1
|
Zhang Y, Wei H, Li Y, Shang Z, Zhang R, Zhang Z, Meng Q. An azacrown ether-based near-infrared fluorescent probe for the detection of Pb 2+ and its applications in food, environmental water, plant and animal samples. Anal Chim Acta 2025; 1351:343882. [PMID: 40187874 DOI: 10.1016/j.aca.2025.343882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/22/2025] [Accepted: 02/28/2025] [Indexed: 04/07/2025]
Abstract
BACKGROUND Lead ion (Pb2+), as a kind of heavy metal ion, is particularly harmful to human health and ecosystems due to its high toxicity and easy bioaccumulation. Fluorescent probes capable of selective and sensitive detection of Pb2+ are crucial for enabling rapid and on-site monitoring and regulation, thereby mitigating its adverse health and environmental impacts. Additionally, the development of fluorescence probes for the detection of Pb2+ in plant systems is rarely reported. Accordingly, the development of near-infrared (NIR) emission fluorescence probe for the detection of Pb2+ in food, environment and in vivo is of great significance. RESULTS In this work, an azacrown ether-based NIR fluorescence probe LCE1 was reported for the detection of Pb2+. Probe LCE1 can generate 1:1 complex with Pb2+, resulting in the inhibition of ICT effect to reduce the fluorescence signal. LCE1 exhibited many advantages, including NIR emission (λem = 670 nm), high selectivity and sensitivity (LOD = 0.34 μM) and fast response (30 s). The quantitative determination of Pb2+ in real food and water samples has been achieved with good recovery using LCE1 as the probe. Concurrently, the on-site and rapid determination of Pb2+ in water sample was realized by smartphone-assisted LCE1-based test strip technology. Notably, the fluorescence imaging of Pb2+ in cells and animals has been successfully implemented using the probe LCE1. Most importantly, the fluorescence imaging of Pb2+ in Pb-hyperaccumulator plant samples has been successfully demonstrated. SIGNIFICANCE LCE1 could provide new methods for understanding the physiopathological roles of Pb2+, evaluating food safety and selecting plants used to remediate soil contaminated by heavy metals.
Collapse
Affiliation(s)
- Yueyuan Zhang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, PR China; Anshan Vocational and Technical College, Anshan, Liaoning Province, 114046, PR China
| | - Huacong Wei
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, PR China
| | - Yu Li
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, PR China
| | - Zhuye Shang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, PR China.
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Zhiqiang Zhang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, PR China
| | - Qingtao Meng
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, PR China; Key Laboratory of Functional Materials in Universities of Liaoning Province, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, PR China.
| |
Collapse
|
2
|
Agrawal P, Nair MS. Explicit fluorescence sensing method for sensitive detection of Pb 2+ ions based on DNA aptamer folding as a molecular probe. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 333:125882. [PMID: 39965285 DOI: 10.1016/j.saa.2025.125882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/15/2025] [Accepted: 02/07/2025] [Indexed: 02/20/2025]
Abstract
Heavy metals can potentially create environmental and atmospheric pollution, significantly threatening human health. Lead is categorized as a hazardous heavy metal that can adversely affect the environment and human well-being. We present a novel method for detecting lead (Pb2+) ions utilizing crystal violet and thrombin binding aptamer (TBA), employing absorbance, fluorescence, and fluorescence anisotropy experiments. An increase in the absorbance peak of TBA at 300 nm and a significant decrease in the fluorescence intensity of the TBA-crystal violet complex with the addition of Pb2+ ions was observed. Fluorescence anisotropy experiments of the TBA-crystal violet complex in the presence of Pb2+ ions exhibited a decrease in the anisotropy values from 0.46 to 0.34. In the presence of Pb2+ ions, TBA exhibited a positive peak at 312 nm and a negative peak at 265 nm in the CD spectrum, indicating the formation of a G-quadruplex structure. While, in the presence of other metal ions, TBA adopted a random coil structure. A combination of absorption titration and kinetic measurements was employed to understand the role of Pb2+ ions in mediating the folding of G-quadruplex structures. A stopped-flow analysis revealed that the rate of G-quadruplex folding with Pb2+ ions was approximately 28 times faster than that of K+ ions. This method presents a rapid, accurate, and targeted approach for Pb2+ ions detection, with potential applications in environmental sample analysis. It can detect Pb2+ ions at concentrations as low as 1.18 nM (0.32 ppb), significantly lower than the WHO's drinking water limit of 72 nM.
Collapse
Affiliation(s)
- Pallavi Agrawal
- Department of Biosciences and Bioengineering Indian Institute of Technology Roorkee Uttarakhand India
| | - Maya S Nair
- Department of Biosciences and Bioengineering Indian Institute of Technology Roorkee Uttarakhand India.
| |
Collapse
|
3
|
Ali I, Jin K, Shang D, Zhang J, Bian L. Fluorescent Reversible Regulation Based on the Electrostatic Intercalation of N-Methyl Mesoporphyrin IX to G-quadruplex: a Sustainable Approach of Zn 2+ Detection. J Fluoresc 2025:10.1007/s10895-025-04308-9. [PMID: 40263201 DOI: 10.1007/s10895-025-04308-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 04/03/2025] [Indexed: 04/24/2025]
Abstract
G-quadruplex (G4)-based biosensors have emerged as a promising platform for the rapid and sensitive detection of metal ions. This study reported a label-free (G4)-based sensor using N-methyl Mesoporphyrin IX (NMM) as a fluorescent signal reporter for selective detection of zinc ions (Zn2+). A potassium (K +) induced fluorescent (G4) probe was designed by a guanine-rich sequence. NMM fluorescence intensity was significantly increased upon binding with (G4). The sensor catalyzed the insertion of Zn2+ into the NMM structure, leading to fluorescence quenching without altering the (G4) structure. Circular dichroism analysis proved the stability of the (G4) structure and the number of binding sites for Zn2+ per NMM was determined to be 0.77 with a binding constant of 5.0 × 104 L/mol. It exhibited a good linear correlation (R2 = 0.985). The assay performance was optimized at pH 7 and (G4) concentration of 5 × 10-6 mol/L, based on which detection range of 0.1 ~ 1.2 × 10-6 mol/L and excellent selectivity was reached. The practical applicability was tested through Zn2+ spiked recovery experiments from a pharmaceutical sample. Successful detection of spiked Zn2+ recovery (98.3-100%) from medicinal lysine glucosamine Zn2+ granules. Without the need for nanomaterial fabrication or unstable DNAzymes, this label-free assay provides a cost-effective, reliable quantitative method suitable for pharmaceutical analysis.
Collapse
Affiliation(s)
- Ihsan Ali
- College of Life Science, Northwest University, Xian, 710069, Shaanxi, China
| | - Kangrui Jin
- College of Life Science, Northwest University, Xian, 710069, Shaanxi, China
| | - Dongyuan Shang
- College of Life Science, Northwest University, Xian, 710069, Shaanxi, China
| | - Jiaxin Zhang
- College of Life Science, Northwest University, Xian, 710069, Shaanxi, China
| | - Liujiao Bian
- College of Life Science, Northwest University, Xian, 710069, Shaanxi, China.
| |
Collapse
|
4
|
Zhang X, Zhu C, Wang Y, Zhao Y, Tang H, Li X, Wu P. Impact of NH 4+ on the catalytic activity of G-quadruplex/hemin DNAzyme for chemiluminescent sensing. Anal Bioanal Chem 2025:10.1007/s00216-025-05842-y. [PMID: 40167597 DOI: 10.1007/s00216-025-05842-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/03/2025] [Accepted: 03/11/2025] [Indexed: 04/02/2025]
Abstract
G-quadruplex/hemin DNAzyme, a versatile tool for biosensing, is challenged by its low peroxidase-mimic activities. The addition of NH4+ may offer an efficient approach to improve its activity. However, the detailed impact of NH4+ on its catalytic activity remains unclear, confusing the selection of appropriate DNAzymes for biosensing applications. Here, we conducted a comprehensive examination of the influence of NH4+ on G-quadruplex/hemin DNAzyme. The results revealed that all DNAzymes with different G-quadruplex topologies exhibited increased catalytic activities in the presence of NH4+ relative to K+, followed by the subsequent activity order: parallel > hybrid > antiparallel. Further investigations indicated that the increased catalytic activity can be ascribed to the increased stability of the G-quadruplex/hemin complex, elevated reaction velocity, and improved substrate affinity. Leveraging the significant disparity in enzymatic activity between parallel and antiparallel G-quadruplexes, an allosteric sensor based on the Pb2+-induced topological conformation was developed for sensitive detection of Pb2+ in the NH4+-boosted G-quadruplex/hemin DNAzyme system (LOD, 1.56 nM), indicating potential for practical applications. Our discovery improves the understanding of NH4+-boosted G-quadruplex/hemin DNAzyme and may facilitate the development of biosensors.
Collapse
Affiliation(s)
- Xinyu Zhang
- Analytical & Testing Center, Frontiers Science Center for Disease-Related Molecular Network of West China Hospital, Sichuan University, Chengdu, 610064, China
| | - Chenxi Zhu
- Analytical & Testing Center, Frontiers Science Center for Disease-Related Molecular Network of West China Hospital, Sichuan University, Chengdu, 610064, China
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yanying Wang
- Analytical & Testing Center, Frontiers Science Center for Disease-Related Molecular Network of West China Hospital, Sichuan University, Chengdu, 610064, China.
| | - Yi Zhao
- Analytical & Testing Center, Frontiers Science Center for Disease-Related Molecular Network of West China Hospital, Sichuan University, Chengdu, 610064, China
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Honghu Tang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xianming Li
- Analytical & Testing Center, Frontiers Science Center for Disease-Related Molecular Network of West China Hospital, Sichuan University, Chengdu, 610064, China.
| | - Peng Wu
- Analytical & Testing Center, Frontiers Science Center for Disease-Related Molecular Network of West China Hospital, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
5
|
Kim D, Kim DY, Han JH. Development of a novel fluorescence light-up Pb 2+ sensor using a G-quadruplex complex with modified thioflavin T. Analyst 2025; 150:712-717. [PMID: 39835961 DOI: 10.1039/d4an01340a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Here, we developed a novel, cost-effective fluorescence light-up biosensor for Pb2+ detection based on a label-free G-quadruplex combined with modified thioflavin T (ThT) derivatives. Among the various G-quadruplex sequences tested, only T2 exhibited fluorescence light-up properties upon interacting with the modified ThT derivatives in the presence of Pb2+. To enhance the Pb2+ sensing system, we also compared modified ThT derivatives, including the newly synthesized propyl-substituted ThT (ThT-P) and butyl-substituted ThT (ThT-B). Among the tested derivatives, ethyl-substituted ThT (ThT-E) exhibited the most significant fluorescence enhancement upon the addition of Pb2+. Our designed sensor demonstrated high selectivity and sensitivity for Pb2+, enabling practical applications, as validated through the successful detection of Pb2+ in spiked environmental water samples. We envision that our new strategy could be further developed into a versatile platform for the detection of a broad range of metal ions.
Collapse
Affiliation(s)
- Duyeop Kim
- Department of Chemical and Biological Engineering, Andong National University, Andong, Republic of Korea.
| | - Do Yeon Kim
- Department of Chemical and Biological Engineering, Andong National University, Andong, Republic of Korea.
| | - Ji Hoon Han
- Department of Chemical and Biological Engineering, Andong National University, Andong, Republic of Korea.
| |
Collapse
|
6
|
Suo Z, Zhang L, Zhang Z, Liang R, Shen H, Chen X, Liu Y, Wei M, He B, Jin H. A bifunctional MXene@PtPd NPs cascade DNAzyme-mediated fluorescence/colorimetric dual-mode biosensor for Pb 2+ determination. Food Chem 2025; 464:141845. [PMID: 39504898 DOI: 10.1016/j.foodchem.2024.141845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024]
Abstract
Pb2+ has numerous sources in cosmetics, industrial pollution and other environments. Therefore, sensitive and accurate detection of Pb2+ content is extremely important in food safety. In this work, bifunctional nanomaterials Ti3C2@PtPd NPs with fluorescence quenching effect and peroxidase activity were prepared by in situ growth of platinum‑palladium nanoparticles (PtPd NPs) on the surface of 2D material Ti3C2. Combining the DNA enzyme recognition element with magnetic separation technology, we constructed a fluorescence/colorimetric dual-channel for the sensitive detection of Pb2+. Under the optimal conditions, the detection ranges of this fluorescence/colorimetric bimodal sensing strategy were 0.1-1000 nmol/L and 0.5-1000 nmol/L, respectively. The LOD of the fluorescence method was 23 pmol/L, and that of the colorimetric method was 74 pmol/L, and the results of the detection were visible to the naked eye. This dual-mode sensing method provides a new platform for accurate, reliable and visualized detection of Pb2+.
Collapse
Affiliation(s)
- Zhiguang Suo
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou 450001, China.
| | - Liuyi Zhang
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou 450001, China
| | - Zhen Zhang
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou 450001, China
| | - Ruirui Liang
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou 450001, China; Zhengzhou Physical Education Vocational College, Zhengzhou 452470, China
| | - Hailin Shen
- School of Chemistry and Material Engineering, Changzhou Institute of Technology, Changzhou, Jiangsu 213164, China
| | - Xiaohui Chen
- School of Chemistry and Material Engineering, Changzhou Institute of Technology, Changzhou, Jiangsu 213164, China
| | - Yong Liu
- School of Energy Science and Technology, Henan University, Kaifeng 475004, China
| | - Min Wei
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou 450001, China
| | - Baoshan He
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou 450001, China
| | - Huali Jin
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
7
|
Li YS, Feng CF, Chen HR, Yang WG, Liu F, Su ML, Yuan R, Zhang LQ, Liang WB. Concentration and activation biresponsive strategy in one analysis system with simultaneous use of G4 structure-specific signal probe and enzyme-catalyzed reaction. Anal Chim Acta 2024; 1329:343246. [PMID: 39396307 DOI: 10.1016/j.aca.2024.343246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Enzymes with critical effects on life systems are regulated by expression and activation to modulate life processes. However, further insights into enzyme functions and mechanisms in various physiological processes are limited to concentration or activation analysis only. Currently, enzyme analysis has received notable attention, particularly simultaneous analysis of their concentration and activation in one system. Herein, N-methyl mesoporphyrin IX (NMM), a specific dye with notable structural selectivity for parallel G-quadruplex nucleic acid enzyme (G4h DNAzyme), is employed for the analysis of its concentration. In addition, the peroxidase activity of G4h DNAzyme is characterized based on G4h DNAzyme-catalyzed decomposition of H2O2 to continuously consume luminol. Accordingly, an increased fluorescence (FL) response of NMM and a decreased FL response of luminol could be simultaneously employed to analyze the concentration and activation of G4h DNAzyme. RESULT Herein, a novel concentration and activation biresponsive strategy is proposed using a G4h DNAzyme-based model that simultaneously employs a G4h structure-specific signal probe for enzyme concentration analysis and G4h DNAzyme-catalyzed reactions for enzyme activation analysis. Under optimal conditions, the biresponsive strategy can be effectively used for the simultaneous analysis of G4h DNAzyme concentration and activation, with detection limits of 718.7 pM and 233.4 nM respectively, delivering acceptable performances both in cell and in vitro. SIGNIFICANCE This strategy can not only be applied to concentration and activation analyses of G4h DNAzyme but can also be easily extended to other enzymes by simultaneously combining concentration analysis via target-induced direct reaction and activation analysis via target-induced catalytic reaction, offering deeper insights into various enzymes and enabling their effective implementation in bioanalysis and biochemistry.
Collapse
Affiliation(s)
- Yu-Shu Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Chun-Feng Feng
- Department of Clinical Laboratory, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Hao-Ran Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Wei-Guo Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Fei Liu
- Department of Clinical Laboratory, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Ming-Li Su
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Li-Qun Zhang
- Department of Clinical Laboratory, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
| | - Wen-Bin Liang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
8
|
Zhang J, Suo Z, Liang R, Wei M, Ren W, Xu Y, He B, Jin H, Zhao R. Label-free ratiometric fluorescence detection of Pb 2+via structure-specific fluorescent dyes and dual signal amplification. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6229-6240. [PMID: 39206535 DOI: 10.1039/d4ay01369g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Lead ions (Pb2+) are a widely distributed and highly toxic heavy metal pollutant, which seriously threatens the environment, economy and human safety. Here, a label-free ratiometric fluorescent biosensor was constructed for Pb2+ detection using DNAzyme-driven target cycling and exonuclease III (Exo III)-mediated DNA cycling as a dual signal amplification strategy. The SYBR Green I (SGI) and N-methyl mesoporphyrin IX (NMM) used in this study are characterized by low cost, storage resistance, and short preparation time compared with conventional signaling probes labeled with fluorescent groups. Unlike the single-emission fluorescence strategy, monitoring the fluorescence intensity ratio of SGI and NMM can effectively reduce external interference to achieve accurate detection of Pb2+. DNAzyme structures on the surface of magnetic beads (MBs) can recognize Pb2+ and activate the target circulatory system to cleave single-stranded DNA (ssDNA). The ssDNA further initiated the Exo III-assisted DNA circulatory system to digest double-stranded DNA (dsDNA) and release guanine-rich G1. Finally, the fluorescence signals of SGI and NMM were weakened and enhanced, respectively. The sensing strategy achieved a wide linear range from 0.5 to 500 nM and a low limit of detection (LOD) of 26.4 pM. Furthermore, its anti-interference ability and potential applicability for Pb2+ detection in actual samples were verified. This work ingeniously combines the dual signal amplification strategy with the ratiometric sensing strategy constructed by structure-specific fluorescent dyes, which provides a promising method for constructing sensitive and accurate fluorescent biosensors.
Collapse
Affiliation(s)
- Jinmin Zhang
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou 450001, China.
| | - Zhiguang Suo
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou 450001, China.
| | - Ruirui Liang
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou 450001, China.
| | - Min Wei
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou 450001, China.
| | - Wenjie Ren
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou 450001, China.
| | - Yiwei Xu
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou 450001, China.
| | - Baoshan He
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou 450001, China.
| | - Huali Jin
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou 450001, China.
| | - Renyong Zhao
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou 450001, China.
| |
Collapse
|
9
|
Deng Z, Ding J, Bu J, Li J, Liu H, Gao P, Gong Z, Qin X, Yang Y, Zhong S. Fluorophore Label-Free Light-up Near Infrared Deoxyribonucleic Acid Nanosensor for Monitoring Extracellular Potassium Levels. Anal Chem 2024; 96:4023-4030. [PMID: 38412242 DOI: 10.1021/acs.analchem.3c03881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Fluorescent DNA nanosensors have been widely used due to their unique advantages, among which the near-infrared (NIR) imaging mode can provide deeper penetration depth and lower biological background for the nanosensors. However, efficient NIR quenchers require ingenious design, complex synthesis, and modification, which severely limit the development of NIR DNA nanosensors. Label-free strategies based on G-quadruplex (G4) and NIR G4 dyes were first introduced into in situ extracellular imaging, and a novel NIR sensing strategy for the specific detection of extracellular targets is proposed. The strategy avoids complex synthesis and site-specific modification by controlling the change of the NIR signal through the formation of a G4 nanostructure. A light-up NIR DNA nanosensor based on potassium ion (K+)-sensitive G4 chain PS2.M was constructed to verify the strategy. PS2.M forms a stable G4 nanostructure in the presence of K+ and activates the NIR G4 dye CSTS, thus outputting NIR signals. The nanosensor can rapidly respond to K+ with a linear range of 5-50 mM and has good resistance to interference. The nanosensor with cholesterol can provide feedback on the changes in extracellular K+ concentration in many kinds of cells, serving as a potential tool for the study of diseases such as epilepsy and cancer, as well as the development of related drugs. The strategy can be potentially applied to the NIR detection of a variety of extracellular targets with the help of functional DNAs such as aptamer and DNAzyme.
Collapse
Affiliation(s)
- Zhiwei Deng
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Jiacheng Ding
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Jiaqi Bu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Jiacheng Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Hui Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Peiru Gao
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Zan Gong
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Xiangxiang Qin
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Yanjing Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Shian Zhong
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, the "Double-First Class" Application Characteristic Discipline of Hunan Province (Pharmaceutical Science), Changsha Medical University, Changsha 410219, PR China
| |
Collapse
|
10
|
Wu B, Ga L, Wang Y, Ai J. Recent Advances in the Application of Bionanosensors for the Analysis of Heavy Metals in Aquatic Environments. Molecules 2023; 29:34. [PMID: 38202619 PMCID: PMC10780001 DOI: 10.3390/molecules29010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/21/2023] [Accepted: 11/29/2023] [Indexed: 01/12/2024] Open
Abstract
Heavy-metal ions (HMIs) as a pollutant, if not properly processed, used, and disposed of, will not only have an influence on the ecological environment but also pose significant health hazards to humans, making them a primary factor that endangers human health and harms the environment. Heavy metals come from a variety of sources, the most common of which are agriculture, industry, and sewerage. As a result, there is an urgent demand for portable, low-cost, and effective analytical tools. Bionanosensors have been rapidly developed in recent years due to their advantages of speed, mobility, and high sensitivity. To accomplish effective HMI pollution control, it is important not only to precisely pinpoint the source and content of pollution but also to perform real-time and speedy in situ detection of its composition. This study summarizes heavy-metal-ion (HMI) sensing research advances over the last five years (2019-2023), describing and analyzing major examples of electrochemical and optical bionanosensors for Hg2+, Cu2+, Pb2+, Cd2+, Cr6+, and Zn2+.
Collapse
Affiliation(s)
- Bin Wu
- College of Chemistry and Enviromental Science, Inner Mongolia Key Laboratory of Environmental Chemistry, Inner Mongolia Normal University, 81 zhaowudalu, Hohhot 010022, China;
| | - Lu Ga
- College of Pharmacy, Inner Mongolia Medical University, Jinchuankaifaqu, Hohhot 010110, China;
| | - Yong Wang
- College of Geographical Science, Inner Mongolia Normal University, 81 Zhaowudalu, Hohhot 010022, China
| | - Jun Ai
- College of Chemistry and Enviromental Science, Inner Mongolia Key Laboratory of Environmental Chemistry, Inner Mongolia Normal University, 81 zhaowudalu, Hohhot 010022, China;
| |
Collapse
|
11
|
Li Y, Ma X, Liu K, Liu Z, Zou R, Wang J, Yang C, Zheng H, Sun C. A ratiometric fluorescence platform for lead ion detection via RNA cleavage-inhibited self-assembly of three-arm branched junction. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 298:122787. [PMID: 37150075 DOI: 10.1016/j.saa.2023.122787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/12/2023] [Accepted: 04/24/2023] [Indexed: 05/09/2023]
Abstract
Heavy metal pollution can pose a threat to food safety and human health, and accurate quantification of heavy metal ions is a vital requirement. Emerging DNA nanostructures-based biosensors offer attractive tools toward ultra-sensitive or rapid analysis of heavy metal ions. However, the problems including complex design, severe reaction conditions and undesirable reliability are inevitable obstacle in advancing their extension and application. Herein, a ratiometric fluorescent platform was established for monitoring lead ion (Pb2+) in food based on dual Förster resonance energy transfer (FRET) and RNA cleavage-inhibited self-assembly of three-arm branched junction (TBJ). GR-5 DNAzyme was employed for Pb2+ recognition, and enzyme-free amplification technique catalytic hairpin assembly (CHA) served to form FRET probes-carried TBJ. The substrate strand (S) of DNAzyme triggered the generation of CHA-TBJ, and Pb2+-responsive cleavage of S hindered the assembly of CHA-TBJ, causing opposite changes in the FRET states of FAM/BHQ1 and ROX/BHQ2 pairs. The fluorescence responses were recorded through synchronous fluorescence spectrometry to indicate Pb2+ concentration, allowing sensitive and reliable identification of Pb2+ in the linear range of 0.05-5 ng mL-1 with the detection limit of 0.03 ng mL-1. The Pb2+ detection can be achieved under conventional reaction conditions, simple mixing procedures and one-step measurement operation. The approach can afford excellent specificity for Pb2+ against competing metal ions, and can be applied to analyze Pb2+ in tea samples with satisfactory results. This facile fluorescence platform shows a capable method for Pb2+ detection, and provides new avenue in the development of ratiometric approaches and DNAzyme strategies for monitoring heavy metal pollution, facilitating the transformation of DNAzyme-based biosensors for food safety control.
Collapse
Affiliation(s)
- Ying Li
- Department of Food Quality and Safety, Jilin University, Changchun 130062, China
| | - Xinyue Ma
- Department of Food Quality and Safety, Jilin University, Changchun 130062, China
| | - Kai Liu
- Department of Food Quality and Safety, Jilin University, Changchun 130062, China
| | - Zheng Liu
- Department of Food Quality and Safety, Jilin University, Changchun 130062, China
| | - Ruiqi Zou
- Department of Food Quality and Safety, Jilin University, Changchun 130062, China
| | - Junyang Wang
- Department of Food Quality and Safety, Jilin University, Changchun 130062, China
| | - Chuanyu Yang
- Department of Food Quality and Safety, Jilin University, Changchun 130062, China
| | - Hongru Zheng
- Jilin Province Product Quality Supervision and Inspection Institute, Changchun 130103, Jilin, China
| | - Chunyan Sun
- Department of Food Quality and Safety, Jilin University, Changchun 130062, China.
| |
Collapse
|
12
|
Liu M, Dong J, Suo Z, Wang Q, Wei M, He B, Jin H. A convenient fluorescent/electrochemical dual-mode biosensor for accurate detection of Pb 2+ based on DNAzyme cycle. Bioelectrochemistry 2023; 152:108452. [PMID: 37137224 DOI: 10.1016/j.bioelechem.2023.108452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/28/2023] [Accepted: 04/22/2023] [Indexed: 05/05/2023]
Abstract
The presence of heavy metals in the ecological environment is a serious threat to human health. Therefore, it is very important to establish a simple and sensitive method for the detection of heavy metals. Currently, most of the methods are single-channel sensing, and these methods are prone to false-positive signals, which reduces the accuracy. In this work, Pb2+-DNAzyme was immobilized on magnetic beads (MBs) using a linkage of biotin and streptavidin and successfully applied to the construction of a fluorescent/electrochemical dual-mode (DM) biosensor. The supernatant after magnetic separation formed a double strand on the electrode, which was combined with methylene blue (MB) for electrochemical detection (EC). At the same time, FAM-d was added to the precipitate, and after magnetic separation, the supernatant was subjected to fluorescent detection (FL). Under optimal conditions, the signal response of the constructed dual-mode biosensor showed a good linear relationship with the concentration of Pb2+. The DNAzyme-based dual-mode biosensor achieved sensitive and selective detection of Pb2+ with good accuracy and reliability, opening a new way for the development of biosensing strategies for the detection of Pb2+. More importantly, the sensor has high sensitivity and accuracy for the detection of Pb2+ in actual sample analysis.
Collapse
Affiliation(s)
- Mingwei Liu
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou 450001, China
| | - Jie Dong
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou 450001, China
| | - Zhiguang Suo
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou 450001, China.
| | - Qixuan Wang
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou 450001, China
| | - Min Wei
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou 450001, China
| | - Baoshan He
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou 450001, China
| | - Huali Jin
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou 450001, China.
| |
Collapse
|
13
|
Suo Z, Qi X, Dong J, Wei M, He B, Jin H, Guo R, Ren W, Xu Y. An efficient electrochemical biosensor for the detection of heavy metal lead in food based on magnetic separation strategy and Y-DNA structure. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:1306-1314. [PMID: 36805075 DOI: 10.1039/d2ay01747d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Herein, an electrochemical biosensor was developed based on a magnetic separation strategy for the sensitive detection of the heavy metal Pb2+. The specific binding of Pb2+ and the aptamer (Apt) is used to trigger the release of the complementary chain (cDNA) on the magnetic bead system. The cDNA completes base complementary pairing with hairpins HP1 and HP2 at the electrode to form a Y-DNA structure. Then, the Y-DNA runs continuously with the assistance of the signal tag methylene blue (MB) and the current signal increases. However, in the absence of Pb2+, cDNA cannot be released and the Y-DNA structure cannot be formed on the electrode, resulting in a relatively low current signal. Under the optimal experimental conditions, the reduced peak current difference (ΔI) showed a good linear relationship with lg CPb2+ between 0.1 and 1000 nM, with a detection limit of 5.9 pM. In addition, the stability, reproducibility and detection capability of the sensors were investigated with satisfactory results.
Collapse
Affiliation(s)
- Zhiguang Suo
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou 450001, China.
| | - Xinru Qi
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou 450001, China.
| | - Jie Dong
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou 450001, China.
| | - Min Wei
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou 450001, China.
| | - Baoshan He
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou 450001, China.
| | - Huali Jin
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou 450001, China.
| | - Rui Guo
- Henan Institute of Product Quality Supervision and Inspection, Zhengzhou 450008, China.
| | - Wenjie Ren
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou 450001, China.
| | - Yiwei Xu
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou 450001, China.
| |
Collapse
|
14
|
Zeng X, Wang H, Zeng Y, Yang Y, Zhang Z, Li L. Label-free Aptasensor for the Ultrasensitive Detection of Insulin Via a Synergistic Fluorescent Turn-on Strategy Based on G-quadruplex and AIEgens. J Fluoresc 2022; 33:955-963. [PMID: 36538144 DOI: 10.1007/s10895-022-03116-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/07/2022] [Indexed: 12/25/2022]
Abstract
Insulin, the only hormone regulating blood glucose level, is strongly associated with diabetes and its complications. Specific recognition and ultrasensitive detection of insulin are of clinical significance for the early diagnosis and treatment of diabetes. Inspired by aggregation-induced emission, we presented a turn-on label-free fluorescence aptasensor for insulin detection. Quaternized tetraphenylethene salt was synthesized as the fluorescence probe. Guanine-rich aptamer IGA3 was selected as recognition element. Graphene oxide was chosen as the quencher. Under optimized conditions, the fluorescence aptasensor displayed a wide linear range (1.0 pM-1.0 μM) with a low limit of detection (0.42 pM). Furthermore, the aptasensor was successfully applied to detect insulin in human serum. Spiked recoveries were obtained in the range of 96.06%-104.26%. All these results demonstrated that the proposed approach has potential application in the clinical diagnostics of diabetes.
Collapse
|
15
|
Yang H, Li F, Xue T, Khan MR, Xia X, Busquets R, Gao H, Dong Y, Zhou W, Deng R. Csm6-DNAzyme Tandem Assay for One-Pot and Sensitive Analysis of Lead Pollution and Bioaccumulation in Mice. Anal Chem 2022; 94:16953-16959. [DOI: 10.1021/acs.analchem.2c04589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Hao Yang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Feng Li
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610065, China
| | - Ting Xue
- College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Mohammad Rizwan Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Xuhan Xia
- College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Rosa Busquets
- School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Penrhyn Road, KT1 2EE Kingston Upon Thames, United Kingdom
| | - Hong Gao
- College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yi Dong
- College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Ruijie Deng
- College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| |
Collapse
|
16
|
Zhao L, Ahmed F, Zeng Y, Xu W, Xiong H. Recent Developments in G-Quadruplex Binding Ligands and Specific Beacons on Smart Fluorescent Sensor for Targeting Metal Ions and Biological Analytes. ACS Sens 2022; 7:2833-2856. [PMID: 36112358 DOI: 10.1021/acssensors.2c00992] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The G-quadruplex structure is crucial in several biological processes, including DNA replication, transcription, and genomic maintenance. G-quadruplex-based fluorescent probes have recently gained popularity because of their ease of use, low cost, excellent selectivity, and sensitivity. This review summarizes the latest applications of G-quadruplex structures as detectors of genome-wide, enantioselective catalysts, disease therapeutics, promising drug targets, and smart fluorescence probes. In every section, sensing of G-quadruplex and employing G4 for the detection of other analytes were introduced, respectively. Since the discovery of the G-quadruplex structure, several studies have been conducted to investigate its conformations, biological potential, stability, reactivity, selectivity for chemical modification, and optical properties. The formation mechanism and advancements for detecting different metal ions (Na+, K+, Ag+, Tl+, Cu+/Cu2+, Hg2+, and Pb2+) and biomolecules (AMP, ATP, DNA/RNA, microRNA, thrombin, T4 PNK, RNase H, ALP, CEA, lipocalin 1, and UDG) using fluorescent sensors based on G-quadruplex modification, such as dye labels, artificial nucleobase moieties, dye complexes, intercalating dyes, and bioconjugated nanomaterials (AgNCs, GO, QDs, CDs, and MOF) is described herein. To investigate these extremely efficient responsive agents for diagnostic and therapeutic applications in medicine, fluorescence sensors based on G-quadruplexes have also been employed as a quantitative visualization technique.
Collapse
Affiliation(s)
- Long Zhao
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China.,College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Farid Ahmed
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yating Zeng
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Weiqing Xu
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Hai Xiong
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| |
Collapse
|
17
|
Hu K, Qin L, Ren X, Guo Z, Wang S, Hu Y. Deoxyribonucleic acid-guided dual-mode electro-chemical/chemiluminescent platform for sensitive and selective examination of Pb2+. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
18
|
Li Q, Peng S, Chang Y, Yang M, Wang D, Zhou X, Shao Y. A G-triplex-Based Label-Free Fluorescence Switching Platform for the Specific Recognition of Chromium Species. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Liu R, Zhang F, Sang Y, Katouzian I, Jafari SM, Wang X, Li W, Wang J, Mohammadi Z. Screening, identification, and application of nucleic acid aptamers applied in food safety biosensing. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.03.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
|
21
|
Li C, Wang Z, Jiang Z. Ferrocene-Doped Polystyrene Nanoenzyme and DNAzyme Cocatalytic SERS Quantitative Assay of Ultratrace Pb2+. NANOMATERIALS 2022; 12:nano12081243. [PMID: 35457951 PMCID: PMC9027246 DOI: 10.3390/nano12081243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/31/2022] [Accepted: 04/03/2022] [Indexed: 12/02/2022]
Abstract
A new, stable and high-catalytic activity ferrocene-doped polystyrene nanosphere (PNFer) sol was prepared by the hydrogel procedure and characterized by electron microscopy and molecular spectroscopy. Results show that the nanosol exhibits excellent catalysis of the new indicator nanoreaction between AgNO3 and sodium formate to generate nanosilver with strong surface-enhanced Raman scattering (SERS), resonance Rayleigh scattering (RRS) and surface plasmon resonance absorption (Abs) trimode molecular spectral signals. This new nanocatalytic amplification trimode indicator reaction was coupled with the G-quadruplex DNAzyme catalytic amplification of Pb2+ aptamer to fabricate a new SERS quantitative/RRS/Abs assay platform for the determination of ultratrace amounts of Pb2+. The Pb2+ content in water samples was analyzed with satisfactory results.
Collapse
Affiliation(s)
- Chongning Li
- School of Public Health, Guilin Medical University, Guilin 541199, China; (C.L.); (Z.W.)
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541006, China
| | - Zhenghong Wang
- School of Public Health, Guilin Medical University, Guilin 541199, China; (C.L.); (Z.W.)
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541006, China
| | - Zhiliang Jiang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541006, China
- Correspondence:
| |
Collapse
|
22
|
A fluorescent aptasensor for Pb2+ detection based on gold nanoflowers and RecJf exonuclease-induced signal amplification. Anal Chim Acta 2022; 1192:339329. [DOI: 10.1016/j.aca.2021.339329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/24/2021] [Indexed: 11/22/2022]
|
23
|
Determination of lead in food by surface-enhanced Raman spectroscopy with aptamer regulating gold nanoparticles reduction. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108498] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
24
|
Duan N, Li C, Song M, Wang Z, Zhu C, Wu S. Signal amplification of SiO 2 nanoparticle loaded horseradish peroxidase for colorimetric detection of lead ions in water. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 265:120342. [PMID: 34492513 DOI: 10.1016/j.saa.2021.120342] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/06/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
In this work, we developed an aptamer-based optical assay for the analysis of Pb2+, a hazardous heavy metal that may be present in the food chain and harmful to human health. An aptamer targeted against Pb2+ was immobilized onto the microplate as the capture probe. SiO2 nanoparticles (NPs) were synthesized and used as carriers of the signaling horseradish peroxidase (HRP) to achieve amplification of the optical signal. Complementary DNA (cDNA) of the aptamer was also linked to the above mentioned SiO2 nanoparticle (NPs) as the signal probe. The aptamers were found to be able to capture Pb2+, and the unbound aptamers were subsequently hybridized with cDNA-HRP-SiO2 conjugates. As a result, the addition of TMB-H2O2 promoted the formation of blue products in the catalytic system. The assay adopting SiO2 NPs as an enhancer resulted in higher sensitivity with an LOD of 2.5 nM compared to normal procedures. The feasibility of the aptamer-based colorimetric assay was verified by successful detection of Pb2+ in water samples with recoveries in the range of 97.4-103.52%.
Collapse
Affiliation(s)
- Nuo Duan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Changxin Li
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Mingqian Song
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Changqing Zhu
- School of Food Science, Nanjing Xiaozhuang University, Nanjing 211171, China.
| | - Shijia Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
25
|
Murakami K, Izuo N, Bitan G. Aptamers targeting amyloidogenic proteins and their emerging role in neurodegenerative diseases. J Biol Chem 2022; 298:101478. [PMID: 34896392 PMCID: PMC8728582 DOI: 10.1016/j.jbc.2021.101478] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/24/2021] [Accepted: 12/02/2021] [Indexed: 01/08/2023] Open
Abstract
Aptamers are oligonucleotides selected from large pools of random sequences based on their affinity for bioactive molecules and are used in similar ways to antibodies. Aptamers provide several advantages over antibodies, including their small size, facile, large-scale chemical synthesis, high stability, and low immunogenicity. Amyloidogenic proteins, whose aggregation is relevant to neurodegenerative diseases, such as Alzheimer's, Parkinson's, and prion diseases, are among the most challenging targets for aptamer development due to their conformational instability and heterogeneity, the same characteristics that make drug development against amyloidogenic proteins difficult. Recently, chemical tethering of aptagens (equivalent to antigens) and advances in high-throughput sequencing-based analysis have been used to overcome some of these challenges. In addition, internalization technologies using fusion to cellular receptors and extracellular vesicles have facilitated central nervous system (CNS) aptamer delivery. In view of the development of these techniques and resources, here we review antiamyloid aptamers, highlighting preclinical application to CNS therapy.
Collapse
Affiliation(s)
- Kazuma Murakami
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan.
| | - Naotaka Izuo
- Laboratory of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Gal Bitan
- Department of Neurology, David Geffen School of Medicine, Brain Research Institute, and Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, USA.
| |
Collapse
|
26
|
Yu Y, Li W, Gu X, Yang X, Han Y, Ma Y, Wang Z, Zhang J. Inhibition of CRISPR-Cas12a trans-cleavage by lead (II)-induced G-quadruplex and its analytical application. Food Chem 2021; 378:131802. [PMID: 35032802 DOI: 10.1016/j.foodchem.2021.131802] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/05/2021] [Accepted: 12/03/2021] [Indexed: 12/26/2022]
Abstract
In this work, the inhibition of clustered regularly interspaced short palindromic repeats (CRISPR) - CRISPR associated protein (Cas) trans-cleavage by Pb2+-induced G-quadruplex has been firstly explored to detect Pb2+ in tea beverage and milk. In absence of Pb2+, the Na+-induced G-quadruplex can be cleaved by CRISPR-Cas12a. In contrast, Pb2+ can competitively combine with G-quadruplex, resulting in its conformational changes and resistance to trans-cleavage of CRISPR-Cas12a. Therefore, the fluorescence resonance energy transfer can happen. Pb2+ can be detected in a linear range from 100 nM to 5 µM with a lowest detection limit of 2.6 nM and a relative standard deviation of 4.32%. In summary, this work not only provides a new method for Pb2+ detection based on its induced G-quadruplex inhibition on CRISPR-Cas12a trans-cleavage, but also broadens the application of CRISPR-Cas system for heavy metal analysis in the field of food safety.
Collapse
Affiliation(s)
- Ying Yu
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China; Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Wenhui Li
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Xinzhe Gu
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Xiaojun Yang
- Shanghai Center of Agri-products Quality and Safety, Shanghai 201708, PR China
| | - Yiyi Han
- Shanghai Center of Agri-products Quality and Safety, Shanghai 201708, PR China
| | - Yingqing Ma
- Shanghai Center of Agri-products Quality and Safety, Shanghai 201708, PR China
| | - Zhengwu Wang
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | - Juan Zhang
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, PR China.
| |
Collapse
|
27
|
Zaccaria F, van der Lubbe SCC, Nieuwland C, Hamlin TA, Fonseca Guerra C. How Divalent Cations Interact with the Internal Channel Site of Guanine Quadruplexes. Chemphyschem 2021; 22:2286-2296. [PMID: 34435425 PMCID: PMC9293024 DOI: 10.1002/cphc.202100529] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/24/2021] [Indexed: 11/06/2022]
Abstract
The formation of guanine quadruplexes (GQ) in DNA is crucial in telomere homeostasis and regulation of gene expression. Pollution metals can interfere with these DNA superstructures upon coordination. In this work, we study the affinity of the internal GQ channel site towards alkaline earth metal (Mg2+ , Ca2+ , Sr2+ , and Ba2+ ), and (post-)transition metal (Zn2+ , Cd2+ , Hg2+ , and Pb2+ ) cations using density functional theory computations. We find that divalent cations generally bind to the GQ cavity with a higher affinity than conventional monovalent cations (e. g. K+ ). Importantly, we establish the nature of the cation-GQ interaction and highlight the relationship between ionic and nuclear charge, and the electrostatic and covalent interactions. The covalent interaction strength plays an important role in the cation affinity and can be traced back to the relative stabilization of cations' unoccupied atomic orbitals. Overall, our findings contribute to a deeper understanding of how pollution metals could induce genomic instability.
Collapse
Affiliation(s)
- Francesco Zaccaria
- Department of Theoretical Chemistry andAmsterdam Center for Multiscale Modelling, AIMMSVrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdamThe Netherlands
| | - Stephanie C. C. van der Lubbe
- Department of Theoretical Chemistry andAmsterdam Center for Multiscale Modelling, AIMMSVrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdamThe Netherlands
| | - Celine Nieuwland
- Department of Theoretical Chemistry andAmsterdam Center for Multiscale Modelling, AIMMSVrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdamThe Netherlands
| | - Trevor A. Hamlin
- Department of Theoretical Chemistry andAmsterdam Center for Multiscale Modelling, AIMMSVrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdamThe Netherlands
| | - Célia Fonseca Guerra
- Department of Theoretical Chemistry andAmsterdam Center for Multiscale Modelling, AIMMSVrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdamThe Netherlands
- Leiden Institute of ChemistryGorlaeus LaboratoriesLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
| |
Collapse
|
28
|
Li Y, Su R, Li H, Guo J, Hildebrandt N, Sun C. Fluorescent Aptasensors: Design Strategies and Applications in Analyzing Chemical Contamination of Food. Anal Chem 2021; 94:193-224. [PMID: 34788014 DOI: 10.1021/acs.analchem.1c04294] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ying Li
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Ruifang Su
- nanoFRET.com, Laboratoire COBRA (Chimie Organique, Bioorganique: Réactivité et Analyse), UMR 6014, CNRS, Université de Rouen Normandie, INSA, 76821 Mont-Saint-Aignan Cedex, France
| | - Hongxia Li
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Jiajia Guo
- Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055 Shenzhen, China
| | - Niko Hildebrandt
- nanoFRET.com, Laboratoire COBRA (Chimie Organique, Bioorganique: Réactivité et Analyse), UMR 6014, CNRS, Université de Rouen Normandie, INSA, 76821 Mont-Saint-Aignan Cedex, France.,Université Paris-Saclay, 91190 Saint-Aubin, France.,Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Chunyan Sun
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| |
Collapse
|
29
|
A Novel Colorimetric Nano Aptasensor for Ultrasensitive Detection of Aflatoxin B1 Based on the Exonuclease III-Assisted Signal Amplification Approach. Foods 2021; 10:foods10112568. [PMID: 34828849 PMCID: PMC8625208 DOI: 10.3390/foods10112568] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/15/2021] [Accepted: 10/16/2021] [Indexed: 12/25/2022] Open
Abstract
The detection of aflatoxin B1 (AFB1) has recently garnered much attention on the issue of food safety. In this study, a novel and sensitive aptasensor towards AFB1 is proposed using an Exonuclease III (Exo III)-integrated signal amplification strategy. This reported sensing strategy is regulated by aptamer-functionalized nanobeads that can target AFB1; furthermore, complementary DNA (cDNA) strands can lock the immobilized aptamer strands, preventing the signal amplification function of Exo III in the absence of AFB1. The presence of AFB1 triggers the displacement of cDNA, which will then activate the Exo III-integrated signal amplification procedure, resulting in the generation of a guanine (G)-rich sequence to form a G-4/hemin DNAzyme, which can catalyze the substrate of ABTS to produce a green color. Using this method, a practical detection limit of 0.0032 ng/mL and a dynamic range of detection from 0.0032 to 50 ng/mL were obtained. Additionally, the practical application of the established sensing method for AFB1 in complex matrices was demonstrated through recovery experiments. The recovery rate and relative standard deviations (RSD) in three kinds of cereal samples ranged from 93.83% to 111.58%, and 0.82% to 7.20%, respectively, which were comparable with or better than previously reported methods.
Collapse
|
30
|
Johnson RE, Van Riesen AJ, Manderville RA. On-Strand Knoevenagel Insertion of a Hemicyanine Molecular Rotor Loop Residue for Turn-On Fluorescence Detection of Pb-Induced G-Quadruplex Rigidity. Bioconjug Chem 2021; 32:2224-2232. [PMID: 34543022 DOI: 10.1021/acs.bioconjchem.1c00386] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We demonstrate the ability to distinguish Pb2+ from K+ within the central cavity of the antiparallel G-quadruplex (GQ) DNA produced by the thrombin binding aptamer (TBA) using an internal molecular rotor fluorescent probe. An indole-aldehyde containing an acyclic N-glycol group was first employed in the on-strand Knoevenagel condensation with five different heterocyclic quaternary cationic acceptors to assess the molecular rotor character of the resulting cyanine-styryl dyes within duplex DNA. An indole-pyridinium (4PI) nucleobase surrogate displayed the greatest turn-on emission response to duplex formation and was thus inserted into the loop residues of TBA to monitor GQ-folding in the presence of Pb2+ versus K+. TBA-4PI exhibits turn-on emission upon Pb2+-binding with a brightness (ε·Φfl) of 9000 cm-1 M-1 compared to K+-binding (ε·Φfl ∼ 2000 cm-1 M-1) due to Pb2+-induced GQ rigidity with 4PI-G-tetrad stacking interactions. The Pb2+-bound TBA-4PI GQ also provides energy-transfer (ET) fluorescence with a diagnostic excitation at 310 nm for distinguishing Pb2+ from K+ within the antiparallel GQ. The TBA-4PI GQ affords the desired turn-on fluorescence response for detecting Pb2+ ions with an apparent dissociation constant (Kd) of 63 nM and a limit of detection (LOD) of 19 nM in an aqueous buffer. It can also distinguish Pb2+ (230 nM) from K+ (1.5 mM, 6500-fold excess) in an antiparallel GQ recognition motif without topology twitching.
Collapse
Affiliation(s)
- Ryan E Johnson
- Departments of Chemistry and Toxicology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Abigail J Van Riesen
- Departments of Chemistry and Toxicology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Richard A Manderville
- Departments of Chemistry and Toxicology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
31
|
Xia X, Ma B, Zhang T, Lu Y, Khan MR, Hu Y, Lei C, Deng S, He Q, He G, Zhang K, Deng R. G-Quadruplex-Probing CRISPR-Cas12 Assay for Label-Free Analysis of Foodborne Pathogens and Their Colonization In Vivo. ACS Sens 2021; 6:3295-3302. [PMID: 34516103 DOI: 10.1021/acssensors.1c01061] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Foodborne pathogen infection is a key issue of food safety. Herein, we developed a label-free assay for Salmonella enterica (S. enterica) detection based on the G-quadruplex-probing CRISPR-Cas12 system (termed G-CRISPR-Cas), allowing highly sensitive detection of S. enterica and investigation of their colonization in chickens. The introduction of the G-quadruplex probe serving as the substrate of Cas 12a realized a label-free analysis for foodborne pathogens. Due to the amplification process induced by loop-mediated isothermal amplification (LAMP), G-CRISPR-Cas assay can detect S. enterica as low as 20 CFU. Specificity for pathogenic gene detection was guaranteed by the dual recognition process via LAMP primers and Cas 12a-guided RNA binding. The G-CRISPR-Cas assay was applied to explore S. enterica colonization in the intestinal tract and organs of chickens and showed the risk of S. enterica infection outside of the intestinal tract. The G-CRISPR-Cas assay is promising for on-site diagnosis of the infection or contamination of foodborne pathogens outside the laboratories, such as abattoirs and markets.
Collapse
Affiliation(s)
- Xuhan Xia
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Boheng Ma
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065 Sichuan, China
| | - Ting Zhang
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Yunhao Lu
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Mohammad Rizwan Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Yun Hu
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Changwei Lei
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065 Sichuan, China
| | - Sha Deng
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Qiang He
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Guiping He
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Kaixiang Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, China
| | - Ruijie Deng
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| |
Collapse
|
32
|
Development of QDs-based nanosensors for heavy metal detection: A review on transducer principles and in-situ detection. Talanta 2021; 239:122903. [PMID: 34857381 DOI: 10.1016/j.talanta.2021.122903] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/15/2021] [Accepted: 09/22/2021] [Indexed: 12/17/2022]
Abstract
Heavy metal pollution has severe threats to the ecological environment and human health. Thus, it is urgent to achieve the rapid, selective, sensitive and portable detection of heavy metal ions. To overcome the defects of traditional methods such as time-consuming, low sensitivity, high cost and complicated operation, QDs (Quantum dots)-based nanomaterials have been used in sensors to significantly improve the sensing performance. Due to their excellent physicochemical properties, high specific surface area, high adsorption and reactive capacity, nanomaterials could act as potential probes or offer enhanced sensitivity and create a promising nanosensors platform. In this review, the rapidly advancing types of QDs for heavy metal ions detection are first summarized. Modified with ligands, nanomaterials, or biomaterials, QDs are assembled on sensors by the interaction of electrostatic adsorption, chemical bonding, steric hindrance, and base-pairing. The stability of QDs-based nanosensors is improved by doping the elements to QDs, providing the reference substance, optimizing the assemble strategies and so on. Then, according to transducer principles, the two most typical sensor categories based on QDs: optical and electrochemical sensors are highlighted to be discussed. In the meanwhile, portable devices combining with QDs to adapt the practical detection in complex situations are summarized. The deficiencies and future challenges of QDs in toxicity, specificity, portability, multi-metal co-detection and degradation during the detection are also pointed out. In the end, the development trends of QDs-based nanosensors for heavy metal ions detection are discussed. This review presents an overall understanding, recent advances, current challenges and future outlook of QDs-based nanosensors for heavy metal detection.
Collapse
|
33
|
Liu Y, Yang H, Wan R, Khan MR, Wang N, Busquets R, Deng R, He Q, Zhao Z. Ratiometric G-Quadruplex Assay for Robust Lead Detection in Food Samples. BIOSENSORS-BASEL 2021; 11:bios11080274. [PMID: 34436076 PMCID: PMC8391220 DOI: 10.3390/bios11080274] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 12/29/2022]
Abstract
Lead (Pb2+) pollution is a serious food safety issue, rapid detection of Pb2+ residual in food is vital to guarantee food quality and safety. Here we proposed ratiometric aptamer probes, allowing robust Pb2+ supervision in food samples. Pb2+ specific aptamer can bolster a transition of G-quadruplex structural response to Pb2+; this process can be monitored by N-methyl mesoporphyrin IX (NMM), which is highly specific to G-quadruplex. Particularly, the utilization of G-quadruplex specific dye and terminal-labeled fluorophore allowed to endue ratiometric signal outputs towards Pb2+, dramatically increase the robustness for lead detection. The ratiometric G-quadruplex assay allowed a facile and one-pot Pb2+ detection at room temperature using a single-stranded DNA aptamer. We demonstrated its feasibility for detecting lead pollution in fresh eggs and tap water samples. The ratiometric G-quadruplex design is expected to be used for on-site Pb2+ testing associated with food safety.
Collapse
Affiliation(s)
- Yumei Liu
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu 610065, China; (Y.L.); (H.Y.); (R.W.); (N.W.); (R.D.); (Q.H.)
| | - Hao Yang
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu 610065, China; (Y.L.); (H.Y.); (R.W.); (N.W.); (R.D.); (Q.H.)
| | - Rui Wan
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu 610065, China; (Y.L.); (H.Y.); (R.W.); (N.W.); (R.D.); (Q.H.)
| | - Mohammad Rizwan Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Nan Wang
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu 610065, China; (Y.L.); (H.Y.); (R.W.); (N.W.); (R.D.); (Q.H.)
| | - Rosa Busquets
- School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Penrhyn Road, Kingston-upon-Thames, Surrey KT1 2EE, UK;
| | - Ruijie Deng
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu 610065, China; (Y.L.); (H.Y.); (R.W.); (N.W.); (R.D.); (Q.H.)
| | - Qiang He
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu 610065, China; (Y.L.); (H.Y.); (R.W.); (N.W.); (R.D.); (Q.H.)
| | - Zhifeng Zhao
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu 610065, China; (Y.L.); (H.Y.); (R.W.); (N.W.); (R.D.); (Q.H.)
- Correspondence: ; Tel.: +86-028-8546-7328
| |
Collapse
|
34
|
Critical reviews of electro-reactivity of screen-printed nanocomposite electrode to safeguard the environment from trace metals. MONATSHEFTE FUR CHEMIE 2021. [DOI: 10.1007/s00706-021-02802-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
35
|
Guo W, Zhang C, Ma T, Liu X, Chen Z, Li S, Deng Y. Advances in aptamer screening and aptasensors' detection of heavy metal ions. J Nanobiotechnology 2021; 19:166. [PMID: 34074287 PMCID: PMC8171055 DOI: 10.1186/s12951-021-00914-4] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/26/2021] [Indexed: 02/07/2023] Open
Abstract
Heavy metal pollution has become more and more serious with industrial development and resource exploitation. Because heavy metal ions are difficult to be biodegraded, they accumulate in the human body and cause serious threat to human health. However, the conventional methods to detect heavy metal ions are more strictly to the requirements by detection equipment, sample pretreatment, experimental environment, etc. Aptasensor has the advantages of strong specificity, high sensitivity and simple preparation to detect small molecules, which provides a new direction platform in the detection of heavy metal ions. This paper reviews the selection of aptamers as target for heavy metal ions since the 21th century and aptasensors application for detection of heavy metal ions that were reported in the past five years. Firstly, the selection methods for aptamers with high specificity and high affinity are introduced. Construction methods and research progress on sensor based aptamers as recognition element are also introduced systematically. Finally, the challenges and future opportunities of aptasensors in detecting heavy metal ions are discussed.
Collapse
Affiliation(s)
- Wenfei Guo
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Chuanxiang Zhang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Tingting Ma
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Xueying Liu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Zhu Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Yan Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| |
Collapse
|