1
|
Wibowo C, Smit I, Pawelzik E. Improvement of the color of potato chips from cold-stored tubers by pretreatment with ultrasonication. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:2365-2372. [PMID: 39501824 DOI: 10.1002/jsfa.14006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 02/14/2025]
Abstract
BACKGROUND Low-temperature sweetening is a crucial aspect in the potato chips industry because of the initiation of browning. The present study aimed to investigate the effect of ultrasonication on the concentrations of reducing sugars, sucrose, asparagine and chip color on tubers with different characteristics. Therefore, samples of the cultivars (cvs.) Nicola, Laura and Golden Wonder were used in this study. The tubers were initially stored at 4 °C and a relative humidity of 90% for 18 weeks. Ultrasonication was applied at 25 and 50 °C for 10, 20 and 30 min. RESULTS The results showed that ultrasonication contributed to improve the color of the chips produced from the chip cultivar (cv. Golden Wonder), as well as the non-chip cultivars (cvs. Nicola and Laura). The concentration of reducing sugars and sucrose is the main factor for the color development of the chips. Increased temperature and extended ultrasonication duration correlate with more pronounced cell wall disruption. CONCLUSION The present study revealed that ultrasonication could be considered as a pretreatment for production of chips from cold-stored tubers. However, it is necessary to validate the feasibility of this application in an upscaled process. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Condro Wibowo
- Department of Food Technology, Faculty of Agriculture, Universitas Jenderal Soedirman, Purwokerto, Indonesia
| | - Inga Smit
- Division Quality of Plant Products, Department of Crop Sciences Georg-August-University of Göttingen, Göttingen, Germany
| | - Elke Pawelzik
- Division Quality of Plant Products, Department of Crop Sciences Georg-August-University of Göttingen, Göttingen, Germany
| |
Collapse
|
2
|
Tang Y, Yang Y, Luo F, Luo J, Hu J, Yu H, Li W, Gao J, Fu F. Identification of novel natural anti-browning agents based on phenotypic and metabolites differences in potato cultivars. Food Chem 2025; 463:141450. [PMID: 39362095 DOI: 10.1016/j.foodchem.2024.141450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 09/10/2024] [Accepted: 09/25/2024] [Indexed: 10/05/2024]
Abstract
This study aimed to elucidate the changes of browning-related metabolite in fresh-cut potato and to identify anti-browning agents. Metabolomics and weighted correlation network analysis (WGCNA) were used to identify metabolites and correlate them with potato browning traits. A total of 79 browning trait-positive-related metabolites and 19 browning trait-negative-related metabolites were obtained from four key modules via WGCNA. The accumulation of metabolites with rich reducing groups and acidic groups were found to enhance anti-browning activity in potatoes. Among these metabolites, only L-pyroglutamic acid (L-PA) and ascorbic acid had variable importance for the projection (VIP) values greater than 1.5. In addition, it was found that L-PA inhibited polyphenol oxidase (PPO) activity by lowering pH and interacting with amino acid residues of PPO. L-PA also inhibited the growth of microorganisms in fresh-cut potato. Our results show that L-AP is an effective novel anti-browning agent with antibacterial activity.
Collapse
Affiliation(s)
- Yueming Tang
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; Institute of Agro-products Processing Science and Technology (Institute of Food Nutrition and Health), Sichuan Academy of Agricultural Sciences, Chengdu 610066, China.
| | - Yiwen Yang
- Institute of Agro-products Processing Science and Technology (Institute of Food Nutrition and Health), Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Fangyao Luo
- Institute of Agro-products Processing Science and Technology (Institute of Food Nutrition and Health), Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Jinghong Luo
- Institute of Agro-products Processing Science and Technology (Institute of Food Nutrition and Health), Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Jianjun Hu
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Haoqiang Yu
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China.
| | - Wanchen Li
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China.
| | - Jia Gao
- Institute of Agro-products Processing Science and Technology (Institute of Food Nutrition and Health), Sichuan Academy of Agricultural Sciences, Chengdu 610066, China.
| | - Fengling Fu
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
3
|
Kou R, Peng M, Zheng J, Hou S, Ma L, Liu X. Short-Time High-Oxygen Pre-Treatment Delays Lignification of Loquat ( Eriobotrya japonica Lindl.) During Low-Temperature Storage. Foods 2025; 14:201. [PMID: 39856869 PMCID: PMC11764748 DOI: 10.3390/foods14020201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/06/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Lignification often occurs during low-temperature storage in loquat fruit, leading to increased firmness and lignin content, water loss, and changes in flavor. As induced stress factors, short-time high-oxygen pre-treatment (SHOP) can initiate resistant metabolism and regulate the physicochemical qualities during fresh fruit storage. However, the effect of SHOP on the lignification and quality of loquat has been reported less. In the present study, loquat fruit was immersed in oxygen concentrations of 70%, 80%, and 90% for 30 min before being stored at 4 ± 1 °C. The results showed that the 80% SHOP samples had lower lignin accumulation and firmness, showing reductions of 23.1% and 21.1% compared to the control at 50 days. These effects were associated with the inhibition of the activities of lignin synthesis-related enzymes, including phenylalanine ammonia-lyase (PAL), 4-coumarate-CoA ligase (4CL), cinnamyl alcohol dehydrogenase (CAD), and peroxidase (POD). Meanwhile, 80% SHOP improved the antioxidant enzyme system and maintained the structural integrity of the cells. Furthermore, SHOP retained the color and suppressed decay and weight loss and the decline in the soluble solids content (SSC) and titratable acidity (TA). As a convenient and cheap physical approach, SHOP is a promising technology for delaying lignification by regulating lignin synthesis in loquat storage.
Collapse
Affiliation(s)
- Runlei Kou
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; (R.K.); (M.P.); (J.Z.); (L.M.)
| | - Mengfei Peng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; (R.K.); (M.P.); (J.Z.); (L.M.)
| | - Jiaxuan Zheng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; (R.K.); (M.P.); (J.Z.); (L.M.)
| | - Shuangdi Hou
- Key Laboratory of Agricultural Products Storage and Preservation, Ministry of Agriculture and Rural Affairs, Research Institute of Agricultural Products Preservation and Processing, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China;
| | - Linyuan Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; (R.K.); (M.P.); (J.Z.); (L.M.)
| | - Xia Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; (R.K.); (M.P.); (J.Z.); (L.M.)
| |
Collapse
|
4
|
Zhou C, Hu Y, Zhou Y, Yu H, Li B, Yang W, Zhai X, Wang X, Liu J, Wang J, Liu S, Cai J, Shi J, Zou X. Air and argon cold plasma effects on lipolytic enzymes inactivation, physicochemical properties and volatile profiles of lightly-milled rice. Food Chem 2024; 445:138699. [PMID: 38359566 DOI: 10.1016/j.foodchem.2024.138699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 01/17/2024] [Accepted: 02/05/2024] [Indexed: 02/17/2024]
Abstract
This study investigated the effectiveness of cold-plasma treatment using air and argon as input gas on deactivation of lipolytic enzymes in lightly-milled-rice (LMR). The results showed no significant inactivation in lipase and lipoxygenase using air-plasma. However, using argon as input gas, the residual activities of lipase and lipoxygenase were reduced to 64.51 % and 29.15 % of initial levels, respectively. Argon plasma treatment resulted in more substantial augmentation in peak and breakdown viscosities of LMR starch, suggesting an enhancement in palatability of cooked LMR with increased stickiness and decreased hardness. In contrast to the decrease in volatile compounds in LMR following argon plasma treatment, the concentrations of several prevalent aroma compounds, including 1-hexanol, 1-hexanal, and 2-pentylfuran, exhibited significant increments, reaching 1489.70 ng/g, 3312.10 ng/g, and 58.80 ng/g, respectively. These findings suggest the potential for enhancing various facets of the commercial qualities of LMR by utilizing different input gases during plasma treatment.
Collapse
Affiliation(s)
- Chenguang Zhou
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Jiangsu Kings Luck Brewer Co Ltd, Lianshui 223411, China
| | - Yuqian Hu
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yaojie Zhou
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Haoran Yu
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Bin Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Wenli Yang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaodong Zhai
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xin Wang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jie Liu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology and Business University, Beijing 100048, China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology and Business University, Beijing 100048, China
| | - Siyao Liu
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jianrong Cai
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jiyong Shi
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Xiaobo Zou
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
5
|
Liu Y, Zhang J, Zhao Y, Bao Y, Wu Z, Zheng Y, Jin P. Effects of the Combined Treatment of Trans-2-Hexenal, Ascorbic Acid, and Dimethyl Dicarbonate on the Quality in Fresh-Cut Potatoes ( Solanum tuberosum L.) during Storage. Foods 2024; 13:1526. [PMID: 38790826 PMCID: PMC11120313 DOI: 10.3390/foods13101526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Fresh-cut potatoes (Solanum tuberosum L.) are susceptible to browning and microbial contamination during storage. In this study, the effects of trans-2-hexenal (E2H), ascorbic acid (VC), dimethyl dicarbonate (DMDC), and the combined treatment of E2H, VC, and DMDC on quality deterioration in fresh-cut potatoes were investigated. The response surface methodology (RSM) demonstrated that E2H, VC, and DMDC concentrations of 0.010%, 0.65%, and 240 mg/L, respectively, were the optimum conditions for fresh-cut potato preservation. Further analysis showed that the combined treatment of E2H, VC, and DMDC was the most effective method of reducing quality deterioration in potatoes compared to the control and individual treatments. Furthermore, the combined treatment of E2H, VC, and DMDC could decrease the accumulation of reactive oxygen species (ROS) via improving antioxidant enzyme activities. Meanwhile, energy-metabolism-related enzyme activities and glutamate decarboxylase (GAD) activity were enhanced, while γ-aminobutyric acid transaminase (GABA-T) activity was reduced via the combined treatment of E2H, VC, and DMDC, which contributed to maintaining high energy levels and GABA content in potatoes. These findings suggested that the combined treatment of E2H, VC, and DMDC could protect membrane integrity through enhancing antioxidant capacity, energy levels, and GABA content to maintain quality in fresh-cut potatoes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Peng Jin
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.L.); (J.Z.); (Y.Z.); (Y.B.); (Z.W.); (Y.Z.)
| |
Collapse
|
6
|
Sheibani S, Jafarzadeh S, Qazanfarzadeh Z, Osadee Wijekoon MMJ, Mohd Rozalli NH, Mohammadi Nafchi A. Sustainable strategies for using natural extracts in smart food packaging. Int J Biol Macromol 2024; 267:131537. [PMID: 38608975 DOI: 10.1016/j.ijbiomac.2024.131537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/24/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
The growing demand for sustainable and eco-friendly food packaging has prompted research on innovative solutions to environmental and consumer health issues. To enhance the properties of smart packaging, the incorporation of bioactive compounds derived from various natural sources has attracted considerable interest because of their functional properties, including antioxidant and antimicrobial effects. However, extracting these compounds from natural sources poses challenges because of their complex chemical structures and low concentrations. Traditional extraction methods are often environmentally harmful, expensive and time-consuming. Thus, green extraction techniques have emerged as promising alternatives, offering sustainable and eco-friendly approaches that minimise the use of hazardous solvents and reduce environmental impact. This review explores cutting-edge research on the green extraction of bioactive compounds and their incorporation into smart packaging systems in the last 10 years. Then, an overview of bioactive compounds, green extraction techniques, integrated techniques, green extraction solvents and their application in smart packaging was provided, and the impact of bioactive compounds incorporated in smart packaging on the shelf lives of food products was explored. Furthermore, it highlights the challenges and opportunities within this field and presents recommendations for future research, aiming to contribute to the advancement of sustainable and efficient smart packaging solutions.
Collapse
Affiliation(s)
- Samira Sheibani
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Shima Jafarzadeh
- Centre for Sustainable Bioproducts, Deakin University, Waurn Ponds, VIC 3216, Australia.
| | - Zeinab Qazanfarzadeh
- International Centre for Research on Innovative Biobased Materials (ICRI-BioM)-International Research Agenda, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland
| | - M M Jeevani Osadee Wijekoon
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | | | - Abdorreza Mohammadi Nafchi
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia; Department of Food Science and Technology, Damghan Branch, Islamic Azad University, Damghan, Iran; Green Biopolymer, Coatings & Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia.
| |
Collapse
|
7
|
Wang J, Cui Y, Zhang M, Wang L, Aihaiti A, Maimaitiyiming R. Pulsed-control plasma-activated water: An emerging technology to assist ultrasound for fresh-cut produce washing. ULTRASONICS SONOCHEMISTRY 2024; 102:106739. [PMID: 38154207 PMCID: PMC10792264 DOI: 10.1016/j.ultsonch.2023.106739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 12/30/2023]
Abstract
In this study, we explored the use of plasma-activated water (PAW) in combination with ultrasound (US) for food disinfection. Our research introduces a novel approach that utilizes a pulsed-control (PC) method to modify the PAW. The resulting PCPAW exhibits significantly higher concentrations of key reactive oxygen and nitrogen species (RONS) compared to conventional PAW. The disinfection efficacy of US-PCPAW against fresh-cut lettuce was compared to that of US-PAW, US, and PCPAW. The combination of US and PCPAW was highly effective in reducing food-borne pathogens, surpassing single treatments in count reduction and minimizing cross-contamination. Furthermore, our study demonstrates that US-PCPAW effectively controls browning appearance without compromising sensory attributes. These findings suggest that PCPAW, as a novel disinfectant, can be a valuable addition to US to enhance the quality and safety of fresh-cut produce.
Collapse
Affiliation(s)
- Jiayi Wang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China; College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China.
| | - Yincang Cui
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China; Physics and Chemistry Analysis Center, Xinjiang University, Urumqi 830046, China
| | - Minwei Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| | - Liang Wang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| | - Aihemaitijiang Aihaiti
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| | - Ruxianguli Maimaitiyiming
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| |
Collapse
|
8
|
Qu Y, Guo L, Hong C, Wan Y, Tuly J, Ma H. Effects of multi-frequency ultrasonic assisted sodium hypochlorite on the cleaning effect and quality of fresh-cut scallion stems. ULTRASONICS SONOCHEMISTRY 2023; 100:106613. [PMID: 37774468 PMCID: PMC10561118 DOI: 10.1016/j.ultsonch.2023.106613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/03/2023] [Accepted: 09/20/2023] [Indexed: 10/01/2023]
Abstract
This study aimed to evaluate the feasibility of multi-frequency ultrasound-assisted sodium hypochlorite (NaClO) on fresh-cut scallion stem (FCS) cleaning. Ultrasonic cleaning parameters (frequency mode, frequency amplitude, and the sample to water ratios) were optimized against cleanliness and microbial biomass as evaluation indexes. Under the optimum conditions, the free chlorine residues and quality attributes of FCS were also investigated. The results showed that the cleanliness of FCS improved significantly (p < 0.05) and the total number of microorganisms, especially Escherichia coli, decreased dramatically under the optimized cleaning condition with the simultaneous ultrasound (US) at the sweep frequency (SF) combination of 20 + 28 kHz, the ultrasonic density of 60 W/L, pulse time of 10 s, which indicated that the shelf life of FCS would be extended. Compared to FCS after the 250 ppm NaClO cleaning, the retention of ascorbic acid (AA), color, and texture structure of FCS had no significant difference after ultrasound-assisted NaClO treatment. Meanwhile, the content of allicin increased by 52.5% under ultrasound-assisted cleaning. The integration of US into the cleaning process resulted in a notably reduction of 68% in NaClO concentration, as well as the weight loss and respiration rate (RR) of the scallion stems. Therefore, ultrasound-assisted NaClO cleaning was regarded as a promising and effective approach for cleaning fresh-cut vegetables.
Collapse
Affiliation(s)
- Yulan Qu
- School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Lina Guo
- School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China; Institute of Food Physical Processing, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, China
| | - Chen Hong
- School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Yuming Wan
- School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Jamila Tuly
- School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China; Institute of Food Physical Processing, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, China.
| |
Collapse
|
9
|
Liu Y, Liu Z, Wang J, Liu Y, Huang Y, Zhu X, Cheng M, Cao J, Liu G, Wan Y, Wang J, Wu X. Effects of electrolyzed water‐ultrasound treatment on pesticide removal in fresh‐cut potatoes with different cutting methods. J FOOD PROCESS ENG 2023; 46. [DOI: 10.1111/jfpe.14423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/14/2023] [Indexed: 03/24/2025]
Abstract
AbstractElectrolyzed water (EW) and ultrasound (US) treatment are emerging effective means of reducing pesticides in fresh‐cut vegetables. However, their synergetic efficacy of degrading pesticides in fresh‐cut potatoes has not yet been revealed. Therefore, in this study, the effects of the combination of EW and US treatment on the removal of pesticides (chlorpyrifos, phorate, chlorothalonil, and procymidone) in fresh‐cut potato silks, strips, slices, and dices were investigated. Acidic electrolyzed water (AcEW) was selected as the optimum washing solution for pesticide removal on fresh‐cut potatoes. For the same type of fresh‐cut potato, the AcEW treatment with different sample‐to‐washing solution ratios showed no significant difference in the removal effect of different pesticides. The combined application of AcEW and US could efficiently reduce pesticides for different fresh‐cut potatoes. Furthermore, the optimal effects obtained varied greatly within the range of ultrasonic power 200–400 W and washing time 10–20 min. These results indicated that combining AcEW with US could serve as a promising method for pesticide reduction in fresh‐cut potatoes under respective appropriate process parameters.Practical ApplicationsPotato silks, strips, slices, and dices are the most common application form of fresh‐cut potatoes in Chinese dishes. Electrolyzed water (EW) and ultrasound (US) treatment have recently been used in reducing pesticides on fresh‐cut vegetables. However, their synergetic efficacy of degrading pesticides in fresh‐cut potatoes has not yet been revealed. This research provides a simple and novel method for pesticide removal on fresh‐cut potatoes. These steps combine Acidic electrolyzed water (AcEW) and US treatments to explore and improve the process parameters (sample‐to‐washing solution ratios, ultrasonic power, and washing time) of degrading pesticides for different fresh‐cut potatoes, including potato silks, strips, slices, and dices. Besides, the effect mechanism of different treatments on the degradation of pesticide residues was also discussed. The novel cleaning technology is expected to be popularized in vegetable processing plants.
Collapse
Affiliation(s)
- Yuan Liu
- Hebei Key Laboratory of Quality & Safety Analysis‐Testing for Agro‐Products and Food Hebei North University Zhangjiakou China
- Zhangjiakou Key Laboratory of Quality & Safety for Characteristics Agro‐Products Hebei North University Zhangjiakou China
| | - Zigang Liu
- Hebei Key Laboratory of Quality & Safety Analysis‐Testing for Agro‐Products and Food Hebei North University Zhangjiakou China
| | - Jian Wang
- Hebei Key Laboratory of Quality & Safety Analysis‐Testing for Agro‐Products and Food Hebei North University Zhangjiakou China
- Zhangjiakou Key Laboratory of Quality & Safety for Characteristics Agro‐Products Hebei North University Zhangjiakou China
| | - Yang Liu
- Hebei Key Laboratory of Quality & Safety Analysis‐Testing for Agro‐Products and Food Hebei North University Zhangjiakou China
- Zhangjiakou Key Laboratory of Quality & Safety for Characteristics Agro‐Products Hebei North University Zhangjiakou China
| | - Yali Huang
- College of Resources and Environmental Science Hebei University of Science and Technology Shijiazhuang China
| | - Xuran Zhu
- Chengde Academy of Agriculture and Forestry Sciences Chengde China
| | - Ming Cheng
- Hebei Key Laboratory of Quality & Safety Analysis‐Testing for Agro‐Products and Food Hebei North University Zhangjiakou China
- Zhangjiakou Key Laboratory of Quality & Safety for Characteristics Agro‐Products Hebei North University Zhangjiakou China
| | - Jiayong Cao
- Hebei Key Laboratory of Quality & Safety Analysis‐Testing for Agro‐Products and Food Hebei North University Zhangjiakou China
- Zhangjiakou Key Laboratory of Quality & Safety for Characteristics Agro‐Products Hebei North University Zhangjiakou China
| | - Guangyang Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China Beijing China
| | - Yuping Wan
- Beijing Kwinbon Biotechnology Co., Ltd. Beijing China
| | - Jiying Wang
- Hebei Kingmoral Biotech Co., Ltd. Shijiazhuang China
| | - Xiaosheng Wu
- Beijing Kwinbon Biotechnology Co., Ltd. Beijing China
| |
Collapse
|
10
|
Aihaiti A, Maimaitiyiming R, Wang L, Wang J. Processing of Fresh-Cut Potato Using Plasma-Activated Water Prepared by Decreasing Discharge Frequency. Foods 2023; 12:2285. [PMID: 37372496 DOI: 10.3390/foods12122285] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
As a novel non-thermal processing method, the concentration of active compounds in plasma-activated water (PAW) is usually adjusted by changing the voltage and preparation time. We recently adjusted the discharge frequency and found that the PAW properties were improved. In this study, fresh-cut potato was selected as a model, and PAW was prepared using a frequency of 200 Hz (200 Hz-PAW). Its efficacy was compared with that of PAW prepared using 10 kHz. The results showed that the ozone, hydrogen peroxide, nitrate, and nitrite concentrations in 200 Hz-PAW were 5.00-, 3.62-, 8.05-, and 1.48-fold higher than those of 10 kHz-PAW. PAW inactivated the browning-related enzymes polyphenol oxidase and peroxidase, lowering the browning index and inhibiting browning; 200 Hz-PAW exhibited the lowest of these parameters during storage. In addition, PAW induced PAL to promote phenolic synthesis and increase antioxidant activity to delay malondialdehyde accumulation; 200 Hz-PAW exhibited the highest of these parameters. Moreover, 200 Hz-PAW had the lowest weight loss and electrolyte leakage rates. Furthermore, microbial analysis showed that the lowest aerobic mesophilic, mold, and yeast counts during storage were observed in the 200 Hz-PAW group. These results suggest that frequency-controlled PAW has the potential to treat fresh-cut produce.
Collapse
Affiliation(s)
- Aihemaitijiang Aihaiti
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Ruxianguli Maimaitiyiming
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Liang Wang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Jiayi Wang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| |
Collapse
|
11
|
Song Z, Qiao J, Tian D, Dai M, Guan Q, He Y, Liu P, Shi J. Glutamic acid can prevent the browning of fresh-cut potatoes by inhibiting PPO activity and regulating amino acid metabolism. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
12
|
Liao X, Xing Y, Fan X, Qiu Y, Xu Q, Liu X. Effect of Composite Edible Coatings Combined with Modified Atmosphere Packaging on the Storage Quality and Microbiological Properties of Fresh-Cut Pineapple. Foods 2023; 12:foods12061344. [PMID: 36981269 PMCID: PMC10048421 DOI: 10.3390/foods12061344] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
This study investigated the effect of edible coating (EC), modified atmosphere packaging (MAP), and edible coating + modified atmosphere packaging (EC + MAP) treatments on the quality of fresh-cut pineapples during storage at 4 °C. The quality differences were analyzed by measuring the quality, physiological indicators, and total microbial counts. After 8 d of storage, the brightness (L*) values of the EC + MAP and control samples were 72.76 and 60.83, respectively. The water loss and respiratory rate of the EC + MAP were significantly inhibited from 0% and 29.33 mg CO2 kg-1 h-1 to 4.13% and 43.84 mg CO2 kg-1 h-1, respectively. Furthermore, the fresh-cut pineapples treated with EC + MAP presented a good appearance, with lower total soluble solids (TSS) and relative conductivity and higher titratable acid (TA), ascorbic acid (AA), total phenol content, and firmness compared to the other treatment groups. At the end of storage, the EC + MAP samples exhibited the lowest polyphenol oxidase (PPO) activity, peroxidase (POD) activity, and malondialdehyde (MDA) content at 28.53 U, 60.37 U, and 1.47 nmol·g-1, respectively. Furthermore, the efficiency of EC + MAP treatment exceeded that of EC or MAP alone, preventing key problems involving the surface browning and microbiological safety of the fresh-cut pineapples. The results showed that EC + MAP treatment was more successful in maintaining the storage quality and extending the shelf life of fresh-cut pineapples.
Collapse
Affiliation(s)
- Xingmei Liao
- Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food and Bioengineering, Xihua University, Chengdu 610039, China
- Key Laboratory of Food Non Thermal Processing, Engineering Technology Research Center of Food Non Thermal Processing, Yibin Xihua University Research Institute, Yibin 644004, China
| | - Yage Xing
- Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food and Bioengineering, Xihua University, Chengdu 610039, China
- Key Laboratory of Food Non Thermal Processing, Engineering Technology Research Center of Food Non Thermal Processing, Yibin Xihua University Research Institute, Yibin 644004, China
| | - Xiangfeng Fan
- Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Ye Qiu
- Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Qinglian Xu
- Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Xiaocui Liu
- Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food and Bioengineering, Xihua University, Chengdu 610039, China
- Key Laboratory of Food Non Thermal Processing, Engineering Technology Research Center of Food Non Thermal Processing, Yibin Xihua University Research Institute, Yibin 644004, China
| |
Collapse
|
13
|
Yu W, Wang Y, Liu Y, Wu Y, Ouyang J. Browning inhibition and shelf life of packaged air‐dried chestnut kernels. J FOOD PROCESS ENG 2023. [DOI: 10.1111/jfpe.14283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Wenjie Yu
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety Beijing Forestry University Beijing China
| | - Yi Wang
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety Beijing Forestry University Beijing China
| | - Yongguo Liu
- Beijing Key Laboratory of Flavor Chemistry Beijing Technology and Business University (BTBU) Beijing China
| | - Yanwen Wu
- Institute of Analysis and Testing Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis) Beijing China
| | - Jie Ouyang
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety Beijing Forestry University Beijing China
| |
Collapse
|
14
|
Dai Y, Xie H, Zhao X, Zheng Y. The Effect of Sodium Nitroprusside Treatment on Storage Ability of Fresh-Cut Potato. Foods 2023; 12:221. [PMID: 36613434 PMCID: PMC9818613 DOI: 10.3390/foods12010221] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/24/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023] Open
Abstract
Quality deterioration is a major problem restricting the fresh-cut potato industry. The present study investigated the effect of sodium nitroprusside (SNP) treatment on the quality of fresh-cut potatoes during short-term storage. The treatment was carried out immediately either before or after cutting, using an SNP concentration of 200 μmol/L. The results showed that SNP treatment inhibited the accumulation of malondialdehyde (MDA) and total soluble solids (TSSs). SNP treatment also decreased the firmness, chewing properties, and ascorbic acid (AsA) content in potatoes, maintaining high levels of total phenols (TPs), total flavonoids (TFs), nitric oxide (NO), and superoxide dismutase (SOD). Furthermore, SNP treatment restrained the rise of phenylalanine ammonia-lyase (PAL), peroxidase (POD), and polyphenol oxidase (PPO), as well as the electrolyte leakage (EL) rate. After SNP treatment, the nitrite content in the potatoes was within security scope. Comparing potatoes treated before and after cutting, the best result was noted in the potatoes soaked in SNP before cutting, which displayed the smallest losses in firmness (11.24%), chewing properties (34.30%), and AsA (40.35%), and maximum increases in TPs (32.84%), TFs (2.83-time), NO (76.11%), and SOD activity (93.15%). Moreover, this group presented the minimum MDA content, EL rate, and TSS values and the lowest PAL, POD, and PPO activities. These results indicated that 200 μmol/L SNP applied for 20 min, particularly before cutting, is an efficient alternative technology that can be used in the fresh-cut potato industry.
Collapse
Affiliation(s)
- Yukexin Dai
- Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Institute of Agri-Food Processing and Nutrition, Ministry of Agriculture and Rural Affairs, Beijing 100097, China
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Hong Xie
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiaoyan Zhao
- Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Institute of Agri-Food Processing and Nutrition, Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Yanyan Zheng
- Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Institute of Agri-Food Processing and Nutrition, Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| |
Collapse
|
15
|
Hong C, Zhou HC, Zhao YM, Ma H. Ultrasonic washing as an abiotic elicitor to induce the accumulation of phenolics of fresh-cut red cabbages: Effects on storage quality and microbial safety. Front Nutr 2022; 9:1006440. [PMID: 36407509 PMCID: PMC9670152 DOI: 10.3389/fnut.2022.1006440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/17/2022] [Indexed: 03/30/2024] Open
Abstract
Ultrasonic washing has been proved to be an abiotic elicitor to induce the accumulation of phenolics in some fruit and vegetables. However, the feasibility of ultrasonic washing on the accumulation of phenolics in fresh-cut red cabbages has not yet been reported. Therefore, the effects of ultrasonic washing on the phenolics and related phenolic metabolism enzymes of fresh-cut red cabbages, as well as quality and microbial safety during cold storage, were investigated. Firstly, the single-factor tests were used to optimize the ultrasonic processing parameters, including frequency mode, frequency amplitude, power density, frequency cycle time, and ultrasonic washing. Then the activities of the enzymes related to phenolic metabolisms after optimal ultrasound treatment were investigated, including phenylalanine ammonia-lyase (PAL), polyphenol oxidase (PPO), and peroxidase (POD). Additionally, the quality and microbial safety of fresh-cut red cabbages stored at 4°C under the optimal ultrasound treatment were evaluated. The results showed that the content of soluble phenolics (SPs) in fresh-cut red cabbages increased significantly during storage under the optimal conditions (28 ± 2 kHz, 60 W/L, 400 ms, and 20 min) compared with the control (P < 0.05). The PAL activity was activated and the PPO and POD activities were inhibited after ultrasonic washing, which contributed to the increase in the content of SPs. Meanwhile, the storage quality and microbial safety of fresh-cut red cabbages were improved. Ultrasonic washing reduced the weight loss and respiration rate and improved the color and texture characteristics. Additionally, the fresh-cut red cabbages after ultrasonic washing showed more retention of ascorbic acid (AA), total soluble proteins (TSPs), total soluble sugars (TSSs), and total soluble solids (SSs) compared with the control. Finally, ultrasonic washing effectively inhibited the growth of bacteria, molds and yeasts, which is beneficial to the extension of the shelf-life of fresh-cut red cabbages. Therefore, ultrasonic washing can be used as a tool to increase the content of SPs in fresh-cut red cabbages while retaining quality attributes and microbial safety.
Collapse
Affiliation(s)
- Chen Hong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Hong-Chang Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yi-Ming Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| |
Collapse
|
16
|
Cheng D, Ma Q, Zhang J, Jiang K, Cai S, Wang W, Wang J, Sun J. Cactus polysaccharides enhance preservative effects of ultrasound treatment on fresh-cut potatoes. ULTRASONICS SONOCHEMISTRY 2022; 90:106205. [PMID: 36274416 PMCID: PMC9593739 DOI: 10.1016/j.ultsonch.2022.106205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/06/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
The shelf life of fresh-cut fruits and vegetables is affected by microbial growth, enzymatic browning, and loss of flavor. Although ultrasound (US) treatment is often used in the preservation of fresh-cut fruits and vegetables, it has limited antibacterial and preservative effects. Here, we used cactus polysaccharides (CP) to enhance the preservative effect of ultrasound treatment and extended the shelf life of fresh-cut potatoes. The results showed that combined treatment (CP + US) exerted better antimicrobial and anti-browning effects than individual treatments (either US or CP alone). In addition, CP + US has no adverse effect on texture and quality properties, as well as reduced the mobility of internal water. Combination treatment not only significantly decreased the activities of polyphenol oxidase and peroxidase (P < 0.05), but also maintained a high level of phenylalanine ammonia lyase activity and total phenol content during storage. It also maintained the integrity of cell membrane and reduced its permeability by inhibiting the peroxidation of membrane lipids. In addition, CP + US treatment significantly inhibited the activity of antioxidant enzymes and maintained a high DPPH scavenging ability. GC-IMS technology was used to evaluate the flavor of fresh-cut potatoes. The results showed that CP + US treatment reduced the production of a peculiar smell during storage and maintained a good flavor by inhibiting the production of aldehydes. Taken together, these results indicate that the effective preservation method of CP + US treatment can be utilized to increase the shelf life of fresh-cut potatoes.
Collapse
Affiliation(s)
- Dewei Cheng
- College of Food Science and Technology, Hebei Agricultural University, 289th Lingyusi Street, Lianchi District, Baoding 071000, China
| | - Qianyun Ma
- College of Food Science and Technology, Hebei Agricultural University, 289th Lingyusi Street, Lianchi District, Baoding 071000, China.
| | - Jianhui Zhang
- College of Food Science and Technology, Hebei Agricultural University, 289th Lingyusi Street, Lianchi District, Baoding 071000, China
| | - Kaili Jiang
- College of Food Science and Technology, Hebei Agricultural University, 289th Lingyusi Street, Lianchi District, Baoding 071000, China
| | - Shijia Cai
- College of Food Science and Technology, Hebei Agricultural University, 289th Lingyusi Street, Lianchi District, Baoding 071000, China
| | - Wenxiu Wang
- College of Food Science and Technology, Hebei Agricultural University, 289th Lingyusi Street, Lianchi District, Baoding 071000, China
| | - Jie Wang
- College of Food Science and Technology, Hebei Agricultural University, 289th Lingyusi Street, Lianchi District, Baoding 071000, China
| | - Jianfeng Sun
- College of Food Science and Technology, Hebei Agricultural University, 289th Lingyusi Street, Lianchi District, Baoding 071000, China; Hebei Potato Processing Technology Innovation Center, Hebei 076576, China; Sino-US and Sino-Japan Joint Center of Food Science and Technology, Baoding, Hebei, China.
| |
Collapse
|
17
|
Xing Y, Liao X, Wu H, Qiu J, Wan R, Wang X, Yi R, Xu Q, Liu X. Comparison of Different Varieties on Quality Characteristics and Microbial Activity of Fresh-Cut Pineapple during Storage. Foods 2022; 11:foods11182788. [PMID: 36140915 PMCID: PMC9497531 DOI: 10.3390/foods11182788] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/23/2022] Open
Abstract
This study compared the quality and storage characteristics of four pineapple varieties to select those displaying adequate storage resistance and those suitable for freshly cut processing. Four varieties of pineapple, namely Tainong No.16, Tainong No.17, Tainong No.11, and Bali, were used to analyze the quality differences in freshly cut pineapple during storage by measuring the quality, physiological indicators, and total microbial count. The results indicated that the nutritional quality and storability of freshly cut pineapples differed significantly among the varieties. During refrigeration at 4 °C, Tainong No.11 and Bali displayed the shortest storage period of 4 d, while Tainong No.17 and Tainong No.16 presented storage periods of 5 d and 6 d, respectively. A sensory evaluation indicated that the Tainong No.16 variety was superior in terms of consumer preference, while the Bali slices were generally rated lower than the other cultivars. Additionally, the sensory properties, weight loss, firmness, and ascorbic acid (AA) content of Tainong No.16 changed the least during storage, with values of 60.75%, 6.48%, 75.15%, and 20.44%, respectively. Overall, the quality order of the four varieties of freshly cut pineapples during storage was: Tainong No.16 > Tainong No.17 > Tainong No.11 > Bali. Moreover, two-way ANOVA showed that the main effect of variety and storage time on the storage quality of fresh-cut pineapple was significant (p < 0.05). The interaction effect of variety and storage time on other quality characteristics of fresh-cut pineapple was significant (p < 0.05) except for Titratable acid (TA) and AA. In conclusion, Tainong No.16 displayed higher storage potential than the other varieties. The results of this work provide application possibilities to promote the successful processing of pineapple cultivars as freshly cut produce.
Collapse
Affiliation(s)
- Yage Xing
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bioengineering, Xihua University, Chengdu 610039, China
- Key Laboratory of Food Non Thermal Processing, Engineering Technology Research Center of Food Non Thermal Processing, Yibin Xihua University Research Institute, Yibin 644004, China
- Correspondence:
| | - Xingmei Liao
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bioengineering, Xihua University, Chengdu 610039, China
- Key Laboratory of Food Non Thermal Processing, Engineering Technology Research Center of Food Non Thermal Processing, Yibin Xihua University Research Institute, Yibin 644004, China
| | - Haijun Wu
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bioengineering, Xihua University, Chengdu 610039, China
- Key Laboratory of Food Non Thermal Processing, Engineering Technology Research Center of Food Non Thermal Processing, Yibin Xihua University Research Institute, Yibin 644004, China
| | - Jiamin Qiu
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bioengineering, Xihua University, Chengdu 610039, China
- Key Laboratory of Food Non Thermal Processing, Engineering Technology Research Center of Food Non Thermal Processing, Yibin Xihua University Research Institute, Yibin 644004, China
| | - Rufeng Wan
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bioengineering, Xihua University, Chengdu 610039, China
- Key Laboratory of Food Non Thermal Processing, Engineering Technology Research Center of Food Non Thermal Processing, Yibin Xihua University Research Institute, Yibin 644004, China
| | - Xiaomin Wang
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bioengineering, Xihua University, Chengdu 610039, China
- Key Laboratory of Food Non Thermal Processing, Engineering Technology Research Center of Food Non Thermal Processing, Yibin Xihua University Research Institute, Yibin 644004, China
| | - Rumeng Yi
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bioengineering, Xihua University, Chengdu 610039, China
- Key Laboratory of Food Non Thermal Processing, Engineering Technology Research Center of Food Non Thermal Processing, Yibin Xihua University Research Institute, Yibin 644004, China
| | - Qinglian Xu
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bioengineering, Xihua University, Chengdu 610039, China
- Key Laboratory of Food Non Thermal Processing, Engineering Technology Research Center of Food Non Thermal Processing, Yibin Xihua University Research Institute, Yibin 644004, China
| | - Xiaocui Liu
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bioengineering, Xihua University, Chengdu 610039, China
- Key Laboratory of Food Non Thermal Processing, Engineering Technology Research Center of Food Non Thermal Processing, Yibin Xihua University Research Institute, Yibin 644004, China
| |
Collapse
|
18
|
Yusoff IM, Mat Taher Z, Rahmat Z, Chua LS. A review of ultrasound-assisted extraction for plant bioactive compounds: Phenolics, flavonoids, thymols, saponins and proteins. Food Res Int 2022; 157:111268. [DOI: 10.1016/j.foodres.2022.111268] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/14/2022] [Accepted: 04/17/2022] [Indexed: 12/27/2022]
|
19
|
Xu H, Li X, Mo L, Zou Y, Zhao G. Tyrosinase inhibitory mechanism and the anti-browning properties of piceid and its ester. Food Chem 2022; 390:133207. [PMID: 35594768 DOI: 10.1016/j.foodchem.2022.133207] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 01/12/2023]
Abstract
Different mechanisms for inhibiting tyrosinase can be exploited to avoid quality losses caused by the enzymatic browning of fruits and vegetables. Piceid (PI) and piceid 6″-O- azelaic acid ester (PIA) are oxidized by tyrosinase; however, their oxidation products may have inhibitory effects on tyrosinase. This notion is because l-DOPA oxidation was inhibited after the pre-incubation of PI/PIA with tyrosinase, however, l-DOPA oxidation was not affected if this pre-incubation was not performed. Circular dichroism analysis indicated a conformational change in the secondary structure of tyrosinase after pre-incubation. Further, molecular docking and enzyme reaction kinetics assays were employed to reveal the mechanism underlying the effects of PI/PIA on tyrosinase in the absence of pre-incubation with tyrosinase. PI/PIA had anti-browning effects in the potato models. The increased rate of A420 in PI/PIA groups at 24 h were 281% and 279%, which were approximately 2.4- and 2.5-fold lower than that of control (668%).
Collapse
Affiliation(s)
- Haixia Xu
- College of Food Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, Guangdong 510640, China
| | - Xiaofeng Li
- College of Food Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, Guangdong 510640, China.
| | - Lan Mo
- College of Food Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, Guangdong 510640, China
| | - Yucong Zou
- College of Food Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, Guangdong 510640, China
| | - Guanglei Zhao
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Wushan Road 381, Guangzhou, Guangdong 510640, China.
| |
Collapse
|
20
|
Evaluation of the anti-browning effect of quercetin on cut potatoes during storage. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Hamdan N, Lee CH, Wong SL, Fauzi CENCA, Zamri NMA, Lee TH. Prevention of Enzymatic Browning by Natural Extracts and Genome-Editing: A Review on Recent Progress. Molecules 2022; 27:1101. [PMID: 35164369 PMCID: PMC8839884 DOI: 10.3390/molecules27031101] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/23/2022] [Accepted: 01/31/2022] [Indexed: 11/29/2022] Open
Abstract
Fresh fruits and vegetable products are easily perishable during postharvest handling due to enzymatic browning reactions. This phenomenon has contributed to a significant loss of food quality and appearance. Thus, a safe and effective alternative method from natural sources is needed to tackle enzymatic browning prevention. The capabilities of natural anti-browning agents derived from plant- and animal-based resources in inhibiting enzymatic activity have been demonstrated in the literature. Some also possess strong antioxidants properties. This review aims to summarize a recent investigation regarding the use of natural anti-browning extracts from different sources for controlling the browning. The potential applications of genome-editing in preventing browning activity and improving postharvest quality is also discussed. Moreover, the patents on the anti-browning extract from natural sources is also presented in this review. The information reviewed here could provide new insights, contributing to the development of natural anti-browning extracts and genome-editing techniques for the prevention of food browning.
Collapse
Affiliation(s)
- Norfadilah Hamdan
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia; (N.H.); (C.H.L.); (S.L.W.); (C.E.N.C.A.F.); (N.M.A.Z.)
| | - Chia Hau Lee
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia; (N.H.); (C.H.L.); (S.L.W.); (C.E.N.C.A.F.); (N.M.A.Z.)
| | - Syie Luing Wong
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia; (N.H.); (C.H.L.); (S.L.W.); (C.E.N.C.A.F.); (N.M.A.Z.)
- Department of Matem’atica Aplicada, Ciencia e Ingeniería de Materiales y Tecnología Electronica, Universidad Rey Juan Carlos, C/Tulip’an s/n, M´ostoles, 28933 Madrid, Spain
| | - Che Ellysa Nurshafika Che Ahmad Fauzi
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia; (N.H.); (C.H.L.); (S.L.W.); (C.E.N.C.A.F.); (N.M.A.Z.)
| | - Nur Mirza Aqilah Zamri
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia; (N.H.); (C.H.L.); (S.L.W.); (C.E.N.C.A.F.); (N.M.A.Z.)
| | - Ting Hun Lee
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia; (N.H.); (C.H.L.); (S.L.W.); (C.E.N.C.A.F.); (N.M.A.Z.)
- Innovation Centre in Agritechnology for Advanced Bioprocessing (ICA), Universiti Teknologi Malaysia, Pagoh 84600, Johor, Malaysia
| |
Collapse
|
22
|
Kan J, Liu Y, Hui Y, Wan B, Liu J, Qian C, Jin C. 2‐aminoindan‐2‐phosphonic acid alleviates oxidative browning in fresh‐cut lily bulbs. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Juan Kan
- College of Food Science and Engineering Yangzhou University Yangzhou China
| | - Ying Liu
- College of Food Science and Engineering Yangzhou University Yangzhou China
| | - Yaoyao Hui
- College of Food Science and Engineering Yangzhou University Yangzhou China
| | - Bing Wan
- College of Food Science and Engineering Yangzhou University Yangzhou China
| | - Jun Liu
- College of Food Science and Engineering Yangzhou University Yangzhou China
| | - Chunlu Qian
- College of Food Science and Engineering Yangzhou University Yangzhou China
| | - Changhai Jin
- College of Food Science and Engineering Yangzhou University Yangzhou China
| |
Collapse
|
23
|
Xu Y, Wang D, Zhao W, Zheng Y, Wang Y, Wang P, Ma Y, Zhao X. Low frequency ultrasound treatment enhances antibrowning effect of ascorbic acid in fresh-cut potato slices. Food Chem 2022; 380:132190. [PMID: 35086012 DOI: 10.1016/j.foodchem.2022.132190] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 01/10/2022] [Accepted: 01/16/2022] [Indexed: 11/27/2022]
Abstract
Ascorbic acid (AsA) is generally used as an antibrowning agent for fresh-cut potato (FCP). However, its browning inhibitory effect is temporary because of its rapid consumption during redox processes. In this study, the effect of browning inhibition in FCP slices was evaluated using low frequency ultrasound (LFU; 40 kHz, 200 W, 3 min) and AsA (0.2%, w/v) treatments alone or in combination. The results showed that LFU combined with AsA (LFU-AsA) treatment could achieve a better antibrowning effect than either treatment alone (higher L*, lower a* and ΔE*), and there was no adverse effect on texture properties. LFU-AsA treatment not only inhibited the activity of PPO more effectively than AsA treatment, but also enhanced the antibrowning effect by retaining higher AsA content. Moreover, it also maintained membrane integrity by limiting lipid peroxidation and solute migration during storage. Overall, LFU-AsA treatment would be a promising method in food preservation industries.
Collapse
Affiliation(s)
- Yujia Xu
- Institute of Agri-food Pocessing and Nutrition, Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Dan Wang
- Institute of Agri-food Pocessing and Nutrition, Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Wenting Zhao
- Institute of Agri-food Pocessing and Nutrition, Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Yanyan Zheng
- Institute of Agri-food Pocessing and Nutrition, Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Yubin Wang
- Institute of Agri-food Pocessing and Nutrition, Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Pan Wang
- Institute of Agri-food Pocessing and Nutrition, Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Yue Ma
- Institute of Agri-food Pocessing and Nutrition, Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Xiaoyan Zhao
- Institute of Agri-food Pocessing and Nutrition, Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, China.
| |
Collapse
|
24
|
Tsikrika K, Tzima K, Rai DK. Recent advances in anti‐browning methods in minimally processed potatoes—A review. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Konstantina Tsikrika
- Department of Food Biosciences Teagasc Food Research Centre Dublin Ireland
- Laboratory of Food Microbiology and Biotechnology Department of Food Science and Technology Agricultural University of Athens Athens Greece
| | - Katerina Tzima
- Department of Food Biosciences Teagasc Food Research Centre Dublin Ireland
| | - Dilip K. Rai
- Department of Food Biosciences Teagasc Food Research Centre Dublin Ireland
| |
Collapse
|
25
|
Zhang L, Yu X, Yagoub AEA, Owusu-Ansah P, Wahia H, Ma H, Zhou C. Effects of low frequency multi-mode ultrasound and it's washing solution's interface properties on freshly cut cauliflower. Food Chem 2021; 366:130683. [PMID: 34343952 DOI: 10.1016/j.foodchem.2021.130683] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 06/05/2021] [Accepted: 07/20/2021] [Indexed: 11/17/2022]
Abstract
This study investigated the effect of single and dual frequency ultrasound washing on freshly cut cauliflower, by pulsed and sweep frequency modes, with or without the addition of zinc acetate (ZA), tea saponin (TS) and ethanol (ET). Results showed that the surface microorganisms were efficiently decreased by sweep dual frequency ultrasound washing. Moreover, the use of 0.5% ZA, or 0.06% TS or 5% ET as washing solution improved the bacterial reduction efficiency. Reducing the interfacial tension, viscosity and contact angle of washing solution may strengthen ultrasound cavitation. Nearly 2.0 log CFU/g natural microorganisms were decreased, and shelf life was extended from 2 to 4-8 days under 4 °C. Physicochemical parameters of bioactive compounds content, enzyme activity, antioxidant ability, freshness were analyzed. Results showed that 0.5% ZA as washing solution of ultrasound washing was beneficial to the quality maintenance during storage period.
Collapse
Affiliation(s)
- Long Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Xiaojie Yu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Abu ElGasim A Yagoub
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Patrick Owusu-Ansah
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Hafida Wahia
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China.
| |
Collapse
|
26
|
Rashid MH, Khan MR, Roobab U, Rajoka MSR, Inam‐ur‐Raheem M, Anwar R, Ahmed W, Jahan M, Ijaz MRA, Asghar MM, Shabbir MA, Aadil RM. Enhancing the shelf stability of fresh‐cut potatoes via chemical and nonthermal treatments. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15582] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Muhammad Hamdan Rashid
- National Institute of Food Science and Technology University of Agriculture Faisalabad Pakistan
| | - Moazzam Rafiq Khan
- National Institute of Food Science and Technology University of Agriculture Faisalabad Pakistan
| | - Ume Roobab
- School of Food Science and Engineering South China University of Technology Guangzhou China
| | | | - Muhammad Inam‐ur‐Raheem
- National Institute of Food Science and Technology University of Agriculture Faisalabad Pakistan
| | - Raheel Anwar
- Institute of Horticulture University of Agriculture Faisalabad Pakistan
| | - Waqar Ahmed
- National Institute of Food Science and Technology University of Agriculture Faisalabad Pakistan
| | - Musarrat Jahan
- National Institute of Food Science and Technology University of Agriculture Faisalabad Pakistan
| | | | - Malik Muhammad Asghar
- Postharvest Research Institute Ayub Agricultural Research Institute Faisalabad Pakistan
| | - Muhammad Asim Shabbir
- National Institute of Food Science and Technology University of Agriculture Faisalabad Pakistan
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology University of Agriculture Faisalabad Pakistan
| |
Collapse
|