monitor heavy metal ion in liquid drinks and sense alcohol content.
Collapse
Affiliation(s)
- Ying Liu
- School of Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Mengjie Zhao
- School of Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Xuqi Liu
- School of Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Shang Feng
- School of Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Qiufeng Zhu
- School of Light Industry, Beijing Technology and Business University, Beijing, 100048, China.
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing, 100048, China.
- China Food Flavor and Nutrition Health Innovation Center, Beijing, 100048, China.
| | - Shuangyang Li
- School of Light Industry, Beijing Technology and Business University, Beijing, 100048, China
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing, 100048, China
- China Food Flavor and Nutrition Health Innovation Center, Beijing, 100048, China
| | - Xianren Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
18
|
Li W, Zhang H, Wang R, Zhang C, Li X. Temporal Profile of the Microbial Community and Volatile Compounds in the Third-Round Fermentation of Sauce-Flavor baijiu in the Beijing Region. Foods 2024; 13:670. [PMID: 38472783 PMCID: PMC10931104 DOI: 10.3390/foods13050670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/10/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Sauce-flavor baijiu produced in the Beijing and Guizhou regions has regional characteristic flavors, but the differences in flavor compounds and reasons for their formation remain unclear. The sauce-flavor baijiu brewing process involves several rounds of fermentation. In this study, we investigated the temporal distribution of microbial communities and flavor substances during the third round of sauce-flavor baijiu fermentation in the Beijing region, and we then compared and analyzed the differences of flavor substances and microorganisms in the fermented grains of sauce-flavor baijiu in the Beijing and Guizhou regions. It was found that 10 bacterial genera and 10 fungal genera were dominant in the fermented grains. The acidity of the fermented grains had a significant driving effect on the microbial community succession. A total of 81 volatile compounds were identified and quantified in the fermented grains, of which esters and alcohols were relatively abundant. The differences in 30 microbial community compositions and their resulting differences in terms of the fermentation parameters of fermented grains are responsible for the differences in the profiles of flavor compounds between sauce-flavor baijiu produced in the Beijing and Guizhou regions.
Collapse
Affiliation(s)
- Weiwei Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; (W.L.); (H.Z.); (R.W.)
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Hui Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; (W.L.); (H.Z.); (R.W.)
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Runnan Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; (W.L.); (H.Z.); (R.W.)
| | - Chengnan Zhang
- Department of Exercise Biochemistry, Exercise Science School, Beijing Sport University, Beijing 100084, China;
| | - Xiuting Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; (W.L.); (H.Z.); (R.W.)
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| |
Collapse
|
19
|
Qin D, Lv S, Shen Y, Shi J, Jiang Y, Cheng W, Wang D, Li H, Zhang Y, Cheng H, Ye X, Sun B. Decoding the key compounds responsible for the empty cup aroma of soy sauce aroma type baijiu. Food Chem 2024; 434:137466. [PMID: 37741247 DOI: 10.1016/j.foodchem.2023.137466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/10/2023] [Accepted: 09/11/2023] [Indexed: 09/25/2023]
Abstract
The empty cup aroma in soy sauce aroma type baijiu (SSB) is distinct, but the specific compounds responsible for its unique aroma remain unknown. The aroma characteristics of SSB and the empty cup were investigated using molecular sensory science. Fifty-three and 27 aroma active compounds were identified in SSB and empty cup aroma, respectively. AEDA of the empty cup showed ethyl 3-phenylpropanoate, phenylethyl alcohol, sotolon, p-cresol, and 2,3-dimethyl-5-ethyl pyrazine could be the most important aroma contributors to the empty cup aroma due to their high FD values. Sotolon, characterized by its seasoning-like and herbal aroma, was identified as a crucial aroma compound for the empty cup aroma for the first time. Lactic acid was found to decrease the olfactory threshold of sotolon markedly in both 53% ethanol water solution and empty cup, promoting the contribution of sotolon to the empty cup aroma.
Collapse
Affiliation(s)
- Dan Qin
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, Beijing 100048, China; China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China; College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Silei Lv
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, Beijing 100048, China; China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Yi Shen
- Sichuan Langjiu Co., Ltd, Gulin, Sichuan 646523, China
| | - Jie Shi
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, Beijing 100048, China; China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Yingli Jiang
- Sichuan Langjiu Co., Ltd, Gulin, Sichuan 646523, China
| | - Wei Cheng
- Sichuan Langjiu Co., Ltd, Gulin, Sichuan 646523, China
| | - Dongmei Wang
- Sichuan Langjiu Co., Ltd, Gulin, Sichuan 646523, China
| | - Hehe Li
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, Beijing 100048, China; China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China.
| | - Yanyan Zhang
- Institute of Food Science and Biotechnology, Department of Flavor Chemistry, University of Hohenheim, Fruwirthstraße 12, 70599 Stuttgart, Germany
| | - Huan Cheng
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, Beijing 100048, China; China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
20
|
Cheng W, Chen X, Xue X, Lan W, Zeng H, Li R, Pan T, Li N, Gong Z, Yang H. Comparison of the Correlations of Microbial Community and Volatile Compounds between Pit-Mud and Fermented Grains of Compound-Flavor Baijiu. Foods 2024; 13:203. [PMID: 38254504 PMCID: PMC10814010 DOI: 10.3390/foods13020203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 01/24/2024] Open
Abstract
The microbial composition and volatile components of fermented grains (FG) and pit mud (PM) are crucial for the quality and flavor of compound-flavor baijiu (CFB). The physicochemical indices, culturable microorganisms, microbial communities, and volatile components of FG and PM were analyzed and correlated in our research. Considering FG and PM, amplicon sequencing was used to analyze the microbial community and the volatile components were detected by headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME). For FG, redundancy analysis and correlation perfume Circos were used to clarify the correlations between the dominant microbial community and volatile components. The results showed that Aspergillus, Pichia, and Rhizopus were the main fungal microflora in FG and PM, whereas Lactobacillus and Bacillus were the dominant bacteria in FG, and Methanosarcina and Clostridium sensu stricto 12 were the dominant bacteria in the PM. The microbial community and volatile compounds in the CB sampled from the bottom layers of the FG were greatly affected by those in the PM. There were 32 common volatile components in CB and PM. For FG, most of the volatile components were highly correlated with Lactobacillus, Bacillus, Aspergillus, Pichia, and Monascus, which includes alcohols, acids and esters. This study reveals correlations between microbial composition, volatile components, and the interplay of FG and PM, which are conducive to optimizing the fermentation process and improving the quality of CFB base.
Collapse
Affiliation(s)
- Wei Cheng
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China;
- Technology Center of Enterprise, Anhui Jinzhongzi Distillery Co., Ltd., Fuyang 236023, China; (X.X.); (T.P.); (N.L.); (Z.G.); (H.Y.)
| | - Xuefeng Chen
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China;
| | - Xijia Xue
- Technology Center of Enterprise, Anhui Jinzhongzi Distillery Co., Ltd., Fuyang 236023, China; (X.X.); (T.P.); (N.L.); (Z.G.); (H.Y.)
| | - Wei Lan
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang 236037, China;
| | - Huawei Zeng
- School of Life Sciences, Huaibei Normal University, Huaibei 235000, China;
| | - Ruilong Li
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang 236037, China;
| | - Tianquan Pan
- Technology Center of Enterprise, Anhui Jinzhongzi Distillery Co., Ltd., Fuyang 236023, China; (X.X.); (T.P.); (N.L.); (Z.G.); (H.Y.)
| | - Na Li
- Technology Center of Enterprise, Anhui Jinzhongzi Distillery Co., Ltd., Fuyang 236023, China; (X.X.); (T.P.); (N.L.); (Z.G.); (H.Y.)
| | - Zilu Gong
- Technology Center of Enterprise, Anhui Jinzhongzi Distillery Co., Ltd., Fuyang 236023, China; (X.X.); (T.P.); (N.L.); (Z.G.); (H.Y.)
| | - Hongwen Yang
- Technology Center of Enterprise, Anhui Jinzhongzi Distillery Co., Ltd., Fuyang 236023, China; (X.X.); (T.P.); (N.L.); (Z.G.); (H.Y.)
| |
Collapse
|
21
|
Tian M, Lin K, Yang L, Jiang B, Zhang B, Zhu X, Ren D, Yu H. Characterization of key aroma compounds in gray sufu fermented using Leuconostoc mesenteroides subsp. Mesenteroides F24 as a starter culture. Food Chem X 2023; 20:100881. [PMID: 37767060 PMCID: PMC10520528 DOI: 10.1016/j.fochx.2023.100881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/17/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Gray sufu is a traditional fermented bean product with strong flavor in China, but traditional fermentation methods often lead to its off-flavor. This study was performed to investigate the flavor quality characteristics of gray sufu fermented using L. mesenteroides F24. Results showed 220 volatile compounds in gray sufu, among which alcohols and esters were the main volatiles. Inoculation with L. mesenteroides F24 considerably affected the contents of flavor substances in gray sufu and substantially increased the main flavor compounds. In addition, 29 kinds of key volatile compounds were identified by analyzing the ROAVs. Four unique key flavor substances were found in gray sufu inoculated with L. mesenteroides F24. This study is the first report on the feasibility of L. mesenteroides F24 as a promising starter culture to improve the flavor quality of gray sufu. The results provide a theoretical basis for improving the processing and quality control of gray sufu.
Collapse
Affiliation(s)
- Meng Tian
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin Province 130118, China
- Soybean Research & Development Centre, Division of Soybean Processing, Chinese Agricultural Research System, Changchun 130118, China
| | - Ke Lin
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin Province 130118, China
- Soybean Research & Development Centre, Division of Soybean Processing, Chinese Agricultural Research System, Changchun 130118, China
| | - Liu Yang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin Province 130118, China
| | - Bin Jiang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin Province 130118, China
| | - Biying Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin Province 130118, China
| | - Xianming Zhu
- Changchun Zhu Laoliu Food Co., Ltd., Changchun, China
| | - Dayong Ren
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin Province 130118, China
- Soybean Research & Development Centre, Division of Soybean Processing, Chinese Agricultural Research System, Changchun 130118, China
| | - Hansong Yu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin Province 130118, China
- Soybean Research & Development Centre, Division of Soybean Processing, Chinese Agricultural Research System, Changchun 130118, China
| |
Collapse
|
22
|
Pan F, Qiu S, Lv Y, Li D. Exploring the controllability of the Baijiu fermentation process with microbiota orientation. Food Res Int 2023; 173:113249. [PMID: 37803561 DOI: 10.1016/j.foodres.2023.113249] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 10/08/2023]
Abstract
Product quality and stability improvement is important for development of the Baijiu industry. Generally, Baijiu brewing is carried out in a spontaneous fermentation system mediated by microbiota. Thus, complexity and instability are major features. Due to the insufficient understanding of the mechanism for producing Baijiu, the precise control of the fermentation progress has still not been realized, ultimately affecting product quality and stability. The flavor of Baijiu is the most important factor in determining its quality and is formed by microbiota under the driving force of various physicochemical parameters, such as moisture, acidity, and temperature. Therefore, exploring the association among microbiota (core), physicochemical factors (reference) and flavor compounds (target) has become a key point to clarify the formation mechanism for the flavor quality of Baijiu. Daqu fermentation and liquor fermentation are the two major stages of Baijiu brewing. Daqu, distillers' grains, and pit mud, as the most important fermentation substrates of the microbiota respectively, provide a large number of functional microorganisms related to the flavor components. To this end, we reviewed the relevant research progress of microbiota diversity in different fermentation substrates and the interaction mechanisms among microbiota, physicochemical parameters, and flavor components in this paper. Moreover, a research hypothesis of precise control of the Baijiu fermentation process by building fermentation models based on this is proposed. The key point for this idea is the identification of core microbiota closely associated with the formation of key flavor components by multi-omics technology and the acquisition of culturable strains. With this foundation, fermentation models suitable for different brewing environments will be established by constructing synthetic microbiota, designing mathematical models, and determining key fermentation model parameters. The ultimate goal will be to effectively improve the quality and stability of Baijiu products through model regulation.
Collapse
Affiliation(s)
- Fengshuang Pan
- Province Key Laboratory of Fermentation Engineering and Biological Pharmacy, Guizhou University, Guiyang 550025, China; College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Shuyi Qiu
- Province Key Laboratory of Fermentation Engineering and Biological Pharmacy, Guizhou University, Guiyang 550025, China; College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Yiyi Lv
- Province Key Laboratory of Fermentation Engineering and Biological Pharmacy, Guizhou University, Guiyang 550025, China; College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Dounan Li
- Province Key Laboratory of Fermentation Engineering and Biological Pharmacy, Guizhou University, Guiyang 550025, China; College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; Liquor Making Biological Technology and Application of key laboratory of Sichuan Province, Yibin 644000, China.
| |
Collapse
|
23
|
Wang Z, Hao W, Wei J, Huang M, Zeng X, Wang Y, Wu J, Chen B. Unveiling innovation in aroma attribute evaluation of Niulanshan Baijiu: An advanced exploration of two different processing methods via food sensory omics and penalty analysis. Food Chem X 2023; 19:100852. [PMID: 37780286 PMCID: PMC10534244 DOI: 10.1016/j.fochx.2023.100852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 10/03/2023] Open
Abstract
Niulanshan Baijiu (NLS), a notable variety of Baijiu known for its light flavor and extensive historical legacy, was subjected to a comparative analysis using two different processes: Hunzheng Xucha (HX) and Qingzheng Qingcha (QQ). The study combined sensory-oriented flavor analysis and penalty analysis to assess the differences between the two processes. Aroma compounds in NLS were extracted using liquid-liquid extraction and headspace solid phase microextraction. Gas chromatography-olfactometry-mass spectrometry was employed to identify 46 aroma-active compounds, including the first-time discovery of ethyl isohexanoate and 2,4-nonadienal in NLS. Quantification of 35 compounds with odor activity value (OAV) ≥ 1 was achieved using internal standard curve methods. Sensory assessments by a cohort of 111 participants highlighted the preference for HX-NLS in terms of flavor, while QQ-NLS exhibited a sour-Chen aroma that required improvement. The study further revealed the significant impact of acetic acid, butyric acid, hexanoic acid, octanoic acid, and 3-methylbutanal on the sour-Chen aroma in liquor.
Collapse
Affiliation(s)
- Zhen Wang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
- School of Food Science and Engineering, South China University of Technology (SCUT), Guangzhou 510640, China
| | - Wenjun Hao
- Niulanshan Distillery, Beijing Shunxin Agriculture Co. Ltd, Beijing 101301, China
| | - Jinwang Wei
- Niulanshan Distillery, Beijing Shunxin Agriculture Co. Ltd, Beijing 101301, China
| | - Mingquan Huang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Xinan Zeng
- School of Food Science and Engineering, South China University of Technology (SCUT), Guangzhou 510640, China
- Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan, Guangdong 528225, China
| | - Ying Wang
- Niulanshan Distillery, Beijing Shunxin Agriculture Co. Ltd, Beijing 101301, China
| | - Jihong Wu
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Boru Chen
- School of Food Science and Engineering, South China University of Technology (SCUT), Guangzhou 510640, China
- Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan, Guangdong 528225, China
| |
Collapse
|
24
|
Yang L, Zeng S, Zhou M, Li Y, Jiang Z, Cheng P, Zhang C. Comprehensive genomic and metabolomic analysis revealed the physiological characteristics and pickle like odor compounds metabolic pathways of Bacillus amyloliquefaciens ZZ7 isolated from fermented grains of Maotai-flavor baijiu. Front Microbiol 2023; 14:1295393. [PMID: 37965559 PMCID: PMC10642760 DOI: 10.3389/fmicb.2023.1295393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023] Open
Abstract
Pickle like odor (PLO) is one of the main defective flavors of Maotai flavor baijiu (MFB). Understanding and controlling the PLO compounds producing strains not only solves the problem of PLO from the source, but also ensures the high-quality production of MFB. However, the relevant research on PLO compounds producing strains has not been reported in MFB. In this study, we identified a Bacillus amyloliquefaciens ZZ7 with high yield of PLO compounds in the fermented grains of MFB, and measured its physiological characteristics. It produces 627 volatile compounds and 1,507 non-volatile compounds. There are 7 volatile sulfur compounds that cause the PLO, the content of dimethyl disulfide, dimethyl trisulfide, and dimethyl sulfur is relatively high, accounting for 89.43% of the total volatile sulfur compounds. The genome size of B. amyloliquefaciens ZZ7 is 3,902,720 bp with a GC content of 46.09%, and a total of 3,948 protein coding genes were predicted. Moreover, the functional annotation of coding genes and an assessment of the metabolic pathways were performed by genome annotation, showing it has strong ability to transport and metabolize amino acids and carbohydrates. Comprehensive genomic and metabolomic analysis, the metabolic pathway of PLO compounds of B. amyloliquefaciens ZZ7 was revealed, which mainly involves 12 enzymes including sulfate adenylyltransferase, cysteine synthase, cystathionine γ-synthase, etc. This work provides biological information support at both genetic and metabolic levels for the mechanism of B. amyloliquefaciens ZZ7 to synthesize PLO compounds, and provides a direction for the subsequent genetic modification of ZZ7 to solve PLO from the source in the MFB.
Collapse
Affiliation(s)
- Liang Yang
- Department of Brewing Engineering, Moutai Institute, Renhuai, China
| | - Shuangran Zeng
- Department of Brewing Engineering, Moutai Institute, Renhuai, China
| | - Meidi Zhou
- Department of Brewing Engineering, Moutai Institute, Renhuai, China
| | - Yuetao Li
- Department of Brewing Engineering, Moutai Institute, Renhuai, China
- College of Life Sciences, Shihezi University, Shihezi, China
| | - Zeyuan Jiang
- Department of Brewing Engineering, Moutai Institute, Renhuai, China
| | | | - Chunlin Zhang
- Department of Brewing Engineering, Moutai Institute, Renhuai, China
| |
Collapse
|
25
|
Cheng W, Chen X, Lan W, Liu G, Xue X, Li R, Pan T, Li N, Zhou D, Chen X. Insights into the influence of physicochemical parameters on the microbial community and volatile compounds during the ultra-long fermentation of compound-flavor Baijiu. Front Microbiol 2023; 14:1272559. [PMID: 37965554 PMCID: PMC10641013 DOI: 10.3389/fmicb.2023.1272559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/05/2023] [Indexed: 11/16/2023] Open
Abstract
Introduction While the variation in physicochemical parameters, microbial communities, metabolism, composition, and the proportion of volatile components in fermented grains (FG) affect final Baijiu quality, their complex interactions during the ultra-long fermentation of compound-flavor Baijiu (CFB) are still poorly understood. Methods In this study, amplicon sequencing was used to analyze the microbial community, and headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) was used to analyze the volatile components in FG during ultra-long fermentation of CFB. The relationships between the dominant microbial communities, physicochemical parameters, and volatile components were analyzed using redundancy analysis and network analysis. Results During ultra-long fermentation, bacterial diversity was initially higher than during the mid and late stages. Fungal diversity in the mid stages was higher than that initially and later in the process. A total of 88 volatile components, including six alcohols, 43 esters, eight aldehydes and ketones, 13 acids, and 18 other compounds were detected in FG. Starch and reducing sugars in FG strongly affected the composition and function of bacterial and fungal communities. However, acidity had little effect on the composition and function of the bacterial flora. Lactobacillus, Bacillus, Weissella, and Pichia were the core microbial genera involved in metabolizing the volatile components of FG. Discussion We provide insights into the relationships and influences among the dominant microbial communities, physicochemical parameters, and volatile components during ultra-long fermentation of CFB. These insights help clarify the fermentation mechanisms of solid-state fermentation Baijiu (SFB) and control and improve the aroma quality of CFB.
Collapse
Affiliation(s)
- Wei Cheng
- School of Food Science and Engineering, Shaanxi University of Science & Technology, Xi’an, China
- Technology Center of Enterprise, Jinzhongzi Distillery Co., Ltd., Fuyang, China
| | - Xuefeng Chen
- School of Food Science and Engineering, Shaanxi University of Science & Technology, Xi’an, China
| | - Wei Lan
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang, China
| | - Gengdian Liu
- School of Food Science and Engineering, Shaanxi University of Science & Technology, Xi’an, China
| | - Xijia Xue
- Technology Center of Enterprise, Jinzhongzi Distillery Co., Ltd., Fuyang, China
| | - Ruilong Li
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang, China
| | - Tianquan Pan
- Technology Center of Enterprise, Jinzhongzi Distillery Co., Ltd., Fuyang, China
| | - Na Li
- Technology Center of Enterprise, Jinzhongzi Distillery Co., Ltd., Fuyang, China
| | - Duan Zhou
- School of Food Science and Engineering, Shaanxi University of Science & Technology, Xi’an, China
| | - Xingjie Chen
- Technology Center of Enterprise, Jinzhongzi Distillery Co., Ltd., Fuyang, China
| |
Collapse
|
26
|
Li J, Zhang Q, Sun B. Chinese Baijiu and Whisky: Research Reservoirs for Flavor and Functional Food. Foods 2023; 12:2841. [PMID: 37569110 PMCID: PMC10417287 DOI: 10.3390/foods12152841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 08/13/2023] Open
Abstract
Baijiu is a traditional spirit with high reputation in the Chinese community, and whisky, on the other hand, is a renowned spirit in Western culture, with both contributing a major proportion to the consumption and revenue in the global spirit market. Interestingly, starting with similar raw materials, such as grains, diverse production methods lead to different organoleptic profiles. In addition, such enormous attention they attract renders them as a crucial part in food and the related industry. Therefore, great efforts are made in improving product quality and optimizing production processes, such as flavor enhancement, facility development, and deep utilization of byproducts. Given the huge impacts and great involvements of these spirits in the general food industry, research focusing on either spirit is of referential significance for other relevant fields. With the aim of facilitating such collaboration, this review discusses the current research status, in a comparative manner, of both spirits in respect to key production processes-oriented sensory and flavor analysis, deep utilization of byproducts, and spirit-derived functional food investigations. Finally, the internal correlations based on the abovementioned criteria are identified, with research prospects proposed.
Collapse
Affiliation(s)
- Jinchen Li
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; (Q.Z.); (B.S.)
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Qiuyu Zhang
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; (Q.Z.); (B.S.)
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; (Q.Z.); (B.S.)
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
27
|
Zhang G, Xiao P, Yuan M, Li Y, Xu Y, Li H, Sun J, Sun B. Roles of sulfur-containing compounds in fermented beverages with 2-furfurylthiol as a case example. Front Nutr 2023; 10:1196816. [PMID: 37457986 PMCID: PMC10348841 DOI: 10.3389/fnut.2023.1196816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/25/2023] [Indexed: 07/18/2023] Open
Abstract
Aroma is a critical component of the flavor and quality of beverages. Among the volatile chemicals responsible for fragrance perception, sulfur compounds are unique odorants due to their extremely low odor threshold. Although trace amounts of sulfur compounds can enhance the flavor profile of beverages, they can lead to off-odors. Sulfur compounds can be formed via Maillard reaction and microbial metabolism, imparting coffee aroma and altering the flavor of beverages. In order to increase the understanding of sulfur compounds in the field of food flavor, 2-furfurylthiol (FFT) was chosen as a representative to discuss the current status of their generation, sensory impact, enrichment, analytical methods, formation mechanisms, aroma deterioration, and aroma regulation. FFT is comprehensively reviewed, and the main beverages of interest are typically baijiu, beer, wine, and coffee. Challenges and recommendations for FFT are also discussed, including analytical methods and mechanisms of formation, interactions between FFT and other compounds, and the development of specific materials to extend the duration of aroma after release.
Collapse
Affiliation(s)
- Guihu Zhang
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
| | - Peng Xiao
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
| | - Mengmeng Yuan
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
| | - Youming Li
- Inner Mongolia Taibus Banner Grassland Brewing Co., Ltd., Xilin Gol League, China
| | - Youqiang Xu
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
| | - Hehe Li
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Quality and Safety, Beijing Technology and Business University, Beijing, China
| | - Jinyuan Sun
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Quality and Safety, Beijing Technology and Business University, Beijing, China
| | - Baoguo Sun
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Quality and Safety, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
28
|
Yang L, Chen R, Liu C, Chen L, Yang F, Wang L. Spatiotemporal accumulation differences of volatile compounds and bacteria metabolizing pickle like odor compounds during stacking fermentation of Maotai-flavor baijiu. Food Chem 2023; 426:136668. [PMID: 37356241 DOI: 10.1016/j.foodchem.2023.136668] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/12/2023] [Accepted: 06/17/2023] [Indexed: 06/27/2023]
Abstract
Pickle like odor (PLO) is undesirable in Maotai-flavor baijiu; however, its formation mechanism is unclear. Furthermore, there is a lack of understanding of the spatiotemporal accumulation of volatile compounds (including PLO compounds, PLOC) and of the microorganisms responsible for the production of PLOC during stacking fermentation. In this study, we analyzed the spatiotemporal distribution differences of 132 volatile compounds in piled fermented grains. PLOC (n = 5) were higher in pile surface than in pile center, reaching their highest levels at 6th and 5th rounds, respectively. The microorganisms in pile center were more conducive to the formation of alcohols, while those in the pile surface more promoted the synthesis of esters. Rhodococcus and Zygosaccharomyces promoted the formation of PLOC. Acetobacter was negatively correlated with the content of sulfur compounds by promoting their conversion into non-volatile sulfur compounds, thereby reducing the content of PLOC. This study provides information on the spatiotemporal differences of volatile compounds (especially PLOC) in piled fermented grains and identified the microorganisms that produce PLOC.
Collapse
Affiliation(s)
- Liang Yang
- Department of Brewing Engineering, Moutai Institute, Renhuai 564501, China; Kweichow Moutai Group, Guizhou, China
| | - Renyuan Chen
- Guizhou Academy of Liquor Quality Inspection and Testing, Renhuai 564501, China
| | - Chao Liu
- Kweichow Moutai Distillery Co., Ltd., Maotai Town, Zunyi City, Guizhou 564501, China
| | - Liangqiang Chen
- Kweichow Moutai Distillery Co., Ltd., Maotai Town, Zunyi City, Guizhou 564501, China
| | - Fan Yang
- Kweichow Moutai Distillery Co., Ltd., Maotai Town, Zunyi City, Guizhou 564501, China
| | - Li Wang
- Kweichow Moutai Group, Guizhou, China.
| |
Collapse
|
29
|
Investigation on the interaction between 1,3-dimethyltrisulfide and aroma-active compounds in sesame-flavor baijiu by Feller Additive Model, Odor Activity Value and Partition Coefficient. Food Chem 2023; 410:135451. [PMID: 36652795 DOI: 10.1016/j.foodchem.2023.135451] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 01/03/2023] [Accepted: 01/07/2023] [Indexed: 01/13/2023]
Abstract
The interaction between 1,3-dimethyltrisulfide and aroma-active compounds in sesame-flavor baijiu was evaluated by Feller's additive model and Odor Activity Value Approach, and the reason for the interaction can promote the release of fruity and caramel aromas of ethyl caproate, ethyl was explored by the Partition Coefficient Approach. The interaction results indicated that 1,3-dimethyltrisulfide caprate and furan-2-ylmethanol. Others showed masking effect. The Partition Coefficient showed that the effect of 1,3-dimethyltrisulfide on the volatility of esters was one of the reasons for the interaction affecting the flavor perception, and the volatility of ethyl esters with longer carbon chains at high phase ratio (PRs) is more likely to be promoted. Besides, the prediction model was initially proposed: y = 2.0112 ln(x) + 0.1461, which indicated that esters with the olfactory threshold lower than 33.80 μg/L are more likely to have positive effects with 1,3-dimethyltrisulfide, the negative effect is more likely to occur conversely.
Collapse
|
30
|
Hao S, Ren Q, Wang J, Li L, Huang M. Two novel Planococcus species isolated from baijiu pit mud with potential application in brewing. Front Microbiol 2023; 14:1139810. [PMID: 37250023 PMCID: PMC10213732 DOI: 10.3389/fmicb.2023.1139810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 04/21/2023] [Indexed: 05/31/2023] Open
Abstract
Two novel Gram-positive bacteria, designated strains REN8T and REN14T, were isolated from baijiu pit mud in Sichuan Province, China. REN8T achieved the best growth at 37°C, a pH of 8.0, and a NaCl concentration of 2%, while REN14T displayed optimal growth at 37°C, a pH of 6.0, and a NaCl concentration of 1%. 16S rRNA and genomic phylogenetic analysis showed that REN8T and REN14T were clustered with the genus Planococcus. The genomic DNA G + C contents of REN8T and REN14T were 46.7 and 45.1 mol%, respectively. The dDDH and ANI values were 24.5 and 80.43% between REN8T and P. salinarum (the most closely related type strain) and 25.1 and 82.42% between REN14T and P. soli (the most closely related type strain). Genomic analysis showed that several carbohydrate-active enzymes and secondary metabolite gene clusters existed in REN8T and REN14T. Chemotaxonomic characteristics of REN8T and REN14T included major fatty acids, predominant menaquinones, and polar lipids, all of which were consistent with the genus Planococcus. Based on the polyphasic taxonomic method, these two strains represent two novel species of the genus Planococcus; the name Planococcus beigongshangi sp. nov. is proposed for the type strain REN8T (=JCM 33964T = GDMCC 1.2213T), and the name Planococcus beijingensis sp. nov. is proposed for the type strain REN14T (=JCM 34410T = GDMCC 1.2209T). The addition of REN8T and REN14T might improve the quality of huangjiu by considerably increasing the amino acid nitrogen content and acidity and decreasing the bioamine content, with no significant change in alcohol content.
Collapse
|
31
|
Li H, Zhang Y, Xie J, Wang C, Yi D, Wu T, Wang L, Zhao D, Hou Y. Dietary Supplementation with Mono-Lactate Glyceride Enhances Intestinal Function of Weaned Piglets. Animals (Basel) 2023; 13:ani13081303. [PMID: 37106866 PMCID: PMC10135088 DOI: 10.3390/ani13081303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/31/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Mono-lactate glyceride (LG) is a short-chain fatty acid ester. It has been shown that short-chain fatty acid esters play an important role in maintaining intestinal structure and function. The aim of this study is to investigate the effects of mono-lactate glyceride on growth performance and intestinal morphology and function in weaned piglets. Sixteen 21-day-old weaned piglets of similar weight were distributed arbitrarily to two treatments: The control group (basal diet) and the LG group (basal diet + 0.6% mono-lactate glyceride). The experiment lasted for 21 days. On day 21 of the trial, piglets were weighed, and blood and intestinal samples were collected for further analysis. Results showed that dietary supplementation with 0.6% mono-lactate glyceride decreased (p < 0.05) the diarrhea rate and the contents of malondialdehyde and hydrogen peroxide in the ileum and jejunum and increased (p < 0.05) the expression of intestinal tight junction protein (Occludin) and the activities of superoxide dismutase and catalase in the ileum and colon. In addition, mono-lactate glyceride supplementation could enhance intestinal mucosal growth by increasing (p < 0.05) the mRNA levels of extracellular regulated protein kinases, promote intestinal mucosal water and nutrient transport and lipid metabolism by increasing (p < 0.05) the mRNA levels of b0,+ amino acid transporter, aquaporin 3, aquaporin 10, gap junction protein alpha 1, intestinal fatty acid-binding protein, and lipoprotein lipase, enhance antiviral and immune function by increasing (p < 0.05) the mRNA levels of nuclear factor kappa-B, interferon-β, mucovirus resistance protein II, 2'-5'-oligoadenylate synthetase-like, interferon-γ, C-C motif chemokine ligand 2, and toll-like receptor 4, and enhance antioxidant capacity by increasing (p < 0.05) the mRNA levels of NF-E2-related factor 2 and glutathione S-transferase omega 2 and decreasing (p < 0.05) the mRNA level of NADPH oxidase 2. These results suggested that dietary supplementation with mono-lactate glyceride could decrease the diarrhea rate by improving intestinal antioxidant capacity, intestinal mucosal barrier, intestinal immune defense function, and intestinal mucosal water and nutrient transport. Collectively, dietary supplementation with 0.6% mono-lactate glyceride improved the intestinal function of weaned piglets.
Collapse
Affiliation(s)
- Hanbo Li
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yanyan Zhang
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jiaqian Xie
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
| | - Chao Wang
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
| | - Dan Yi
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
| | - Tao Wu
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
| | - Lei Wang
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
| | - Di Zhao
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yongqing Hou
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
32
|
Cheng W, Chen X, Guo Y, Zhou D, Zeng H, Fu H. The microbial diversity and flavour metabolism of Chinese strong flavour Baijiu: a review. JOURNAL OF THE INSTITUTE OF BREWING 2023. [DOI: 10.58430/jib.v129i1.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Strong flavour Baijiu is widely consumed in China and is produced by the fermentation of grains using microbial starters. However, a comprehensive understanding of the diversity and metabolic characteristics of microbial communities involved in the solid-state fermentation of Baijiu is important for determining the relationship between microbial composition, flavour metabolism and understanding Baijiu fermentation conditions. Although studies have examined the metabolic pathways and impact of major processes on flavour compounds in strong flavour Baijiu, aspects of the fermentation process remain unexplored. In this review, methods are discussed for the optimisation of microbial diversity in strong flavour Baijiu and associated effects on the flavour of Baijiu. Recent studies are reviewed on starters (Daqu), fermented grains (Jiupei), and pit mud together with the effects of microbial composition on the quality of strong flavour Baijiu. The challenges of Baijiu research and production are discussed, including the role of the microbial diversity of Daqu and Jiupei in the flavour composition of strong flavour Baijiu. This review contributes to the current understanding of processing strong flavour Baijiu and serves as a reference for screening flavour related microorganisms, which is valuable for improving the quality of strong flavour Baijiu.
Collapse
|
33
|
Zeng X, Mo Z, Zheng J, Wei C, Dai Y, Yan Y, Qiu S. Effects of biofilm and co-culture with Bacillus velezensis on the synthesis of esters in the strong flavor Baijiu. Int J Food Microbiol 2023; 394:110166. [PMID: 36921483 DOI: 10.1016/j.ijfoodmicro.2023.110166] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/30/2023] [Accepted: 03/01/2023] [Indexed: 03/11/2023]
Abstract
Biofilm plays an important role in resisting the adverse environment, improving the taste and texture, and promoting the synthesis of flavor substances. However, to date, the findings on the effect of biofilm and dominating bacteria Bacillus on the ester synthesis in the Baijiu field have been largely lacked. Therefore, the objectives of the present study were to primarily isolate biofilm-producing microbes in the fermented grains, evaluate the stress tolerance capacity, and unveil the effect of biofilm and co-culture with Bacillus on the ester synthesis in the strong flavor Baijiu. Results indicated that after isolation and evaluation of stress-tolerance capacity, bacterial strain BG-5 and yeast strains YM-21 and YL-10 were demonstrated as mediate or strong biofilm-producing microbes and were identified as Bacillus velezensis, Saccharomycopsis fibuligera, and Zygosaccharomyces bailii, respectively. Solid phase microextraction/gas chromatography-mass spectrometer indicated that biofilm could enhance the diversity of esters while reduce the contents of ester. The scanning electron microscopy showed an inhibitory effect of B. velezensis on the growth of S. fibuligera, further restraining the production of esters. Taken together, both biofilm and B. velezensis influence the ester synthesis process. The present study is the first to reveal the biofilm-producing microorganisms in fermented grains and to preliminarily investigate the effect of biofilm on the ester synthesis in the Baijiu field.
Collapse
Affiliation(s)
- Xiangyong Zeng
- College of Liquor and Food Engineering, Guizhou University, Guiyang City 550025, China; Guizhou Provincial Key Laboratory of Fermentation and Biopharmacy, Guizhou University, Guiyang City 550025, China.
| | - Zhenni Mo
- College of Liquor and Food Engineering, Guizhou University, Guiyang City 550025, China; Department of Light Industry and Chemical Engineering, Guizhou Light Industry Technical College, Guiyang City 550025, China
| | - Jia Zheng
- Wuliangye Yibin Co Ltd, No.150 Minjiang West Road, Yibin City 644007, China
| | - Chaoyang Wei
- College of Liquor and Food Engineering, Guizhou University, Guiyang City 550025, China; Guizhou Provincial Key Laboratory of Fermentation and Biopharmacy, Guizhou University, Guiyang City 550025, China
| | - Yifeng Dai
- College of Liquor and Food Engineering, Guizhou University, Guiyang City 550025, China; Guizhou Provincial Key Laboratory of Fermentation and Biopharmacy, Guizhou University, Guiyang City 550025, China
| | - Yan Yan
- College of Liquor and Food Engineering, Guizhou University, Guiyang City 550025, China; Guizhou Provincial Key Laboratory of Fermentation and Biopharmacy, Guizhou University, Guiyang City 550025, China
| | - Shuyi Qiu
- College of Liquor and Food Engineering, Guizhou University, Guiyang City 550025, China; Guizhou Provincial Key Laboratory of Fermentation and Biopharmacy, Guizhou University, Guiyang City 550025, China
| |
Collapse
|
34
|
Li J, Liu B, Feng X, Zhang M, Ding T, Zhao Y, Wang C. Comparative proteome and volatile metabolome analysis of Aspergillus oryzae 3.042 and Aspergillus sojae 3.495 during koji fermentation. Food Res Int 2023; 165:112527. [PMID: 36869527 DOI: 10.1016/j.foodres.2023.112527] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/09/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023]
Abstract
Aspergillus oryzae 3.042 and Aspergillus sojae 3.495 are crucial starters for fermented soybean foods since their abundant secreted enzymes. This study aimed to compare the differences in protein secretion between A. oryzae 3.042 and A. sojae 3.495 during the soy sauce koji fermentation and the effect on volatile metabolites to understand the fermentation characteristics of the strains better. Label-free proteomics detected 210 differentially expressed proteins (DEPs) enriched in amino acid metabolism and protein folding, sorting and degradation pathways. Subsequently, extracellular enzyme analysis showed that three peptidases, including peptide hydrolase, dipeptidyl aminopeptidase, and peptidase S41, were up-regulated in A. sojae 3.495. Seven carbohydrases, including α-galactosidase, endo-arabinase, β-glucosidase, α-galactosidase, α-glucuronidase, arabinan-endo 1,5-α-l-arabinase, and endo-1,4-β-xylanase were up-regulated in A. oryzae 3.042, contributing to the difference in enzyme activity. Significantly different extracellular enzymes influenced the content of volatile alcohols, aldehydes and esters such as (R, R)-2,3-butanediol, 1-hexanol, hexanal, decanal, ethyl l-lactate and methyl myristate in both strains, which affected the type of aroma of koji. Overall, this study revealed the differences in molecular mechanisms between A. oryzae 3.042 and A. sojae 3.495 under solid-state fermentation, providing a reference for targeted enhancement strains.
Collapse
Affiliation(s)
- Jingyao Li
- "State Key Laboratory of Food Nutrition and Safety", Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, No.29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, People Republic of China
| | - Bin Liu
- College of Biological and Environmental Engineering, Binzhou University, 391 Huanghe 5th Road, 256603 Binzhou City, Shandong Province, China
| | - Xiaojuan Feng
- "State Key Laboratory of Food Nutrition and Safety", Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, No.29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, People Republic of China
| | - Mengli Zhang
- "State Key Laboratory of Food Nutrition and Safety", Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, No.29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, People Republic of China
| | - Tingting Ding
- "State Key Laboratory of Food Nutrition and Safety", Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, No.29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, People Republic of China
| | - Yue Zhao
- "State Key Laboratory of Food Nutrition and Safety", Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, No.29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, People Republic of China
| | - Chunling Wang
- "State Key Laboratory of Food Nutrition and Safety", Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, No.29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, People Republic of China.
| |
Collapse
|
35
|
Won SJ, Yim JH, Kim HK. Synthesis of Short-Chain Alkyl Butyrate through Esterification Reaction Using Immobilized Rhodococcus Cutinase and Analysis of Substrate Specificity through Molecular Docking. J Microbiol Biotechnol 2023; 33:268-276. [PMID: 36524336 PMCID: PMC9998203 DOI: 10.4014/jmb.2211.11022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 11/26/2022] [Indexed: 12/23/2022]
Abstract
Alkyl butyrate with fruity flavor is known as an important additive in the food industry. We synthesized various alkyl butyrates from various fatty alcohol and butyric acid using immobilized Rhodococcus cutinase (Rcut). Esterification reaction was performed in a non-aqueous system including heptane, isooctane, hexane, and cyclohexane. As a result of performing the alkyl butyrate synthesis reaction using alcohols of various chain lengths, it was found that the preference for the alcohol substrate had the following order: C6 > C4 > C8 > C10 > C2. Through molecular docking analysis, it was found that the greater the hydrophobicity of alcohol, the higher the accessibility to the active site of the enzyme. However, since the number of torsions increased as the chain length increased, it became difficult for the hydroxyl oxygen of the alcohol to access the γO of serine at the enzyme active site. These molecular docking results were consistent with substrate preference results of the Rcut enzyme. The Rcut maintained the synthesis efficiency at least for 5 days in isooctane solvent. We synthesized as much as 452 mM butyl butyrate by adding 100 mM substrate daily for 5 days and performing the reaction. These results show that Rcut is an efficient enzyme for producing alkyl butyrate used in the food industry.
Collapse
Affiliation(s)
- Seok-Jae Won
- Department of Biotechnology, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Joung Han Yim
- Korea Polar Research Institute, Incheon 406-840, Republic of Korea
| | - Hyung Kwoun Kim
- Department of Biotechnology, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| |
Collapse
|
36
|
Xu Y, Wu M, Zhao D, Zheng J, Dai M, Li X, Li W, Zhang C, Sun B. Simulated Fermentation of Strong-Flavor Baijiu through Functional Microbial Combination to Realize the Stable Synthesis of Important Flavor Chemicals. Foods 2023; 12:foods12030644. [PMID: 36766173 PMCID: PMC9913964 DOI: 10.3390/foods12030644] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/19/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The solid-state fermentation of Baijiu is complicated by the co-fermentation of many microorganisms. The instability of the composition and abundance of the microorganisms in the fermentation process leads to fluctuations of product quality, which is one of the bottleneck problems faced by the Strong-flavor Baijiu industry. In this study, we established a combination of functional microorganisms for the stable fermentation of the main flavor compounds of Baijiu, including medium and long-chain fatty acid ethyl esters such as hexanoic acid, ethyl ester; butanoic acid, ethyl ester; octanoic acid, ethyl ester; acetic acid, ethyl ester; 9,12-octadecadienoic acid, ethyl ester; and decanoic acid, ethyl ester in the fermented grains. Our study investigated the effects of microbial combinations on the fermentation from three aspects: microbial composition, microbial interactions, and microbial association with flavor compounds. The results showed that the added functional microorganisms (Lactobacillus, Clostridium, Caproiciproducens, Saccharomyces, and Aspergillus) became the dominant species in the fermentation system and formed positive interactions with other microorganisms, while the negative interactions between microorganisms were significantly reduced in the fermentation systems that contained both Daqu and functional microorganisms. The redundancy analysis showed that the functional microorganisms (Lactobacillus, Saccharomyces, Clostridium, Cloacibacterium, Chaenothecopsis, Anaerosporobacter, and Sporolactobacillus) showed strong positive correlations with the main flavor compounds (hexanoic acid, ethyl ester; lactic acid, ethyl ester; butanoic acid, ethyl ester; acetic acid, ethyl ester; and octanoic acid, ethyl ester). These results indicated that it was feasible to produce Baijiu with a functional microbial combination, and that this could promote stable Baijiu production.
Collapse
Affiliation(s)
- Youqiang Xu
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
- Correspondence: (Y.X.); (X.L.)
| | - Mengqin Wu
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Dong Zhao
- Wuliangye Yibin Co., Ltd., Yibin 644000, China
| | - Jia Zheng
- Wuliangye Yibin Co., Ltd., Yibin 644000, China
| | - Mengqi Dai
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Xiuting Li
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing 102401, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University (BTBU), Beijing 100048, China
- Correspondence: (Y.X.); (X.L.)
| | - Weiwei Li
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Chengnan Zhang
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Baoguo Sun
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing 102401, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University (BTBU), Beijing 100048, China
| |
Collapse
|
37
|
Zhao J, Xu Y, Lu H, Zhao D, Zheng J, Lin M, Liang X, Ding Z, Dong W, Yang M, Li W, Zhang C, Sun B, Li X. Molecular mechanism of LIP05 derived from Monascus purpureus YJX-8 for synthesizing fatty acid ethyl esters under aqueous phase. Front Microbiol 2023; 13:1107104. [PMID: 36713181 PMCID: PMC9877431 DOI: 10.3389/fmicb.2022.1107104] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 12/20/2022] [Indexed: 01/13/2023] Open
Abstract
Fatty acid ethyl esters are important flavor chemicals in strong-flavor Baijiu. Monascus purpureus YJX-8 is recognized as an important microorganism for ester synthesis in the fermentation process. Enzyme LIP05 from YJX-8 can efficiently catalyze the synthesis of fatty acid ethyl esters under aqueous phase, but the key catalytic sites affecting esterification were unclear. The present work combined homology modeling, molecular dynamics simulation, molecular docking and site-directed mutation to analyze the catalytic mechanism of LIP05. Protein structure modeling indicated LIP05 belonged to α/β fold hydrolase, contained a lid domain and a core catalytic pocket with conserved catalytic triad Ser150-His215-Asp202, and the oxyanion hole composed of Gly73 and Thr74. Ile30 and Leu37 of the lid domain were found to affect substrate specificity. The π-bond stacking between Tyr116 and Tyr149 played an important role in stabilizing the catalytic active center of LIP05. Tyr116 and Ile204 determined the substrate spectrum by composing the substrate-entrance channel. Residues Leu83, Ile204, Ile211 and Leu216 were involved in forming the hydrophobic substrate-binding pocket through steric hindrance and hydrophobic interaction. The catalytic mechanism for esterification in aqueous phase of LIP05 was proposed and provided a reference for clarifying the synthesis of fatty acid ethyl esters during the fermentation process of strong-flavor Baijiu.
Collapse
Affiliation(s)
- Jingrong Zhao
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University, Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Youqiang Xu
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University, Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Hongyun Lu
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University, Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Dong Zhao
- Wuliangye Yibin Co., Ltd., Yibin, Sichuan, China
| | - Jia Zheng
- Wuliangye Yibin Co., Ltd., Yibin, Sichuan, China
| | - Mengwei Lin
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University, Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Xin Liang
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University, Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Ze Ding
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University, Beijing, China
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, China
| | - Wenqi Dong
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University, Beijing, China
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, China
| | - Maochen Yang
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, China
| | - Weiwei Li
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University, Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Chengnan Zhang
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University, Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Baoguo Sun
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University, Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Xiuting Li
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University, Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, China
| |
Collapse
|
38
|
Revealing the Changes in Compounds When Producing Strong-Flavor Daqu by Statistical and Instrumental Analysis. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8120720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Daqu is not only a crucial starter in the production of baijiu, but it is also an important source of flavoring substances, so maintaining a stable quality is an important part of improving the quality of baijiu. Nonetheless, since the production of daqu is still a natural fermentation process, which is influenced by seasonal factors, the rapid testing of daqu quality is a problem that must be solved. In this study, headspace solid-phase microextraction technology (HS-SPME) was used to explore the volatile components in daqu, and a total of 115 volatile components were extracted. By constructing an untargeted statistical model, the variation in volatile compounds in dissimilar production processes of daqu was studied, and the differences between different maturation stages and the correlations between volatile compounds were analyzed. Subsequently, six compounds, including ethyl acetate, ethanol, phenylethanol, (R,R)-2,3-butanediol, ethyl caproate, and 2,3-butanediol, were further screened out by partial least squares discrimination analysis (PLS-DA), and the symbolic combination of daqu’s maturity was speedily judged in accordance with the changes in marker compound concentrations to lay the foundation for the mechanization of baijiu production.
Collapse
|
39
|
Effects of length and type of the alkyl chain on the micellization behavior of mixed systems of HS15 with fatty acids. Food Chem 2022; 397:133830. [DOI: 10.1016/j.foodchem.2022.133830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 11/20/2022]
|
40
|
Zhang G, Xie M, Kang X, Wei M, Zhang Y, Li Q, Wu X, Chen Y. Optimization of ethyl hexanoate production in Saccharomyces cerevisiae by metabolic engineering. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
41
|
Oliveira CFD, Cardoso LADC, Vendruscolo F. Production of pigments by Monascus ruber CCT0302 in culture media containing maltose as substrate. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.1029017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The aim of this study was to show how maltose production residues can be used to obtain natural pigments by Monascus ruber CCT 3802 in solid and submerged cultures. The microbial growth and the colour and heat stability characteristics of the pigments produced in both solid and submerged media, with different maltose syrup concentrations, were determined. The results showed that the addition of maltose provided significant increases in the velocity of microbial growth and production of red pigments. The highest radial growth velocity of Monascus ruber (0.1053 mm h−1) was obtained when cultivated in a medium containing 5 g L−1 of maltose syrup, corresponding to a 71.7% increase in growth as compared to the growth velocity in the control medium. Using submerged fermentation, the culture medium containing 10 g L−1 of maltose syrup provided the greatest concentrations of red pigments (14.54 AU510nm g−1 dry biomass) with an intense dark red colour, showing that Monascus ruber CCT 3802 had the capacity to assimilate the substrate and produce pigments. The red pigments produced in the cultures showed good heat stability with activation energies of 13.735 Kcal mol−1.
Collapse
|
42
|
Chen X, Wu Y, Zhu H, Wang H, Lu H, Zhang C, Li X, Xu Y, Li W, Wang Y. Turning over fermented grains elevating heap temperature and driving microbial community succession during the heap fermentation of sauce-flavor baijiu. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
43
|
Cai W, Wang Y, Liu Z, Liu J, Zhong J, Hou Q, Yang X, Shan C, Guo Z. Depth-depended quality comparison of light-flavor fermented grains from two fermentation rounds. Food Res Int 2022; 159:111587. [DOI: 10.1016/j.foodres.2022.111587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 12/13/2022]
|
44
|
Xu Y, Wu M, Niu J, Huang H, Nie Z, Fu Z, Zhang C, Zhao Z, Lu H, Li X, Sun B. Clostridium btbubcensis BJN0001, a potentially new species isolated from the cellar mud of Chinese strong-flavor baijiu, produces ethanol, acetic acid and butyric acid from glucose. 3 Biotech 2022; 12:203. [PMID: 35935542 PMCID: PMC9346016 DOI: 10.1007/s13205-022-03271-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/20/2022] [Indexed: 11/01/2022] Open
Abstract
A novel strain, designated BJN0001, was isolated from the cellar mud of Chinese strong-flavor baijiu. The complete genome of strain BJN0001 was 2,688,791 bp and annotated with 2610 genes. Whole-genome similarity metrics such as average nucleotide identity (ANI) of BJN0001 with reference genomes reveals clear species boundaries of < 95% ANI value for species. The DNA-DNA hybridization (DDH) values of BJN0001 with the type species were all lower than 70% DDH value for species. Based on these results, the strain BJN0001 was considered a potentially new species of the genus Clostridium. Meanwhile, the fermentation characteristics indicated that the strain had the capability to convert glucose to ethanol, acetic acid and butyric acid, which could provide basic data for revealing its function in baijiu fermentation. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03271-7.
Collapse
Affiliation(s)
- Youqiang Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, No. 33, Fucheng Road, Haidian District, Beijing, 100048 China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048 China
| | - Mengqin Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, No. 33, Fucheng Road, Haidian District, Beijing, 100048 China
| | - Jialiang Niu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, No. 33, Fucheng Road, Haidian District, Beijing, 100048 China
| | - Huiqin Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, No. 33, Fucheng Road, Haidian District, Beijing, 100048 China
| | - Zheng Nie
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, No. 33, Fucheng Road, Haidian District, Beijing, 100048 China
| | - Zhilei Fu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, No. 33, Fucheng Road, Haidian District, Beijing, 100048 China
| | | | - Zhigang Zhao
- Chengde Qianlongzui Distillery Company, Hebei, 067400 China
| | - Hongyun Lu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, No. 33, Fucheng Road, Haidian District, Beijing, 100048 China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048 China
| | - Xiuting Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, No. 33, Fucheng Road, Haidian District, Beijing, 100048 China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048 China
| | - Baoguo Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, No. 33, Fucheng Road, Haidian District, Beijing, 100048 China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048 China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, 100048 China
| |
Collapse
|
45
|
Abstract
Traditional fermentation processes are driven by complex fungal microbiomes. However, the exact means by which fungal diversity affects fermentation remains unclear. In this study, we systematically investigated the diversity of a fungal community and its functions during the multibatch Baijiu fermentation process. Metabolomics analysis showed that the metabolic profiles of the Baijiu were enhanced with an increase in the fermentation time, as determined from the characteristic volatile flavors. High-throughput sequencing technology revealed that the major fungal species involved in sauce-flavor Baijiu fermentation are Pichia sp. (41.75%, average relative abundance), Saccharomyces sp. (13.07%), thermophilic species (9.16%), Monascus sp. (6.80%), Aspergillus sp. (4.69%), Schizosaccharomyces sp. (3.76%), Thermomyces sp. (3.74%), and Zygosaccharomyces sp. (1.41%). In addition, the fungal diversity increased as the number of fermentation batches increased. Moreover, the increased fungal diversity contributed to the modularity of the fungal communities, wherein Pichia sp., Torulaspora sp., and Saccharomyces sp. maintained the stability of the fungal community. In addition, metatranscriptomics sequencing technologies were used to reconstruct the key metabolic pathways during fermentation, and it was found that the increased microbial diversity significantly promoted glucose-mediated carbon metabolism. Finally, functional gene analysis showed that functional microorganisms, such as Zygosaccharomyces and Pichia, can enhance fermentation as a result of the high expression of pyruvate decarboxylase and propanol-preferring alcohol dehydrogenase during the metabolism of pyruvate. These results indicate that fungal biodiversity can be exploited to enhance fermentation-based processes via network interactions and metabolism during multiple-batch fermentation. IMPORTANCE Biodiversity and network interactions act simultaneously on the microbial community structure in the Baijiu fermentation process, thereby rendering the microbiome dynamics challenging to manage and predict. Understanding the complex fermentation community and its relationship to community functions is therefore important in the context of developing improved fermentation biotechnology systems. Our work demonstrates that multiple-batch fermentation steps increase microbial diversity and promote community stability. Crucially, the enhanced modularity in the microbial network increases the metabolism of flavor compounds and ethanol. This study highlights the power of biodiversity and network interactions in regulating the function of the microbiome in food fermentation ecosystems.
Collapse
|
46
|
Liu C, Du Y, Zheng J, Qiao Z, Luo H, Zou W. Production of caproic acid by Rummeliibacillus suwonensis 3B-1 isolated from the pit mud of strong-flavor baijiu. J Biotechnol 2022; 358:33-40. [PMID: 36049550 DOI: 10.1016/j.jbiotec.2022.08.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 11/18/2022]
Abstract
Caproic acid is the precursor of ethyl caproate, the main representative flavor substance of strong-flavor baijiu (SFB). Caproic acid-producing bacteria are considered to be the most important type of acid-producing microorganisms in the pit mud of the SFB ecosystem. In this study, the Rummeliibacillus suwonensis 3B-1 with a high yield of caproic acid (4.064g/L) was screened from SFB pit mud. The genome of the R. suwonensis 3B-1 was sequenced, the total size was found to be 4,117,671bp and a calculated GC content of 35.86%. The caproic acid biosynthesis pathway was identified and analyzed, and it showed that 3B-1 could not only use ethanol, but it could also use glucose and other carbon sources as substrates to produce caproic acid. According to the genome analysis and with an optimized medium, the optimal conditions for caproic acid production were yeast powder at 3g/L, sodium acetate at 15g/L, and 1% biotin at 8mL/100mL. The yield of caproic acid reached 4.627g/L, an increase of 13.9%, which was higher than that of general caproic acid bacteria. This is the first report of the synthesis of caproic acid by R. suwonensis. This strain could be used to produce caproic acid, an artificial pit mud preparation, and/or an enhanced inoculum in the production of SFB.
Collapse
Affiliation(s)
- Chaojie Liu
- College of Bioengineering, Sichuan University of Science & Engineering, Yibin, Sichuan 644005, China
| | - Yuanfen Du
- College of Bioengineering, Sichuan University of Science & Engineering, Yibin, Sichuan 644005, China
| | - Jia Zheng
- Key Laboratory of Wuliangye-flavor Liquor Solid-state Fermentation, China National Light Industry, Wuliangye Group, Yibin, Sichuan 644007, China
| | - Zongwei Qiao
- Key Laboratory of Wuliangye-flavor Liquor Solid-state Fermentation, China National Light Industry, Wuliangye Group, Yibin, Sichuan 644007, China
| | - Huibo Luo
- College of Bioengineering, Sichuan University of Science & Engineering, Yibin, Sichuan 644005, China
| | - Wei Zou
- College of Bioengineering, Sichuan University of Science & Engineering, Yibin, Sichuan 644005, China.
| |
Collapse
|
47
|
Zhu L, Li L, Yang Q, Chen L, Zhang L, Zhang G, Lin B, Tang J, Zhang Z, Chen S. Study on microbial community of "green-covering" Tuqu and the effect of fortified autochthonous Monascus purpureus on the flavor components of light-aroma-type Baijiu. Front Microbiol 2022; 13:973616. [PMID: 36060768 PMCID: PMC9434108 DOI: 10.3389/fmicb.2022.973616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
"Green-covering" Tuqu (TQ), as one of Xiaoqu, is a special fermentative starter (also known as Jiuqu in Chinese) that originated in southern China and is characterized by a layer of green mold covering (Aspergillus clavatus) the surface and (sometimes) with a red heart. It plays a vital role in producing light-aroma-type Baijiu (LATB). However, to date, the microbiota that causes red heart of TQ remain largely unexplored, and it is still unclear how these microbiota influence on the quality of LATB. In this study, two types of TQ, one with a red heart (RH) and another with a non-red heart (NRH), were investigated by high throughput sequencing (HTS) and directional screening of culture-dependent methods. The obtained results revealed the differences in the microbial communities of different TQ and led to the isolation of two species of Monascus. Interestingly, the results of high performance liquid chromatography (HPLC) detection showed that citrinin was not detected, indicating that Monascus isolated from TQ was no safety risk, and the contents of gamma-aminobutyric acid in the fermented grains of RH were higher than that of NRH during the fermentation. Selecting the superior autochthonous Monascus (M1) isolated from the TQ to reinoculate into the TQ-making process, established a stable method for producing the experimental "red heart" Tuqu (ERH), which confirmed that the cause of "red heart" was the growth of Monascus strains. After the lab-scale production test, ERH increased ethyl ester production and reduced higher alcohols production. In addition, Monascus had an inhibitory effect on the growth of Saccharomyces and Aspergillus. This study provides the safe, health-beneficial, and superior fermentation strains and strategies for improving the quality of TQ and LATB.
Collapse
Affiliation(s)
- Liping Zhu
- Hubei Key Laboratory of Quality and Safety of Traditional Chinese Medicine and Health Food, Jing Brand Co. Ltd, Daye, China
| | - Lanqi Li
- Hubei Key Laboratory of Quality and Safety of Traditional Chinese Medicine and Health Food, Jing Brand Co. Ltd, Daye, China
| | - Qiang Yang
- Hubei Key Laboratory of Quality and Safety of Traditional Chinese Medicine and Health Food, Jing Brand Co. Ltd, Daye, China
| | - Liang Chen
- Hubei Key Laboratory of Quality and Safety of Traditional Chinese Medicine and Health Food, Jing Brand Co. Ltd, Daye, China
| | - Lei Zhang
- Hubei Key Laboratory of Quality and Safety of Traditional Chinese Medicine and Health Food, Jing Brand Co. Ltd, Daye, China
| | - Gang Zhang
- Hubei Key Laboratory of Quality and Safety of Traditional Chinese Medicine and Health Food, Jing Brand Co. Ltd, Daye, China
| | - Bin Lin
- Hubei Key Laboratory of Quality and Safety of Traditional Chinese Medicine and Health Food, Jing Brand Co. Ltd, Daye, China
| | - Jie Tang
- Hubei Key Laboratory of Quality and Safety of Traditional Chinese Medicine and Health Food, Jing Brand Co. Ltd, Daye, China
| | - Zongjie Zhang
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi, China
| | - Shenxi Chen
- Hubei Key Laboratory of Quality and Safety of Traditional Chinese Medicine and Health Food, Jing Brand Co. Ltd, Daye, China
| |
Collapse
|
48
|
Mulay A, Rathod V. Ultrasound-assisted synthesis of ethyl hexanoate using heterogeneous catalyst: Optimization using Box-Behnken design. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
49
|
Tu W, Cao X, Cheng J, Li L, Zhang T, Wu Q, Xiang P, Shen C, Li Q. Chinese Baijiu: The Perfect Works of Microorganisms. Front Microbiol 2022; 13:919044. [PMID: 35783408 PMCID: PMC9245514 DOI: 10.3389/fmicb.2022.919044] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/23/2022] [Indexed: 11/21/2022] Open
Abstract
Chinese Baijiu is one of the famous distilled liquor series with unique flavors in the world. Under the open environment, Chinese Baijiu was produced by two solid-state fermentation processes: jiuqu making and baijiu making. Chinese Baijiu can be divided into different types according to the production area, production process, starter type, and product flavor. Chinese Baijiu contains rich flavor components, such as esters and organic acids. The formation of these flavor substances is inseparable from the metabolism and interaction of different microorganisms, and thus, microorganisms play a leading role in the fermentation process of Chinese Baijiu. Bacteria, yeasts, and molds are the microorganisms involved in the brewing process of Chinese Baijiu, and they originate from various sources, such as the production environment, production workers, and jiuqu. This article reviews the typical flavor substances of different types of Chinese Baijiu, the types of microorganisms involved in the brewing process, and their functions. Methods that use microbial technology to enhance the flavor of baijiu, and for detecting flavor substances in baijiu were also introduced. This review systematically summarizes the role and application of Chinese Baijiu flavor components and microorganisms in baijiu brewing and provides data support for understanding Chinese Baijiu and further improving its quality.
Collapse
Affiliation(s)
- Wenying Tu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Xiaonian Cao
- Luzhou Laojiao Co. Ltd., Luzhou, China
- National Engineering Research Center of Solid-State Brewing, Luzhou, China
| | - Jie Cheng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Lijiao Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Ting Zhang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Qian Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Peng Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Caihong Shen
- Luzhou Laojiao Co. Ltd., Luzhou, China
- National Engineering Research Center of Solid-State Brewing, Luzhou, China
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
- Postdoctoral Research Station of Luzhou Laojiao Company, Luzhou, China
| |
Collapse
|
50
|
Xu S, Zhang M, Xu B, Liu L, Sun W, Mu D, Wu X, Li X. Microbial communities and flavor formation in the fermentation of Chinese strong-flavor Baijiu produced from old and new Zaopei. Food Res Int 2022; 156:111162. [DOI: 10.1016/j.foodres.2022.111162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 11/04/2022]
|