1
|
Mahmoud AM, Sheteiwy MS, El-Keblawy A, Ulhassan Z, Khalaf MH, Mohamed HS, Okla MK, AlGarawi AM, El-Sawah AM, Ahmed ES, Reyad AM. The potential biofortification role of Actinopolyspora sp. JTT-01 in enhancing the yield and tissue chemical composition of caraway plants. BMC PLANT BIOLOGY 2025; 25:540. [PMID: 40281484 PMCID: PMC12032728 DOI: 10.1186/s12870-025-06137-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 01/21/2025] [Indexed: 04/29/2025]
Abstract
The need for improving plant production, nutritional value, and medicinal applications has become increasingly important due to the growing global population. The caraway (Carum carvi L) plant has been recognized for its broad range of nutritional and therapeutic uses. Consequently, this study aimed to increase caraway seeds' nutritional and biological value. To achieve this, the Actinopolyspora sp. JTT-0 strain, isolated from the medicinal plant Tephrosia purpurea, was investigated for its potential biofortification role to enhance caraway yield and quality. Our results revealed significant improvements (p < 0.05) in various physical parameters, such as seed yield, pod length, and bulk density, in the treated seeds compared to the controls. Along with the yield increase, there were notable elevations in primary metabolites such as total sugars, proteins, and amino acids. Furthermore, secondary metabolites, including essential oils (EOs), alkaloids, steroids, phenols, and vitamins (e.g., tocopherol and ascorbic acid), also showed significant increases. Notably, the EO constituents showed varying levels of enhancements, with the highest increases in β-pinene (186.2%) and carvacrol (49.2%). Moreover, the treated seeds exhibited improved biological activity, as evidenced by their anti-oxidant (anti-lipid peroxidation and DPPH assays) and anti-microbial properties compared to the controls. The study reported a positive biofortification effect of the Actinopolyspora sp. JTT-01 strain on enhancing caraway seed's quality and yield. However, additional field trials are needed to evaluate the commercial biofertilization capacity of this strain for caraway and other plants.
Collapse
Affiliation(s)
- Ahmed M Mahmoud
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt.
| | - Mohamed S Sheteiwy
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, P.O. Box 15551, Al Ain, Abu Dhabi, United Arab Emirates.
| | - Ali El-Keblawy
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Zaid Ulhassan
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs, Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - Maha H Khalaf
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Hussein S Mohamed
- Chemistry of Medicinal and Aromatic Plants Department, Research Institute of Medicinal and Aromatic Plants (RIMAP), Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Mohammad K Okla
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Amal Mohamed AlGarawi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ahmed M El-Sawah
- Department of Agricultural Microbiology, Faculty of Agriculture, Mansoura University, Mansoura, 35516, Egypt
| | - Enas S Ahmed
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Ahmed M Reyad
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt
| |
Collapse
|
2
|
Zrig A, Alsherif EA, Aloufi AS, Korany SM, Selim S, Almuhayawi MS, Tarabulsi MK, Nhs M, Albasri HM, Bouqellah NA. The biomass and health-enhancing qualities of lettuce are amplified through the inoculation of arbuscular mycorrhizal fungi. BMC PLANT BIOLOGY 2025; 25:521. [PMID: 40275120 PMCID: PMC12020208 DOI: 10.1186/s12870-025-06317-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 02/28/2025] [Indexed: 04/26/2025]
Abstract
With lettuce being one of the most important green crops in the world, it is important to improve its growth and nutritive value. To this end, arbuscular mycorrhizal fungus (AMF) application to improve nutrient-dense foods and the production of bioactive compounds in plants is a promising approach. AMF is applied to increase plant growth, primary metabolism, mineral profile and accumulation of secondary (phenols, flavonoids) metabolites. AMF treated plants showed increased biomass accumulation by 38.8%. This increase was in line with increased levels of photosynthesis rate and the total chlorophyll content by approximately 28.8%, respectively. In nutritive value, AMF increased mineral profile, vitamin contents and carbohydrate as indicated by D-mannose, L-galactose, and vitamin E (p < 0.05) by approximately 32.7%, 25%, and 46.6%, respectively. The AMF-treated lettuce's proximate composition revealed considerably greater levels of total protein (7.8%), as well as crude fiber, ash, and carbohydrates (about 7%) compared to control samples (p < 0.05). Furthermore, AMF inoculation increased levels of antioxidants, essential amino acids, and unsaturated fatty acids. It increased the levels of antioxidants such as alpha and beta carotene, polyphenols, which was correlated with increased phenylalanine ammonia-lyase (PAL) enzyme activity. Treatment with AMF resulted in an increase of more than 76% of the detected amino acids, with the highest increment observed for isoleucine, methionine and biosynthetic enzyme (cystathionine γ-synthase (CGS)), and which were 200%, 270.2%, and 153.5%, respectively. Increased bioactive accumulation also resulted in improved antioxidant and antidiabetic and antibacterial activities against a variety of pathogenic microorganisms. The findings indicate that the AMF treatment is a feasible method for enhancing lettuce's biological characteristics and health-promoting attributes.
Collapse
Affiliation(s)
- Ahlem Zrig
- Chemical Engineering Department, Laboratory of Engineering Processes and Industrial Systems, National School of Engineers of Gabes, University of Gabes, Gabes, 6029, Tunisia.
- Faculty of Sciences of Gabes, University of Gabes, Cité Erriadh, Gabès, 6072, Tunisia.
| | - Emad A Alsherif
- Botany and Microbiology Department, Faculty of Sciences, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Abeer S Aloufi
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Shereen Magdy Korany
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, 72388, Saudi Arabia
| | - Mohammed S Almuhayawi
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Muyassar K Tarabulsi
- Department of Basic Medical Sciences, College of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Mousa Nhs
- Botany & Microbiology Department, Faculty of science, Assiut University, Assiut, 7151, Egypt
| | - Hibah M Albasri
- Department of Biology, College of Science, Taibah University, Madinah, 42352, Saudi Arabia
| | - Nahla Alsayd Bouqellah
- Department of Biology, College of Science, Taibah University, Madinah, 42352, Saudi Arabia
| |
Collapse
|
3
|
Sonbol H, Korany SM, Nhs M, Abdi I, Maridueña-Zavala MG, Alsherif EA, Aldailami DA, Elsheikh SYS. Exploring the benefits of AMF colonization for improving wheat growth, physiology and metabolism, and antimicrobial activity under biotic stress from aphid infection. BMC PLANT BIOLOGY 2025; 25:198. [PMID: 39953402 PMCID: PMC11827367 DOI: 10.1186/s12870-025-06196-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 02/03/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND This study examines the effectiveness of arbuscular mycorrhizal fungi (AMF, Rhizophagus irregularis) as a bioprotection strategy to improve wheat's physiological and biochemical responses. This study utilized soil inoculation with AMF and plant-controlled infestation with aphids, conducted over four weeks with three replicates per treatment. RESULTS Although aphid infestation reduced root colonization by 26.8% and hyphal length by 30.7%, with no effect on arbuscular numbers (p < 0.05), AMF treatment improved growth, physiology, and metabolism of AMF-treated plants, especially under aphid infestation. AMF-treated plants showed a 51% increase in fresh weight and a 38% improvement in photosynthetic rates under infestation, indicating enhanced photosynthetic efficiency compared to controls. At the metabolism level, AMF application, particularly in infested plants, increased the levels of several amino acids, such as asparagine and glutamine, which increased by 23% and 20%, respectively. AMF treatment significantly boosted nitrogen metabolism enzymes, with activity increasing up to 4.8-fold in infested plants and arginase activity rising by 49% in infested and 290% in non-infested conditions. This metabolic shift elevated antioxidant levels, increasing flavonoids by 40% and polyphenols by 95% under aphid infestation. Additionally, antimicrobial efficacy improved, with AMF-treated plant extracts showing 30-67% larger inhibition zones against pathogens like Staphylococcus epidermidis and Salmonella typhimurium than untreated plants (p < 0.05). CONCLUSIONS This research examined the potential of AMF as a sustainable pest management tool, specifically focusing on its ability to enhance crop health and boost defenses against biotic stress. The study further highlights how AMF treatment improves antimicrobial efficacy, which can be integrated into farming practices to maintain plant growth while offering distinct advantages over conventional pest management strategies.
Collapse
Affiliation(s)
- Hana Sonbol
- Department of Biology, College of Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Shereen Magdy Korany
- Department of Biology, College of Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Mousa Nhs
- Botany and Microbiology Department, Faculty of Science, Assiut University, Cairo, 71515, Egypt
| | - Insaf Abdi
- Department of Basic Sciences, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, P.O. Box 4030, Jubail, 35816, Saudi Arabia
| | - Maria Gabriela Maridueña-Zavala
- Centro de Investigaciones Biotecnológicas del Ecuador (CIBE), Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo, Km. 30.5 Vía Perimetral, Guayaquil, 090902, Ecuador.
| | - Emad A Alsherif
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Danyah A Aldailami
- Public Health Department, College of Health Sciences, Saudi Electronic University, Riyadh, 23442, Saudi Arabia
| | | |
Collapse
|
4
|
Mohamed HS, Shehata D, Mahmoud AM, Khalaf MH, Okla MK, El-Tayeb MA, Alwasel YA, Alaraidh IA, El-Keblawy A, Josko I, Sheteiwy MS. Non-thermal atmospheric plasma treatments enhance the growth, photosynthesis, metabolite accumulation, and nutritional value of geranium (Pelargonium graveolens L'Herit) leaves. BMC PLANT BIOLOGY 2025; 25:109. [PMID: 39863856 PMCID: PMC11762102 DOI: 10.1186/s12870-025-06118-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 01/15/2025] [Indexed: 01/27/2025]
Abstract
This study investigated the effects of non-thermal atmospheric plasma (NTAP) treatment on the growth, chemical composition, and biological activity of geranium (Pelargonium graveolens L'Herit) leaves. NTAP was applied at a frequency of 13.56 MHz, exposure time of 15 s, discharge temperature of 25 °C, and power levels (T1 = 50, T2 = 80, and T3 = 120 W).Results demonstrated significant increases (P < 0.05) in fresh and dry biomass at all treatment levels compared to control, with the highest improvements seen in T3. Mineral content (K, P, Ca, Fe, Mg, Zn, and N) was significantly elevated, particularly at T3. Chlorophyll content (a + b and carotenoids) also showed marked increases across all treatments, correlating with enhanced photosynthetic rates. Improved photosynthesis led to enhanced accumulation of primary metabolites, such as amino acids, organic acids, and fatty acids. NTAP treatments, mainly T3, significantly increased levels of essential and non-essential amino acids, oxalic, isobutyric, and fumaric acids. They also enhanced unsaturated fatty acids, such as oleic acid (C18:1), and saturated fatty acids, including myristic (C14:0) and stearic (C18:0). These improvements provided precursors for the synthesis of secondary metabolites, particularly phenolics. The increased phenolic content in turn explained the improved antioxidant capacity observed in Fluorescence Recovery After Photobleaching FRAP, anti-lipid peroxidation, superoxide radical scavenging, and hydroxyl radical scavenging assays, especially at T2 and T3 treatments. Antimicrobial activity was elevated across all treatments, with the T3 treatment notably inhibiting all tested bacterial and fungal strains, particularly Sarcina lutea.In conclusion, NTAP treatment significantly improved growth, biomass, and the phytochemical profile of geranium leaves, enhancing their antioxidant and antimicrobial properties, thereby increasing the potential nutritional and therapeutic value of the plant.
Collapse
Affiliation(s)
- Hussein S Mohamed
- Chemistry of Medicinal and Aromatic Plants Department, Research Institute of Medicinal and Aromatic Plants (RIMAP), Beni-Suef University, Beni-Suef, Egypt.
| | - Dalia Shehata
- Biochemistry department, Faculty of Science, Beni-Suef university, Beni-Suef, Egypt
| | - Ahmed M Mahmoud
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Maha H Khalaf
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Mohammad K Okla
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mohamed A El-Tayeb
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Yasmeen A Alwasel
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ibrahim A Alaraidh
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ali El-Keblawy
- Department of Applied Biology, Faculty of Science, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Izabela Josko
- Institute of Plant Genetics, Breeding and Biotechnology, Faculty of Agrobioengineering, University of Life Sciences, Lublin, Poland
| | - Mohamed S Sheteiwy
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, P.O. Box 15551, Al Ain, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
5
|
Xue J, Hu M, Yang J, Fang W, Yin Y. Optimization of Ultraviolet-B Treatment for Enrichment of Total Flavonoids in Buckwheat Sprouts Using Response Surface Methodology and Study on Its Metabolic Mechanism. Foods 2024; 13:3928. [PMID: 39683001 DOI: 10.3390/foods13233928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 11/27/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
Buckwheat possesses significant nutritional content and contains different bioactive compounds, such as total flavonoids, which enhance its appeal to consumers. This study employed single-factor experiments and the response surface methodology to identify the optimal germination conditions for enhancing the total flavonoid content in buckwheat sprouts through ultraviolet-B treatment. The research showed that buckwheat sprouts germinated for 3 days at a temperature of 28.7 °C while being exposed to ultraviolet-B radiation at an intensity of 30.0 μmol·m-2·s-1 for 7.6 h per day during the germination period resulted in the highest total flavonoid content of 1872.84 μg/g fresh weight. Under these specified conditions, ultraviolet-B treatment significantly elevated the activity and gene expression levels of enzymes related to the phenylpropanoid metabolic pathway, including phenylalanine ammonia-lyase, cinnamic acid 4-hydroxylase, 4-coumarate coenzyme A ligase, and chalcone isomerase. Ultraviolet-B treatment caused oxidative damage to buckwheat sprouts and inhibited their growth, but ultraviolet-B treatment also enhanced the activity of key enzymes in the antioxidant system, such as catalase, peroxidase, superoxide dismutase, and ascorbate peroxidase. This research provided a technical reference and theoretical support for enhancing the isoflavone content in buckwheat sprouts through ultraviolet-B treatment.
Collapse
Affiliation(s)
- Jiyuan Xue
- College of Food Science and Engineering, Yangzhou University, Yangzhou 210095, China
| | - Meixia Hu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 210095, China
| | - Jia Yang
- Yangzhou Center for Food and Drug Control, Yangzhou 225000, China
| | - Weiming Fang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 210095, China
| | - Yongqi Yin
- College of Food Science and Engineering, Yangzhou University, Yangzhou 210095, China
| |
Collapse
|
6
|
Najar B, Zrig A, Alsherif EA, Selim S, Aloufi AS, Korany SM, Nhs M, Aldilam M, Bouqellah NA. Synergistic Effect of Arbuscular Mycorrhizal Fungi and Germanium on the Growth, Nutritional Quality, and Health-Promoting Activities of Spinacia oleracea L. PLANTS (BASEL, SWITZERLAND) 2024; 13:2869. [PMID: 39458816 PMCID: PMC11511447 DOI: 10.3390/plants13202869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/05/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024]
Abstract
Arbuscular mycorrhizal fungi (AMF) and the antioxidant germanium (Ge) are promising tools for boosting bioactive compound synthesis and producing healthier foods. However, their combined effect remains unexplored. This study demonstrates the synergistic impact of AMF and Ge on the growth, metabolite accumulation, biological activities, and nutritional qualities of Spinacia oleracea L. (spinach), a globally significant leafy vegetable. Individually, Ge and AMF increased biomass by 68.1% and 22.7%, respectively, while their combined effect led to an 86.3% increase. AMF and Ge also improved proximate composition, with AMF-Ge interaction enhancing crude fiber and mineral content (p < 0.05). Interestingly, AMF enhanced photosynthesis-related parameters (e.g., total chlorophyll) in Ge treated plants, which in turn increased carbohydrate accumulation. This accumulation could provide a route for the biosynthesis of amino acids, organic acids, and fatty acids, as evidenced by increased essential amino acid and organic acid levels. Consistently, the activity of key enzymes involved in amino acids biosynthesis (e.g., glutamine synthase (GS), methionine biosynthase (MS), lysine biosynthase (LS)) showed significant increments. Furthermore, AMF improved fatty acid levels, particularly unsaturated fatty acids in Ge-treated plants compared to the control. In addition, increased phenylalanine provided a precursor for the production of antioxidants (e.g., phenols and flavonoids), through the action of the enzyme phenylalanine ammonia-lyase (PAL), resulting in improved antioxidant activity gains as indicated by FRAP, ABTS, and DPPH assays. This study is the first to show that Ge enhances the beneficial effect of AMF on spinach, improving growth and nutritional quality, with promising implications for agricultural practices.
Collapse
Affiliation(s)
- Basma Najar
- ULB—Faculty of PHARMACY, RD3—Pharmacognosy, Bioanalysis & Drug Discovery Unit & Analytical Platform of the Faculty of Pharmacy Bld Triomphe, Campus Plaine, CP 205/5, B-1050 Brussels, Belgium
- Dipartimento di Farmacia, Università di Pisa, 56126 Pisa, Italy
| | - Ahlem Zrig
- Laboratory of Engineering Processes and Industrial Systems, Chemical Engineering Department, National School of Engineers of Gabes, University of Gabes, Gabes 6029, Tunisia;
- Faculty of Sciences of Gabes, University of Gabes, Omar Ibn Khattab Street, Gabes 6029, Tunisia
| | - Emad A. Alsherif
- Botany and Microbiology Department, Faculty of Sciences, Beni-Suef University, Beni-Suef 62521, Egypt;
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72341, Saudi Arabia;
| | - Abeer S. Aloufi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Shereen Magdy Korany
- Botany and Microbiology Department, Faculty of Science, Helwan University, Cairo 11795, Egypt; (S.M.K.); (M.N.)
| | - Mousa Nhs
- Botany and Microbiology Department, Faculty of Science, Helwan University, Cairo 11795, Egypt; (S.M.K.); (M.N.)
| | - Mohammad Aldilam
- Biology Department, College of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | | |
Collapse
|
7
|
Hassan AHA, Maridueña-Zavala MG, Alsherif EA, Aloufi AS, Korany SM, Aldilami M, Bouqellah NA, Reyad AM, AbdElgawad H. Inoculation with Jeotgalicoccus sp. improves nutritional quality and biological value of Eruca sativa by enhancing amino acid and phenolic metabolism and increasing mineral uptake, unsaturated fatty acids, vitamins, and antioxidants. FRONTIERS IN PLANT SCIENCE 2024; 15:1412426. [PMID: 39354941 PMCID: PMC11442294 DOI: 10.3389/fpls.2024.1412426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/09/2024] [Indexed: 10/03/2024]
Abstract
Plant growth-promoting bacteria (PGPB) are considered a promising tool for triggering the synthesis of bioactive compounds in plants and to produce healthy foods. This study aimed to demonstrate the impact of PGPB on the growth, accumulation of primary and secondary metabolites, biological activities, and nutritional qualities of Eruca sativa (arugula), a key leafy vegetable worldwide. To this end, Jeotgalicoccus sp. (JW0823), was isolated and identified by using partial 16S rDNA-based identification and phylogenetic analysis. The findings revealed that JW0823 significantly boosted plant biomass production by about 45% (P<0.05) and enhanced pigment contents by 47.5% to 83.8%. JW0823-treated plants showed remarkable improvements in their proximate composition and vitamin contents, with vitamin E levels increasing by 161.5%. JW0823 induced the accumulation of bioactive metabolites including antioxidants, vitamins, unsaturated fatty acids, and essential amino acids, thereby improving the nutritional qualities of treated plants. An increase in the amounts of amino acids was recorded, with isoleucine showing the highest increase of 270.2%. This was accompanied by increased activity of the key enzymes involved in amino acid biosynthesis, including glutamine synthase, dihydrodipicolinate synthase, cystathionine γ-synthase, and phenylalanine ammonia-lyase enzymes. Consequently, the total antioxidant and antidiabetic activities of the inoculated plants were enhanced. Additionally, JW0823 improved antimicrobial activity against several pathogenic microorganisms. Overall, the JW0823 treatment is a highly promising method for enhancing the health-promoting properties and biological characteristics of E. sativa, making it a valuable tool for improving the quality of this important leafy vegetable.
Collapse
Affiliation(s)
| | - Maria Gabriela Maridueña-Zavala
- Centro de Investigaciones Biotecnológicas del Ecuador (CIBE), Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil, Ecuador
| | - Emad A Alsherif
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Abeer S Aloufi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Shereen Magdy Korany
- Botany and Microbiology Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Mohammad Aldilami
- Department of Biology, Faculty of Science, King Abdelaziz University, Jeddah, Saudi Arabia
| | - Nahla A Bouqellah
- Department of Biology, Science College, Taibah University, Madinah, Saudi Arabia
| | - Ahmed M Reyad
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Hamada AbdElgawad
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
8
|
Mardani-Korrani F, Amooaghaie R, Ahadi A, Ghanadian M. RBOH-dependent signaling is involved in He-Ne laser-induced salt tolerance and production of rosmarinic acid and carnosol in Salvia officinalis. BMC PLANT BIOLOGY 2024; 24:798. [PMID: 39179969 PMCID: PMC11344448 DOI: 10.1186/s12870-024-05502-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 08/12/2024] [Indexed: 08/26/2024]
Abstract
BACKGROUND In the past two decades, the impacts of Helium-Neon (He-Ne) laser on stress resistance and secondary metabolism in plants have been studied, but the signaling pathway which by laser regulates this process remains unclear. Therefore, the current study sought to explore the role of RBOH-dependent signaling in He-Ne laser-induced salt tolerance and elicitation of secondary metabolism in Salvia officinalis. Seeds were primed with He-Ne laser (6 J cm- 2) and peroxide hydrogen (H2O2, 5 mM) and 15-old-day plants were exposed to two salinity levels (0, 75 mM NaCl). RESULTS Salt stress reduced growth parameters, chlorophyll content and relative water content (RWC) and increased malodialdehyde (MDA) and H2O2 contents in leaves of 45-old-day plants. After 48 h of salt exposure, higher transcription levels of RBOH (encoding NADPH oxidase), PAL (phenylalanine ammonia-lyase), and RAS (rosmarinic acid synthase) were recorded in leaves of plants grown from seeds primed with He-Ne laser and/or H2O2. Despite laser up-regulated RBOH gene in the early hours of exposing to salinity, H2O2 and MDA contents were lower in leaves of these plants after 30 days. Seed pretreatment with He-Ne laser and/or H2O2 augmented the accumulation of anthocyanins, total phenol, carnasol, and rosmarinic acid and increased total antioxidant capacity under non-saline and more extensively at saline conditions. Indeed, these treatments improved RWC, and K+/Na+ ratio, enhanced the activities of superoxide dismutase and ascorbate peroxidase and proline accumulation, and significantly decreased membrane injury and H2O2 content in leaves of 45-old-day plants under salt stress. However, applying diphenylene iodonium (DPI as an inhibitor of NADPH oxidase) and N, N-dimethyl thiourea (DMTU as a H2O2 scavenger) after laser priming reversed the aforementioned effects which in turn resulted in the loss of laser-induced salt tolerance and secondary metabolism. CONCLUSIONS These findings for the first time deciphered that laser can induce a transient RBOH-dependent H2O2 burst, which might act as a downstream signal to promote secondary metabolism and salt stress alleviation in S. officinalis plants.
Collapse
Affiliation(s)
| | - Rayhaneh Amooaghaie
- Plant Science Department, Science Faculty, Shahrekord University, Shahrekord, Iran.
- Biotechnology Research Institute, Shahrekord University, Shahrekord, Iran.
| | - Alimohammad Ahadi
- Genetic Department, Science Faculty, Shahrekord University, Shahrekord, Iran
| | - Mustafa Ghanadian
- Pharmacognosy Department, Isfahan Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
9
|
Mahmoud AM, Reyad AM, Khalaf MH, Sheteiwy MS, Dawood MFA, El-Sawah AM, Shaban Ahmed E, Malik A, Al-Qahtani WH, Abdel-Maksoud MA, Mousa NHS, Alyafei M, AbdElgawad H. Investigating the Endophyte Actinomycetota sp. JW0824 Strain as a Potential Bioinoculant to Enhance the Yield, Nutritive Value, and Chemical Composition of Different Cultivars of Anise ( Pimpinella anisum L.) Seeds. BIOLOGY 2024; 13:553. [PMID: 39194491 DOI: 10.3390/biology13080553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 08/29/2024]
Abstract
Anise (Pimpinella anisum L.) seeds have various nutritional and therapeutic benefits and are thus considered a valuable addition to animal and human health. Hence, in this study, we aimed to induce the nutritive and biological value of anise seeds. To this end, the potential biofortification effect of the endophytic Actinomycetota sp. JW0824 strain, isolated during the fall of 2023 from the medicinal plant Achyranthes aspera, exhibiting natural distribution in the Jazan region of Saudi Arabia, was investigated in four varieties of anise seeds from Egypt, Tunisia, Syria, and Morocco. Results revealed significant increments (p < 0.05) in the seed dry weight percentage (DW%) and oil yields. In line with increased biomass accumulation, the metabolism of the primary and secondary metabolites was increased. There were differential increases in proteins, sugars, flavonoids, alkaloids, phenols, vitamins (e.g., β-carotene, ascorbic acid), and essential oil components (e.g., phenylpropanoids and monoterpenes), along with their precursor phenylalanine. Consistently, the activity of L-phenylalanine aminolyase (PAL) was increased in the Egyptian and Tunisian varieties at 83.88% and 77.19%, respectively, while 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase (DAHPS) activity increased in all varieties, with a significant 179.31% rise in the Egyptian variety. These findings highlight the beneficial effects of Actinomycetota sp. JW0824 as a bioinoculant for anise seeds, suggesting its potential application in agricultural practices to improve seed yield and quality. Further field trials are recommended to assess the commercial viability of this endophyte for enhancing anise seed production and potentially benefiting other plant species.
Collapse
Affiliation(s)
- Ahmed M Mahmoud
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Ahmed M Reyad
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Maha H Khalaf
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Mohamed S Sheteiwy
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Abu Dhabi P.O. Box 15551, United Arab Emirates
- Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt
| | - Mona F A Dawood
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Ahmed M El-Sawah
- Department of Agricultural Microbiology, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt
| | - Enas Shaban Ahmed
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Abdul Malik
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 270677, Riyadh 11352, Saudi Arabia
| | - Wahidah H Al-Qahtani
- Department of Food Sciences & Nutrition, College of Food and Agricultural Sciences, King Saud University, P.O. Box 270677, Riyadh 11352, Saudi Arabia
| | - Mostafa A Abdel-Maksoud
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 270677, Riyadh 11352, Saudi Arabia
| | - Nermien H S Mousa
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Mohammed Alyafei
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Abu Dhabi P.O. Box 15551, United Arab Emirates
| | - Hamada AbdElgawad
- Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, 2020 Antwerp, Belgium
| |
Collapse
|
10
|
Scheau C, Pop CR, Rotar AM, Socaci S, Mălinaș A, Zăhan M, Coldea ȘD, Pop VC, Fit NI, Chirilă F, Criveanu HR, Oltean I. The Influence of Physical Fields (Magnetic and Electric) and LASER Exposure on the Composition and Bioactivity of Cinnamon Bark, Patchouli, and Geranium Essential Oils. PLANTS (BASEL, SWITZERLAND) 2024; 13:1992. [PMID: 39065519 PMCID: PMC11281253 DOI: 10.3390/plants13141992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024]
Abstract
In recent years, essential oils (EOs) have received increased attention from the research community, and the EOs of cinnamon, patchouli, and geranium have become highly recognized for their antibacterial, antifungal, antiviral, and antioxidant effects. Due to these properties, they have become valuable and promising candidates for addressing the worldwide threat of antimicrobial resistance and other diseases. Simultaneously, studies have revealed promising new results regarding the effects of physical fields (magnetic and electric) and LASER (MEL) exposure on seed germination, plant growth, biomass accumulation, and the yield and composition of EOs. In this frame, the present study aims to investigate the influence of MEL treatments on cinnamon, patchouli, and geranium EOs, by specifically examining their composition, antimicrobial properties, and antioxidant activities. Results showed that the magnetic influence has improved the potency of patchouli EO against L. monocytogenes, S. enteritidis, and P. aeruginosa, while the antimicrobial activity of cinnamon EO against L. monocytogenes was enhanced by the electric and laser treatments. All exposures have increased the antifungal effect of geranium EO against C. albicans. The antioxidant activity was not modified by any of the treatments. These findings could potentially pave the way for a deeper understanding of the efficiency, the mechanisms of action, and the utilization of EOs, offering new insights for further exploration and application.
Collapse
Affiliation(s)
- Camelia Scheau
- PhD School of Agricultural Engineering Sciences, USAMV Cluj-Napoca, 3-5, Mănăştur Street, 400372 Cluj-Napoca, Romania;
| | - Carmen Rodica Pop
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 64, Floresti Street, 400509 Cluj-Napoca, Romania; (C.R.P.); (A.M.R.); (S.S.)
| | - Ancuța Mihaela Rotar
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 64, Floresti Street, 400509 Cluj-Napoca, Romania; (C.R.P.); (A.M.R.); (S.S.)
| | - Sonia Socaci
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 64, Floresti Street, 400509 Cluj-Napoca, Romania; (C.R.P.); (A.M.R.); (S.S.)
| | - Anamaria Mălinaș
- Department of Environmental Protection and Engineering, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine, 3-5, Mănăştur Street, 400372 Cluj-Napoca, Romania
| | - Marius Zăhan
- Faculty of Animal Science and Biotechnology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5, Mănăştur Street, 400372 Cluj-Napoca, Romania; (M.Z.); (Ș.D.C.)
| | - Ștefania Dana Coldea
- Faculty of Animal Science and Biotechnology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5, Mănăştur Street, 400372 Cluj-Napoca, Romania; (M.Z.); (Ș.D.C.)
| | - Viorel Cornel Pop
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 3-5, Mănăştur Street, 400372 Cluj-Napoca, Romania
| | - Nicodim Iosif Fit
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5, Mănăstur Street, 400372 Cluj-Napoca, Romania; (N.I.F.); (F.C.)
| | - Flore Chirilă
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5, Mănăstur Street, 400372 Cluj-Napoca, Romania; (N.I.F.); (F.C.)
| | - Horia Radu Criveanu
- Faculty of Horticulture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5, Mănăstur Street, 400372 Cluj-Napoca, Romania;
| | - Ion Oltean
- Department of Plant Protection, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5, Mănăstur Street, 400372 Cluj-Napoca, Romania;
| |
Collapse
|
11
|
Zhang R, Cen Q, Hu W, Chen H, Hui F, Li J, Zeng X, Qin L. Metabolite profiling, antioxidant and anti-glycemic activities of Tartary buckwheat processed by solid-state fermentation( SSF)with Ganoderma lucidum. Food Chem X 2024; 22:101376. [PMID: 38665636 PMCID: PMC11043823 DOI: 10.1016/j.fochx.2024.101376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
The aim of this study was to investigate the effect of Ganoderma lucidum fermentation on antioxidant and anti-glycemic activities of Tartary buckwheat. Xylanase, total cellulase (CMCase and FPase) and β-glucosidase in fermented Tartary buckwheat (FB) increased significantly to 242.06 U/g, 17.99 U/g and 8.67 U/g, respectively. And the polysaccharides, total phenols, flavonoids and triterpenoids, which is increased by 122.19%, 113.70%, 203.74%, and 123.27%, respectively. Metabolite differences between non-fermented Tartary buckwheat (NFB) and FB pointed out that 445 metabolites were substantially different, and were involved in related biological metabolic pathways. There was a considerable rise in the concentrations of hesperidin, xanthotoxol and quercetin 3-O-malonylglucoside by 240.21, 136.94 and 100.77 times (in Fold Change), respectively. The results showed that fermentation significantly increased the antioxidant and anti-glycemic activities of buckwheat. This study demonstrates that the fermentation of Ganoderma lucidum provides a new idea to enhance the health-promoting components and bioactivities of Tartary buckwheat.
Collapse
Affiliation(s)
- Rui Zhang
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550000, China
- Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang 550000, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang 550000, China
| | - Qin Cen
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550000, China
- Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang 550000, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang 550000, China
| | - Wenkang Hu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550000, China
- Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang 550000, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang 550000, China
| | - Hongyan Chen
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550000, China
- Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang 550000, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang 550000, China
| | - Fuyi Hui
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550000, China
- Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang 550000, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang 550000, China
| | - Jiamin Li
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550000, China
- Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang 550000, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang 550000, China
| | - Xuefeng Zeng
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550000, China
- Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang 550000, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang 550000, China
| | - Likang Qin
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550000, China
- Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang 550000, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang 550000, China
| |
Collapse
|
12
|
Liu Y, Guan C, Chen Y, Shi Y, Long O, Lin H, Zhang K, Zhou M. Evolutionary analysis of MADS-box genes in buckwheat species and functional study of FdMADS28 in flavonoid metabolism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108637. [PMID: 38670031 DOI: 10.1016/j.plaphy.2024.108637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/01/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024]
Abstract
The MADS-box gene family is a transcription factor family that is widely expressed in plants. It controls secondary metabolic processes in plants and encourages the development of tissues like roots and flowers. However, the phylogenetic analysis and evolutionary model of MADS-box genes in Fagopyrum species has not been reported yet. This study identified the MADS-box genes of three buckwheat species at the whole genome level, and conducted systematic evolution and physicochemical analysis. The results showed that these genes can be divided into four subfamilies, with fragment duplication being the main way for the gene family expansion. During the domestication process from golden buckwheat to tartary buckwheat and the common buckwheat, the Ka/Ks ratio indicated that most members of the family experienced strong purification selection pressure, and with individual gene pairs experiencing positive selection. In addition, we combined the expression profile data of the MADS genes, mGWAS data, and WGCNA data to mine genes FdMADS28/48/50 that may be related to flavonoid metabolism. The results also showed that overexpression of FdMADS28 could increase rutin content by decreasing Kaempferol pathway content in hairy roots, and increase the resistance and growth of hairy roots to PEG and NaCl. This study systematically analyzed the evolutionary relationship of MADS-box genes in the buckwheat species, and elaborated on the expression patterns of MADS genes in different tissues under biotic and abiotic stresses, laying an important theoretical foundation for further elucidating their role in flavonoid metabolism.
Collapse
Affiliation(s)
- Yang Liu
- Sanya Nan Fan Research Institute of Chinese Academy of Agricultural Sciences, Sanya, 572024, Hainan, China; Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chaonan Guan
- Sanya Nan Fan Research Institute of Chinese Academy of Agricultural Sciences, Sanya, 572024, Hainan, China; Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yuanyuan Chen
- College of Agriculture, Yangtze University, Jingzhou, 434023, Hubei, China
| | - Yaliang Shi
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ou Long
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hao Lin
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Kaixuan Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Meiliang Zhou
- Sanya Nan Fan Research Institute of Chinese Academy of Agricultural Sciences, Sanya, 572024, Hainan, China; Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
13
|
Zhong L, Niu B, Xiang D, Wu Q, Peng L, Zou L, Zhao J. Endophytic fungi in buckwheat seeds: exploring links with flavonoid accumulation. Front Microbiol 2024; 15:1353763. [PMID: 38444811 PMCID: PMC10912284 DOI: 10.3389/fmicb.2024.1353763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/02/2024] [Indexed: 03/07/2024] Open
Abstract
Buckwheat is a famous edible and medicinal coarse cereal which contain abundant of bioactive flavonoids, such as rutin. In this study, the composition and diversity of endophytic fungi in eight different buckwheat seeds were analyzed by high-throughput sequencing of ITS rDNA. Results showed that, the fungal sequences reads were allocated to 272 OTUs, of them, 49 OTUs were shared in eight buckwheat seeds. These endophytic fungi could be classified into 6 phyla, 19 classes, 41 orders, 79 families, 119 genera, and 191 species. At genus level, Alternaria sp. was the domain fungal endophyte. Besides, fungal endophytes belonged to the genera of Epicocum, Cladosporium, Botrytis, Filbobasidium, Stemphylium, and Vishniacozyma were highly abundant in buckwheat seeds. The total flavonoids and rutin contents in tartary buckwheat cultivars (CQ, XQ, CH, K2) were much higher than those in common buckwheat cultivars (HT, T2, T4, T8). For tartary buckwheat cultivars, the total flavonoids and rutin contents were ranging from 2.6% to 3.3% and 0.9% to 1.3%, respectively. Accordingly, the tartary buckwheat samples displayed stronger antioxidant activity than the common buckwheat. Spearman correlation heat map analysis was successfully found that certain fungal species from the genera of Alternaria, Botryosphaeria, Colletorichum and Diymella exhibited significant positive correlation with flavonoids contents. Results of this study preliminary revealed the fungi-plant interaction relationship at secondary metabolite level, and could provide novel strategy for increasing the flavonoids accumulation of buckwheat seeds, as well as improving their quality.
Collapse
Affiliation(s)
- Lingyun Zhong
- College of Preclinical Medicine, Chengdu University, Chengdu, China
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Bei Niu
- College of Preclinical Medicine, Chengdu University, Chengdu, China
| | - Dabing Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Qi Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Jianglin Zhao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu, China
| |
Collapse
|
14
|
Yang Y, Liu J, Li N, Guo Y, Ye H, Li Z, Wang D, Guo Y. The Optimization of Assay Conditions and Characterization of the Succinic Semialdehyde Dehydrogenase Enzyme of Germinated Tartary Buckwheat. Foods 2023; 13:17. [PMID: 38201045 PMCID: PMC10777983 DOI: 10.3390/foods13010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/09/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
In this study, the conditions for optimizing the determination of succinic semialdehyde dehydrogenase (SSADH, EC 1.2.1.79) activity in germinated Tartary buckwheat were investigated. Based on a single-factor test, the effects of temperature, pH, and succinic semialdehyde (SSA) concentration on the enzyme activity of germinated buckwheat SSADH were investigated by using the response surface method, and optimal conditions were used to study the enzymatic properties of germinated buckwheat SSADH. The results revealed that the optimum conditions for determining SSADH enzyme activity are as follows: temperature-30.8 °C, pH-8.7, and SSA concentration-0.3 mmol/L. Under these conditions, SSADH enzyme activity was measured as 346 ± 9.61 nmol/min. Furthermore, the thermal stability of SSADH was found to be superior at 25 °C, and its pH stability remained comparable at pH levels of 7.6, 8.1, and 8.6 in germinated Tartary buckwheat samples; however, a decline in stability was observed at pH 9.1. Cu2+, Co2+, and Ni2+ exhibited an activating effect on SSADH activity in germinating Tartary buckwheat, with Cu2+ having the greatest influence (p < 0.05), which was 1.21 times higher than that of the control group. Zn2+, Mn2+, and Na+ inhibited SSADH activity in germinating Tartary buckwheat, with Zn2+ showing the strongest inhibitory effect (p < 0.05). On the other hand, the Km and Vmax of SSADH for SSA in germinated Tartary buckwheat were 0.24 mmol/L and 583.24 nmol/min. The Km and Vmax of SSADH for NAD+ in germinated Tartary buckwheat were 0.64 mmol/L and 454.55 nmol/min.
Collapse
Affiliation(s)
- Yuchan Yang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.Y.); (N.L.); (Y.G.); (H.Y.); (Z.L.); (D.W.)
| | - Jiashang Liu
- Catering and Food Department, Inner Mongolia Vocational College of Commerce, Hohhot 010070, China;
| | - Nan Li
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.Y.); (N.L.); (Y.G.); (H.Y.); (Z.L.); (D.W.)
| | - Yu Guo
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.Y.); (N.L.); (Y.G.); (H.Y.); (Z.L.); (D.W.)
| | - Hua Ye
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.Y.); (N.L.); (Y.G.); (H.Y.); (Z.L.); (D.W.)
| | - Zhanming Li
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.Y.); (N.L.); (Y.G.); (H.Y.); (Z.L.); (D.W.)
| | - Dongxu Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.Y.); (N.L.); (Y.G.); (H.Y.); (Z.L.); (D.W.)
| | - Yuanxin Guo
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.Y.); (N.L.); (Y.G.); (H.Y.); (Z.L.); (D.W.)
| |
Collapse
|
15
|
Aldayel MF. Potential antibacterial and antioxidant inhibitory activities of Silybum marianum mediated biosynthesised He-Ne laser. Saudi J Biol Sci 2023; 30:103795. [PMID: 37692328 PMCID: PMC10492205 DOI: 10.1016/j.sjbs.2023.103795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/15/2023] [Accepted: 08/27/2023] [Indexed: 09/12/2023] Open
Abstract
A potentially beneficial method in laser irradiation is currently gaining popularity. The biosynthesis of low-power lasers has also been applied to the therapy of disease in biological tissues. This study used laser pre-treatments of Silybum marianum (S. marianum) fruit extract as a stabilising agent to bio-fabricate a low-power laser. The silybin A and silybin B of the S. marianum fruit, which are derived from seedlings before S. marianum undergoes therapy with an He-Ne laser at various intervals, were assessed for their expressive properties in this study. The findings revealed that 6-min laser pre-treatments increased silybin A + B and bacterial inhibition and improved the medicinal property of S. marianum. The analysis of the reaction records was performed using ultraviolet-visible spectroscopy. The minimum inhibitory concentration (MIC) limit for the sphere dispersion approach's antimicrobial effect on the microorganisms under investigation was 50 to 100 g/mL. With an IC50 of 0.69 mg/mL, the laser-treated S. marianum (6 min) demonstrated radical scavenging activity. At MIC concentration, the laser-treated S. marianum (6 min) did not exhibit cytotoxicity in the MCF-7 cell line. Additionally, Salmonella typhi, methicillin-resistant Staphylococcus aureus (MRSA), and E. coli were more susceptible to the antimicrobial effects of ethanolic fruit extract with a greater silybin level. It was observed that the laser-treated S. marianum (6 min) showed beneficial antioxidant and antibacterial properties and could be employed without risk in several medical applications.
Collapse
Affiliation(s)
- Munirah F. Aldayel
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
16
|
Dong Y, Wang N, Wang S, Wang J, Peng W. A review: The nutrition components, active substances and flavonoid accumulation of Tartary buckwheat sprouts and innovative physical technology for seeds germinating. Front Nutr 2023; 10:1168361. [PMID: 37476405 PMCID: PMC10355155 DOI: 10.3389/fnut.2023.1168361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/15/2023] [Indexed: 07/22/2023] Open
Abstract
Compared with the common grain, Tartary buckwheat enjoys higher nutritional value. Some distinctive nutrition associated with physiological activity of Tartary buckwheat is valuable in medicine. In addition, it's a good feed crop. In the paper, the main components (starch, protein, amino acid, fatty acid and mineral) and polyphenol bioactive components in Tartary buckwheat and its sprouts were reviewed, and the accumulation of flavonoids in sprouts during germination, especially the methods, synthetic pathways and mechanisms of flavonoid accumulation was summarized. The research on bioactive components and health benefits of Tartary buckwheat also were reviewed. Besides, the applications of innovative physical technology including microwave, magnetic, electromagnetic, ultrasonic, and light were also mentioned and highlighted, which could promote the enrichment of some active substances during seeds germination and growth of Tartary buckwheat sprouts. It would give a good support and benefit for the research and processing of Tartary buckwheat and its sprouts in next day.
Collapse
Affiliation(s)
- Yulu Dong
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, China
| | - Nan Wang
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, China
| | - Shunmin Wang
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, China
| | - Junzhen Wang
- Academy of Agricultural Science Liang Shan, Liangshan, China
| | - Wenping Peng
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, China
| |
Collapse
|
17
|
Ali M, Mousa F, Abdel-Halim A, Khamis G, Morsy M, Ghanem H. Assessment the effect of He-Ne laser treatment of Balanites aegyptiaca seeds on the amelioration of active constituents, antioxidant capacity, and anticancer impact in vitro. EGYPTIAN PHARMACEUTICAL JOURNAL 2023. [DOI: 10.4103/epj.epj_184_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
18
|
Analysis of Phenolic Compounds in Buckwheat ( Fagopyrum esculentum Moench) Sprouts Modified with Probiotic Yeast. Molecules 2022; 27:molecules27227773. [PMID: 36431874 PMCID: PMC9695562 DOI: 10.3390/molecules27227773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/28/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Buckwheat sprouts are a source of various nutrients, e.g., antioxidant flavonoids, which have a positive effect on human health. This study analyzed the content of phenolic compounds and assessed their impact on the antioxidant and anti-inflammatory properties and dietary fiber in modified buckwheat sprouts. For this purpose, the buckwheat seeds were modified by adding Saccharomyces cerevisiae var. boulardii. The modified buckwheat sprouts showed a higher content of total phenol compounds (1526 µg/g d.w.) than the control sprouts (951 µg/g d.w.) and seeds (672 µg/g d.w.). As a consequence, a higher antioxidant activity and anti-inflammatory effect were noted. Probiotic-rich sprouts also had the highest content of total dietary fiber and its soluble fraction. A correlation between phenolic compounds and the antioxidant and anti-inflammatory effects, as well as dietary fiber, was shown. The interaction between dietary fiber and phenolic compounds affects the bioaccessibility, bioavailability, and bioactivity of phenolic compounds in food. The introduction of probiotic yeast into the sprouts had a positive effect on increasing their nutritional value, as well as their antioxidant and anti-inflammatory activity. As a consequence, the nutraceutical potential of the raw material changed, opening a new direction for the use of buckwheat sprouts, e.g., in industry.
Collapse
|
19
|
Phenolic compounds in common buckwheat sprouts: composition, isolation, analysis and bioactivities. Food Sci Biotechnol 2022; 31:935-956. [PMID: 35873372 PMCID: PMC9300812 DOI: 10.1007/s10068-022-01056-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 12/14/2022] Open
Abstract
Phenolic compounds in common buckwheat sprouts (CBSs) have gained research interest because of their multiple health benefits. Phenolic acids, flavanones, flavonols, flavan-3-ols, and anthocyanins are important bioactive components of CBS that exhibit biological activities, including anti-inflammatory, antioxidant, anti-proliferative, and immunomodulatory effects. The isolation and quantitative and qualitative analyses of these phenolic compounds require effective and appropriate extraction and analytical methods. The most recent analytical method developed for determining the phenolic profile is HPLC coupled with a UV-visible detector and/or MS. This review highlights the extraction, purification, analysis, and bioactive properties of phenolic compounds from CBS described in the literature.
Collapse
|
20
|
Selim S, Almuhayawi MS, Alharbi MT, Al Jaouni SK, Alharthi A, Abdel-Wahab BA, Ibrahim MAR, Alsuhaibani AM, Warrad M, Rashed K. Insights into the Antimicrobial, Antioxidant, Anti-SARS-CoV-2 and Cytotoxic Activities of Pistacia lentiscus Bark and Phytochemical Profile; In Silico and In Vitro Study. Antioxidants (Basel) 2022; 11:antiox11050930. [PMID: 35624793 PMCID: PMC9138067 DOI: 10.3390/antiox11050930] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 12/19/2022] Open
Abstract
Foodborne infections and antibiotic resistance pose a serious threat to public health and must be addressed urgently. Pistacia lentiscus is a wild-growing shrub and has been utilized for medicinal applications as well as for culinary purposes. The antibacterial and antioxidant activities of P. lentiscus bark in vitro, as well as the phytochemical composition, are the focus of this inquiry. The bark extract of P. lentiscus showed significant antimicrobial activity in experiments on bacteria and yeast isolated from human and food sources. The exposure time for the complete inhibition of cell viability of P. aeruginosa in the extracts was found to be 5% at 15 min. Phytochemical inquiry of the methanol extract demonstrates the existence of carbohydrates, flavonoids, tannins, coumarins, triterpenes, and alkaloids. Deep phytochemical exploration led to the identification of methyl gallate, gallic acid, kaempferol, quercetin, kaempferol 3-O-α-rhamnoside, kaempferol 3-O-β-glucoside, and Quercetin-3-O-β-glucoside. When tested using the DPPH assay, the methanol extracts of P. lentiscus bark demonstrated a high free radical scavenging efficiency. Further, we have performed a molecular modelling study which revealed that the extract of P. lentiscus bark could be a beneficial source for novel flavonoid glycosides inhibitors against SARS-CoV-2 infection. Taken together, this study highlights the Pistacia lentiscus bark methanol extract as a promising antimicrobial and antiviral agent.
Collapse
Affiliation(s)
- Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
- Correspondence: (S.S.); (M.S.A.); (K.R.)
| | - Mohammed S. Almuhayawi
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: (S.S.); (M.S.A.); (K.R.)
| | - Mohanned T. Alharbi
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, University of Jeddah, Jeddah 23218, Saudi Arabia;
| | - Soad K. Al Jaouni
- Department of Hematology/Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Afaf Alharthi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia;
| | - Basel A. Abdel-Wahab
- Department of Medical Pharmacology, College of Medicine, Assiut University, Assiut 71515, Egypt;
- Department of Pharmacology, College of Pharmacy, Najran University, Najran 55461, Saudi Arabia
| | - Mervat A. R. Ibrahim
- Biochemistry Department, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt;
| | - Amnah Mohammed Alsuhaibani
- Department of Physical Sport Science, College of Education, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Mona Warrad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences at Al-Quriat, Jouf University, Al Qurayyat 77425, Saudi Arabia;
| | - Khaled Rashed
- Pharmacognosy Department, National Research Centre, 33El Bohouth Str., Dokki, Giza 12622, Egypt
- Correspondence: (S.S.); (M.S.A.); (K.R.)
| |
Collapse
|
21
|
Zhang Y, Capanoglu E, Jiao L, Yin L, Liu X, Wang R, Xiao J, Lu B. Coarse cereals modulating chronic low-grade inflammation: review. Crit Rev Food Sci Nutr 2022; 63:9694-9715. [PMID: 35503432 DOI: 10.1080/10408398.2022.2070596] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chronic low-grade inflammation (CLGI) is closely associated with various chronic diseases. Researchers have paid attention to the comprehensive application and development of food materials with potential anti-inflammatory activity. Owing to their abundant nutrients and biological activities, coarse cereals have emerged as an important component of human diet. Increasing evidence has revealed their potential protective effects against CLGI in chronic conditions. However, this property has not been systematically discussed and summarized. In the present work, numerous published reports were reviewed to systematically analyze and summarize the protective effects of coarse cereals and their main active ingredients against CLGI. Their current utilization state was investigated. The future prospects, such as the synergistic effects among the active compounds in coarse cereals and the biomarker signatures of CLGI, were also discussed. Coarse cereals show promise as food diet resources for preventing CLGI in diseased individuals. Their active ingredients, including β-glucan, resistant starch, arabinoxylan, phenolic acids, flavonoids, phytosterols and lignans, function against CLGI through multiple possible intracellular signaling pathways and immunomodulatory effects. Therefore, coarse cereals play a crucial role in the food industry due to their health effects on chronic diseases and are worthy of further development for possible application in modulating chronic inflammation.
Collapse
Affiliation(s)
- Yongzhu Zhang
- Institute of Food Safety and Nutrition, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Linshu Jiao
- Institute of Food Safety and Nutrition, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Liqing Yin
- Institute of Agricultural Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, PR China
| | - Xianjin Liu
- Institute of Food Safety and Nutrition, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Ran Wang
- Institute of Food Safety and Nutrition, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
| | - Baiyi Lu
- Institute of Food Safety and Nutrition, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- College of Biosystems Engineering and Food Science, Key Laboratory for Quality Evaluation and Health Benefit of Agro-Products of Ministry of Agriculture and Rural Affairs, Key Laboratory for Quality and Safety Risk Assessment of Agro-Products Storage and Preservation of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
| |
Collapse
|
22
|
Laser Light Treatment Improves the Mineral Composition, Essential Oil Production and Antimicrobial Activity of Mycorrhizal Treated Pelargoniumgraveolens. Molecules 2022; 27:molecules27061752. [PMID: 35335116 PMCID: PMC8954123 DOI: 10.3390/molecules27061752] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/14/2022] [Accepted: 02/22/2022] [Indexed: 11/20/2022] Open
Abstract
Pelargonium graveolens, rose-scented geranium, is commonly used in the perfume industry. P. graveolens is enriched with essential oils, phenolics, flavonoids, which account for its tremendous biological activities. Laser light treatment and arbuscular mycorrhizal fungi (AMF) inoculation can further enhance the phytochemical content in a significant manner. In this study, we aimed to explore the synergistic impact of these two factors on P. graveolens. For this, we used four groups of surface-sterilized seeds: (1) control group1 (non-irradiated; non-colonized group); (2) control group2 (mycorrhizal colonized group); (3) helium-neon (He-Ne) laser-irradiated group; (4) mycorrhizal colonization coupled with He-Ne laser-irradiation group. Treated seeds were growing in artificial soil inculcated with Rhizophagus irregularis MUCL 41833, in a climate-controlled chamber. After 6 weeks, P. graveolens plants were checked for their phytochemical content and antibacterial potential. Laser light application improved the mycorrhizal colonization in P. graveolens plants which subsequently increased biomass accumulation, minerals uptake, and biological value of P. graveolens. The increase in the biological value was evident by the increase in the essential oils production. The concomitant application of laser light and mycorrhizal colonization also boosted the antimicrobial activity of P. graveolens. These results suggest that AMF co-treatment with laser light could be used as a promising approach to enhance the metabolic content and yield of P. graveolens for industrial and pharmaceutical use.
Collapse
|
23
|
Selim S, Akhtar N, El Azab E, Warrad M, Alhassan HH, Abdel-Mawgoud M, Al Jaouni SK, Abdelgawad H. Innovating the Synergistic Assets of β-Amino Butyric Acid (BABA) and Selenium Nanoparticles (SeNPs) in Improving the Growth, Nitrogen Metabolism, Biological Activities, and Nutritive Value of Medicago interexta Sprouts. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11030306. [PMID: 35161286 PMCID: PMC8839959 DOI: 10.3390/plants11030306] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 05/17/2023]
Abstract
In view of the wide traditional uses of legume sprouts, several strategies have been approved to improve their growth, bioactivity, and nutritive values. In this regard, the present study aimed at investigating how priming with selenium nanoparticles (SeNPs, 25 mg L-1) enhanced the effects of β-amino butyric acid (BABA, 30 mM) on the growth, physiology, nitrogen metabolism, and bioactive metabolites of Medicago interexta sprouts. The results have shown that the growth and photosynthesis of M. interexta sprouts were enhanced by the treatment with BABA or SeNPs, being higher under combined treatment. Increased photosynthesis provided the precursors for the biosynthesis of primary and secondary metabolites. In this regard, the combined treatment had a more pronounced effect on the bioactive primary metabolites (essential amino acids), secondary metabolites (phenolics, GSH, and ASC), and mineral profiles of the investigated sprouts than that of sole treatments. Increased amino acids were accompanied by increased nitrogen metabolism, i.e., nitrate reductase, glutamate dehydrogenase (GDH), glutamate synthase (GOGAT), glutamine synthase (GS), cysteine synthesis serine acetyltransferase, arginase, threonine synthase, and methionine synthase. Further, the antioxidant capacity (FRAP), the anti-diabetic activities (i.e., α-amylase and α-glucosidase inhibition activities), and the glycemic index of the tested sprouts were more significantly improved by the combined treatment with BABA and SeNPs than by individual treatment. Overall, the combined effect of BABA and SeNPs could be preferable to their individual effects on plant growth and bioactive metabolites.
Collapse
Affiliation(s)
- Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72341, Saudi Arabia;
- Correspondence: (S.S.); (H.A.)
| | - Nosheen Akhtar
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan;
| | - Eman El Azab
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences at Al-Quriat, Jouf University, Al-Quriat 77454, Saudi Arabia; (E.E.A.); (M.W.)
| | - Mona Warrad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences at Al-Quriat, Jouf University, Al-Quriat 77454, Saudi Arabia; (E.E.A.); (M.W.)
| | - Hassan H. Alhassan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72341, Saudi Arabia;
| | - Mohamed Abdel-Mawgoud
- Department of Medicinal and Aromatic Plants, Desert Research Centre, Cairo 11753, Egypt;
| | - Soad K. Al Jaouni
- Hematology/Pediatric Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Hamada Abdelgawad
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
- Correspondence: (S.S.); (H.A.)
| |
Collapse
|
24
|
Almuhayawi MS, Abdel-Mawgoud M, Al Jaouni SK, Almuhayawi SM, Alruhaili MH, Selim S, AbdElgawad H. Bacterial Endophytes as a Promising Approach to Enhance the Growth and Accumulation of Bioactive Metabolites of Three Species of Chenopodium Sprouts. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122745. [PMID: 34961218 PMCID: PMC8704246 DOI: 10.3390/plants10122745] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 05/29/2023]
Abstract
Sprouts are regarded as an untapped source of bioactive components that display various biological properties. Endophytic bacterium inoculation can enhance plant chemical composition and improve its nutritional quality. Herein, six endophytes (Endo 1 to Endo 6) were isolated from Chenopodium plants and morphologically and biochemically identified. Then, the most active isolate Endo 2 (strain JSA11) was employed to enhance the growth and nutritive value of the sprouts of three Chenopodium species, i.e., C. ambrosoides, C. ficifolium, and C. botrys. Endo 2 (strain JSA11) induced photosynthesis and the mineral uptake, which can explain the high biomass accumulation. Endo 2 (strain JSA11) improved the nutritive values of the treated sprouts through bioactive metabolite (antioxidants, vitamins, unsaturated fatty acid, and essential amino acids) accumulation. These increases were correlated with increased amino acid levels and phenolic metabolism. Consequently, the antioxidant activity of the Endo 2 (strain JSA11)-treated Chenopodium sprouts was enhanced. Moreover, Endo 2 (strain JSA11) increased the antibacterial activity against several pathogenic bacteria and the anti-inflammatory activities as evidenced by the reduced activity of cyclooxygenase and lipoxygenase. Overall, the Endo 2 (strain JSA11) treatment is a successful technique to enhance the bioactive contents and biological properties of Chenopodium sprouts.
Collapse
Affiliation(s)
- Mohammed S. Almuhayawi
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Mohamed Abdel-Mawgoud
- Department of Medicinal and Aromatic Plants, Desert Research Centre, Cairo 11753, Egypt
| | - Soad K. Al Jaouni
- Hematology/Pediatric Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Saad M. Almuhayawi
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Mohammed H. Alruhaili
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia;
| | - Hamada AbdElgawad
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt;
| |
Collapse
|
25
|
Okla MK, Abdel-Mawgoud M, Alamri SA, Abbas ZK, Al-Qahtani WH, Al-Qahtani SM, Al-Harbi NA, Hassan AHA, Selim S, Alruhaili MH, AbdElgawad H. Developmental Stages-Specific Response of Anise Plants to Laser-Induced Growth, Nutrients Accumulation, and Essential Oil Metabolism. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122591. [PMID: 34961062 PMCID: PMC8708645 DOI: 10.3390/plants10122591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/17/2021] [Accepted: 11/17/2021] [Indexed: 06/12/2023]
Abstract
Compared to seeds and mature tissues, sprouts are well known for their higher nutritive and biological values. Fruits of Pimpinella anisum (anise) are extensively consumed as food additives; however, the sprouting-induced changes in their nutritious metabolites are hardly studied. Herein, we investigated the bioactive metabolites, phytochemicals, and antioxidant properties of fruits, sprouts (9-day-old), and mature tissue (5-week-old) of anise under laser irradiation treatment (He-Ne laser, 632 nm). Laser treatment increased biomass accumulation of both anise sprouts and mature plants. Bioactive primary (e.g., proteins and sugars) and secondary metabolites (e.g., phenolic compounds), as well as mineral levels, were significantly enhanced by sprouting and/or laser light treatment. Meanwhile, laser light has improved the levels of essential oils and their related precursors (e.g., phenylalanine), as well as enzyme activities [e.g., O-methyltransferase and 3-Deoxy-D-arabino-heptulosonate-7-phosphate synthase (DAHPS)] in mature tissues. Moreover, laser light induced higher levels of antioxidant and anti-lipidemic activities in sprouts as compared to fruits and mature tissues. Particularly at the sprouting stage, anise was more responsive to laser light treatment than mature plants.
Collapse
Affiliation(s)
- Mohammad K. Okla
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (M.K.O.); (S.A.A.)
| | - Mohamed Abdel-Mawgoud
- Department of Medicinal and Aromatic Plants, Desert Research Centre, Cairo 11753, Egypt
| | - Saud A. Alamri
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (M.K.O.); (S.A.A.)
| | - Zahid Khorshid Abbas
- Biology Department, College of Science, Tabuk University, Tabuk 71491, Saudi Arabia;
| | - Wahidah H. Al-Qahtani
- Department of Food Sciences & Nutrition, College of Food & Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Salem Mesfir Al-Qahtani
- Biology Department, University College of Taymma, Tabuk University, P.O. Box 741, Tabuk 47512, Saudi Arabia; (S.M.A.-Q.); (N.A.A.-H.)
| | - Nadi Awad Al-Harbi
- Biology Department, University College of Taymma, Tabuk University, P.O. Box 741, Tabuk 47512, Saudi Arabia; (S.M.A.-Q.); (N.A.A.-H.)
| | - Abdelrahim H. A. Hassan
- Department of Food Safety and Technology, Faculty of Veterinary Medicine, Beni-Suef University, Beni Suef 62511, Egypt;
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72341, Saudi Arabia;
| | - Mohammed H. Alruhaili
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Hamada AbdElgawad
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni Suef 62521, Egypt;
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, 2020 Antwerpen, Belgium
| |
Collapse
|
26
|
AbdElgawad H, Okla MK, Al-amri SS, AL-Hashimi A, AL-Qahtani WH, Al-Qahtani SM, Abbas ZK, Al-Harbi NA, Abd Algafar A, Almuhayawi MS, Selim S, Abdel-Mawgoud M. Effect of Elevated CO 2 on Biomolecules' Accumulation in Caraway ( Carum carvi L.) Plants at Different Developmental Stages. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112434. [PMID: 34834797 PMCID: PMC8619137 DOI: 10.3390/plants10112434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 05/29/2023]
Abstract
Caraway plants have been known as a rich source of phytochemicals, such as flavonoids, monoterpenoid glucosides and alkaloids. In this regard, the application of elevated CO2 (eCO2) as a bio-enhancer for increasing plant growth and phytochemical content has been the focus of many studies; however, the interaction between eCO2 and plants at different developmental stages has not been extensively explored. Thus, the present study aimed at investigating the changes in growth, photosynthesis and phytochemicals of caraway plants at two developmental stages (sprouts and mature tissues) under control and increased CO2 conditions (ambient CO2 (a CO2, 400 ± 27 μmol CO2 mol-1 air) and eCO2, 620 ± 42 μmol CO2 mol-1 air ppm). Moreover, we evaluated the impact of eCO2-induced changes in plant metabolites on the antioxidant and antibacterial activities of caraway sprouts and mature plants. CO2 enrichment increased photosynthesis and biomass accumulation of both caraway stages. Regarding their phytochemical contents, caraway plants interacted differently with eCO2, depending on their developmental stages. High levels of CO2 enhanced the production of total nutrients, i.e., carbohydrates, proteins, fats and crude fibers, as well as organic and amino acids, in an equal pattern in both caraway sprouts and mature plants. Interestingly, the eCO2-induced effect on minerals, vitamins and phenolics was more pronounced in caraway sprouts than the mature tissues. Furthermore, the antioxidant and antibacterial activities of caraway plants were enhanced under eCO2 treatment, particularly at the mature stage. Overall, eCO2 provoked changes in the phytochemical contents of caraway plants, particularly at the sprouting stage and, hence, improved their nutritive and health-promoting properties.
Collapse
Affiliation(s)
- Hamada AbdElgawad
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
- Laboratory for Molecular Plant Physiology and Biotechnology, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Mohammad K. Okla
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (S.S.A.-a.); (A.A.-H.); (A.A.A.)
| | - Saud S. Al-amri
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (S.S.A.-a.); (A.A.-H.); (A.A.A.)
| | - Abdulrahman AL-Hashimi
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (S.S.A.-a.); (A.A.-H.); (A.A.A.)
| | - Wahida H. AL-Qahtani
- Department of Food Sciences & Nutrition, College of Food & Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Salem Mesfir Al-Qahtani
- Biology Department, University College of Taymma, Tabuk University, Tabuk 71491, Saudi Arabia; (S.M.A.-Q.); or (Z.K.A.); (N.A.A.-H.)
| | - Zahid Khorshid Abbas
- Biology Department, University College of Taymma, Tabuk University, Tabuk 71491, Saudi Arabia; (S.M.A.-Q.); or (Z.K.A.); (N.A.A.-H.)
- Biology Department, College of Science, Tabuk University, Tabuk 71491, Saudi Arabia
| | - Nadi Awad Al-Harbi
- Biology Department, University College of Taymma, Tabuk University, Tabuk 71491, Saudi Arabia; (S.M.A.-Q.); or (Z.K.A.); (N.A.A.-H.)
| | - Ayman Abd Algafar
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (S.S.A.-a.); (A.A.-H.); (A.A.A.)
| | - Mohammed S. Almuhayawi
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia;
| | - Mohamed Abdel-Mawgoud
- Department of Medicinal and Aromatic Plants, Desert Research Centre, Cairo 11753, Egypt;
| |
Collapse
|
27
|
Zou L, Wu D, Ren G, Hu Y, Peng L, Zhao J, Garcia-Perez P, Carpena M, Prieto MA, Cao H, Cheng KW, Wang M, Simal-Gandara J, John OD, Rengasamy KRR, Zhao G, Xiao J. Bioactive compounds, health benefits, and industrial applications of Tartary buckwheat ( Fagopyrum tataricum). Crit Rev Food Sci Nutr 2021; 63:657-673. [PMID: 34278850 DOI: 10.1080/10408398.2021.1952161] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Tartary buckwheat belongs to the family Polygonaceae, which is a traditionally edible and medicinal plant. Due to its various bioactive compounds, the consumption of Tartary buckwheat is correlated to a wide range of health benefits, and increasing attention has been paid to its potential as a functional food. This review summarizes the main bioactive compounds and important bioactivities and health benefits of Tartary buckwheat, emphasizing its protective effects on metabolic diseases and relevant molecular mechanisms. Tartary buckwheat contains a wide range of bioactive compounds, such as flavonoids, phenolic acids, triterpenoids, phenylpropanoid glycosides, bioactive polysaccharides, and bioactive proteins and peptides, as well as D-chiro-inositol and its derivatives. Consumption of Tartary buckwheat and Tartary buckwheat-enriched products is linked to multiple health benefits, e.g., antioxidant, anti-inflammatory, antihyperlipidemic, anticancer, antidiabetic, antiobesity, antihypertensive, and hepatoprotective activities. Especially, clinical studies indicate that Tartary buckwheat exhibits remarkable antidiabetic activities. Various tartary buckwheat -based foods presenting major health benefits as fat and blood glucose-lowering agents have been commercialized. Additionally, to address the safety concerns, i.e., allergic reactions, heavy metal and mycotoxin contaminations, the quality control standards for Tartary buckwheat and its products should be drafted and completed in the future.
Collapse
Affiliation(s)
- Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Dingtao Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Guixing Ren
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yichen Hu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Jianglin Zhao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Pascual Garcia-Perez
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Maria Carpena
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Miguel A Prieto
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Hui Cao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Ka-Wing Cheng
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Mingfu Wang
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Jesus Simal-Gandara
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Oliver D John
- Functional Foods Research Group, University of Southern Queensland, Toowoomba, Queensland, Australia
| | - Kannan R R Rengasamy
- Green Biotechnologies Research Centre of Excellence, University of Limpopo, Polokwane, Sovenga, South Africa
| | - Gang Zhao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| |
Collapse
|
28
|
Suzuki T, Hara T, Katsu K. Breeding of Buckwheat for Usage of Sprout and Pre-Harvest Sprouting Resistance. PLANTS 2021; 10:plants10050997. [PMID: 34067646 PMCID: PMC8155926 DOI: 10.3390/plants10050997] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 11/16/2022]
Abstract
Buckwheat is recognized as an important traditional crop and supports local economies in several regions around the world. Buckwheat is used, for example, as a cereal grain, noodle and bread. In addition, buckwheat is also used as a sprout or a young seedling. For these foods, sprouting is an important characteristic that affects food quality. For foods made from buckwheat flour, pre-harvest sprouting may decrease yield, which also leads to the deterioration of noodle quality. Breeding buckwheat that is resistant to pre-harvest sprouting is therefore required. Germination and subsequent growth are also important characteristics of the quality of sprouts. Although buckwheat sprouts are the focus because they contain many functional compounds, such as rutin, several problems have been noted, such as thin hypocotyls and husks remaining on sprouts. To date, several new varieties have been developed to resolve these quality issues. In this review, we summarize and introduce research on the breeding of buckwheat related to quality, sprouting and subsequent sprout growth.
Collapse
|