1
|
Zeng S, Li B, Yang L, Lv W, Xiao H. Effects of innovative dry-blanching on moisture, cell wall structure, physicochemical properties and volatile compounds of microwave infrared coupled dried ginger (Zingiber officinale roscoe). Food Chem 2025; 475:143231. [PMID: 39938266 DOI: 10.1016/j.foodchem.2025.143231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/22/2025] [Accepted: 02/04/2025] [Indexed: 02/14/2025]
Abstract
In this study, various innovative dry-blanching methods (infrared, microwave, hot air, microwave-infrared, and microwave-hot air) were employed to process ginger prior to microwave-infrared coupled drying. The effects of dry-blanching on drying kinetics, moisture characteristics, ultrastructure, cell wall components, physicochemical properties, volatile compounds, and antioxidant activity of ginger were investigated. The study found that dry-blanching led to the destruction of the cellular structure and promoted moisture migration and evaporation. Concurrently, the process induced the release of phenolic compounds, thereby enhancing antioxidant activity. Dry-blanching accelerated the drying process. Furthermore, enzyme activity was inactivated, and the browning value was reduced by 0.29-10.87 % following dry-blanching. Infrared dry-blanching increased volatile compounds by 30.31 %, resulting in the highest levels of terpenes and the best preservation of flavor components. This research can serve as a reference for developing new pretreatment methods in drying.
Collapse
Affiliation(s)
- Shiyu Zeng
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Bingzheng Li
- Guangxi Key laboratory of Advanced Microwave Manufacturing Technology, Guangxi Academy of Sciences, Nanning 530007, China
| | - Liling Yang
- Agricultural Mechanization Institute, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Weiqiao Lv
- College of Engineering, China Agricultural University, Beijing 100083, China.
| | - Hongwei Xiao
- College of Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
2
|
Sun R, Xia J, Jiang N, Zhang B, Yu R, Wang C, Liu Q. The combined effect of cold plasma and radio frequency on the preservation of cooked crayfish during refrigerated storage. Food Res Int 2025; 209:116314. [PMID: 40253156 DOI: 10.1016/j.foodres.2025.116314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/15/2025] [Accepted: 03/16/2025] [Indexed: 04/21/2025]
Abstract
To improve the shelf life of crayfish, the preservation effects of cold plasma (CP) and radio frequency (RF) treatments were investigated in this study. The crayfish samples were treated by CP (130 kV, 3 min), RF (3.5 kW, 15 min) or their combinations and stored at 4 °C. Afterward, the quality attributes (microbial stability, physicochemical parameters, water distribution and protein structures) of the treated crayfish tails were measured during 12 days. According to the total viable count (TVC) and total volatile basic nitrogen (TVB-N) values, the CK samples became unacceptable during 3-6 days, while the RF + CP treatment extended the shelf-life to 9-12 days. Besides, the thiobarbituric acid reactive substances (TBARS) values for all the investigated crayfish samples were maintained within 11 mg/100 g throughout the whole storage period. Low-field nuclear magnetic resonance (LF-NMR) analysis indicated that the samples after RF treatments exhibited less free water contents than those without RF treatments, implying that RF treatments might restrict the water migration. Moreover, Fourier transform infrared (FTIR) spectroscopy analysis revealed that RF + CP treatments slightly reduced the α-helix contents and increased the contents of β-sheet and random coil in crayfish proteins, while these structural changes were not obvious at the later stage of storage. In addition, the RF + CP treatment effectively delayed the color and textural deterioration of crayfish during storage. Overall, this study showed that the combined treatments of RF and CP effectively extended the shelf life of crayfish and improved the storage quality.
Collapse
Affiliation(s)
- Rongxue Sun
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; Integrated Scientific Research Base for Preservation, Storage and Processing Technology of Aquatic Products of the Ministry of Agriculture and Rural Affairs, Nanjing, Jiangsu 210014, China.
| | - Jiangyue Xia
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China; Integrated Scientific Research Base for Preservation, Storage and Processing Technology of Aquatic Products of the Ministry of Agriculture and Rural Affairs, Nanjing, Jiangsu 210014, China
| | - Ning Jiang
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; Integrated Scientific Research Base for Preservation, Storage and Processing Technology of Aquatic Products of the Ministry of Agriculture and Rural Affairs, Nanjing, Jiangsu 210014, China.
| | - Bin Zhang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China.
| | - Rongrong Yu
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China; Integrated Scientific Research Base for Preservation, Storage and Processing Technology of Aquatic Products of the Ministry of Agriculture and Rural Affairs, Nanjing, Jiangsu 210014, China
| | - Cheng Wang
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; Integrated Scientific Research Base for Preservation, Storage and Processing Technology of Aquatic Products of the Ministry of Agriculture and Rural Affairs, Nanjing, Jiangsu 210014, China
| | - Qianyuan Liu
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; Integrated Scientific Research Base for Preservation, Storage and Processing Technology of Aquatic Products of the Ministry of Agriculture and Rural Affairs, Nanjing, Jiangsu 210014, China
| |
Collapse
|
3
|
Ai Z, Xiao Z, Liu M, Zhou L, Yang L, Huang Y, Xiong Q, Li T, Liu Y, Xiao H, Guo J, Sun W, Mowafy S, Rao H. Evaluation of innovative drying technologies in Gardenia jasminoides Ellis drying considering product quality and drying efficiency. Food Chem X 2024; 24:102052. [PMID: 39717399 PMCID: PMC11664278 DOI: 10.1016/j.fochx.2024.102052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/25/2024] Open
Abstract
Gardenia jasminoides Ellis is widely used as healthy food and herbal medicine for its anti-inflammatory, analgesic, antihypertensive, and antiviral functions. The drying behavior and physicochemical quality of Gardenia jasminoides Ellis were studied to evaluate its adaptability under four drying techniques: hot air drying (HAD), medium-and short-wave infrared drying (MSWID), pulsed vacuum drying (PVD), and radio frequency-HAD (RF-HAD). Compared with HAD and MSWID, PVD and RF-HAD can form beneficial microporous channels for moisture migration inside Gardenia jasminoides Ellis, thus shortening drying time by 32.56-42.51 % and increasing geniposide content by 3.31-13.77 %, while better preserving the brightness and redness. In addition, Pearson correlation analysis confirmed the RF-HAD dried samples showed the best antioxidant activity with the highest content of active ingredients (chlorogenic acid, geniposide), and there was a significant positive correlation between sample color and yellow pigment content. After comprehensive comparison, RF-HAD is proposed to be the most suitable method for Gardenia jasminoides Ellis drying. This research could provide scientific basis and technical support for promoting the high quality development of industrial processing of Gardenia jasminoides Ellis.
Collapse
Affiliation(s)
- Ziping Ai
- College of Engineering in Jiangxi Agricultural University, Jiangxi Key Laboratory of Modern Agricultural Equipment Jiangxi Province, Nanchang 330045, China
| | - Zhifeng Xiao
- College of Engineering in Jiangxi Agricultural University, Jiangxi Key Laboratory of Modern Agricultural Equipment Jiangxi Province, Nanchang 330045, China
| | - Muhua Liu
- College of Engineering in Jiangxi Agricultural University, Jiangxi Key Laboratory of Modern Agricultural Equipment Jiangxi Province, Nanchang 330045, China
| | - Lingqu Zhou
- School of Computer and Information Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Lingjian Yang
- College of Engineering in Jiangxi Agricultural University, Jiangxi Key Laboratory of Modern Agricultural Equipment Jiangxi Province, Nanchang 330045, China
| | - Yijie Huang
- College of Engineering in Jiangxi Agricultural University, Jiangxi Key Laboratory of Modern Agricultural Equipment Jiangxi Province, Nanchang 330045, China
| | - Qiangqiang Xiong
- College of Engineering in Jiangxi Agricultural University, Jiangxi Key Laboratory of Modern Agricultural Equipment Jiangxi Province, Nanchang 330045, China
| | - Tao Li
- College of Engineering in Jiangxi Agricultural University, Jiangxi Key Laboratory of Modern Agricultural Equipment Jiangxi Province, Nanchang 330045, China
| | - Yanhong Liu
- College of Engineering, China Agricultural University, P.O. Box 194, 17 Qinghua Donglu, Beijing 100083, China
| | - Hongwei Xiao
- College of Engineering, China Agricultural University, P.O. Box 194, 17 Qinghua Donglu, Beijing 100083, China
| | - Jiale Guo
- College of Engineering, China Agricultural University, P.O. Box 194, 17 Qinghua Donglu, Beijing 100083, China
| | - Wenling Sun
- College of Engineering, China Agricultural University, P.O. Box 194, 17 Qinghua Donglu, Beijing 100083, China
| | - Samir Mowafy
- College of Engineering, China Agricultural University, P.O. Box 194, 17 Qinghua Donglu, Beijing 100083, China
| | - Honghui Rao
- College of Engineering in Jiangxi Agricultural University, Jiangxi Key Laboratory of Modern Agricultural Equipment Jiangxi Province, Nanchang 330045, China
| |
Collapse
|
4
|
Pang H, Xie Y, Wang X, Jia Y, Ye P, Mao C, Chen X, Fu H, Wang Y, Wang Y. Study on the effects of radio frequency blanching on polyphenol oxidase activity, physicochemical properties, and microstructure of iron yam. J Food Sci 2024; 89:8689-8703. [PMID: 39581594 DOI: 10.1111/1750-3841.17554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/21/2024] [Accepted: 11/01/2024] [Indexed: 11/26/2024]
Abstract
The effects of radio frequency (RF) and hot water blanching on polyphenol oxidase (PPO) activity, physicochemical properties, and microstructure of iron yams were investigated. The heating rate of RF was the largest, and the heating uniformity was the best at the electrode gap of 160 mm and the material height of 90 mm. The residual activity of PPO was significantly reduced from 49.95% to 4.21%, whereas the RF heating temperature (65-85°C) increased (p < 0.05). The color and texture of yams treated with RF blanching were better preserved compared with those of hot water blanching at a similar degree of enzyme inactivation. The microstructure showed that these changes in physicochemical properties were caused by cellular damage. The surface cells of yams were more severely damaged than the center cells after hot water blanching at 95°C for 3 min. Moreover, the surface cells after hot water blanching also showed more damage than the cells after RF blanching. Thus, RF blanching is a technique with development potential in the food industry.
Collapse
Affiliation(s)
- Huiyun Pang
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Yingman Xie
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Xue Wang
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Yiming Jia
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Pengfei Ye
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Chao Mao
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Xiangwei Chen
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Hongfei Fu
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Yequn Wang
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Yunyang Wang
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| |
Collapse
|
5
|
Xu J, Li L, Ding Z, Xie J. Prolong the shelf-life of the Pakchoi seedlings through the ammonium glycyrrhizinate. Food Chem X 2024; 23:101620. [PMID: 39071937 PMCID: PMC11282947 DOI: 10.1016/j.fochx.2024.101620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/24/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024] Open
Abstract
Pakchoi seedlings (Brassica chinensis L.) is susceptible to damage and spoilage during harvest and transport, leading to significant quality deterioration and financial losses. This study explored the use of ammonium glycyrrhizinate (AG) to address these issues. AG self-assembles into macromolecules at room temperature, blocking stomata and regulating respiration rates in Pakchoi seedlings. Additionally, it disrupts bacterial cell biofilm and inhibits its synthesis. While AG has been used in medicine, its application in the food industry remains limited. The study found that incorporating AG in Pakchoi seedlings preserves water content and total soluble solids (TSS), while preventing declines in catalase (CAT), Vitamin C (VC), and chlorophyll during storage. AG also reduced malondialdehyde (MDA) levels and maintained peroxidase (POD) and superoxide dismutase (SOD) activities. At a concentration of 4.25 g L-1, AG enhanced radical scavenging ability and extended the shelf life of Pakchoi seedlings by inhibiting bacteria and postponing senescence.
Collapse
Affiliation(s)
- Jin Xu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Li Li
- Shanghai Tramy Green Food (Group) Co.Ltd, Shanghai Tramy Academy of modern Agricultural Industry, Shanghai 201399, China
| | - Zhaoyang Ding
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
- Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai 201306, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
| |
Collapse
|
6
|
Tang Y, Jing P, Jiao S. Application of radio frequency energy in processing of fruit and vegetable products. Compr Rev Food Sci Food Saf 2024; 23:e13425. [PMID: 39136978 DOI: 10.1111/1541-4337.13425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 06/22/2024] [Accepted: 07/12/2024] [Indexed: 08/15/2024]
Abstract
Thermal processing is commonly employed to ensure the quality and extend the shelf-life of fruits and vegetables. Radio frequency (RF) heating has been used as a promising alternative treatment to replace conventional thermal processing methods with advantages of rapid, volumetric, and deep penetration heating characteristics. This article provides comprehensive information regarding RF heating uniformity and applications in processing of fruit and vegetable products, including disinfestation, blanching, drying, and pasteurization. The dielectric properties of fruits and vegetables and their products have also been summarized. In addition, recommendations for future research on RF heating are proposed to enhance practical applications for fruits and vegetables processing in future.
Collapse
Affiliation(s)
- Yingjie Tang
- Department of Food Science and Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Pu Jing
- Department of Food Science and Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Shunshan Jiao
- Department of Food Science and Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
7
|
Peng Z, Zhang Y, Ai Z, Wei L, Liu Y. Effect of radio frequency roasting on the lipid profile of peanut oil and the mechanism of lipids transformation: Revealed by untargeted lipidomics approach. Food Res Int 2024; 190:114592. [PMID: 38945611 DOI: 10.1016/j.foodres.2024.114592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/14/2024] [Accepted: 06/01/2024] [Indexed: 07/02/2024]
Abstract
Radio frequency (RF) heating has been proved an alternative roasting method for peanuts, which could effectively degrade aflatoxins and possesses the advantages of greater heating efficiency and penetration depth. This study aimed to investigate the influences of RF roasting on the lipid profile of peanut oil under 150 °C target temperature with varied peanut moisture contents (8.29 % and 20 %) and holding times (0, 7.5, and 15 min), using ultra-performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (UPLC-QTOF-MS/MS)-based lipidomics. In total, 2587 lipid species from 35 subclasses were identified. After roasting, the contents of sterol lipid (ST) and subclasses of glycerophospholipids (GPs) and glycoglycerolipids increased significantly, while fatty acid (FA), Oxidized (Ox-) FA, cholesterol (CE), and all subclasses of glycerolipids (GLs) decreased, and 1084 differential lipids were screened. The highest ST and lowest CE contents in peanut oil were achieved by medium roasting (7.5 min). The raise in moisture content of peanut simply affected a few GPs subclasses adversely. Compared with hot air (HA) roasting, RF decelerated lipid oxidation, showing higher levels of diacylglycerol, triacylglycerol and FA, with no additional negative impact and only 69 exclusive differential lipids. During RF roasting, hydrolysis and oxidation of fatty acyl chains into secondary oxides were the central behaviors of lipids transformation. This study could provide insights into the lipid changes and transformation mechanism of peanut oil by RF roasting processing.
Collapse
Affiliation(s)
- Zekang Peng
- College of Engineering, China Agricultural University, P. O. Box 194, 17 Qinghua Donglu, Beijing 100083, China
| | - Yue Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China
| | - Ziping Ai
- College of Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Lixuan Wei
- College of Engineering, China Agricultural University, P. O. Box 194, 17 Qinghua Donglu, Beijing 100083, China
| | - Yanhong Liu
- College of Engineering, China Agricultural University, P. O. Box 194, 17 Qinghua Donglu, Beijing 100083, China.
| |
Collapse
|
8
|
Jiang Q, Zhao S, Zhao W, Wang P, Qin P, Wang J, Zhao Y, Ge Z, Zhao X, Wang D. The role of water distribution, cell wall polysaccharides, and microstructure on radish ( Raphanus sativus L.) textural properties during dry-salting process. Food Chem X 2024; 22:101407. [PMID: 38711773 PMCID: PMC11070821 DOI: 10.1016/j.fochx.2024.101407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/08/2024] [Accepted: 04/21/2024] [Indexed: 05/08/2024] Open
Abstract
Radish (Raphanus sativus L.) undergoes texture changes in their phy-chemical properties during the long-term dry-salting process. In our study, we found that during the 60-day salting period, the hardness and crispness of radish decreased significantly. In further investigation, we observed that the collaborative action of pectin methylesterase (PME) and polygalacturonase (PG) significantly decreased the total pectin, alkali-soluble pectin (ASP), and chelator-soluble pectin (CSP) content, while increasing the water-soluble pectin (WSP) content. Furthermore, the elevated activities of cellulase and hemicellulase directly led to the notable fragmentation of cellulose and hemicellulose. The above reactions jointly induced the depolymerization and degradation of cell wall polysaccharides, resulting in an enlargement of intercellular spaces and shrinkage of the cell wall, which ultimately led to a reduction in the hardness and crispness of the salted radish. This study provided key insights and guidance for better maintaining textural properties during the dry-salting process of radish.
Collapse
Affiliation(s)
- Qianqian Jiang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Shuang Zhao
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Wenting Zhao
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Pan Wang
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Peiyou Qin
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Junjuan Wang
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Yuanyuan Zhao
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Zhiwen Ge
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Xiaoyan Zhao
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Dan Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| |
Collapse
|
9
|
Yang Z, Fan H, Li R, Li B, Fan J, Ge J, Xu X, Pan S, Liu F. Potential role of cell wall pectin polysaccharides, water state, and cellular structure on twice "increase-decrease" texture changes during kohlrabi pickling process. Food Res Int 2023; 173:113308. [PMID: 37803613 DOI: 10.1016/j.foodres.2023.113308] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 10/08/2023]
Abstract
Pickled kohlrabi is a traditional and favored vegetable product in China. During pickling, the hardness, springiness, and chewiness of kohlrabi all experienced a typical change with twice "increase-decrease" trend. However, little is known about its mechanism. In this study, in situ analysis including immunofluorescence, low field nuclear magnetic, and transmission electron microscopy were used to explore the effects of cell wall pectin, water state, and cellular structure on kohlrabi texture changes during pickling. Results revealed that at the early stage, due to the rapid loss of water after three times salting, the cells shrank and the interstitial space reduced, resulting in the first increase on kohlrabi texture. Subsequently, the dehydration-rehydration caused by the first brine processing resulted in the first decrease on kohlrabi texture. Then under the action of PME enzyme, more low-esterified pectin was produced, and chelate-soluble pectin with more branched structure was further formed, leading to another elevation of the sample texture. As the pickling continued, under the combined action of PG and PME, the molecular weight of pectin was decreased and the rigidity of the cell tissue was destroyed, caused kohlrabi texture continued to decline. These researches could provide important information and guidance for better maintaining the texture of pickled vegetables during processing.
Collapse
Affiliation(s)
- Zhixuan Yang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, Hubei, PR China
| | - Hekai Fan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, Hubei, PR China
| | - Ruoxuan Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, Hubei, PR China
| | - Bowen Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, Hubei, PR China
| | - Jiangtao Fan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, Hubei, PR China
| | - Jinjiang Ge
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, Hubei, PR China
| | - Xiaoyun Xu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, Hubei, PR China
| | - Siyi Pan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, Hubei, PR China
| | - Fengxia Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, Hubei, PR China.
| |
Collapse
|
10
|
Kravets M, Cedeño-Pinos C, Abea A, Guàrdia MD, Muñoz I, Bañón S. Validation of Pasteurisation Temperatures for a Tomato-Oil Homogenate ( salmorejo) Processed by Radiofrequency or Conventional Continuous Heating. Foods 2023; 12:2837. [PMID: 37569107 PMCID: PMC10417326 DOI: 10.3390/foods12152837] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/12/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Salmorejo is a viscous homogenate based on tomato, olive oil and breadcrumbs commercialised as a "fresh-like" pasteurised-chilled purée. Due to its penetration, dielectric heating by radiofrequency (RF) might improve pasteurisation results of conventional heating (CH). The objective was to validate the pasteurisation temperature (70-100 °C, at 5 °C intervals) for salmorejo processed by RF (operating at 27.12 MHz for 9.08 s) or conventional (for 10.9 s) continuous heating. The main heat-induced changes include: orangeness, flavour homogenisation, loss of freshness, thickening, loss of vitamin C and lipid oxidation. Both CH and RF equivalent treatments allowed a strong reduction of total and sporulated mesophilic microorganisms and an adequate inhibition of the pectin methylesterase, peroxidase and, to a lesser extent, polyphenol oxidase but did not inhibit the polygalacturonase enzyme. Pasteurisation at 80 °C provided a good equilibrium in levels of microbiological and enzymatic inhibition and thermal damage to the product. Increasing this temperature does not improve enzyme inactivation levels and salmorejo may become overheated. A "fresh-like" good-quality salmorejo can be obtained using either conventional or radiofrequency pasteurisers.
Collapse
Affiliation(s)
- Marina Kravets
- Department of Food Technology and Science and Nutrition, Veterinary Faculty, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain; (M.K.); (C.C.-P.)
| | - Cristina Cedeño-Pinos
- Department of Food Technology and Science and Nutrition, Veterinary Faculty, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain; (M.K.); (C.C.-P.)
| | - Andrés Abea
- Institut de Recerca i Tecnologia Agroalimentàries IRTA-Food Technology Program, Finca Camps i Armet, Monells, 17121 Girona, Spain; (A.A.); (M.D.G.); (I.M.)
| | - Maria Dolors Guàrdia
- Institut de Recerca i Tecnologia Agroalimentàries IRTA-Food Technology Program, Finca Camps i Armet, Monells, 17121 Girona, Spain; (A.A.); (M.D.G.); (I.M.)
| | - Israel Muñoz
- Institut de Recerca i Tecnologia Agroalimentàries IRTA-Food Technology Program, Finca Camps i Armet, Monells, 17121 Girona, Spain; (A.A.); (M.D.G.); (I.M.)
| | - Sancho Bañón
- Department of Food Technology and Science and Nutrition, Veterinary Faculty, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain; (M.K.); (C.C.-P.)
| |
Collapse
|
11
|
Qing S, Long Y, Wu Y, Shu S, Zhang F, Zhang Y, Yue J. Hot-air-assisted radio frequency blanching of broccoli: heating uniformity, physicochemical parameters, bioactive compounds, and microstructure. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2664-2674. [PMID: 36647340 DOI: 10.1002/jsfa.12458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Vegetables are often blanched before drying. The hot-water blanching (HWB) of broccoli reduces quality and is environmentally harmful. In this work, hot-air-assisted radio frequency heating blanching (HA-RFB) of broccoli was developed for use before further drying processes. Blanching sufficiency, heating uniformity, and heating rate during HA-RFB were investigated to improve the product's physicochemical properties and texture. Suitable heating conditions were achieved when HA-RFB was applied with hot air at 70 °C, with an electrode gap of 10.7 cm, using a cylindrical container for the broccoli. RESULTS Under these conditions, the relative peroxidase activity in broccoli decreased to 3.26% within 117 s, with 13.45% of weight loss. In comparison with HWB broccoli, the products blanched by HA-RFB preserved their texture, bioactive compounds, and microstructure better. The ascorbic acid, sulforaphane, and total glucosinolate content in HA-RFB products were 251.1%, 131.9% and 36.7% higher than those in HWB broccoli, and HA-RFB treatment led to a greater weight loss (13.45 ± 0.50%) than HWB (8.70 ± 1.70%), which is very helpful for the subsequent drying process. CONCLUSION This study demonstrated that HA-RFB could be a promising substitute for HWB to blanch broccoli and other flower vegetables, especially as a pretreatment in the drying process. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shuting Qing
- Bor S. Luh Food Safety Research Center, College of Agriculture and Biology, Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, SJTU-OSU Innovation Center for Food Control and Environmental Sustainability, Shanghai Jiao Tong University, Shanghai, China
| | - Yangyang Long
- Bor S. Luh Food Safety Research Center, College of Agriculture and Biology, Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, SJTU-OSU Innovation Center for Food Control and Environmental Sustainability, Shanghai Jiao Tong University, Shanghai, China
| | - Yiwen Wu
- Bor S. Luh Food Safety Research Center, College of Agriculture and Biology, Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, SJTU-OSU Innovation Center for Food Control and Environmental Sustainability, Shanghai Jiao Tong University, Shanghai, China
| | - Shumin Shu
- Kangshi (Shanghai) Food Science and Technology Co., Ltd, Shanghai, China
| | - Fei Zhang
- Kangshi (Shanghai) Food Science and Technology Co., Ltd, Shanghai, China
| | - Yan Zhang
- Kangshi (Shanghai) Food Science and Technology Co., Ltd, Shanghai, China
| | - Jin Yue
- Bor S. Luh Food Safety Research Center, College of Agriculture and Biology, Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, SJTU-OSU Innovation Center for Food Control and Environmental Sustainability, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Jiao Tong University Sichuan Research Institute, Chengdu, China
| |
Collapse
|
12
|
Diacetyl Inhibits the Browning of Fresh-Cut Stem Lettuce by Regulating the Metabolism of Phenylpropane and Antioxidant Ability. Foods 2023; 12:foods12040740. [PMID: 36832814 PMCID: PMC9955407 DOI: 10.3390/foods12040740] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/02/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023] Open
Abstract
Enzymatic browning is the main quality issue of fresh-cut stem lettuce (Lactuca sativa L. var. angustana Irish). In this research, the effect of diacetyl on the browning and browning-related mechanisms of fresh-cut stem lettuce was explored. The data showed that diacetyl treatment with 10 μL L-1 inhibited the browning of fresh-cut stem lettuce and extended the shelf life by over 8 d at 4 °C compared with the control. Diacetyl treatment repressed gene expression and decreased the activities of PAL (phenylalanine ammonia-lyase), C4H (cinnamate-4-hydroxylase) and 4CL (4-coumarate-CoA ligase), which thus reduced the accumulation of individual and total phenolic compounds. Moreover, diacetyl enhanced the antioxidant ability and reduced ROS accumulation, improving the anti-browning ability and indirectly suppressing the biosynthesis of phenolic compounds. These results indicated that diacetyl treatment repressed the browning of fresh-cut stem lettuce by regulating the phenylpropanoid metabolism pathway and antioxidant ability. This study is the first to report that diacetyl has an effective anti-browning role for fresh-cut stem lettuce.
Collapse
|
13
|
Zhang C, Lyu X, Aadil RM, Tong Y, Zhao W, Yang R. Microwave heating instead of blanching to produce low-fat French fries. INNOV FOOD SCI EMERG 2023. [DOI: 10.1016/j.ifset.2023.103298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
14
|
Yao Y, Zhang B, Pang H, Wang Y, Fu H, Chen X, Wang Y. The effect of radio frequency heating on the inactivation and structure of horseradish peroxidase. Food Chem 2023; 398:133875. [PMID: 35964573 DOI: 10.1016/j.foodchem.2022.133875] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 07/09/2022] [Accepted: 08/05/2022] [Indexed: 10/15/2022]
Abstract
The effects of radio frequency (RF) heating on horseradish peroxidase (HRP) activity and its structure were investigated in this paper. The HRP was heated to 50 °C, 70 °C and 90 °C at different electrode gaps (100, 110 and 120 mm). The relative enzyme activity was 105.33 %-113.73 % at 50 °C, 91.11 %-93.05 % at 70 °C and 47.05 %-68.17 % at 90 °C. Ultraviolet-visible, circular dichroism and fluorescence spectra were used to monitor the variation in secondary and tertiary structure. The results showed that RF heating at the electrode gaps of 120 mm contributed to more severe enzyme inactivation and conformational destruction, which can be explained by the changes in Soret band, secondary structure content and tryptophan fluorescence intensity. This study revealed that enzyme inactivation by RF heating was associated with loss of helical structure, unfolding of enzyme protein and ejection of heme group.
Collapse
Affiliation(s)
- Yishun Yao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Bo Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Huiyun Pang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Yequn Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Hongfei Fu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Xiangwei Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Yunyang Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
15
|
Effects of hot-air microwave rolling blanching pretreatment on the drying of turmeric (Curcuma longa L.): Physiochemical properties and microstructure evaluation. Food Chem 2023; 398:133925. [DOI: 10.1016/j.foodchem.2022.133925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 07/25/2022] [Accepted: 08/09/2022] [Indexed: 11/15/2022]
|
16
|
Sterilizing Ready-to-Eat Poached Spicy Pork Slices Using a New Device: Combined Radio Frequency Energy and Superheated Water. Foods 2022; 11:foods11182841. [PMID: 36140967 PMCID: PMC9497799 DOI: 10.3390/foods11182841] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/04/2022] [Accepted: 09/08/2022] [Indexed: 11/30/2022] Open
Abstract
In this study, a new device was used to inactivate G. stearothermophilus spores in ready-to-eat (RTE) poached spicy pork slices (PSPS) applying radio frequency (RF) energy (27.12 MHz, 6 kW) and superheated water (SW) simultaneously. The cold spot in the PSPS sample was determined. The effects of electrode gap and SW temperature on heating rate, spore inactivation, physiochemical properties (water loss, texture, and oxidation), sensory properties, and SEM of samples were investigated. The cold spot lies in the geometric center of the soup. The heating rate increased with increasing electrode gap and hit a peak under 190 mm. Radio frequency combined superheated water (RFSW) sterilization greatly decreased the come-up time (CUT) compared with SW sterilization, and a 5 log reduction in G. stearothermophilus spores was achieved. RFSW sterilization under 170 mm electrode gap reduced the water loss, thermal damage of texture, oxidation, and tissues and cells of the sample, and kept a better sensory evaluation. RFSW sterilization has great potential in solid or semisolid food processing engineering.
Collapse
|
17
|
Inactivation of Endogenous Pectin Methylesterases by Radio Frequency Heating during the Fermentation of Fruit Wines. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8060265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Pectin methylesterase (PME) is a methyl ester group hydrolytic enzyme of either plant or microbial origin. Importantly, endogenous PMEs in fruits can catalyze the demethoxylation of pectin with a bulk release of methanol, largely impacting the fruit juice and wine industries. Here, we demonstrated radio frequency (RF) heating for inactivation of endogenous PMEs and investigated the relevant mechanisms underpinning enzymatic inactivation. The RF heating curve indicated that the optimal heating rate was achieved at an electrode gap of 90 mm (compared to 100 mm and 110 mm) and that the inactivation rate of the enzyme increases with heating time. RF heating exhibited better effects on enzymatic inactivation than traditional water heating, mainly by changing the secondary structures of PMEs, including α-helix, β-sheet, β-turn, and random coil. Moreover, fluorescence spectroscopy indicated changes in the tertiary structure with a significant increase in fluorescence intensity. Significantly, application of RF heating for inactivation of PMEs resulted in a 1.5-fold decrease in methanol during the fermentation of jujube wine. Collectively, our findings demonstrated an effective approach for inactivating endogenous PMEs during the bioprocesses of fruits.
Collapse
|
18
|
Impact of radio frequency treatment on textural properties of food products: An updated review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.04.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Soto‐Reyes N, Sosa‐Morales ME, Rojas‐Laguna R, López‐Malo A. Advances in radio frequency pasteurisation equipment for liquid foods: a review. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Nohemí Soto‐Reyes
- Universidad de las Américas Puebla Ex˗Hacienda Sta. Catarina Mártir San Andrés Cholula Puebla PUE 72810 Mexico
| | - María Elena Sosa‐Morales
- División de Ciencias de la Vida Departamento de Alimentos Posgrado en Biociencias Universidad de Guanajuato Campus Irapuato‐Salamanca Irapuato GTO 36500 Mexico
| | - Roberto Rojas‐Laguna
- División de Ingenierías Departamento de Ingeniería Electrónica Universidad de Guanajuato Campus Irapuato‐Salamanca Salamanca GTO 36600 Mexico
| | - Aurelio López‐Malo
- Universidad de las Américas Puebla Ex˗Hacienda Sta. Catarina Mártir San Andrés Cholula Puebla PUE 72810 Mexico
| |
Collapse
|
20
|
Özbek HN. Radio frequency-assisted hot air drying of carrots for the production of carrot powder: Kinetics and product quality. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|