1
|
Hosseinikebria S, Khazaei M, Dervisevic M, Judicpa MA, Tian J, Razal JM, Voelcker NH, Nilghaz A. Electrochemical biosensors: The beacon for food safety and quality. Food Chem 2025; 475:143284. [PMID: 39956060 DOI: 10.1016/j.foodchem.2025.143284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/01/2025] [Accepted: 02/06/2025] [Indexed: 02/18/2025]
Abstract
Electrochemical biosensors transduce chemical reactions into measurable electrical signals by incorporating recognition components. Although they are capable of detecting a broad range of target molecules, their application in complex matrices, such as food, at minimum or no sample preparation, is challenging and requires the introduction of innovative and effective strategies. This review explores the recent advances in electrochemical biosensors for on-site food safety and quality analysis. We first discuss the presence of chemical contaminants and biohazards in food and the need for robust, rapid, low-cost, and point-of-care (POC) analytical techniques. We then address the critical aspects of sensitivity and selectivity of electrochemical biosensors in detecting chemical and biological contaminants in real food samples. We finally investigate the major drawbacks of these biosensors and provide future perspectives on the field.
Collapse
Affiliation(s)
| | - Masoud Khazaei
- Drug Delivery, Disposition, and Dynamics, Monash University, Parkville, VIC 3052, Australia; Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
| | - Muamer Dervisevic
- Drug Delivery, Disposition, and Dynamics, Monash University, Parkville, VIC 3052, Australia; Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
| | - Mia Angela Judicpa
- Institute for Frontier Materials, Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Junfei Tian
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Joselito M Razal
- Institute for Frontier Materials, Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Nicolas Hans Voelcker
- Drug Delivery, Disposition, and Dynamics, Monash University, Parkville, VIC 3052, Australia; Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia; Materials Science and Engineering, Monash University, Clayton, Victoria 3168, Australia
| | - Azadeh Nilghaz
- Institute for Frontier Materials, Deakin University, Waurn Ponds, VIC 3216, Australia; Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia.
| |
Collapse
|
2
|
Duong PV, Thi LA, Hung PQ, Toan LD, Chuyen PT, Hieu DM, Minh PH, Binh NT, Cuong TM, Hoa NM. Probing Förster Resonance Energy Transfer in Carbon Quantum Dots for High-Sensitivity Aflatoxin B1 Detection. J Fluoresc 2025:10.1007/s10895-025-04246-6. [PMID: 40106135 DOI: 10.1007/s10895-025-04246-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 03/03/2025] [Indexed: 03/22/2025]
Abstract
Carbon quantum dots (CQDs), with their remarkable optical properties such as strong fluorescence and biocompatibility, are emerging as versatile tools in biosensing and food safety monitoring. This study investigates binding-induced Förster resonance energy transfer (FRET) between CQDs as donors and aflatoxin B1 (AFB1), a highly toxic mycotoxin, as the acceptor. Spherical CQDs, averaging 4.56 nm in diameter and emitting fluorescence at 455 nm, were synthesized for this purpose. Fluorescence spectroscopy, incorporating Stern-Volmer analysis and time-resolved lifetime measurements, revealed the critical role of FRET in this interaction. The estimated Förster radius (R0) of 4.81 nm and donor-acceptor separation distance (r) of 5.12 nm corresponded to a FRET efficiency of 46%. The observed decrease in donor fluorescence lifetime further supports the FRET mechanism. Selectivity experiments confirmed the system's specificity for AFB1 detection, with a limit of detection (LOD) of 0.439 nM. These findings underscore the potential of FRET-based CQD systems for sensitive and selective AFB1 detection, highlighting their versatility in fluorescence-based sensing applications and their promise for rapid food safety monitoring.
Collapse
Affiliation(s)
- Pham Van Duong
- Institute of Physics, Vietnam Academy of Science and Technology, 10 Dao Tan, Hanoi, 10000, Vietnam
| | - Le Anh Thi
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Vietnam
- Faculty of Natural Sciences, Duy Tan University, Da Nang, 550000, Vietnam
| | - Phung Quang Hung
- Facultyof Physics, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi, 10000, Vietnam
| | - Le Duc Toan
- Natural Sciences Department, Phu Yen University, Tuy Hoa City, Phu Yen, 5600, Vietnam
| | - Pham Thi Chuyen
- Department of Chemistry, Faculty of Natural Science and Technology, Tay Bac University, Son La, Vietnam
| | - Do Minh Hieu
- Institute of Physics, Vietnam Academy of Science and Technology, 10 Dao Tan, Hanoi, 10000, Vietnam
| | - Pham Hong Minh
- Institute of Physics, Vietnam Academy of Science and Technology, 10 Dao Tan, Hanoi, 10000, Vietnam
| | - Nguyen Thanh Binh
- Institute of Physics, Vietnam Academy of Science and Technology, 10 Dao Tan, Hanoi, 10000, Vietnam
| | - Tran Manh Cuong
- Facultyof Physics, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi, 10000, Vietnam
| | - Nguyen Minh Hoa
- Faculty of Fundamental Sciences, Hue University of Medicine and Pharmacy, Hue University, Hue, Vietnam.
| |
Collapse
|
3
|
S D, Palakollu VN, Vattikuti SVP, Shim J, Mameda N. Recent progress, challenges, and future perspectives of electrochemical biosensing of aflatoxins. Mikrochim Acta 2024; 192:17. [PMID: 39690256 DOI: 10.1007/s00604-024-06857-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/21/2024] [Indexed: 12/19/2024]
Abstract
Aflatoxins (AFs), produced by fungi, are highly hazardous and classified as mycotoxins. Controlling their levels is of significant concern. This group consists of 20 fungal metabolites, all structurally derived from difuranocoumarin. Exposure to AFs through food can cause critical health issues, such as cancers, deformities, and mutations, posing a significant global public health issue. The inherent dangers of AF exposure necessitate swift and reliable detection techniques to identify its presence in food products. The rise of nanotechnology has opened doors to innovative electrochemical biosensors, offering a promising solution to this pressing issue. This review delves into nanomaterial-based aptasensors, immunosensors, and molecularly imprinted polymers, the predominant electrochemical biosensors developed for AF detection. This paper offers a broad summary of recent advancements in biosensor technology in electrochemical sensing of AFs, alongside challenges to overcome limitations, and future perspectives.
Collapse
Affiliation(s)
- Doddanagowada S
- Department of Chemistry, School of Applied Sciences, REVA University, Bengaluru, 560064, India
| | | | - S V Prabhakar Vattikuti
- School of Mechanical Engineering, College of Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| | - Jaesool Shim
- School of Mechanical Engineering, College of Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Naresh Mameda
- Department of Chemistry, Koneru Lakshmaiah Education Foundation, Green Fields, Vaddeswaram, Andhra Pradesh, 522302, India
| |
Collapse
|
4
|
Orlov AV, Zolotova MO, Novichikhin DO, Belyakov NA, Protasova SG, Nikitin PI, Sinolits AV. Stannous Chloride-Modified Glass Substrates for Biomolecule Immobilization: Development of Label-Free Interferometric Sensor Chips for Highly Sensitive Detection of Aflatoxin B1 in Corn. BIOSENSORS 2024; 14:531. [PMID: 39589990 PMCID: PMC11591935 DOI: 10.3390/bios14110531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024]
Abstract
This study presents the development of stannous chloride (SnCl2)-modified glass substrates for biomolecule immobilization and their application in fabricating sensor chips for label-free interferometric biosensors. The glass modification process was optimized, identifying a 5% SnCl2 concentration, a 45 min reaction time, and a 150 °C drying temperature as conditions for efficient protein immobilization. Based on the SnCl2-modified glass substrates and label-free spectral-phase interferometry, a biosensor was developed for the detection of aflatoxin B1 (AFB1)-a highly toxic and carcinogenic contaminant in agricultural products. The biosensor realizes a competitive immunoassay of a remarkable detection limit as low as 26 pg/mL of AFB1, and a five-order dynamic range. The biosensor performance was validated using real corn flour samples contaminated with Aspergillus flavus. The proposed approach not only provides a powerful tool for AFB1 detection for food safety monitoring but also demonstrates the potential of SnCl2-modified substrates as a versatile platform for the development of next-generation biosensors.
Collapse
Affiliation(s)
- Alexey V. Orlov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov Street, 119991 Moscow, Russia; (A.V.O.); (M.O.Z.); (D.O.N.); (N.A.B.); (A.V.S.)
| | - Maria O. Zolotova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov Street, 119991 Moscow, Russia; (A.V.O.); (M.O.Z.); (D.O.N.); (N.A.B.); (A.V.S.)
- Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, Kosygin Str. 19, 119991 Moscow, Russia
| | - Denis O. Novichikhin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov Street, 119991 Moscow, Russia; (A.V.O.); (M.O.Z.); (D.O.N.); (N.A.B.); (A.V.S.)
| | - Nikolai A. Belyakov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov Street, 119991 Moscow, Russia; (A.V.O.); (M.O.Z.); (D.O.N.); (N.A.B.); (A.V.S.)
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia
| | - Svetlana G. Protasova
- Osipyan Institute of Solid State Physics, Russian Academy of Sciences, 142432 Chernogolovka, Russia;
| | - Petr I. Nikitin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov Street, 119991 Moscow, Russia; (A.V.O.); (M.O.Z.); (D.O.N.); (N.A.B.); (A.V.S.)
| | - Artem V. Sinolits
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov Street, 119991 Moscow, Russia; (A.V.O.); (M.O.Z.); (D.O.N.); (N.A.B.); (A.V.S.)
- Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, Kosygin Str. 19, 119991 Moscow, Russia
| |
Collapse
|
5
|
Wang C, Zhao X, Huang X, Xu F, Gu C, Yu S, Zhang X, Qian J. Simultaneous detection of multiple mycotoxins using MXene-based electrochemical aptasensor array and a self-developed multi-channel portable device. Talanta 2024; 278:126450. [PMID: 38908138 DOI: 10.1016/j.talanta.2024.126450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/05/2024] [Accepted: 06/18/2024] [Indexed: 06/24/2024]
Abstract
In response to the pressing need for highly efficient simultaneous detection of multiple mycotoxins, which are often found co-occurring in food raw materials and feed, an MXene-based electrochemical aptasensor array (MBEAA) was developed. This aptasensor array utilizes high-specificity aptamers as recognition elements, enabling the capture of electrical signal changes in the presence of target mycotoxins. Based on this platform, a multi-channel portable electrochemical device, enabling rapid, cost-effective, and simultaneous detection of aflatoxin B1 (AFB1), ochratoxin A (OTA), and zealenone (ZEN) was further developed. The developed system boasts a wide detection range of 1.0 × 10-1 to 10.0 ng mL-1, with remarkable performance characterized by ultra-low detection limits of 41.2 pg mL-1, 27.6 pg mL-1, and 33.0 pg mL-1 for AFB1, OTA, and ZEN, respectively. Successfully applied in corn samples, this method offers a portable, easy-to-operate, and cost-effective solution for simultaneous multi-mycotoxin detection. Moreover, the application of the self-developed detection system could be expanded for simultaneous detection of many different targets when their specific aptamers or antibodies were available.
Collapse
Affiliation(s)
- Chengquan Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Xin Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Xingyi Huang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Foyan Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Chengdong Gu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Shanshan Yu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Xiaorui Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Jing Qian
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
6
|
Ozcelikay G, Cetinkaya A, Kaya SI, Yence M, Canavar Eroğlu PE, Unal MA, Ozkan SA. Novel Sensor Approaches of Aflatoxins Determination in Food and Beverage Samples. Crit Rev Anal Chem 2024; 54:982-1001. [PMID: 35917408 DOI: 10.1080/10408347.2022.2105136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The rapid quantification of toxins in food and beverage products has become a significant issue in overcoming and preventing many life-threatening diseases. Aflatoxin-contaminated food is one of the reasons for primary liver cancer and induces some tumors and cancer types. Advancements in biosensors technology have brought out different analysis methods. Therefore, the sensing performance has been improved for agricultural and beverage industries or food control processes. Nanomaterials are widely used for the enhancement of sensing performance. The enzymes, molecularly imprinted polymers (MIP), antibodies, and aptamers can be used as biorecognition elements. The transducer part of the biosensor can be selected, such as optical, electrochemical, and mass-based. This review explains the classification of major types of aflatoxins, the importance of nanomaterials, electrochemical, optical biosensors, and QCM and their applications for the determination of aflatoxins.
Collapse
Affiliation(s)
- Goksu Ozcelikay
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Yenimahalle, Ankara, Turkey
| | - Ahmet Cetinkaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Yenimahalle, Ankara, Turkey
| | - S Irem Kaya
- Department of Analytical Chemistry, Gulhane Faculty of Pharmacy, University of Health Sciences, Kecioren, Ankara, Turkey
| | - Merve Yence
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Yenimahalle, Ankara, Turkey
| | | | | | - Sibel A Ozkan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Yenimahalle, Ankara, Turkey
| |
Collapse
|
7
|
Lakavath K, Kafley C, Sajeevan A, Jana S, Marty JL, Kotagiri YG. Progress on Electrochemical Biomimetic Nanosensors for the Detection and Monitoring of Mycotoxins and Pesticides. Toxins (Basel) 2024; 16:244. [PMID: 38922139 PMCID: PMC11209398 DOI: 10.3390/toxins16060244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 06/27/2024] Open
Abstract
Monitoring agricultural toxins such as mycotoxins is crucial for a healthy society. High concentrations of these toxins lead to the cause of several chronic diseases; therefore, developing analytical systems for detecting/monitoring agricultural toxins is essential. These toxins are found in crops such as vegetables, fruits, food, and beverage products. Currently, screening of these toxins is mostly performed with sophisticated instrumentation such as chromatography and spectroscopy techniques. However, these techniques are very expensive and require extensive maintenance, and their availability is limited to metro cities only. Alternatively, electrochemical biomimetic sensing methodologies have progressed hugely during the last decade due to their unique advantages like point-of-care sensing, miniaturized instrumentations, and mobile/personalized monitoring systems. Specifically, affinity-based sensing strategies including immunosensors, aptasensors, and molecular imprinted polymers offer tremendous sensitivity, selectivity, and stability to the sensing system. The current review discusses the principal mechanisms and the recent developments in affinity-based sensing methodologies for the detection and continuous monitoring of mycotoxins and pesticides. The core discussion has mainly focused on the fabrication protocols, advantages, and disadvantages of affinity-based sensing systems and different exploited electrochemical transduction techniques.
Collapse
Affiliation(s)
- Kavitha Lakavath
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678 557, Kerala, India; (K.L.); (C.K.); (A.S.); (S.J.)
| | - Chandan Kafley
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678 557, Kerala, India; (K.L.); (C.K.); (A.S.); (S.J.)
| | - Anjana Sajeevan
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678 557, Kerala, India; (K.L.); (C.K.); (A.S.); (S.J.)
| | - Soumyajit Jana
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678 557, Kerala, India; (K.L.); (C.K.); (A.S.); (S.J.)
| | - Jean Louis Marty
- BAE Laboratory, Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan, France
| | - Yugender Goud Kotagiri
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678 557, Kerala, India; (K.L.); (C.K.); (A.S.); (S.J.)
| |
Collapse
|
8
|
Li H, Shang Q, Zhang L, Mao J, Zhang Q, Li P. Europium nanospheres based ultrasensitive fluorescence immunosensor for aflatoxin B1 determination in feed. Talanta 2024; 270:125569. [PMID: 38141463 DOI: 10.1016/j.talanta.2023.125569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/06/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
In this work, a new competitive immunosensor for aflatoxin B1 (AFB1) detection was developed using europium (Eu) fluorescent nanospheres and magnetic beads. Firstly, Eu nanospheres were synthesized through two steps including carboxylated polystyrene nanospheres and Eu-doped polystyrene nanospheres preparation. Then Eu nanospheres were covalently tagged to anti-AFB1 monoclonal antibody (anti-AFB1 mAb) through an EDC coupling method. Carboxylated Fe3O4 magnetic beads were conjugated to AFB1-BSA through EDC/NHS crosslinking to obtain AFB1-BSA-Fe3O4. In the absence of AFB1, Eu-anti-AFB1 mAb were incubated with AFB1-BSA-Fe3O4 to form Eu-anti-AFB1 mAb-AFB1-BSA-Fe3O4 in PBS buffer. However, in the presence of AFB1, the competitive interaction of AFB1 and AFB1-BSA-Fe3O4 to bind with Eu-anti-AFB1 mAb occurred. With the increasing concentration of AFB1, less Eu-anti-AFB1 mAb-AFB1-BSA-Fe3O4 formed. So the fluorescence intensity of Eu-anti-AFB1 mAb-AFB1-BSA-Fe3O4 was gradually decreased after magnetic separation. The degree of fluorescence decrease was linear with respect to the logarithm of AFB1 concentration in the range of 0.01-2 ng/mL in both buffer solution and feed samples and the detection limit was 0.003 ng/mL. What's more, the immunosensor showed excellent specificity for AFB1 without being interfered by other mycotoxins. In consideration of the excellent performance of this immunosensor, we can speculate that the proposed method could be widely used in detecting food contaminants.
Collapse
Affiliation(s)
- Hui Li
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, China; National Reference Laboratory for Agricultural Testing (Biotoxin), Wuhan, 430062, China; Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, China; Laboratory of Quality and Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan, 430062, China.
| | - Qingyu Shang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China; Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, China; Laboratory of Quality and Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan, 430062, China
| | - Liangxiao Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, China; Laboratory of Quality and Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan, 430062, China
| | - Jin Mao
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, China; National Reference Laboratory for Agricultural Testing (Biotoxin), Wuhan, 430062, China; Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, China
| | - Qi Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, China; National Reference Laboratory for Agricultural Testing (Biotoxin), Wuhan, 430062, China; Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, China; Laboratory of Quality and Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan, 430062, China.
| | - Peiwu Li
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, China; National Reference Laboratory for Agricultural Testing (Biotoxin), Wuhan, 430062, China; Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, China; Laboratory of Quality and Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan, 430062, China.
| |
Collapse
|
9
|
Wei H, Mao J, Sun D, Zhang Q, Cheng L, Yang X, Li P. Strategies to control mycotoxins and toxigenic fungi contamination by nano-semiconductor in food and agro-food: a review. Crit Rev Food Sci Nutr 2023; 63:12488-12512. [PMID: 35880423 DOI: 10.1080/10408398.2022.2102579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Mycotoxins are toxic secondary metabolites generated from toxigenic fungi in the contaminated food and agro-food, which have been regarded as a serious threat to the food safety and human health. Therefore, the control of mycotoxins and toxigenic fungi contamination is of great significance and has attracted the increasing attention of researchers. As we know, nano-semiconductors have many unique properties such as large surface area, structural stability, good biocompatibility, excellent photoelectrical properties, and low cost, which have been developed and applied in many research fields. Recently, nano-semiconductors have also been promisingly applied in mitigating or controlling mycotoxins and toxigenic fungi contaminations in food and agro-food. In this review, the type, occurrence, and toxicity of main mycotoxins in food and agro-food were introduced. Then, a variety of strategies to mitigate the mycotoxin contamination based on nano-semiconductors involving mycotoxins detection, inhibition of toxigenic fungi, and mycotoxins degradation were summarized. Finally, the outlook, opportunities, and challenges have prospected in the future for the mitigation of mycotoxins and toxigenic fungi based on nano-semiconductors.
Collapse
Affiliation(s)
- Hailian Wei
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Jin Mao
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- National Reference Laboratory for Agricultural Testing P.R. China, Key Laboratory of Detection for Mycotoxins, Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Hubei Hongshan Laboratory, Wuhan, China
| | - Di Sun
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Qi Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- National Reference Laboratory for Agricultural Testing P.R. China, Key Laboratory of Detection for Mycotoxins, Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Hubei Hongshan Laboratory, Wuhan, China
| | - Ling Cheng
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- National Reference Laboratory for Agricultural Testing P.R. China, Key Laboratory of Detection for Mycotoxins, Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Hubei Hongshan Laboratory, Wuhan, China
| | - Xianglong Yang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- National Reference Laboratory for Agricultural Testing P.R. China, Key Laboratory of Detection for Mycotoxins, Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Hubei Hongshan Laboratory, Wuhan, China
| | - Peiwu Li
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- National Reference Laboratory for Agricultural Testing P.R. China, Key Laboratory of Detection for Mycotoxins, Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
10
|
Fan Y, Li J, Amin K, Yu H, Yang H, Guo Z, Liu J. Advances in aptamers, and application of mycotoxins detection: A review. Food Res Int 2023; 170:113022. [PMID: 37316026 DOI: 10.1016/j.foodres.2023.113022] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 06/16/2023]
Abstract
Mycotoxin contamination in food products can easily cause serious health hazards and economic losses to human beings. How to accurately detect and effectively control mycotoxin contamination has become a global concern. Mycotoxins conventional detection techniques e.g; ELISA, HPLC, have limitations like, low sensitivity, high cost and time-consuming. Aptamer-based biosensing technology has the advantages of high sensitivity, high specificity, wide linear range, high feasibility, and non-destructiveness, which overcomes the shortcomings of conventional analysis techniques. This review summarizes the sequences of mycotoxin aptamers that have been reported so far. Based on the application of four classic POST-SELEX strategies, it also discusses the bioinformatics-assisted POST-SELEX technology in obtaining optimal aptamers. Furthermore, trends in the study of aptamer sequences and their binding mechanisms to targets is also discussed. The latest examples of aptasensor detection of mycotoxins are classified and summarized in detail. Newly developed dual-signal detection, dual-channel detection, multi-target detection and some types of single-signal detection combined with unique strategies or novel materials in recent years are focused. Finally, the challenges and prospects of aptamer sensors in the detection of mycotoxins are discussed. The development of aptamer biosensing technology provides a new approach with multiple advantages for on-site detection of mycotoxins. Although aptamer biosensing shows great development potential, still some challenges and difficulties are there in practical applications. Future research need high focus on the practical applications of aptasensors and the development of convenient and highly automated aptamers. This may lead to the transition of aptamer biosensing technology from laboratory to commercialization.
Collapse
Affiliation(s)
- Yiting Fan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China.
| | - Jiaxin Li
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences, 32004 Ourense, Spain.
| | - Khalid Amin
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China.
| | - Hansong Yu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China.
| | - Huanhuan Yang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163000, China; College of Life Science Chang Chun Normal University, Changchun 130032, China.
| | - Zhijun Guo
- College of Agriculture, Yanbian University, Yanji 133002, China.
| | - Jingsheng Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China.
| |
Collapse
|
11
|
Pan J, Xu W, Li W, Chen S, Dai Y, Yu S, Zhou Q, Xia F. Electrochemical Aptamer-Based Sensors with Tunable Detection Range. Anal Chem 2023; 95:420-432. [PMID: 36625123 DOI: 10.1021/acs.analchem.2c04498] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Jing Pan
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Wenxia Xu
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Wanlu Li
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Shuwen Chen
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Yu Dai
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Shanwu Yu
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Qitao Zhou
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
12
|
Electrochemistry Applied to Mycotoxin Determination in Food and Beverages. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02434-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
13
|
Contreras-Trigo B, Díaz-García V, Oyarzún P. A Novel Preanalytical Strategy Enabling Application of a Colorimetric Nanoaptasensor for On-Site Detection of AFB1 in Cattle Feed. SENSORS (BASEL, SWITZERLAND) 2022; 22:9280. [PMID: 36501982 PMCID: PMC9735511 DOI: 10.3390/s22239280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
Aflatoxin contamination of cattle feed is responsible for serious adverse effects on animal and human health. A number of approaches have been reported to determine aflatoxin B1 (AFB1) in a variety of feed samples using aptasensors. However, rapid analysis of AFB1 in these matrices remains to be addressed in light of the complexity of the preanalytical process. Herein we describe an optimization on the preanalytical stage to minimize the sample processing steps required to perform semi-quantitative colorimetric detection of AFB1 in cattle feed using a gold nanoparticle-based aptasensor (nano-aptasensor). The optical behavior of the nano-aptasensor was characterized in different organics solvents, with acetonitrile showing the least interference on the activity of the nan-aptasensor. This solvent was selected as the extractant agent for AFB1-containing feed, allowing for the first time, direct colorimetric detection from the crude extract (detection limit of 5 µg/kg). Overall, these results lend support to the application of this technology for the on-site detection of AFB1 in the dairy sector.
Collapse
|
14
|
A Novel Biomimetic Network Amplification Strategy Designed Fluorescent Aptasensor Based on Yolk-Shell Fe3O4 Nanomaterials for Aflatoxin B1 Detection. Food Chem 2022; 398:133761. [DOI: 10.1016/j.foodchem.2022.133761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/19/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022]
|
15
|
Ye J, Zheng M, Ma H, Xuan Z, Tian W, Liu H, Wang S, Zhang Y. Development and Validation of an Automated Magneto-Controlled Pretreatment for Chromatography-Free Detection of Aflatoxin B1 in Cereals and Oils through Atomic Absorption Spectroscopy. Toxins (Basel) 2022; 14:toxins14070454. [PMID: 35878192 PMCID: PMC9319898 DOI: 10.3390/toxins14070454] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 12/18/2022] Open
Abstract
A chromatography-free detection of aflatoxin B1 (AFB1) in cereals and oils through atomic absorption spectroscopy (AAS) has been developed using quantum dots and immunomagnetic beads. A magneto-controlled pretreatment platform for automatic purification, labeling, and digestion was constructed, and AFB1 detection through AAS was enabled. Under optimal conditions, this immunoassay exhibited high sensitivity for AFB1 detection, with limits of detection as low as 0.04 μg/kg and a linear dynamic range of 2.5–240 μg/kg. The recoveries for four different food matrices ranged from 92.6% to 108.7%, with intra- and inter-day standard deviations of 0.7–6.3% and 0.6–6.9%, respectively. The method was successfully applied to the detection of AFB1 in husked rice, maize, and polished rice samples, and the detection results were not significantly different from those of liquid chromatography-tandem mass spectrometry. The proposed method realized the detection of mycotoxins through AAS for the first time. It provides a new route for AFB1 detection, expands the application scope of AAS, and provides a reference for the simultaneous determination of multiple poisonous compounds (such as mycotoxins and heavy metals).
Collapse
Affiliation(s)
- Jin Ye
- Key Laboratory of Grain Information Processing and Control, Henan University of Technology, Ministry of Education, Zhengzhou 450001, China;
- Henan Key Laboratory of Grain Photoelectric Detection and Control, Henan University of Technology, Zhengzhou 450001, China
- College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
- Academy of National Food and Strategic Reserves Administration, Beijing 102600, China; (M.Z.); (Z.X.); (W.T.); (H.L.); (S.W.)
| | - Mengyao Zheng
- Academy of National Food and Strategic Reserves Administration, Beijing 102600, China; (M.Z.); (Z.X.); (W.T.); (H.L.); (S.W.)
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Haihua Ma
- Key Laboratory of Grain Information Processing and Control, Henan University of Technology, Ministry of Education, Zhengzhou 450001, China;
- Henan Key Laboratory of Grain Photoelectric Detection and Control, Henan University of Technology, Zhengzhou 450001, China
- College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
- Correspondence: (H.M.); (Y.Z.)
| | - Zhihong Xuan
- Academy of National Food and Strategic Reserves Administration, Beijing 102600, China; (M.Z.); (Z.X.); (W.T.); (H.L.); (S.W.)
| | - Wei Tian
- Academy of National Food and Strategic Reserves Administration, Beijing 102600, China; (M.Z.); (Z.X.); (W.T.); (H.L.); (S.W.)
| | - Hongmei Liu
- Academy of National Food and Strategic Reserves Administration, Beijing 102600, China; (M.Z.); (Z.X.); (W.T.); (H.L.); (S.W.)
| | - Songxue Wang
- Academy of National Food and Strategic Reserves Administration, Beijing 102600, China; (M.Z.); (Z.X.); (W.T.); (H.L.); (S.W.)
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yuan Zhang
- Key Laboratory of Grain Information Processing and Control, Henan University of Technology, Ministry of Education, Zhengzhou 450001, China;
- Henan Key Laboratory of Grain Photoelectric Detection and Control, Henan University of Technology, Zhengzhou 450001, China
- College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
- Correspondence: (H.M.); (Y.Z.)
| |
Collapse
|
16
|
Alidadykhah M, Peyman H, Roshanfekr H, Azizi S, Maaza M. Functionalization and Modification of Polyethylene Terephthalate Polymer by AgCl Nanoparticles under Ultrasound Irradiation as Bactericidal. ACS OMEGA 2022; 7:19141-19151. [PMID: 35721923 PMCID: PMC9202035 DOI: 10.1021/acsomega.1c07082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/08/2022] [Indexed: 06/15/2023]
Abstract
Polyethylene terephthalate polymer (PET) is widely used in diverse areas. In the current study, the surface of PET is modified in two steps in order to improve the quality. At first, the polymer was functionalized with carboxylic groups, and Fourier transform infrared spectroscopy studies were used to verify functionalization. Then, AgCl nanoparticles were synthesized on COOH functional groups on the surface of PET using a sonochemistry method by sequential dipping of the functionalized polymer in an alternating bath of potassium chloride and silver nitrate under ultrasonic irradiation. The effects of ultrasonic irradiation power, the number of dipping steps, and pH on the growth of AgCl nanoparticles as effective parameters on size and density of synthesized Ag nanoparticles were studied. The results of scanning electron microscopy studies showed that the size and density of AgCl nanoparticles under ultrasonic irradiation with a power of 100 W are better than those of AgCl nanoparticles under irradiation with a power of 30 W. Also, by 15 times dipping the polymer into the reagent solutions in pH = 9, the modified polymer with a greater number of nanoparticles with suitable size can be reached. Antibacterial properties of PET containing AgCl nanoparticles were investigated against six Gram-positive and Gram-negative bacteria species, and the results showed significant antibacterial activity, while functionalized PET did not have a significant effect on both types of bacteria.
Collapse
Affiliation(s)
- Mitra Alidadykhah
- Department
of Chemistry, Ilam Branch, Islamic Azad
University, Ilam, Iran
| | - Hossein Peyman
- Department
of Chemistry, Ilam Branch, Islamic Azad
University, Ilam, Iran
| | - Hamideh Roshanfekr
- Department
of Chemistry, Ilam Branch, Islamic Azad
University, Ilam, Iran
| | - Shohreh Azizi
- UNESCO-UNISA
Africa Chair in Nanosciences and Nanotechnology, College of Graduate
Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria,0002 South Africa
- Nanosciences
African Network (NANOAFNET), iThemba LABS-National
Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Somerset West, Western Cape, 7131, South Africa
| | - Malik Maaza
- UNESCO-UNISA
Africa Chair in Nanosciences and Nanotechnology, College of Graduate
Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria,0002 South Africa
- Nanosciences
African Network (NANOAFNET), iThemba LABS-National
Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Somerset West, Western Cape, 7131, South Africa
| |
Collapse
|
17
|
Liu D, Jia F, Wei Y, Li Y, Meng S, You T. Programmable analytical feature of ratiometric electrochemical biosensor by alternating the binding site of ferrocene to
DNA
duplex for the detection of aflatoxin
B1. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Dong Liu
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering Jiangsu University Zhenjiang Jiangsu 212013 China
| | - Fan Jia
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering Jiangsu University Zhenjiang Jiangsu 212013 China
| | - Ya Wei
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering Jiangsu University Zhenjiang Jiangsu 212013 China
| | - Yuye Li
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering Jiangsu University Zhenjiang Jiangsu 212013 China
| | - Shuyun Meng
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering Jiangsu University Zhenjiang Jiangsu 212013 China
| | - Tianyan You
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering Jiangsu University Zhenjiang Jiangsu 212013 China
| |
Collapse
|
18
|
Huang Z, Shu Z, Xiao A, Pi F, Li Y, Dai H, Wang J. Determination of aflatoxin B1 in rice flour based on an enzyme-catalyzed Prussian blue probe. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Lin X, Yu W, Tong X, Li C, Duan N, Wang Z, Wu S. Application of Nanomaterials for Coping with Mycotoxin Contamination in Food Safety: From Detection to Control. Crit Rev Anal Chem 2022; 54:355-388. [PMID: 35584031 DOI: 10.1080/10408347.2022.2076063] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Mycotoxins, which are toxic secondary metabolites produced by fungi, are harmful to humans. Mycotoxin-induced contamination has drawn attention worldwide. Consequently, the development of reliable and sensitive detection methods and high-efficiency control strategies for mycotoxins is important to safeguard food industry safety and public health. With the rapid development of nanotechnology, many novel nanomaterials that provide tremendous opportunities for greatly improving the detection and control performance of mycotoxins because of their unique properties have emerged. This review comprehensively summarizes recent trends in the application of nanomaterials for detecting mycotoxins (fluorescence, colorimetric, surface-enhanced Raman scattering, electrochemical, and point-of-care testing) and controlling mycotoxins (inhibition of fungal growth, mycotoxin absorption, and degradation). These detection methods possess the advantages of high sensitivity and selectivity, operational simplicity, and rapidity. With research attention on the control of mycotoxins and the gradual excavation of the properties of nanomaterials, nanomaterials are also employed for the inhibition of fungal growth, mycotoxin absorption, and mycotoxin degradation, and impressive controlling effects are obtained. This review is expected to provide the readers insight into this state-of-the-art area and a reference to design nanomaterials-based schemes for the detection and control of mycotoxins.
Collapse
Affiliation(s)
- Xianfeng Lin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Wenyan Yu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Xinyu Tong
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Changxin Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Nuo Duan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shijia Wu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
20
|
Liu R, Zhang F, Sang Y, Katouzian I, Jafari SM, Wang X, Li W, Wang J, Mohammadi Z. Screening, identification, and application of nucleic acid aptamers applied in food safety biosensing. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.03.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Tittlemier S, Cramer B, Dall’Asta C, DeRosa M, Lattanzio V, Malone R, Maragos C, Stranska M, Sumarah M. Developments in mycotoxin analysis: an update for 2020-2021. WORLD MYCOTOXIN J 2022. [DOI: 10.3920/wmj2021.2752] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This review summarises developments published in the period from mid-2020 to mid-2021 on the analysis of a number of diverse matrices for mycotoxins. Notable developments in all aspects of mycotoxin analysis, from sampling and quality assurance/quality control of analytical results, to the various detection and quantitation technologies ranging from single mycotoxin biosensors to comprehensive instrumental methods are presented and discussed. The summary and discussion of this past year’s developments in detection and quantitation technology covers chromatography with targeted or non-targeted high resolution mass spectrometry, tandem mass spectrometry, detection other than mass spectrometry, biosensors, as well as assays using alternatives to antibodies. This critical review aims to briefly present the most important recent developments and trends in mycotoxin determination, as well as to address limitations of the presented methodologies.
Collapse
Affiliation(s)
- S.A. Tittlemier
- Canadian Grain Commission, Grain Research Laboratory, 1404-303 Main St, Winnipeg, MB, R3C 3G8, Canada
| | - B. Cramer
- Westfälische Wilhelms-Universität Münster, Institute of Food Chemistry, Corrensstr. 45, 48149 Münster, Germany
| | - C. Dall’Asta
- Università di Parma, Department of Food and Drug, Viale delle Scienze 27/A, 43124 Parma, Italy
| | - M.C. DeRosa
- Department of Chemistry, Carleton University, Ottawa, ON, K1S 5B6, Canada
| | - V.M.T. Lattanzio
- National Research Council of Italy, Institute of Sciences of Food Production, via Amendola 122/O, 70126 Bari, Italy
| | - R. Malone
- Trilogy Analytical Laboratory, 870 Vossbrink Dr, Washington, MO 63090, USA
| | - C. Maragos
- United States Department of Agriculture, ARS National Center for Agricultural Utilization Research, Peoria, IL 61604, USA
| | - M. Stranska
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technicka 5, Prague, 166 28, Prague, Czech Republic
| | - M.W. Sumarah
- Agriculture and Agri-Food Canada, London Research and Development Centre, 1391 Sandford Street, London, ON, N5V 4T3, Canada
| |
Collapse
|
22
|
Qi X, Lv L, Wei D, Lee JJ, Niu M, Cui C, Guo Z. Detection of aflatoxin B 1 with a new label-free fluorescence aptasensor based on PVP-coated single-walled carbon nanohorns and SYBR Gold. Anal Bioanal Chem 2022; 414:3087-3094. [PMID: 35118572 DOI: 10.1007/s00216-022-03938-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 11/01/2022]
Abstract
This paper describes a novel fluorescence label-free aptasensor to detect aflatoxin B1 (AFB1) by utilizing SYBR Gold, aptamer, and single-walled carbon nanohorns (SWCNHs). In the presence of AFB1, the conformation of AFB1-specific aptamer went through and the spatial structure of this specific aptamer was transformed accordingly. Due to the resistance of the transformed aptamer when adsorbed on the surface of SWCNHs, the protection of the fluorescence of SYBR Gold was accomplished. Consequently, concentrations of AFB1 showed a strong association with fluorescence intensity. The detection limit (LOD) of AFB1 was 1.89 ng/mL, while the linear range was 5-200 ng/mL and fluorescence intensity satisfactorily correlated (R2 = 0.9919) with the logarithm of AFB1 concentration.
Collapse
Affiliation(s)
- Xin Qi
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, 133002, China.,College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Lei Lv
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, 133002, China.,College of Agriculture, Yanbian University, Yanji, 133002, China
| | - Dongxu Wei
- Technology Center of Harbin Customs, Harbin, 150008, China
| | - Jung Joon Lee
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, 133002, China
| | - Mengyu Niu
- College of Agriculture, Yanbian University, Yanji, 133002, China
| | - Chengbi Cui
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, 133002, China. .,College of Pharmacy, Yanbian University, Yanji, 133002, China.
| | - Zhijun Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, 133002, China. .,College of Agriculture, Yanbian University, Yanji, 133002, China.
| |
Collapse
|
23
|
Pérez-Fernández B, Muñiz ADLE. Electrochemical biosensors based on nanomaterials for aflatoxins detection: A review (2015–2021). Anal Chim Acta 2022; 1212:339658. [DOI: 10.1016/j.aca.2022.339658] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/09/2022] [Accepted: 02/24/2022] [Indexed: 12/25/2022]
|
24
|
Wang Y, Zhang C, Wang J, Knopp D. Recent Progress in Rapid Determination of Mycotoxins Based on Emerging Biorecognition Molecules: A Review. Toxins (Basel) 2022; 14:73. [PMID: 35202100 PMCID: PMC8874725 DOI: 10.3390/toxins14020073] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 12/12/2022] Open
Abstract
Mycotoxins are secondary metabolites produced by fungal species, which pose significant risk to humans and livestock. The mycotoxins which are produced from Aspergillus, Penicillium, and Fusarium are considered most important and therefore regulated in food- and feedstuffs. Analyses are predominantly performed by official laboratory methods in centralized labs by expert technicians. There is an urgent demand for new low-cost, easy-to-use, and portable analytical devices for rapid on-site determination. Most significant advances were realized in the field bioanalytical techniques based on molecular recognition. This review aims to discuss recent progress in the generation of native biomolecules and new bioinspired materials towards mycotoxins for the development of reliable bioreceptor-based analytical methods. After brief presentation of basic knowledge regarding characteristics of most important mycotoxins, the generation, benefits, and limitations of present and emerging biorecognition molecules, such as polyclonal (pAb), monoclonal (mAb), recombinant antibodies (rAb), aptamers, short peptides, and molecularly imprinted polymers (MIPs), are discussed. Hereinafter, the use of binders in different areas of application, including sample preparation, microplate- and tube-based assays, lateral flow devices, and biosensors, is highlighted. Special focus, on a global scale, is placed on commercial availability of single receptor molecules, test-kits, and biosensor platforms using multiplexed bead-based suspension assays and planar biochip arrays. Future outlook is given with special emphasis on new challenges, such as increasing use of rAb based on synthetic and naïve antibody libraries to renounce animal immunization, multiple-analyte test-kits and high-throughput multiplexing, and determination of masked mycotoxins, including stereoisomeric degradation products.
Collapse
Affiliation(s)
- Yanru Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.W.); (C.Z.)
| | - Cui Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.W.); (C.Z.)
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.W.); (C.Z.)
| | - Dietmar Knopp
- Chair for Analytical Chemistry and Water Chemistry, Institute of Hydrochemistry, Technische Universitat München, Elisabeth-Winterhalter-Weg 6, D-81377 München, Germany
| |
Collapse
|
25
|
Wang P, Fu F, Liu T. A review of the new multifunctional nano zero-valent iron composites for wastewater treatment: Emergence, preparation, optimization and mechanism. CHEMOSPHERE 2021; 285:131435. [PMID: 34256206 DOI: 10.1016/j.chemosphere.2021.131435] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
Nano zero-valent iron (NZVI) with high chemical reactivity and environmental friendliness had recently become one of the most efficient technologies for wastewater restoration. However, the unitary NZVI system had not met practical requirements for wastewater treatments. Expectantly, the development of NZVI would prefer multifunctional NZVI-based composites, which could be prepared and optimized by the combined methods and technologies. Consequently, a systematic and comprehensive summary from the perspective of multifunctional NZVI-composite had been conducted. The results demonstrated that the advantages of various systems were integrated by multifunctional NZVI-composite systems with a more significant performance of pollutant removal than those of the bare NZVI and its composites. Simultaneously, characteristics of the product prepared by the incorporation of numerous methods were superior to those by a simple method, resulting in the increase of the entirety efficiency. By comparison with other preparation methods, the ball milling method with higher production and field application potential was worthy of attention. After combining multiple technologies, the effect of NZVI and its composite systems could be dramatically strengthened. Preparation technology parameters and treatment effect of contaminants could be further optimized using more comprehensive experimental designs and mathematical models. The mechanism of the multifunctional NZVI system for contaminants treatment was primarily focused on adsorption, oxidation, reduction and co-precipitation. Multiple techniques were combined to enhance the dispersion, alleviating passivation, accelerating electron transfer efficiency or mass transfer action for optimizing the effect of NZVI composites.
Collapse
Affiliation(s)
- Peng Wang
- Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, 300387, Tianjin, PR China; School of Geography and Environmental Sciences, Tianjin Normal University, Tianjin, 300387, Tianjin, PR China
| | - Fugang Fu
- PowerChina Guiyang Engineering Corporation Limited, 300387, Guiyang, PR China
| | - Tingyi Liu
- Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, 300387, Tianjin, PR China.
| |
Collapse
|
26
|
Hou Y, Jia B, Sheng P, Liao X, Shi L, Fang L, Zhou L, Kong W. Aptasensors for mycotoxins in foods: Recent advances and future trends. Compr Rev Food Sci Food Saf 2021; 21:2032-2073. [PMID: 34729895 DOI: 10.1111/1541-4337.12858] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 08/19/2021] [Accepted: 09/16/2021] [Indexed: 02/06/2023]
Abstract
Mycotoxin contamination in foods has posed serious threat to public health and raised worldwide concern. The development of simple, rapid, facile, and cost-effective methods for mycotoxin detection is of urgent need. Aptamer-based sensors, abbreviated as aptasensors, with excellent recognition capacity to a wide variety of mycotoxins have attracted ever-increasing interest of researchers because of their simple fabrication, rapid response, high sensitivity, low cost, and easy adaptability for in situ measurement. The past few decades have witnessed the rapid advances of aptasensors for mycotoxin detection in foods. Therefore, this review first summarizes the reported aptamer sequences specific for mycotoxins. Then, the recent 5-year advancements in various newly developed aptasensors, which, according to the signal output mode, are divided into electrochemical, optical and photoelectrochemical categories, for mycotoxin detection are comprehensively discussed. A special attention is taken on their strengths and limitations in real-world application. Finally, the current challenges and future perspectives for developing novel highly reliable aptasensors for mycotoxin detection are highlighted, which is expected to provide powerful references for their thorough research and extended applications. Owing to their unique advantages, aptasensors display a fascinating prospect in food field for safety inspection and risk assessment.
Collapse
Affiliation(s)
- Yujiao Hou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, China.,Xinjiang Agricultural Vocational Technical College, Changji, China
| | - Boyu Jia
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ping Sheng
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, China
| | - Xiaofang Liao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Linchun Shi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ling Fang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lidong Zhou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weijun Kong
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
27
|
Carbon-Based Nanocomposite Smart Sensors for the Rapid Detection of Mycotoxins. NANOMATERIALS 2021; 11:nano11112851. [PMID: 34835617 PMCID: PMC8621137 DOI: 10.3390/nano11112851] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/01/2021] [Accepted: 10/11/2021] [Indexed: 01/07/2023]
Abstract
Carbon-based nanomaterials have become the subject of intensive interest because their intriguing physical and chemical properties are different from those of their bulk counterparts, leading to novel applications in smart sensors. Mycotoxins are secondary metabolites with different structures and toxic effects produced by fungi. Mycotoxins have low molecular weights and highly diverse molecular structures, which can induce a spectrum of biological effects in humans and animals even at low concentrations. A tremendous amount of biosensor platforms based on various carbon nanocomposites have been developed for the determination of mycotoxins. Therefore, the contents of this review are based on a balanced combination of our own studies and selected research studies performed by academic groups worldwide. We first address the vital preparation methods of biorecognition unit (antibodies, aptamers, molecularly imprinted polymers)-functionalized carbon-based nanomaterials for sensing mycotoxins. Then, we summarize various types of smart sensors for the detection of mycotoxins. We expect future research on smart sensors to show a significant impact on the detection of mycotoxins in food products.
Collapse
|
28
|
|
29
|
Lerdsri J, Soongsong J, Laolue P, Jakmunee J. Reliable colorimetric aptasensor exploiting 72-Mers ssDNA and gold nanoprobes for highly sensitive detection of aflatoxin M1 in milk. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.103992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
30
|
Shi X, Yang F, Liu H, Zhang M, Sun X, Guo Y. Supersensitive Electrochemiluminescence Aptasensor for Malathion Residues Based on ATO@TiO2 and AgNPs. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-02066-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
31
|
Yadav N, Yadav SS, Chhillar AK, Rana JS. An overview of nanomaterial based biosensors for detection of Aflatoxin B1 toxicity in foods. Food Chem Toxicol 2021; 152:112201. [PMID: 33862122 DOI: 10.1016/j.fct.2021.112201] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/02/2021] [Accepted: 04/08/2021] [Indexed: 02/08/2023]
Abstract
Aflatoxin B1 (AFB1) is one of the most potent mycotoxin contaminating several foods and feeds. It suppresses immunity and consequently increases mutagenicity, carcinogenicity, teratogenicity, hepatotoxicity, embryonic toxicity and increasing morbidity and mortality. Continuous exposure of AFB1 causes liver damage and thus increases the prevalence of cirrhosis and hepatic cancer. This article was planned to provide understanding of AFB1 toxicity and provides future directions for fabrication of cost effective and user-friendly nanomaterials based analytical devices. In the present article various conventional (chromatographic & spectroscopic), modern (PCR & immunoassays) and nanomaterials based biosensing techniques (electrochemical, optical, piezoelectrical and microfluidic) are discussed alongwith their merits and demerits. Nanomaterials based amperometric biosensors are found to be more stable, selective and cost-effective analytical devices in comparison to other biosensors. But many unresolved issues about their stability, toxicity and metabolic fate needs further studies. In-depth studies are needed for development of advanced nanomaterials integrated biosensors for specific, sensitive and fast monitoring of AFB1 toxicity in foods. Integration of biosensing system with micro array technology for simultaneous and automated detection of multiple AFs in real samples is also needed. Concerted efforts are also required to reduce their possible hazardous consequences of nanomaterials based biosensors.
Collapse
Affiliation(s)
- Neelam Yadav
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Sonepat, Haryana, 131039, India; Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Surender Singh Yadav
- Deparment of Botany, MaharshiDayanand University, Rohtak, Haryana, 124001, India.
| | - Anil Kumar Chhillar
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Jogender Singh Rana
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Sonepat, Haryana, 131039, India.
| |
Collapse
|
32
|
Karaman C, Karaman O, Yola BB, Ülker İ, Atar N, Yola ML. A novel electrochemical aflatoxin B1 immunosensor based on gold nanoparticle-decorated porous graphene nanoribbon and Ag nanocube-incorporated MoS2 nanosheets. NEW J CHEM 2021. [DOI: 10.1039/d1nj02293h] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The accurate and precisive monitoring of aflatoxin B1 (AFB1), which is one of the most hazardous mycotoxins, especially in agricultural products, is significant for human and environmental health.
Collapse
Affiliation(s)
- Ceren Karaman
- Akdeniz University
- Vocational School of Technical Sciences
- Department of Electricity and Energy
- Antalya
- Turkey
| | - Onur Karaman
- Akdeniz University
- Vocational School of Health Services
- Department of Medical Imaging Techniques
- Antalya
- Turkey
| | - Bahar Bankoğlu Yola
- Iskenderun Technical University
- Science and Technology Application and Research Laboratory
- Turkey
| | - İzzet Ülker
- Erzurum Technical University
- Faculty of Health Sciences
- Department of Nutrition and Dietetics
- Erzurum
- Turkey
| | - Necip Atar
- Pamukkale University
- Faculty of Engineering
- Department of Chemical Engineering
- Denizli
- Turkey
| | - Mehmet Lütfi Yola
- Hasan Kalyoncu University
- Faculty of Health Sciences
- Department of Nutrition and Dietetics
- Gaziantep
- Turkey
| |
Collapse
|