1
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2021-2022. MASS SPECTROMETRY REVIEWS 2025; 44:213-453. [PMID: 38925550 PMCID: PMC11976392 DOI: 10.1002/mas.21873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 06/28/2024]
Abstract
The use of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry for the analysis of carbohydrates and glycoconjugates is a well-established technique and this review is the 12th update of the original article published in 1999 and brings coverage of the literature to the end of 2022. As with previous review, this review also includes a few papers that describe methods appropriate to analysis by MALDI, such as sample preparation, even though the ionization method is not MALDI. The review follows the same format as previous reviews. It is divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of computer software for structural identification. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other general areas such as medicine, industrial processes, natural products and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. MALDI is still an ideal technique for carbohydrate analysis, particularly in its ability to produce single ions from each analyte and advancements in the technique and range of applications show little sign of diminishing.
Collapse
|
2
|
Barmukh R, Garg V, Liu H, Chitikineni A, Xin L, Henry R, Varshney RK. Spatial omics for accelerating plant research and crop improvement. Trends Biotechnol 2025:S0167-7799(25)00092-7. [PMID: 40221306 DOI: 10.1016/j.tibtech.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 04/14/2025]
Abstract
Plant cells communicate information to regulate developmental processes and respond to environmental stresses. This communication spans various 'omics' layers within a cell and operates through intricate regulatory networks. The emergence of spatial omics presents a promising approach to thoroughly analyze cells, allowing the combined analysis of diverse modalities either in parallel or on the same tissue section. Here, we provide an overview of recent advancements in spatial omics and delineate scientific discoveries in plant research enabled by these technologies. We delve into experimental and computational challenges and outline strategies to navigate these challenges for advancing breeding efforts. With ongoing insightful discoveries and improved accessibility, spatial omics stands on the brink of playing a crucial role in designing future crops.
Collapse
Affiliation(s)
- Rutwik Barmukh
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch 6150, Western Australia, Australia
| | - Vanika Garg
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch 6150, Western Australia, Australia
| | - Hao Liu
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Center of National Center of Oilseed Crops Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong Province, 510640, China
| | - Annapurna Chitikineni
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch 6150, Western Australia, Australia
| | - Liu Xin
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch 6150, Western Australia, Australia; BGI-Shenzhen, Shenzhen, 518083, China
| | - Robert Henry
- Queensland Alliance for Agriculture & Food Innovation, Queensland Biosciences Precinct, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Rajeev K Varshney
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch 6150, Western Australia, Australia.
| |
Collapse
|
3
|
Yamashita R, Fujiki T, Horikawa K, Jitsuyama Y, Kasuga J, Ueno K, Suzuki T. Visualization of sucrose distribution biosynthesized in vitro from external [1- 13C]sorbitol in apple (Malus domestica) fruit utilizing MALDI-TOF MSI. Food Chem 2025; 469:142545. [PMID: 39729660 DOI: 10.1016/j.foodchem.2024.142545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/30/2024] [Accepted: 12/15/2024] [Indexed: 12/29/2024]
Abstract
To clarify the cause of graded distribution of sucrose in apple fruit flesh, a quarter cut of young apple fruit was cultured for 72 h on agar-solidified MS medium supplemented with 0.5 M [1-13C]sorbitol, with the longitudinal or horizontal cut face being attached with the medium, and distribution of 13C-labelled sucrose in a specimen obtained by slicing the fruit along with the cut face was visualized utilizing MALDI-TOF MSI. Heat map images on the distribution of the peaks of sorbitol containing 13C-atom indicated that external [1-13C]sorbitol had penetrated evenly into the tissue. In addition, the fact that a graded increase in the content of sucrose containing 13C-atom in a molecule was confirmed from the center to the outer areas of the fruit, indicates that sucrose biosynthetic ability might be higher at the cortex side of the receptacle than at the pith side in the fruit flesh.
Collapse
Affiliation(s)
- Ruka Yamashita
- Research Faculty and Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Takumi Fujiki
- Research Faculty and Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Kentaro Horikawa
- Kamikawa Agricultural Experiment Station, Hokkaido Research Organization, Pippu 078-0397, Japan
| | - Yutaka Jitsuyama
- Research Faculty and Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Jun Kasuga
- Research Center for Global Agromedicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan
| | - Keiji Ueno
- Graduate School of Dairy Science, Rakuno Gakuen University, Ebetsu, 069-8501, Japan
| | - Takashi Suzuki
- Research Faculty and Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan.
| |
Collapse
|
4
|
Li R, Wang F, Wang J. Spatial Metabolomics and Its Application in Plant Research. Int J Mol Sci 2025; 26:3043. [PMID: 40243661 PMCID: PMC11988893 DOI: 10.3390/ijms26073043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 03/07/2025] [Accepted: 03/19/2025] [Indexed: 04/18/2025] Open
Abstract
Spatial metabolomics, as a frontier technology, is capable of conducting the comprehensive characterization of metabolites within organisms in terms of qualitative, quantitative and positional dimensions, so as to facilitate the visual analysis of biological processes. This paper summarizes the birth and development of spatial metabolomics, explains its differences and advantages from traditional metabolomics and summarizes its application in plant research. In addition, the limitations of spatial metabolomics are summarized and discussed, along with the technological improvement and application innovation of spatial metabolomics, in order to provide reference for the development strategy of spatial metabolomics and its application in plant research.
Collapse
Affiliation(s)
- Rong Li
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining 810016, China; (R.L.); (F.W.)
| | - Fang Wang
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining 810016, China; (R.L.); (F.W.)
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai University, Xining 810016, China
- Key Laboratory of Qinghai-Tibet Plateau Biotechnology, Ministry of Education, Qinghai University, Xining 810016, China
| | - Jian Wang
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining 810016, China; (R.L.); (F.W.)
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai University, Xining 810016, China
- Key Laboratory of Qinghai-Tibet Plateau Biotechnology, Ministry of Education, Qinghai University, Xining 810016, China
| |
Collapse
|
5
|
Sarretto T, Westerhausen MT, Mckinnon JC, Bishop DP, Ellis SR. Evaluation of combined workflows for multimodal mass spectrometry imaging of elements and lipids from the same tissue section. Anal Bioanal Chem 2025; 417:705-719. [PMID: 39831956 PMCID: PMC11772510 DOI: 10.1007/s00216-024-05696-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/27/2024] [Accepted: 12/03/2024] [Indexed: 01/22/2025]
Abstract
The wide range of mass spectrometry imaging (MSI) technologies enables the spatial distributions of many analyte classes to be investigated. However, as each approach is best suited to certain analytes, combinations of different MSI techniques are increasingly being explored to obtain more chemical information from a sample. In many cases, performing a sequential analysis of the same tissue section is ideal to enable a direct correlation of multimodal data. In this work, we explored different workflows that allow sequential lipid and elemental imaging on the same tissue section using atmospheric pressure laser desorption/ionisation-plasma post-ionisation-MSI (AP-MALDI-PPI-MSI) and laser ablation-inductively coupled plasma-MSI (LA-ICP-MSI), respectively. It is found that performing lipid imaging first using matrix-coated samples, followed by elemental imaging on matrix-coated samples, provides high-quality MSI datasets for both lipids and elements, with the resulting distributions being similar to those obtained when each is performed in isolation. The effect of matrix removal prior to elemental imaging, and of performing elemental imaging first were also investigated but found to generally yield lower quality elemental imaging data but comparable lipid imaging data. Finally, we used the ability to acquire both elemental and lipid imaging data from the same section to investigate the spatial correlations between different lipids (including ceramides, phosphatidylethanolamine, and hexosylceramides) and elements within mouse brain tissue.
Collapse
Affiliation(s)
- Tassiani Sarretto
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia
| | - Mika T Westerhausen
- Hyphenated Mass Spectrometry Laboratory, University of Technology Sydney, Ultimo, Sydney, NSW, Australia
| | - Jayden C Mckinnon
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia
| | - David P Bishop
- Hyphenated Mass Spectrometry Laboratory, University of Technology Sydney, Ultimo, Sydney, NSW, Australia
| | - Shane R Ellis
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia.
| |
Collapse
|
6
|
Zou Y, Tang W, Li B. Exploring natural product biosynthesis in plants with mass spectrometry imaging. TRENDS IN PLANT SCIENCE 2025; 30:69-84. [PMID: 39341734 DOI: 10.1016/j.tplants.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/03/2024] [Accepted: 08/28/2024] [Indexed: 10/01/2024]
Abstract
The biosynthesis of natural products (NPs) is a complex dynamic spatial and temporal process that requires the collaboration of multiple disciplines to explore the underlying mechanisms. Mass spectrometry imaging (MSI) is a powerful technique for studying NPs due to its high molecular coverage and sensitivity without the need for labeling. To date, many analysts still use MSI primarily for visualizing the distribution of NPs in heterogeneous tissues, although studies have proved that it can provide crucial insights into the specialized spatial metabolic process of NPs. In this review we strive to bring awareness of the importance of MSI, and we advocate further exploitation of the spatial information obtained from MSI to establish metabolite-gene expression relationships.
Collapse
Affiliation(s)
- Yuchen Zou
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Weiwei Tang
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Bin Li
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
7
|
Zheng L, Wen Y, Lin Y, Tian J, Shaobai J, Hao Z, Wang C, Sun T, Wang L, Chen C. Phytohormonal dynamics in the abscission zone of Korla fragrant pear during calyx abscission: a visual study. FRONTIERS IN PLANT SCIENCE 2024; 15:1452072. [PMID: 39439514 PMCID: PMC11493647 DOI: 10.3389/fpls.2024.1452072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/05/2024] [Indexed: 10/25/2024]
Abstract
Introduction Phytohormones play a crucial role in regulating the abscission of plant organs and tissues. Methods In this study, the ultrastructure of the sepals of Korla fragrant pears was observed using a transmission electron microscope, and high-performance liquid and gas chromatography were used to analyze the dynamic changes of phytohormones in the abscission zone during the calyx abscission process of Korla fragrant pears, and mass spectrometry imaging was applied to ascertain the spatial distribution of phytohormones. Results The results revealed that the mitochondria in the abscission zone of the decalyx fruits were regularly distributed around the cell wall, and the chloroplasts were moderately present. In contrast, in the persistent calyx fruit, the corresponding parts of the abscission zone showed a scattered distribution of mitochondria within the cells, and there was a higher number of chloroplasts, which also contained starch granules inside. Mass spectrometry imaging revealed that ABA was enriched in the abscission zone of the decalyx fruit, and their ionic signal intensities were significantly stronger than those of the persistent calyx fruit. However, the ionic signal intensities of Indole-3-acetic acid (IAA) and Gibberellin A3 (GA3) of the persistent calyx fruit were significantly stronger than those in the abscission zone of the decalyx fruit and were concentrated in the persistent calyx fruit. 1-Aminocyclopropanecarboxylic Acid (ACC) did not show distinct regional distribution in both the decalyx and persistent calyx fruits. Furthermore, before the formation of the abscission zone, the levels of IAA, GA3, and zeatin (ZT) in the abscission zone of the decalyx fruits were significantly lower than those in the persistent calyx fruits by 37.9%, 57.7%, and 33.0%, respectively, while the levels of abscisic acid (ABA) and ethylene (ETH) were significantly higher by 21.9% and 25.0%, respectively. During the formation of the abscission zone, the levels of IAA, GA3, and ZT in the abscission zone of the decalyx fruits were significantly lower than those in the persistent calyx fruits by 41.7%, 71.7%, and 24.6%, respectively, while the levels of ABA and ETH were significantly higher by 15.2% and 80.0%, respectively. After the formation of the abscission zone, the levels of IAA and GA3 in the abscission zone of the decalyx fruits were lower than those in the persistent calyx fruits by 20.8% and 47.8%, respectively, while the levels of ABA and ETH were higher by 271.8% and 26.9%, respectively. In summary, during the calyx abscission process of Korla fragrant pears, IAA and GA3 in the abscission zone inhibited abscission, while ABA and ETH promoted calyx abscission. These research findings enrich the understanding of the regulatory mechanism of plant hormones on calyx abscission and provide a theoretical basis for the study of exogenous plant growth regulators for regulating calyx abscission in Korla fragrant pear.
Collapse
Affiliation(s)
- Lingling Zheng
- College of Horticulture, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Yue Wen
- College of Horticulture, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Yan Lin
- College of Horticulture, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Jia Tian
- College of Horticulture, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Junjie Shaobai
- College of Horticulture, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Zhichao Hao
- College of Horticulture, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Chunfeng Wang
- Korla Fragrant Pear Research Centre, Korla, Xinjiang, China
| | - Tianyu Sun
- College of Horticulture, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Lei Wang
- College of Horticulture, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Chen Chen
- College of Horticulture, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| |
Collapse
|
8
|
Fu M, Tian L, Zheng D, Gao Y, Sun C, Zhang S, Zhang Z, Wan X, Chen Q. Visualization of metabolite distribution based on matrix-assisted laser desorption/ionization-mass spectrometry imaging of tea seedlings ( Camellia sinensis). HORTICULTURE RESEARCH 2024; 11:uhae218. [PMID: 39398949 PMCID: PMC11469920 DOI: 10.1093/hr/uhae218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 07/24/2024] [Indexed: 10/15/2024]
Abstract
Tea seedlings (Camellia sinensis) have a well-developed root system with a strong taproot and lateral roots. Compared with ordinary cuttings, tea has stronger vitality and environmental adaptability, thus facilitating the promotion of good varieties. However, there is less of detailed research on the rooting and germination process of tea seeds. In this study, matrix-assisted laser desorption ionization time-of-flight-mass spectrometry was used to conduct non-targeted spatial mass spectrometry imaging of the main organs during growth of tea seedlings. A total of 1234 compounds were identified, which could be divided into 24 classes. Among them, theanine, as the most prominent nitrogen compound, was synthesized rapidly at the early stage of embryo germination, accounting for >90% of the total free amino acids in the radicle, and it was then transferred to each meristem region through the mesocolumnar sheath, indicating that theanine-based nitrogen flow plays a decisive role in organ formation during the development of tea seedlings. Nutrients stored in the cotyledon were rapidly hydrolyzed to dextrin and 3-phosphoglyceraldehyde at the early stages of germination, and subsequently converted to other forms that provided carbon and energy for development, such as raffinose and d-galactose (glucose), which were mainly distributed in the growing zones of the root apex and the apical meristems of the stem. This study provides a new perspective on the synthesis and metabolism of substances during the development of tea seedlings and contributes to a better understanding of the biological characteristics of tea varieties.
Collapse
Affiliation(s)
- Maoyin Fu
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Liying Tian
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Dongqiao Zheng
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yang Gao
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Chenyi Sun
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Shihua Zhang
- College of Computer Science, South-Central Minzu University, Wuhan 430074, China
| | - ZhaoLiang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Qi Chen
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Food Nutrition and Safety, Anhui Engineering Laboratory for Agro-products Processing, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
9
|
Cai W, Zhang S, Wang Y, Liu C, Luo R. Differential distribution of characteristic constituents in peel and pulp of Aurantii Fructus Immaturus (Citrus aurantium L.) using MALDI mass spectrometry imaging. Fitoterapia 2024; 177:106067. [PMID: 38857834 DOI: 10.1016/j.fitote.2024.106067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
Aurantii Fructus Immaturus (AFI) was structurally divided into two parts named "peel" and "pulp". The exocarp and mesocarp of materials named "peel". The endocarp separated into multiple compartments and the cystic hair attached to it named "pulp". In order to explore the distribution and content of constituents in AFI, an efficient method to explore the distribution of constituents was developed based on matrix assisted laser desorption/ionization fourier transform ion cyclotron resonance mass spectrometry imaging (MALDI-FTICR-MSI). After simple processing, thirty-two constituents with distinct localization in the mass range of 101-1200 Da were identified by MALDI-FTICR-MSI. In addition, the identified four flavnoids (poncirin, sinensetin, 3,5,6,7,8,3',4'-heptemthoxyflavone, and tangeritin) were analyzed for differences between using LC-MS. Quantitative analysis results supported the quantitative results from MALDI-FT-ICR-MSI. The results implied that different parts had different constituents in AFI, and demonstrated MALDI-MSI have high potential in the direct analysis of constituents.
Collapse
Affiliation(s)
- Wenjun Cai
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China; Department of Pharmacy, Peking University First Hospital, Beijing 100034, China
| | - Shuo Zhang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Yaonan Wang
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Changli Liu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Rong Luo
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
10
|
Qin Z, Li Y, Liu D, Hua Y, Lv Y, Zhang X, Fan C, Yang J. Deciphering the benefits and intensity levels of primary metabolites from Allium macrostemon Bunge and Allium chinense G. Don. Chin Med 2024; 19:99. [PMID: 39010119 PMCID: PMC11251333 DOI: 10.1186/s13020-024-00957-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/31/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND Allii Macrostemonis Bulbus is also named Xiebai in China. It is an edible vegetable, and also a famous herb for treating coronary heart disease. Allium chinense G. Don (ACGD) and Allium macrostemon Bunge (AMB) are it botanical sources. The aim of this study was to explore the cardioprotective effects, and decipher the visual spatial distribution and absolute content of primary metabolites derived from these two herbs. METHODS H9c2 cells were used to perform the hypoxia-reoxygenation (H/R)-induced myocardial injury model. Their protective effects were evaluated by apoptosis levels. Furthermore, matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry imaging approach (MALDI-TOF MSI) was carried out to present the spatial location of primary metabolites including fatty acids, amino acids, carotenoids, and vitamins in these two Allium herbs. Multiple analytical methods were applied to perform quantitative analysis of these primary metabolites in AMB and ACGD bulbs by liquid chromatography tandem mass spectrometry (LC-MS). RESULTS First, AMB and ACGD extracts both could increase the cell viability in H9c2 cells, and attenuate H/R-induced injury. They markedly decreased apoptosis, accompanied by activating the BCL-2/BAX pathway. Further, MALDI-TOF MSI-based relative quantification results showed several amino acids, fatty acids, carotenoids, and vitamins were largely rich in the tunics and outside scales of fresh bulbs, while some primary metabolites were abundant in their developing flower buds. Absolute quantification results displayed total contents of amino acids in ACGD bulbs were higher than those in AMB, while total contents of fatty acids and vitamins provides opposite trends in these two Allium herbs. The total contents of carotenoids and trace elements showed no significant differences between AMB and ACGD samples. CONCLUSIONS This study would be helpful to understand the myocardial injury protection effects of these two Allium herbs, and the spatial accumulation and quantitative content levels of their main nutrients.
Collapse
Affiliation(s)
- Zifei Qin
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yuan Li
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Dongmei Liu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yuzhuo Hua
- College of Medicine, Henan Engineering Research Center of Funiu Mountain's Medicinal Resources Utilization and Molecular Medicine, Pingdingshan University, Pingdingshan, 467000, China
| | - Yuandong Lv
- Hangzhou EXPECLIN Medical Technology Co., Ltd., Hangzhou, 311305, China
| | - Xiaojian Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Engineering Research Center of Application & Translation of Precision Clinical Pharmacy, Zhengzhou, 450052, China
| | - Cailian Fan
- College of Medicine, Henan Engineering Research Center of Funiu Mountain's Medicinal Resources Utilization and Molecular Medicine, Pingdingshan University, Pingdingshan, 467000, China
| | - Jing Yang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Henan Engineering Research Center of Application & Translation of Precision Clinical Pharmacy, Zhengzhou, 450052, China.
| |
Collapse
|
11
|
Shen Q, Wang S, Wang H, Liang J, Zhao Q, Cheng K, Imran M, Xue J, Mao Z. Revolutionizing food science with mass spectrometry imaging: A comprehensive review of applications and challenges. Compr Rev Food Sci Food Saf 2024; 23:e13398. [PMID: 38925595 DOI: 10.1111/1541-4337.13398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/28/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
Food science encounters increasing complexity and challenges, necessitating more efficient, accurate, and sensitive analytical techniques. Mass spectrometry imaging (MSI) emerges as a revolutionary tool, offering more molecular-level insights. This review delves into MSI's applications and challenges in food science. It introduces MSI principles and instruments such as matrix-assisted laser desorption/ionization, desorption electrospray ionization, secondary ion mass spectrometry, and laser ablation inductively coupled plasma mass spectrometry, highlighting their application in chemical composition analysis, variety identification, authenticity assessment, endogenous substance, exogenous contaminant and residue analysis, quality control, and process monitoring in food processing and food storage. Despite its potential, MSI faces hurdles such as the complexity and cost of instrumentation, complexity in sample preparation, limited analytical capabilities, and lack of standardization of MSI for food samples. While MSI has a wide range of applications in food analysis and can provide more comprehensive and accurate analytical results, challenges persist, demanding further research and solutions. The future development directions include miniaturization of imaging devices, high-resolution and high-speed MSI, multiomics and multimodal data fusion, as well as the application of data analysis and artificial intelligence. These findings and conclusions provide valuable references and insights for the field of food science and offer theoretical and methodological support for further research and practice in food science.
Collapse
Affiliation(s)
- Qing Shen
- Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Shitong Wang
- Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Honghai Wang
- Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Jingjing Liang
- Zhejiang Provincial Institute for Food and Drug Control, Hangzhou, China
| | - Qiaoling Zhao
- Zhoushan Institute of Food & Drug Control, Zhoushan, China
| | - Keyun Cheng
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Muhammad Imran
- Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Jing Xue
- Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Zhujun Mao
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
12
|
Horn PJ, Chapman KD. Imaging plant metabolism in situ. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1654-1670. [PMID: 37889862 PMCID: PMC10938046 DOI: 10.1093/jxb/erad423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/25/2023] [Indexed: 10/29/2023]
Abstract
Mass spectrometry imaging (MSI) has emerged as an invaluable analytical technique for investigating the spatial distribution of molecules within biological systems. In the realm of plant science, MSI is increasingly employed to explore metabolic processes across a wide array of plant tissues, including those in leaves, fruits, stems, roots, and seeds, spanning various plant systems such as model species, staple and energy crops, and medicinal plants. By generating spatial maps of metabolites, MSI has elucidated the distribution patterns of diverse metabolites and phytochemicals, encompassing lipids, carbohydrates, amino acids, organic acids, phenolics, terpenes, alkaloids, vitamins, pigments, and others, thereby providing insights into their metabolic pathways and functional roles. In this review, we present recent MSI studies that demonstrate the advances made in visualizing the plant spatial metabolome. Moreover, we emphasize the technical progress that enhances the identification and interpretation of spatial metabolite maps. Within a mere decade since the inception of plant MSI studies, this robust technology is poised to continue as a vital tool for tackling complex challenges in plant metabolism.
Collapse
Affiliation(s)
- Patrick J Horn
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton TX 76203, USA
| | - Kent D Chapman
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton TX 76203, USA
| |
Collapse
|
13
|
Sarretto T, Gardner W, Brungs D, Napaki S, Pigram PJ, Ellis SR. A Machine Learning-Driven Comparison of Ion Images Obtained by MALDI and MALDI-2 Mass Spectrometry Imaging. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:466-475. [PMID: 38407924 DOI: 10.1021/jasms.3c00357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) enables label-free imaging of biomolecules in biological tissues. However, many species remain undetected due to their poor ionization efficiencies. MALDI-2 (laser-induced post-ionization) is the most widely used post-ionization method for improving analyte ionization efficiencies. Mass spectra acquired using MALDI-2 constitute a combination of ions generated by both MALDI and MALDI-2 processes. Until now, no studies have focused on a detailed comparison between the ion images (as opposed to the generated m/z values) produced by MALDI and MALDI-2 for mass spectrometry imaging (MSI) experiments. Herein, we investigated the ion images produced by both MALDI and MALDI-2 on the same tissue section using correlation analysis (to explore similarities in ion images for ions common to both MALDI and MALDI-2) and a deep learning approach. For the latter, we used an analytical workflow based on the Xception convolutional neural network, which was originally trained for human-like natural image classification but which we adapted to elucidate similarities and differences in ion images obtained using the two MSI techniques. Correlation analysis demonstrated that common ions yielded similar spatial distributions with low-correlation species explained by either poor signal intensity in MALDI or the generation of additional unresolved signals using MALDI-2. Using the Xception-based method, we identified many regions in the t-SNE space of spatially similar ion images containing MALDI and MALDI-2-related signals. More notably, the method revealed distinct regions containing only MALDI-2 ion images with unique spatial distributions that were not observed using MALDI. These data explicitly demonstrate the ability of MALDI-2 to reveal molecular features and patterns as well as histological regions of interest that are not visible when using conventional MALDI.
Collapse
Affiliation(s)
- Tassiani Sarretto
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia, 2522
| | - Wil Gardner
- Centre for Materials and Surface Science and Department of Mathematical and Physical Sciences, La Trobe University, Bundoora, Australia, 3086
| | - Daniel Brungs
- Graduate School of Medicine, University of Wollongong, Wollongong, Australia, 2522
| | - Sarbar Napaki
- Graduate School of Medicine, University of Wollongong, Wollongong, Australia, 2522
| | - Paul J Pigram
- Centre for Materials and Surface Science and Department of Mathematical and Physical Sciences, La Trobe University, Bundoora, Australia, 3086
| | - Shane R Ellis
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia, 2522
| |
Collapse
|
14
|
Zhao Y, Hu J, Zhou Z, Li L, Zhang X, He Y, Zhang C, Wang J, Hong G. Biofortified Rice Provides Rich Sakuranetin in Endosperm. RICE (NEW YORK, N.Y.) 2024; 17:19. [PMID: 38430431 PMCID: PMC10908774 DOI: 10.1186/s12284-024-00697-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/28/2024] [Indexed: 03/03/2024]
Abstract
Sakuranetin plays a key role as a phytoalexin in plant resistance to biotic and abiotic stresses, and possesses diverse health-promoting benefits. However, mature rice seeds do not contain detectable levels of sakuranetin. In the present study, a transgenic rice plant was developed in which the promoter of an endosperm-specific glutelin gene OsGluD-1 drives the expression of a specific enzyme naringenin 7-O-methyltransferase (NOMT) for sakuranetin biosynthesis. The presence of naringenin, which serves as the biosynthetic precursor of sakuranetin made this modification feasible in theory. Liquid chromatography tandem mass spectrometry (LC-MS/MS) validated that the seeds of transgenic rice accumulated remarkable sakuranetin at the mature stage, and higher at the filling stage. In addition, the panicle blast resistance of transgenic rice was significantly higher than that of the wild type. Specially, the matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) imaging was performed to detect the content and spatial distribution of sakuranetin and other nutritional metabolites in transgenic rice seeds. Notably, this genetic modification also did not change the nutritional and quality indicators such as soluble sugars, total amino acids, total flavonoids, amylose, total protein, and free amino acid content in rice. Meanwhile, the phenotypes of the transgenic plant during the whole growth and developmental periods and agricultural traits such as grain width, grain length, and 1000-grain weight exhibited no significant differences from the wild type. Collectively, the study provides a conceptual advance on cultivating sakuranetin-rich biofortified rice by metabolic engineering. This new breeding idea may not only enhance the disease resistance of cereal crop seeds but also improve the nutritional value of grains for human health benefits.
Collapse
Affiliation(s)
- Yao Zhao
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Jitao Hu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Zhongjing Zhou
- Central Laboratory, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Linying Li
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Xueying Zhang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Yuqing He
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Chi Zhang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Junmin Wang
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Gaojie Hong
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| |
Collapse
|
15
|
Yue N, Zhang C, Li S, Wang H, Li X, Chen X, Jin F. Imidacloprid triggered changes in strawberry fruits on edible quality and phenolic profiles by applied at two growth stages. Food Res Int 2024; 179:114031. [PMID: 38342551 DOI: 10.1016/j.foodres.2024.114031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 02/13/2024]
Abstract
Increasing evidence showed that imidacloprid affects plants' abiotic or biotic stress tolerance. However, the effects of imidacloprid on the quality of fruits remain elusive. This work aimed to study the effects of imidacloprid applied at different growth stages on the edible quality and phenolic profile of strawberry fruit in the field experiment. For the first time, lower fruit quality was observed in the mature strawberry fruits after imidacloprid treatment at the fruit-bearing completion stage (five days after pollination). Compared to the control group, the mature strawberry fruit wights and the SCC/TA ratio declined about 18.2-30.0 % and 10.3-16.8 %, respectively. However, those attributes did not occur in the mature strawberry fruits by imidacloprid treatment at the fruit maturation stage (30 days after pollination). Among the 30 phenolic compounds, nine presented significant up-regulation or down-regulation after imidacloprid application at two different growth stages, suggesting that the application period played an essential role in evaluating the effects of imidacloprid on the quality of fruits. A significant effect on fruit quality was presented at the strawberry early growth stage treated by imidacloprid. This study provided a new insight into how and when imidacloprid affects the quality of strawberry fruits, contributing to the future's more scientific application of imidacloprid on strawberries.
Collapse
Affiliation(s)
- Ning Yue
- Key Laboratory of Agro-product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chen Zhang
- Key Laboratory of Agro-product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Simeng Li
- Key Laboratory of Agro-product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongping Wang
- Key Laboratory of Agro-product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaohui Li
- Key Laboratory of Agro-product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xueying Chen
- Key Laboratory of Agro-product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fen Jin
- Key Laboratory of Agro-product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
16
|
Zhang M, Wang Z, Li K, Li Q, Yu K, Li J, Feng J, Yang B, Liu L, Cai W. The visualization of the spatial distribution of Cocculus orbiculatus based on air flow-assisted desorption electrospray ionization mass spectrometry imaging. Fitoterapia 2024; 173:105785. [PMID: 38122856 DOI: 10.1016/j.fitote.2023.105785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/01/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Cocculus orbiculatus (C. orbiculatus), the root of plants belonging to the Menispermaceae family, has been extensively used to treat various diseases, including malaria and rheumatism. The main chemicals in these plants are alkaloids; however, the spatial distribution of these compounds within the plant roots remains undefined. This study aimed to visualize the spatial distribution of C. orbiculatus using air flow-assisted desorption electrospray ionization mass spectrometry imaging (AFADESI-MSI). In total, the spatial distribution of four aporphine alkaloids, five benzyltetrahydroisoquinoline alkaloids, six bisbenzylisoquinoline alkaloids, and one morphinane alkaloid in the cork layer, xylem, and ray of the root of C. orbiculatus was observed; the distribution characteristics of the different compounds in C. orbiculatus were significantly different. This study provides a visualized spatial distribution analysis method for the characterization of metabolites in the root tissue of C. orbiculatus and also provides valuable information for the specificity of the root of C. orbiculatus, which is beneficial for understanding its chemical separation, biosynthesis, and pharmacological activities.
Collapse
Affiliation(s)
- Min Zhang
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Ziming Wang
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China; School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Kailin Li
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China; Weifang Medical University, Weifang 261053, China
| | - Qing Li
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Kaiquan Yu
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Jiaxin Li
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Jinglin Feng
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Biao Yang
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Lianghong Liu
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China.
| | - Wei Cai
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China.
| |
Collapse
|
17
|
Fu H, Wang L, Gu J, Peng X, Zhao J. Effects of Litsea cubeba Essential Oil-Chitosan/Corn Starch Composite Films on the Quality and Shelf-Life of Strawberry ( Fragaria × ananassa). Foods 2024; 13:599. [PMID: 38397578 PMCID: PMC10888304 DOI: 10.3390/foods13040599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/11/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
In this work, we have developed a composite chitosan film incorporating the Litsea cubeba essential oil (LCEO) and starch with good physical properties, and investigated the effect of coating strawberries with this composite film. The best formula of the LCEO/chitosan/corn starch/glycerol (LCEO/CH/CS/gly) composite films is 0.25% LCEO, 2.75% CH, 0.40% corn starch, and 0.75% glycerol. Coating strawberries with CH/CS/gly film or LCEO/CH/CS/gly films resulted in significantly lower respiration intensity and a slower decay rate, much slower decreases in the firmness, and reductions in the sugar and ascorbic acid content of the fruit during storage (p < 0.05). The coatings also led to a much slower accumulation of malondialdehyde and anthocyanins (p < 0.05). The LCEO/CH/CS/gly film was generally more effective than the CH/CS/gly film; however, the effect was more obvious in the later stages of storage. Thus, coating strawberries with CH/CS/gly film or LCEO/CH/CS/gly film can be a viable method for extending the shelf-life of the fruit.
Collapse
Affiliation(s)
- Hongjun Fu
- College of Food Science and Engineering, National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha 41004, China; (H.F.); (L.W.); (J.G.)
| | - Liyuan Wang
- College of Food Science and Engineering, National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha 41004, China; (H.F.); (L.W.); (J.G.)
| | - Jiahui Gu
- College of Food Science and Engineering, National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha 41004, China; (H.F.); (L.W.); (J.G.)
| | - Xianglian Peng
- College of Food Science and Engineering, National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha 41004, China; (H.F.); (L.W.); (J.G.)
| | - Jian Zhao
- Food Science and Technology, School of Chemical Engineering, UNSW Australia, Sydney 2052, Australia
| |
Collapse
|
18
|
Przybylska D, Kucharska AZ, Piórecki N, Sozański T. The Health-Promoting Quality Attributes, Polyphenols, Iridoids and Antioxidant Activity during the Development and Ripening of Cornelian Cherry ( Cornus mas L.). Antioxidants (Basel) 2024; 13:229. [PMID: 38397827 PMCID: PMC10885943 DOI: 10.3390/antiox13020229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
This study defined the physicochemical attributes, composition, and antioxidant capacity of four Polish cultivars of cornelian cherry (CC) at six stages of development and ripening. A total of 52 metabolites were identified by UPLC-ESI-qTOF-MS/MS and quantified by HPLC-PDA. In general, phenolic acids, hydrolyzable tannins, flavonols, iridoids, antioxidant activity, organic acids, and vitamin C decreased, while anthocyanins, malic acid, sugars, and titratable acidity increased. For the first time, we determined the evolution of the CC chemical properties and the metabolic behavior and quantified the individual compounds, and groups of compounds during ripening, in particular gallotannins, ellagitannins, iridoids, and organic acids. The main novelty of our study is that CC is a valuable resource for utilization at different degrees of maturity. We showed that unripe fruits in particular deserve valorization, as they contained the highest content of total bioactive phytocompounds (5589.1-6779.6 mg/100 g dw)-primarily phenolic acids > iridoids > tannins-and the highest antioxidant capacity. The intermediate stages were the most abundant in vitamin C (341.1-495.6 mg/100 g dw), ellagic acid (5.9-31.6 mg/100 g dw), gallotannins (47.8-331.1 mg/100 g dw), and loganic acid (1393.0-2839.4 mg/100 g dw). The ripe fruits contained less bioactive phytocompounds (1403.7-1974.6 mg/100 g dw)-primarily iridoids > phenolic acids > tannins > anthocyanins-and the lowest antioxidant capacity. On the other hand, ripe fruits showed the highest content of anthocyanins (30.8-143.2 mg/100 g dw), sugars (36.4-78.9 g/100 g dw), malic acid (5.5-12.2 g/100 g dw), and, favorably for the nutritional applications, the highest sugar-to-acids ratio (3.0-6.4). Our work illustrates in detail that quality attributes and the content of health-promoting phytocompounds in CC depend on the ripening stage and on the cultivar. These results advance the scientific knowledge about CC. Our findings can be helpful to select the optimal properties of CC for the development of diverse functional foods and phytopharmaceuticals applied in the prevention of civilization diseases.
Collapse
Affiliation(s)
- Dominika Przybylska
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wrocław, Poland
| | - Alicja Z. Kucharska
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wrocław, Poland
| | - Narcyz Piórecki
- Arboretum and Institute of Physiography in Bolestraszyce, 37-700 Przemyśl, Poland;
- Institute of Physical Culture Sciences, Medical College, University of Rzeszów, Cicha 2A, 35-326 Rzeszów, Poland
| | - Tomasz Sozański
- Department of Preclinical Sciences, Pharmacology and Medical Diagnostics, Faculty of Medicine, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland;
| |
Collapse
|
19
|
Liang Q, Mondal P, Li Q, Maqbool T, Zhao C, Jiang D, Szulczewski GJ, Wijeratne GB. Nitro Indole Derivatives as Novel Dual-Polarity Matrices for MALDI Mass Spectrometry and Imaging with Broad Applications. Anal Chem 2024; 96:1668-1677. [PMID: 38226847 DOI: 10.1021/acs.analchem.3c04684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
A new matrix framework is presented in this study for the improved ionization efficiency of complex mixtures by matrix-assisted laser desorption ionization (MALDI) mass spectrometry/imaging. Five nitro indole (NI) derivatives [3-methyl-4-nitro-1H-indole (3,4-MNI), 3-methyl-6-nitro-1H-indole (3,6-MNI), 2,3-dimethyl-4-nitro-1H-indole (2,3,4-DMNI), 2,3-dimethyl-6-nitro-1H-indole (2,3,6-DMNI), and 4-nitro-1H-indole (4-NI)] were synthesized and shown to produce both positive and negative ions with a broad class of analytes as MALDI matrices. NI matrices were compared to several common matrices, such as 2,5-dihydroxybenzoic acid (DHB), alpha-cyano-4-hydroxylcinnamic acid (CHCA), sinapinic acid (SA), 1,5-diaminonaphthelene (1,5-DAN), and 9-aminoacridine (9-AA), for the analysis of lipid, peptide, protein, glycan, and perfluorooctanesulfonic acid (PFOS) compounds. 3,4-MNI demonstrated the best performance among the NI matrices. This matrix resulted in reduced ion suppression and better detection sensitivity for complex mixtures, for example, egg lipids/milk proteins/PFOS in tap water, while 2,3,6-DMNI was the best matrix for blueberry tissue imaging. Several important aspects of this work are reported: (1) dual-polarity ion production with NI matrices and complex mixtures; (2) quantitative analysis of PFOS with a LOQ of 0.5 ppb in tap water and 0.05 ppb in MQ water (without solid phase extraction enrichment), with accuracy and precision within 5%; (3) MALDI imaging with 2,3,6-DMNI as a matrix for plant metabolite/lipid identification with ionization enhancement in the negative ion mode m/z 600-900 region; and (4) development of a thin film deposition under/above tissue method for MALDI imaging with a vacuum sublimation matrix on a high-vacuum MALDI instrument.
Collapse
Affiliation(s)
- Qiaoli Liang
- Department of Chemistry & Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Pritam Mondal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Punjab 140306, India
| | - Qi Li
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Tahir Maqbool
- Department of Civil, Construction and Environmental Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Chao Zhao
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Daqian Jiang
- Department of Civil, Construction and Environmental Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Greg J Szulczewski
- Department of Chemistry & Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Gayan B Wijeratne
- Department of Chemistry & Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| |
Collapse
|
20
|
Mao J, Gao Z, Wang X, Lin M, Chen L, Ning X. Combined Widely Targeted Metabolomic, Transcriptomic, and Spatial Metabolomic Analysis Reveals the Potential Mechanism of Coloration and Fruit Quality Formation in Actinidia chinensis cv. Hongyang. Foods 2024; 13:233. [PMID: 38254533 PMCID: PMC10814455 DOI: 10.3390/foods13020233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/02/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Postharvest kiwifruit (Actinidia chinensis cv. Hongyang) pulp is mainly composed of outer yellow-flesh (LR) and inner red-flesh (HR). However, information about the differences in coloration and fruit quality between these two parts are limited. In this study, widely targeted metabolomic, transcriptomic, and spatial metabolomic analyses were used to reveal the potential mechanism of coloration and fruit quality formation. The results show that a total of 1001 metabolites were identified in Hongyang kiwifruit, and the accumulation of 211 metabolites were significantly higher in the HR than LR, including 69 flavonoids, 53 phenolic acids, and 38 terpenoids. There were no significant differences in the content of citric acid, quinic acid, glucose, fructose, or sucrose between the LR and HR. These results were consistent with the results from the RNA-seq profile and spatial metabolomic analysis. In addition, a total of 23 key candidate genes related to flesh color and fruit quality formation were identified and validated by qRT-PCR analysis. This study provides a theoretical basis for elucidating the underlying mechanism of the formation of kiwifruit flesh color and fruit quality.
Collapse
Affiliation(s)
- Jipeng Mao
- Jiangxi Kiwifruit Engineering Research Center, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330096, China; (J.M.)
| | - Zhu Gao
- Jiangxi Kiwifruit Engineering Research Center, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330096, China; (J.M.)
| | - Xiaoling Wang
- Jiangxi Kiwifruit Engineering Research Center, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330096, China; (J.M.)
| | - Mengfei Lin
- Jiangxi Kiwifruit Engineering Research Center, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330096, China; (J.M.)
| | - Lu Chen
- Jinggangshan Institute of Biotechnology, Jiangxi Academy of Sciences, Ji’an 343009, China;
| | - Xinyi Ning
- College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China
| |
Collapse
|
21
|
Zhao Y, Hu J, Zhang Y, Tao H, Li L, He Y, Zhang X, Zhang C, Hong G. Unveiling targeted spatial metabolome of rice seed at the dough stage using Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry imaging. Food Res Int 2023; 174:113578. [PMID: 37986446 DOI: 10.1016/j.foodres.2023.113578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 11/22/2023]
Abstract
Rice (Oryza sativa) seeds contain a variety of metabolites, which not only provide energy for their own growth and development, but also are an important source of nutrition for humans. It is crucial to study the distribution of metabolites in rice seeds, but the spatial metabolome of rice seeds is rarely investigated. In this study, Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) imaging was used to reveal the spatial distribution of free soluble sugars (glucose, fructose, sucrose, and maltose), amino acids (9 essential amino acids and 2 amino acids affecting rice eating quality: L-aspartic acid and L-glutamic acid), and 4 metabolites in the flavonoids synthesis pathway (cinnamic acid, naringenin chalcone, naringenin, and dihydrokaempferol) in rice seed at the dough stage. It was found that the 4 free soluble sugars present similar spatial distribution, mainly distributed in the seed cortex and embryo with high abundance. The majority of amino acids are also concentrated in the rice cortex and embryo, while the others are abundant in the whole seed. Besides cinnamic acid distributed in the seed cortex and embryo, the naringenin chalcone, naringenin, and dihydrokaempferol were also found in the endosperm and had lower content. Furthermore, a colocalization phylogenetic tree according to the spatial distribution imaging of each metabolite was constructed. This study revealed the distribution diversity of metabolites in different segmentations of rice seed at the dough stage, providing clues for the nutritional differences between brown rice and white rice, and serving as a reference for people to target a healthy diet.
Collapse
Affiliation(s)
- Yao Zhao
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jitao Hu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yilin Zhang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Han Tao
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Linying Li
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yuqing He
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xueying Zhang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Chi Zhang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Gaojie Hong
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
22
|
Urrutia M, Meco V, Rambla JL, Martín-Pizarro C, Pillet J, Andrés J, Sánchez-Sevilla JF, Granell A, Hytönen T, Posé D. Diversity of the volatilome and the fruit size and shape in European woodland strawberry (Fragaria vesca). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1201-1217. [PMID: 37597203 DOI: 10.1111/tpj.16404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/30/2023] [Accepted: 07/17/2023] [Indexed: 08/21/2023]
Abstract
Woodland strawberry (Fragaria vesca subsp. vesca) is a wild relative of cultivated strawberry (F. × ananassa) producing small and typically conical fruits with an intense flavor and aroma. The wild strawberry species, F. vesca, is a rich resource of genetic and metabolic variability, but its diversity remains largely unexplored and unexploited. In this study, we aim for an in-depth characterization of the fruit complex volatilome by GC-MS as well as the fruit size and shape using a European germplasm collection that represents the continental diversity of the species. We report characteristic volatilome footprints and fruit phenotypes of specific geographical areas. Thus, this study uncovers phenotypic variation linked to geographical distribution that will be valuable for further genetic studies to identify candidate genes or develop markers linked to volatile compounds or fruit shape and size traits.
Collapse
Affiliation(s)
- María Urrutia
- Departamento de Mejora Genética y Biotecnología, Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), Universidad de Málaga - Consejo Superior de Investigaciones Científicas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, UMA, Málaga, Spain
| | - Victoriano Meco
- Departamento de Mejora Genética y Biotecnología, Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), Universidad de Málaga - Consejo Superior de Investigaciones Científicas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, UMA, Málaga, Spain
| | - José Luis Rambla
- IBMCP Institute for Plant Molecular and Cell Biology (CSIC-UPV), Valencia, Spain
- Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, Castellón de la Plana, Spain
| | - Carmen Martín-Pizarro
- Departamento de Mejora Genética y Biotecnología, Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), Universidad de Málaga - Consejo Superior de Investigaciones Científicas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, UMA, Málaga, Spain
| | - Jeremy Pillet
- Departamento de Mejora Genética y Biotecnología, Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), Universidad de Málaga - Consejo Superior de Investigaciones Científicas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, UMA, Málaga, Spain
| | - Javier Andrés
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - José F Sánchez-Sevilla
- Junta de Andalucía, Unidad Asociada CSIC I+D+i Biotecnología & Mejora de Fresa, Instituto Andaluz de Investigación & Formación Agraria y Pesquera (IFAPA), Ctr. IFAPA Málaga, Málaga, Spain
| | - Antonio Granell
- IBMCP Institute for Plant Molecular and Cell Biology (CSIC-UPV), Valencia, Spain
| | - Timo Hytönen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - David Posé
- Departamento de Mejora Genética y Biotecnología, Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), Universidad de Málaga - Consejo Superior de Investigaciones Científicas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, UMA, Málaga, Spain
| |
Collapse
|
23
|
Maia M, Aziz A, Jeandet P, Carré V. Profiling and Localization of Stilbene Phytoalexins Revealed by MALDI-MSI during the Grapevine- Botrytis cinerea Interaction. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15569-15581. [PMID: 37831964 DOI: 10.1021/acs.jafc.3c03620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Stilbene phytoalexins are among the most accumulated compounds during grapevine-pathogen interactions. However, their steady-state accumulation level and spatial distribution within the tissues to counteract Botrytis cinerea infection remain to be explored. In this work, matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) was used to determine the spatial distribution of different phytoalexins in grapevine leaves upon infection with B. cinerea. Ultraperformance liquid chromatography-fluorescence (UPLC-FL) was also employed to monitor the accumulation pattern of these phytoalexins. This study showed that stilbene compounds accumulate in areas close to the pathogen infection sites. It was also revealed that the accumulation patterns of the stilbene phytoalexins can vary from one time point postinfection to another with specific accumulation patterns within each time point. To the best of our knowledge, this is the first time that the separate localization of grapevine stilbene phytoalexins has been revealed following B. cinerea infection.
Collapse
Affiliation(s)
- Marisa Maia
- LCP-A2MC, Université de Lorraine, F-57000 Metz, France
| | - Aziz Aziz
- Induced Resistance and Plant Bioprotection (RIBP), University of Reims Champagne-Ardenne, USC INRAE 1488, Reims 51100, France
| | - Philippe Jeandet
- Induced Resistance and Plant Bioprotection (RIBP), University of Reims Champagne-Ardenne, USC INRAE 1488, Reims 51100, France
| | - Vincent Carré
- LCP-A2MC, Université de Lorraine, F-57000 Metz, France
| |
Collapse
|
24
|
Lu D, Wu Y, Zhang J, Qi Y, Zhang Y, Pan Q. Visualizing the Distribution of Jujube Metabolites at Different Maturity Stages Using Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging. Foods 2023; 12:3795. [PMID: 37893688 PMCID: PMC10606910 DOI: 10.3390/foods12203795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Chinese jujube (also called Chinese date, Ziziphus jujuba Mill.) is an economically important tree in China and provides a rich source of sugars, vitamins, and bioactive components, all of which are indispensable and essential for the composition and participation in life processes of the human body. However, the location of these metabolites in jujube fruits has not been determined. This study applied matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) to investigate the spatial distribution of sugars, organic acids, and other key components in jujube fruits at different developmental periods. Soluble sugars such as hexoses and sucrose/maltose significantly increase with fruit ripening, while organic acids show an overall trend of initially increasing and then decreasing. Procyanidins and rutin exhibit specific distributions in the fruit periphery and peel. These findings suggest that MALDI-MSI can be used to study the spatial distribution of nutritional components in jujube fruits, providing insights into the changes and spatial distribution of substances during jujube fruit development. This technique offers a scientific basis for jujube breeding, utilization, and production.
Collapse
Affiliation(s)
- Dongye Lu
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China; (D.L.); (Y.W.); (Y.Q.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing 100093, China
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing 100093, China
- Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs, Beijing 100093, China
| | - Yang Wu
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China; (D.L.); (Y.W.); (Y.Q.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing 100093, China
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing 100093, China
- Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs, Beijing 100093, China
| | - Junmin Zhang
- Beijing Forestry Workstation, Beijing Municipal Forestry and Parks Buteau, Beijing 100013, China;
| | - Yuanyong Qi
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China; (D.L.); (Y.W.); (Y.Q.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing 100093, China
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing 100093, China
- Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs, Beijing 100093, China
| | - Yuping Zhang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China; (D.L.); (Y.W.); (Y.Q.)
| | - Qinghua Pan
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China; (D.L.); (Y.W.); (Y.Q.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing 100093, China
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing 100093, China
- Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs, Beijing 100093, China
| |
Collapse
|
25
|
Milosavljević D, Maksimović V, Milivojević J, Djekić I, Wolf B, Zuber J, Vogt C, Dragišić Maksimović J. Sugars and Organic Acids in 25 Strawberry Cultivars: Qualitative and Quantitative Evaluation. PLANTS (BASEL, SWITZERLAND) 2023; 12:2238. [PMID: 37375864 PMCID: PMC10305725 DOI: 10.3390/plants12122238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/29/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023]
Abstract
(1) The nutritional quality of strawberry (Fragaria × ananassa Duch) fruits, among others, is largely maintained by the presence of soluble sugars and organic acids. As the primary products of photosynthesis, they are energy depots in plants, necessary for the construction of cell constituents, but also serve as precursors of aromatic compounds and signaling molecules. (2) In this study, fruits of 25 strawberry cultivars were qualitatively and quantitatively characterized concerning individual sugars and organic acids by HPLC, FT-ICR-MS, and MS imaging analysis. In addition, the total quality index (TQI), as a novel mathematical model, was used to compare all individual parameters evaluated to obtain a quantitative single score, as an indicator of overall fruit quality. (3) Regardless of a large number of cultivars and monitored parameters that were studded, several cultivars stood out in terms of selected primary metabolites, such as 'Rumba', 'Jeny', and 'Sandra', while the latter had the best TQI score. (4) Intercultivar variations in sugars and organic acids profiles, along with other bioactive compounds, should be considered for selection of promising cultivars with improved naturally occurring nutraceutical traits. Besides the search for a pleasant taste, increased awareness of healthy nutrition resulted in heightening consumer demand for high-quality fruit.
Collapse
Affiliation(s)
- Dragica Milosavljević
- Institute for Multidisciplinary Research, University of Belgrade, 11030 Belgrade, Serbia; (V.M.); (J.D.M.)
| | - Vuk Maksimović
- Institute for Multidisciplinary Research, University of Belgrade, 11030 Belgrade, Serbia; (V.M.); (J.D.M.)
| | - Jasminka Milivojević
- Faculty of Agriculture, University of Belgrade, 11030 Belgrade, Serbia; (J.M.); (I.D.)
| | - Ilija Djekić
- Faculty of Agriculture, University of Belgrade, 11030 Belgrade, Serbia; (J.M.); (I.D.)
| | - Bianca Wolf
- Institute for Analytical Chemistry, TU Bergakademie Freiberg, 09599 Freiberg, Germany; (B.W.); (J.Z.); (C.V.)
| | - Jan Zuber
- Institute for Analytical Chemistry, TU Bergakademie Freiberg, 09599 Freiberg, Germany; (B.W.); (J.Z.); (C.V.)
| | - Carla Vogt
- Institute for Analytical Chemistry, TU Bergakademie Freiberg, 09599 Freiberg, Germany; (B.W.); (J.Z.); (C.V.)
| | - Jelena Dragišić Maksimović
- Institute for Multidisciplinary Research, University of Belgrade, 11030 Belgrade, Serbia; (V.M.); (J.D.M.)
| |
Collapse
|
26
|
Li N, Li S, Wang Q, Yang S, Hou Y, Gao Y, Zhang X, Zhang M, Chen H. A novel visualization method for the composition analysis of processed garlic by MALDI-TOF imaging mass spectrometry (MSI) and Q-TOF LC-MS/MS. Food Res Int 2023; 168:112746. [PMID: 37120200 DOI: 10.1016/j.foodres.2023.112746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 03/31/2023]
Abstract
Laba garlic is a kind of vinegar processed garlic (Allium sativum L.) product with multiple health effects. This study applied matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-TOF MSI) and Q-TOF LC-MS/MS for the first time to investigate the garlic tissue spatial distribution changes of low molecular weight compounds during the Laba garlic processing. The distribution characteristics of the compounds were observed in processed and unprocessed garlic including amino acids and derivatives, organosulfur compounds, pigment precursors, polysaccharides and saponins. During Laba garlic processing, some bioactive compounds such as alliin and saponins were lost because they were transformed into other compounds or leached into the acetic acid solution, and some new compounds including pigments-related compounds occurred. This study provided a basis for the spatial distributions and changes of compounds in garlic tissue during Laba garlic processing, which suggested that the bioactivities of garlic might be changed after processing owing to the transformation and change of the constituents.
Collapse
|
27
|
An online derivatization strategy targeting carbon-carbon double bonds by laser-ablation carbon fiber ionization mass spectrometry imaging: Unraveling the spatial characteristic in mountain-cultivated ginseng and garden-cultivated ginseng with different ages. Food Chem 2023; 410:135365. [PMID: 36608558 DOI: 10.1016/j.foodchem.2022.135365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 12/31/2022]
Abstract
Serving as a world-renowned tonic, ginseng contains various types of bioactive metabolites. The comprehensive profiling of these metabolites may help explore the nutritional value of ginseng. Due to high variety in chemical structures, simultaneous monitoring of these metabolites remains a challenge. Herein, a high-throughput and high-selectivity online derivatization mass spectrometry imaging strategy targeting CC was developed. As a widely existed chemical group, CC acts like a bridge connecting different kinds of metabolites. [d0]/[d10]-Bis(pyridine) iodine tetrafluoroboride reagent was chosen for the derivatization of CC, the detection sensitivity of which increased about 3 magnitudes after derivatization. Assisted by laser ablation carbon fiber ionization mass spectrometry, the spatial distribution of bioactive metabolites in mountain-cultivated and garden-cultivated ginseng were visualized. The correlation heatmap results revealed that metabolites in mountain-cultivated ginseng hold higher correlation than those in garden-cultivated ginseng. The proposed method showed potential in providing comprehensive information on the nutrient content of foods.
Collapse
|
28
|
Ishibashi M, Zaitsu K, Yoshikawa I, Otagaki S, Matsumoto S, Oikawa A, Shiratake K. High-throughput analysis of anthocyanins in horticultural crops using probe electrospray ionization tandem mass spectrometry (PESI/MS/MS). HORTICULTURE RESEARCH 2023; 10:uhad039. [PMID: 37082655 PMCID: PMC10111199 DOI: 10.1093/hr/uhad039] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/23/2023] [Indexed: 05/03/2023]
Abstract
Plant secondary metabolites exhibit various horticultural traits. Simple and rapid analysis methods for evaluating these metabolites are in demand in breeding and consumer markets dealing with horticultural crops. We applied probe electrospray ionization (PESI) to evaluate secondary metabolite levels in horticultural crops. PESI does not require pre-treatment and separation of samples, which makes it suitable for high-throughput analysis. In this study, we targeted anthocyanins, one of the primary pigments in horticultural crops. Eighty-one anthocyanins were detected in approximately 3 minutes in the selected reaction-monitoring mode. Tandem mass spectrometry (MS/MS) could adequately distinguish between the fragments of anthocyanins and flavonols. Probe sampling, an intuitive method of sticking a probe directly to the sample, could detect anthocyanins qualitatively on a micro-area scale, such as achenes and receptacles in strawberry fruit. Our results suggest that PESI/MS/MS can be a powerful tool to characterize the profile of anthocyanins and compare their content among cultivars.
Collapse
Affiliation(s)
| | - Kei Zaitsu
- Faculty of Biology-Oriented Science and Technology, Kindai University, Nishimitani, Kinokawa, Wakayama 649-6493, Japan
| | - Ikue Yoshikawa
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, Aichi 464-8601, Japan
| | - Shungo Otagaki
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, Aichi 464-8601, Japan
- Faculty of Agriculture, Meijo University, Tenpaku, Nagoya, Aichi 468-8502, Japan
| | - Shogo Matsumoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, Aichi 464-8601, Japan
| | - Akira Oikawa
- Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | | |
Collapse
|
29
|
Zhao Y, Boukherroub R, Xu G, Li H, Zhao RS, Wei Q, Yu X, Chen X. Au@BN-enhanced laser desorption/ionization mass spectrometry and imaging for determination of fipronil and its metabolites in food and biological samples. Food Chem 2023; 418:135935. [PMID: 36944310 DOI: 10.1016/j.foodchem.2023.135935] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 03/03/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023]
Abstract
Gold nanoparticles (AuNPs) represent an attractive inorganic matrix for laser desorption/ionization mass spectrometry (LDI-MS) detection of low-molecular-weight analytes; however, their direct use is hindered by severe aggregation. To limit AuNPs aggregation, hexagonal boron nitride nanosheets (h-BNNs) were employed as supports to improve their desorption/ionization efficiency. Thus, Au@BN was synthesized and systematically characterized. It showed low background noise and high sensitivity for LDI-MS of fipronil and its metabolites. Au@BN-assisted LDI-MS was validated using complex samples including blueberry juice, green tea beverage, and fish muscle, achieving low detection limits (0.05-0.20 µg·L-1 for liquid media, 0.82-1.25 ng·g-1 for fish muscle), wide linear ranges (0.2-100 µg·L-1 for liquid media, 3.00-1000 ng·g-1 for fish muscle), high reproducibility (7.55%-13.7%), and satisfactory recoveries (82.62%-109.1%). Furthermore, spatial distributions of analytes in strawberries and zebrafish were successfully imaged. This strategy allows for the quantitative analysis of other small molecules in complex substrates.
Collapse
Affiliation(s)
- Yanfang Zhao
- Beijing Key Laboratory of Materials Utilisation of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China; Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Jinan 250014, China
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Guiju Xu
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Jinan 250014, China
| | - Huijuan Li
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Jinan 250014, China
| | - Ru-Song Zhao
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Jinan 250014, China
| | - Qin Wei
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Xiang Yu
- Beijing Key Laboratory of Materials Utilisation of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China.
| | - Xiangfeng Chen
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Jinan 250014, China.
| |
Collapse
|
30
|
Xiang L, Wang F, Bian Y, Harindintwali JD, Wang Z, Wang Y, Dong J, Chen H, Schaeffer A, Jiang X, Cai Z. Visualizing the Distribution of Phthalate Esters and Plant Metabolites in Carrot by Matrix-Assisted Laser Desorption/Ionization Imaging Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15311-15320. [PMID: 36442135 DOI: 10.1021/acs.jafc.2c06995] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The accumulation of organic pollutants in vegetables is a major global food safety issue. The concentrations of pollutants in vegetables usually differ across different tissues because of different transport and accumulation pathways. However, owing to the limitations of conventional methods, in situ localization of typical organic pollutants such as phthalate esters (PAEs) in plant tissues has not yet been studied. Here, we developed a quick and efficient method for in situ detection and imaging of the spatial distribution of PAEs in a typical root vegetable, carrot, using matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS). The use of a 2,5-dihydroxybenzoic acid matrix with a spray-sublimation coating method led to the successful identification of PAEs ion signals. The IMS results showed that a typical PAE-di-(2-ethylhexyl)phthalate (DEHP) was broadly distributed in the cortex, phloem, and metaxylem, but was barely detectable in the cambium and protoxylem. Interestingly, MALDI-IMS data also revealed for the first time the spatial distribution of sugars and β-carotene in carrots. In summary, the developed method offers a new and practical methodology for the in situ analysis of PAEs and plant metabolites in plant tissues. As a result, it could provide a more intuitive understanding of the movement and transformation of organic pollutants in soil-plant systems.
Collapse
Affiliation(s)
- Leilei Xiang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Fang Wang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Environmental Research, RWTH Aachen University, WorringerWeg 1, Aachen 52074, Germany
| | - Yongrong Bian
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jean Damascene Harindintwali
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ziquan Wang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yu Wang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jing Dong
- Shimadzu China Innovation Center, Beijing 100000, China
| | - Hong Chen
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Andreas Schaeffer
- Institute for Environmental Research, RWTH Aachen University, WorringerWeg 1, Aachen 52074, Germany
| | - Xin Jiang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Kowloon 999077, Hong Kong, China
| |
Collapse
|
31
|
Visualizing the Spatial Distribution of Arctium lappa L. Root Components by MALDI-TOF Mass Spectrometry Imaging. Foods 2022; 11:foods11243957. [PMID: 36553700 PMCID: PMC9778511 DOI: 10.3390/foods11243957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
This study is aimed at developing novel analytical methods to accurately visualize the spatial distribution of various endogenous components in Arctium lappa L. (A. lappa) roots, and to precisely guide the setting of pre-treatment operations during processing technologies and understand plant metabolism process. The matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) imaging technology was used for visual demonstration of the in situ spatial distribution in A. lappa roots. This work consisted of four steps: matrix selection, section preparation, matrix coating, and MALDI-TOF MS imaging analysis. Consequently, eight saccharides, four caffeoylquinic acids, four flavonoids, six amino acids, one choline, and one phospholipid were imaged and four unidentified components were found. Saccharides were distributed in the center, whereas caffeoylquinic acids and flavonoids were mainly present in the epidermis and cortex. Furthermore, amino acids were mainly detected in the phloem, and choline in the cambium, while phosphatidylserine was found in the secondary phloem and cambium. This study demonstrated that MALDI-TOF MS imaging technology could provide a technical support to understand the spatial distribution of components in A. lappa roots, which would promote the processing technologies for A. lappa roots and help us to understand the plant metabolism process.
Collapse
|
32
|
Wang X, Chen Y, Liu Y, Ouyang L, Yao R, Wang Z, Kang Y, Yan L, Huai D, Jiang H, Lei Y, Liao B. Visualizing the Distribution of Lipids in Peanut Seeds by MALDI Mass Spectrometric Imaging. Foods 2022; 11:foods11233888. [PMID: 36496696 PMCID: PMC9739101 DOI: 10.3390/foods11233888] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Peanut (also called groundnut, Arachis hypogaea L.) seeds are used for producing edible oils and functional foods, and offer a rich source of lipids, proteins and carbohydrates. However, the location of these metabolites has not yet been firmly established. In the present study, the matrix-assisted laser desorption/ionization mass spectrometric imaging (MALDI-MSI) technique was applied to investigate spatial distribution of lipids and other key components in seeds of three peanut cultivars (ZH9, KQBH, HP). A total of 103 metabolites, including 34 lipid compounds, were putatively identified by MALDI-MSI. The abundance and spatial distribution of glycerolipids (GLs) and glycerophospholipids (GPs) were compared among the three peanut cultivars. All the identified lysophosphatidylcholine (LPC), phosphatidylethanolamine (PE) and phosphatidylcholines (PCs) were distributed mainly in the inner part of seeds. The visualization of phosphatidic acids (PAs) and triacylglycerols (TGs) revealed a dramatic metabolic heterogeneity between the different tissues making up the seed. The non-homogeneous spatial distribution of metabolites appeared to be related to the different functions of particular tissue regions. These results indicated that MALDI-MSI could be useful for investigating the lipids of foodstuffs from a spatial perspective. The present study may contribute to the development of oil crops with higher oil yields, and to improvement of food processing.
Collapse
Affiliation(s)
- Xin Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Yuning Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Yue Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Lei Ouyang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Ruonan Yao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Zhihui Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Yanping Kang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Liying Yan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Dongxin Huai
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Huifang Jiang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Yong Lei
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Boshou Liao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Correspondence:
| |
Collapse
|
33
|
Visual authentication of steroidal saponins in Allium macrostemon Bge. and Allium chinense G. Don using MALDI-TOF imaging mass spectrometry and their structure activity relationship. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
34
|
Liu Z, Zhang M, Chen P, Harnly JM, Sun J. Mass Spectrometry-Based Nontargeted and Targeted Analytical Approaches in Fingerprinting and Metabolomics of Food and Agricultural Research. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11138-11153. [PMID: 35998657 DOI: 10.1021/acs.jafc.2c01878] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Mass spectrometry (MS)-based techniques have been extensively applied in food and agricultural research. This review aims to address the advances and applications of MS-based analytical strategies in nontargeted and targeted analysis and summarizes the recent publications of MS-based techniques, including flow injection MS fingerprinting, chromatography-tandem MS metabolomics, direct analysis using ambient mass spectrometry, as well as development in MS data deconvolution software packages and databases for metabolomic studies. Various nontargeted and targeted approaches are employed in marker compounds identification, material adulteration detection, and the analysis of specific classes of secondary metabolites. In the newly emerged applications, the recent advances in computer tools for the fast deconvolution of MS data in targeted secondary metabolite analysis are highlighted.
Collapse
Affiliation(s)
- Zhihao Liu
- United States Department of Agriculture, Methods and Application of Food Composition Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, Beltsville, Maryland 20705, United States
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland 20742, United States
| | - Mengliang Zhang
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, Tennessee 37132, United States
| | - Pei Chen
- United States Department of Agriculture, Methods and Application of Food Composition Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, Beltsville, Maryland 20705, United States
| | - James M Harnly
- United States Department of Agriculture, Methods and Application of Food Composition Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, Beltsville, Maryland 20705, United States
| | - Jianghao Sun
- United States Department of Agriculture, Methods and Application of Food Composition Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, Beltsville, Maryland 20705, United States
| |
Collapse
|
35
|
Imaging Mass Spectrometry Reveals Complex Lipid Distributions Across Staphylococcus aureus Biofilm Layers. J Mass Spectrom Adv Clin Lab 2022; 26:36-46. [PMID: 36388058 PMCID: PMC9641601 DOI: 10.1016/j.jmsacl.2022.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/03/2022] [Accepted: 09/08/2022] [Indexed: 11/24/2022] Open
Abstract
Introduction Although Staphylococcus aureus is the leading cause of biofilm-related infections, the lipidomic distributions within these biofilms is poorly understood. Here, lipidomic mapping of S. aureus biofilm cross-sections was performed to investigate heterogeneity between horizontal biofilm layers. Methods S. aureus biofilms were grown statically, embedded in a mixture of carboxymethylcellulose/gelatin, and prepared for downstream matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS). Trapped ion mobility spectrometry (TIMS) was also applied prior to mass analysis. Results Implementation of TIMS led to a ∼ threefold increase in the number of lipid species detected. Washing biofilm samples with ammonium formate (150 mM) increased signal intensity for some bacterial lipids by as much as tenfold, with minimal disruption of the biofilm structure. MALDI TIMS IMS revealed that most lipids localize primarily to a single biofilm layer, and species from the same lipid class such as cardiolipins CL(57:0) - CL(66:0) display starkly different localizations, exhibiting between 1.5 and 6.3-fold intensity differences between layers (n = 3, p < 0.03). No horizontal layers were observed within biofilms grown anaerobically, and lipids were distributed homogenously. Conclusions High spatial resolution analysis of S. aureus biofilm cross-sections by MALDI TIMS IMS revealed stark lipidomic heterogeneity between horizontal S. aureus biofilm layers demonstrating that each layer was molecularly distinct. Finally, this workflow uncovered an absence of layers in biofilms grown under anaerobic conditions, possibly indicating that oxygen contributes to the observed heterogeneity under aerobic conditions. Future applications of this workflow to study spatially localized molecular responses to antimicrobials could provide new therapeutic strategies.
Collapse
|
36
|
Jing F, Wang L, Yang M, Wu C, Li J, Shi L, Feng S, Li F. Visualizing the spatial distribution of functional metabolites in Forsythia suspensa at different harvest stages by MALDI mass spectrometry imaging. Fitoterapia 2022; 162:105285. [PMID: 36041592 DOI: 10.1016/j.fitote.2022.105285] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/22/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022]
Abstract
As a traditional Chinese medicine, Forsythia suspensa (F. suspensa) has attracted much attention due to its significant pharmacological activity. Revealing the spatial distribution of metabolites during F. suspensa development is important for understanding its biosynthesis rules and improving the quality of medicinal materials. However, there is currently a lack of information on the spatial distribution of F. suspensa metabolites. In this work, the spatial distribution and growth metabolism patterns of important metabolites of F. suspensa were studied for the first time using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). Using 2,5-dimethylnaphthalene (DAN) as the matrix and detecting in negative ion mode, the spatial distribution and growth patterns of 11 metabolites obtained from longitudinal sections of F. suspensa included pinoresinol, phillygenin, forsythoside A, forsythoside E, rutin, caffeic acid, malic acid, citric acid, stearic acid, oleic acid, and linoleic acid. These results showed the mesocarp and endosperm tissues of F. suspensa were important for storing important functional metabolites. Changes in mesocarp and endosperm growth and development tissues caused large changes in the content of important functional metabolites in F. suspensa. These results provide a basis for understanding the spatial distribution of metabolites in F. suspensa tissues and the significant changes that occur during growth and development, exploring the mechanism of important synthesis of metabolites, regulating the harvest of F. suspensa, and improving the quality of medicinal herbs.
Collapse
Affiliation(s)
- Fengtang Jing
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Lei Wang
- Yantai Food and Drug Inspection Center, Yantai, Shandong 264000, China
| | - Min Yang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Chao Wu
- Shandong Drug and Food Vocational College, Weihai 264210, China
| | - Jian Li
- Department of Pharmacy, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250000, China
| | - Lei Shi
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Shuai Feng
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Shandong Provincial Collaborative Innovation Center for Quality Control and Construction of the Whole Industrial Chain of Traditional Chinese Medicine, Jinan 250355, China..
| | - Feng Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|
37
|
Kokesch-Himmelreich J, Wittek O, Race AM, Rakete S, Schlicht C, Busch U, Römpp A. MALDI mass spectrometry imaging: From constituents in fresh food to ingredients, contaminants and additives in processed food. Food Chem 2022; 385:132529. [PMID: 35279497 DOI: 10.1016/j.foodchem.2022.132529] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 01/20/2022] [Accepted: 02/19/2022] [Indexed: 11/15/2022]
Abstract
Mass Spectrometry imaging (MS imaging) provides spatial information for a wide range of compound classes in different sample matrices. We used MS imaging to investigate the distribution of components in fresh and processed food, including meat, dairy and bakery products. The MS imaging workflow was optimized to cater to the specific properties and challenges of the individual samples. We successfully detected highly nonpolar and polar constituents such as beta-carotene and anthocyanins, respectively. For the first time, the distributions of a contaminant and a food additive were visualized in processed food. We detected acrylamide in German gingerbread and investigated the penetration of the preservative natamycin into cheese. For this purpose, a new data analysis tool was developed to study the penetration of analytes from uneven surfaces. Our results show that MS imaging has great potential in food analysis to provide relevant information about components' distributions, particularly those underlying official regulations.
Collapse
Affiliation(s)
| | - Oliver Wittek
- Bioanalytical Sciences and Food Analysis, University of Bayreuth, Bayreuth, Germany.
| | - Alan M Race
- Bioanalytical Sciences and Food Analysis, University of Bayreuth, Bayreuth, Germany.
| | - Sophie Rakete
- Bioanalytical Sciences and Food Analysis, University of Bayreuth, Bayreuth, Germany.
| | - Claus Schlicht
- Bavarian Health and Food Safety Authority, Oberschleißheim, Germany.
| | - Ulrich Busch
- Bavarian Health and Food Safety Authority, Oberschleißheim, Germany.
| | - Andreas Römpp
- Bioanalytical Sciences and Food Analysis, University of Bayreuth, Bayreuth, Germany.
| |
Collapse
|
38
|
Liu H, Wei L, Ni Y, Chang L, Dong J, Zhong C, Sun R, Li S, Xiong R, Wang G, Sun J, Zhang Y, Gao Y. Genome-Wide Analysis of Ascorbic Acid Metabolism Related Genes in Fragaria × ananassa and Its Expression Pattern Analysis in Strawberry Fruits. FRONTIERS IN PLANT SCIENCE 2022; 13:954505. [PMID: 35873967 PMCID: PMC9296770 DOI: 10.3389/fpls.2022.954505] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Ascorbic acid (AsA) is an important antioxidant for scavenging reactive oxygen species and it is essential for human health. Strawberry (Fragaria × ananassa) fruits are rich in AsA. In recent years, strawberry has been regarded as a model for non-climacteric fruit ripening. However, in contrast to climacteric fruits, such as tomato, the regulatory mechanism of AsA accumulation in strawberry fruits remains largely unknown. In this study, we first identified 125 AsA metabolism-related genes from the cultivated strawberry "Camarosa" genome. The expression pattern analysis using an available RNA-seq data showed that the AsA biosynthetic-related genes in the D-mannose/L-galactose pathway were downregulated remarkably during fruit ripening which was opposite to the increasing AsA content in fruits. The D-galacturonate reductase gene (GalUR) in the D-Galacturonic acid pathway was extremely upregulated in strawberry receptacles during fruit ripening. The FaGalUR gene above belongs to the aldo-keto reductases (AKR) superfamily and has been proposed to participate in AsA biosynthesis in strawberry fruits. To explore whether there are other genes in the AKR superfamily involved in regulating AsA accumulation during strawberry fruit ripening, we further implemented a genome-wide analysis of the AKR superfamily using the octoploid strawberry genome. A total of 80 FaAKR genes were identified from the genome and divided into 20 subgroups based on phylogenetic analysis. These FaAKR genes were unevenly distributed on 23 chromosomes. Among them, nine genes showed increased expression in receptacles as the fruit ripened, and notably, FaAKR23 was the most dramatically upregulated FaAKR gene in receptacles. Compared with fruits at green stage, its expression level increased by 142-fold at red stage. The qRT-PCR results supported that the expression of FaAKR23 was increased significantly during fruit ripening. In particular, the FaAKR23 was the only FaAKR gene that was significantly upregulated by abscisic acid (ABA) and suppressed by nordihydroguaiaretic acid (NDGA, an ABA biosynthesis blocker), indicating FaAKR23 might play important roles in ABA-mediated strawberry fruit ripening. In a word, our study provides useful information on the AsA metabolism during strawberry fruit ripening and will help understand the mechanism of AsA accumulation in strawberry fruits.
Collapse
Affiliation(s)
- Huabo Liu
- Institute of Forestry and Pomology, Beijing Academy of Forestry and Pomology Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Engineering Research Center for Strawberry, Beijing, China
| | - Lingzhi Wei
- Institute of Forestry and Pomology, Beijing Academy of Forestry and Pomology Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Engineering Research Center for Strawberry, Beijing, China
| | - Yang Ni
- Institute of Forestry and Pomology, Beijing Academy of Forestry and Pomology Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Inspection and Testing Laboratory of Fruits and Nursery Stocks (Beijing), Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Linlin Chang
- Institute of Forestry and Pomology, Beijing Academy of Forestry and Pomology Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Engineering Research Center for Strawberry, Beijing, China
| | - Jing Dong
- Institute of Forestry and Pomology, Beijing Academy of Forestry and Pomology Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Engineering Research Center for Strawberry, Beijing, China
| | - Chuanfei Zhong
- Institute of Forestry and Pomology, Beijing Academy of Forestry and Pomology Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Engineering Research Center for Strawberry, Beijing, China
| | - Rui Sun
- Institute of Forestry and Pomology, Beijing Academy of Forestry and Pomology Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Engineering Research Center for Strawberry, Beijing, China
| | - Shuangtao Li
- Institute of Forestry and Pomology, Beijing Academy of Forestry and Pomology Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Engineering Research Center for Strawberry, Beijing, China
| | - Rong Xiong
- Institute of Forestry and Pomology, Beijing Academy of Forestry and Pomology Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Inspection and Testing Laboratory of Fruits and Nursery Stocks (Beijing), Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Guixia Wang
- Institute of Forestry and Pomology, Beijing Academy of Forestry and Pomology Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Engineering Research Center for Strawberry, Beijing, China
| | - Jian Sun
- Institute of Forestry and Pomology, Beijing Academy of Forestry and Pomology Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Engineering Research Center for Strawberry, Beijing, China
| | - Yuntao Zhang
- Institute of Forestry and Pomology, Beijing Academy of Forestry and Pomology Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Engineering Research Center for Strawberry, Beijing, China
| | - Yongshun Gao
- Institute of Forestry and Pomology, Beijing Academy of Forestry and Pomology Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Engineering Research Center for Strawberry, Beijing, China
| |
Collapse
|
39
|
Mass spectral imaging showing the plant growth-promoting rhizobacteria's effect on the Brachypodium awn. Biointerphases 2022; 17:031006. [PMID: 35738921 DOI: 10.1116/6.0001949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The plant growth-promoting rhizobacteria (PGPR) on the host plant surface play a key role in biological control and pathogenic response in plant functions and growth. However, it is difficult to elucidate the PGPR effect on plants. Such information is important in biomass production and conversion. Brachypodium distachyon (Brachypodium), a genomics model for bioenergy and native grasses, was selected as a C3 plant model; and the Gram-negative Pseudomonas fluorescens SBW25 (P.) and Gram-positive Arthrobacter chlorophenolicus A6 (A.) were chosen as representative PGPR strains. The PGPRs were introduced to the Brachypodium seed's awn prior to germination, and their possible effects on the seeding and growth were studied using different modes of time-of-flight secondary ion mass spectrometry (ToF-SIMS) measurements, including a high mass-resolution spectral collection and delayed image extraction. We observed key plant metabolic products and biomarkers, such as flavonoids, phenolic compounds, fatty acids, and auxin indole-3-acetic acid in the Brachypodium awns. Furthermore, principal component analysis and two-dimensional imaging analysis reveal that the Brachypodium awns are sensitive to the PGPR, leading to chemical composition and morphology changes on the awn surface. Our results show that ToF-SIMS can be an effective tool to probe cell-to-cell interactions at the biointerface. This work provides a new approach to studying the PGPR effects on awn and shows its potential for the research of plant growth in the future.
Collapse
|
40
|
Li J, Yan G, Duan X, Zhang K, Zhang X, Zhou Y, Wu C, Zhang X, Tan S, Hua X, Wang J. Research Progress and Trends in Metabolomics of Fruit Trees. FRONTIERS IN PLANT SCIENCE 2022; 13:881856. [PMID: 35574069 PMCID: PMC9106391 DOI: 10.3389/fpls.2022.881856] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/01/2022] [Indexed: 06/15/2023]
Abstract
Metabolomics is an indispensable part of modern systems biotechnology, applied in the diseases' diagnosis, pharmacological mechanism, and quality monitoring of crops, vegetables, fruits, etc. Metabolomics of fruit trees has developed rapidly in recent years, and many important research results have been achieved in combination with transcriptomics, genomics, proteomics, quantitative trait locus (QTL), and genome-wide association study (GWAS). These research results mainly focus on the mechanism of fruit quality formation, metabolite markers of special quality or physiological period, the mechanism of fruit tree's response to biotic/abiotic stress and environment, and the genetics mechanism of fruit trait. According to different experimental purposes, different metabolomic strategies could be selected, such as targeted metabolomics, non-targeted metabolomics, pseudo-targeted metabolomics, and widely targeted metabolomics. This article presents metabolomics strategies, key techniques in metabolomics, main applications in fruit trees, and prospects for the future. With the improvement of instruments, analysis platforms, and metabolite databases and decrease in the cost of the experiment, metabolomics will prompt the fruit tree research to achieve more breakthrough results.
Collapse
Affiliation(s)
- Jing Li
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin, China
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing, China
| | - Guohua Yan
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing, China
| | - Xuwei Duan
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing, China
| | - Kaichun Zhang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing, China
| | - Xiaoming Zhang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing, China
| | - Yu Zhou
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing, China
| | - Chuanbao Wu
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing, China
| | - Xin Zhang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing, China
| | - Shengnan Tan
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin, China
- Analysis and Test Center, Northeast Forestry University, Harbin, China
| | - Xin Hua
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Jing Wang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing, China
| |
Collapse
|
41
|
Engel KM, Prabutzki P, Leopold J, Nimptsch A, Lemmnitzer K, Vos DRN, Hopf C, Schiller J. A new update of MALDI-TOF mass spectrometry in lipid research. Prog Lipid Res 2022; 86:101145. [PMID: 34995672 DOI: 10.1016/j.plipres.2021.101145] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/06/2021] [Accepted: 12/29/2021] [Indexed: 01/06/2023]
Abstract
Matrix-assisted laser desorption and ionization (MALDI) mass spectrometry (MS) is an indispensable tool in modern lipid research since it is fast, sensitive, tolerates sample impurities and provides spectra without major analyte fragmentation. We will discuss some methodological aspects, the related ion-forming processes and the MALDI MS characteristics of the different lipid classes (with the focus on glycerophospholipids) and the progress, which was achieved during the last ten years. Particular attention will be given to quantitative aspects of MALDI MS since this is widely considered as the most serious drawback of the method. Although the detailed role of the matrix is not yet completely understood, it will be explicitly shown that the careful choice of the matrix is crucial (besides the careful evaluation of the positive and negative ion mass spectra) in order to be able to detect all lipid classes of interest. Two developments will be highlighted: spatially resolved Imaging MS is nowadays well established and the distribution of lipids in tissues merits increasing interest because lipids are readily detectable and represent ubiquitous compounds. It will also be shown that a combination of MALDI MS with thin-layer chromatography (TLC) enables a fast spatially resolved screening of an entire TLC plate which makes the method competitive with LC/MS.
Collapse
Affiliation(s)
- Kathrin M Engel
- Leipzig University, Faculty of Medicine, Institute for Medical Physics and Biophysics, Härtelstraße 16-18, D-04107, Germany
| | - Patricia Prabutzki
- Leipzig University, Faculty of Medicine, Institute for Medical Physics and Biophysics, Härtelstraße 16-18, D-04107, Germany
| | - Jenny Leopold
- Leipzig University, Faculty of Medicine, Institute for Medical Physics and Biophysics, Härtelstraße 16-18, D-04107, Germany
| | - Ariane Nimptsch
- Leipzig University, Faculty of Medicine, Institute for Medical Physics and Biophysics, Härtelstraße 16-18, D-04107, Germany
| | - Katharina Lemmnitzer
- Leipzig University, Faculty of Medicine, Institute for Medical Physics and Biophysics, Härtelstraße 16-18, D-04107, Germany
| | - D R Naomi Vos
- Center for Biomedical Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack-Strasse 10, D-68163 Mannheim, Germany
| | - Carsten Hopf
- Center for Biomedical Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack-Strasse 10, D-68163 Mannheim, Germany
| | - Jürgen Schiller
- Leipzig University, Faculty of Medicine, Institute for Medical Physics and Biophysics, Härtelstraße 16-18, D-04107, Germany.
| |
Collapse
|
42
|
Abstract
Matrix-assisted laser desorption ionization (MALDI) remains the reference method to generate molecular images of proteins and lipids within thin tissue sections. However, traditional MALDI imaging mass spectrometry (IMS) suffers from low matrix homogeneity and high signal background in low mass range caused by matrix signals. To overcome these issues, alternative workflow and methods have been developed. Of these, metal-assisted laser desorption ionization (LDI) has become a reference technique to ionize low molecular weight compounds while allowing IMS at very high spatial resolutions with very low background signal in the low mass range. Silver and gold remain the two most used metals for the detection of neutral lipids including cholesterol, free fatty acids, and triglycerides. In this chapter, we demonstrate the potential of metal-assisted LDI IMS through the analysis of spinal cord and kidney thin tissue sections after silver and gold metal deposition. We also detail typical step-by-step workflows and discuss the strength of the methods.
Collapse
Affiliation(s)
| | - Pierre Chaurand
- Department of Chemistry, Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
43
|
Enomoto H. Unique distribution of ellagitannins in ripe strawberry fruit revealed by mass spectrometry imaging. Curr Res Food Sci 2021; 4:821-828. [PMID: 34841268 PMCID: PMC8606305 DOI: 10.1016/j.crfs.2021.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/12/2021] [Accepted: 11/12/2021] [Indexed: 11/17/2022] Open
Abstract
Ellagitannins (ETs) are hydrolysable tannins composed of a polyol core, primarily glucose, which is esterified with hexahydroxydiphenic acid (HHDP), and in some cases, gallic acid. ETs are the major phenolic compounds found in strawberries and may contribute to the health-related properties of strawberries, because of their strong antioxidative activity. However, their distribution in the strawberry fruit remains unclear. In this study, matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI–MSI) was used to visualize ETs in ripe strawberry fruits. Five peaks, corresponding to the m/z values of ET [M−H]− ions detected in the MALDI–MS spectrum of strawberry extracts, were identified as strictinin, pedunculagin, casuarictin, davuriicin M1, and an unknown ET using MALDI–tandem MS (MS/MS). In addition, liquid chromatography–electrospray ionization–MS/MS of the extracts revealed the presence of pedunculagin isomers and the unknown ET. Ion images of these five ETs were reconstructed using MALDI–MSI. Strictinin was widely distributed in and around the achene seed coats, while the other ETs were dispersed in and around the seed coats, and at the bottom of the receptacle; pedunculagin was distributed in the epidermis and pith, whereas casuarictin, the unknown ET, and davuriicin M1 were distributed in the pith. Moreover, MALDI–MSI of a casuarictin standard indicated that in-source fragmentation weakly affected the ion images. The results suggest that the distribution of ETs depends on the presence or absence of their constituents, namely galloyl units, HHDP, and bis-HHDP. To the best of my knowledge, this is the first report on the visualization of ETs in plant tissues using MSI, MALDI–MSI may be a useful tool for analyzing the distribution of ETs in the strawberry fruit. The ellagitannins (ETs) in strawberry fruits were identified. MALDI-MS/MS and LC-MS/MS were used. The ETs identified in the fruits were visualized using MALDI-MSI. The ETs showed unique distributions in the seeds and the lower receptacle. The distribution of ETs depends on their constituents: galloyl units and HHDP.
Collapse
Key Words
- CMC, carboxymethylcellulose
- DAN, 1,5-diaminonaphthalene
- Distribution
- ET, ellagitannin
- Ellagitannin
- HHDP, hexahydroxydiphenic acid
- ITO, indium–tin oxide
- LC, liquid chromatography
- Liquid chromatography-mass spectrometry
- MALDI, matrix-assisted laser desorption/ionization
- MSI, mass spectrometry imaging
- Mass spectrometry imaging
- Matrix-assisted laser desorption/ionization
- RT, retention time
- Strawberry
- TOF, time-of-flight
Collapse
Affiliation(s)
- Hirofumi Enomoto
- Department of Biosciences, Faculty of Science and Engineering, Teikyo University, Utsunomiya, 320-8551, Japan
- Division of Integrated Science and Engineering, Graduate School of Science and Engineering, Teikyo University, Utsunomiya, 320-8551, Japan
- Advanced Instrumental Analysis Center, Teikyo University, Utsunomiya, 320-8551, Japan
- Department of Biosciences, Faculty of Science and Engineering, Teikyo University, Utsunomiya, 320-8551, Japan.
| |
Collapse
|
44
|
Dare AP, Günther CS, Grey AC, Guo G, Demarais NJ, Cordiner S, McGhie TK, Boldingh H, Hunt M, Deng C, Karppinen K, Jaakola L, Espley RV. Resolving the developmental distribution patterns of polyphenols and related primary metabolites in bilberry (Vaccinium myrtillus) fruit. Food Chem 2021; 374:131703. [PMID: 34902814 DOI: 10.1016/j.foodchem.2021.131703] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 01/01/2023]
Abstract
Bilberry (Vaccinium myrtillus) is a commercially important wild berry species, which accumulates high amounts of polyphenols, particularly anthocyanins, in the skin and flesh. Whilst a number of studies have quantified these phytochemicals in intact ripe bilberry fruit, we extend the current knowledge by investigating the spatial distribution of anthocyanin-associated polyphenols in fruit tissue, and study their links with primary metabolism during ripening. To address this, we used LC-MS and mass spectrometry imaging to measure and map primary and secondary metabolites in fruit. Correlation analysis showed that five sugars displayed strong positive correlations with anthocyanin accumulation, whereas all amino acids were negatively correlated. The accumulation patterns of polyphenols correlated in fruit skin and flesh, but altered with development. Finally, spatial segmentation analysis revealed that the chemical signatures of ripening first appear at defined regions under the skin and rapidly expand to encompass the entire fruit at the eating-ripe stage.
Collapse
Affiliation(s)
- Andrew P Dare
- The New Zealand Institute for Plant and Food Research Ltd, 120 Mt Albert Road, 1025 Auckland, New Zealand.
| | - Catrin S Günther
- The New Zealand Institute for Plant and Food Research Ltd, 120 Mt Albert Road, 1025 Auckland, New Zealand
| | - Angus C Grey
- Department of Physiology, School of Medical Sciences, The University of Auckland, 85 Park Road, Grafton, Auckland 1023 New Zealand
| | - George Guo
- Department of Physiology, School of Medical Sciences, The University of Auckland, 85 Park Road, Grafton, Auckland 1023 New Zealand
| | - Nicholas J Demarais
- School of Biological Sciences, University of Auckland, Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Sarah Cordiner
- The New Zealand Institute for Plant and Food Research Ltd, Batchelar Road, Fitzherbert, 4474 Palmerston North, New Zealand
| | - Tony K McGhie
- The New Zealand Institute for Plant and Food Research Ltd, Batchelar Road, Fitzherbert, 4474 Palmerston North, New Zealand
| | - Helen Boldingh
- The New Zealand Institute for Plant and Food Research Ltd, Ruakura Campus, Bisley Rd, Hamilton 3214, New Zealand
| | - Martin Hunt
- The New Zealand Institute for Plant and Food Research Ltd, Batchelar Road, Fitzherbert, 4474 Palmerston North, New Zealand
| | - Cecilia Deng
- The New Zealand Institute for Plant and Food Research Ltd, 120 Mt Albert Road, 1025 Auckland, New Zealand
| | - Katja Karppinen
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, NO-9037 Tromsø, Norway
| | - Laura Jaakola
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, NO-9037 Tromsø, Norway; NIBIO, Norwegian Institute of Bioeconomy Research, NO-1431 Ås, Norway
| | - Richard V Espley
- The New Zealand Institute for Plant and Food Research Ltd, 120 Mt Albert Road, 1025 Auckland, New Zealand
| |
Collapse
|
45
|
Hu W, Han Y, Sheng Y, Wang Y, Pan Q, Nie H. Mass spectrometry imaging for direct visualization of components in plants tissues. J Sep Sci 2021; 44:3462-3476. [PMID: 34245221 DOI: 10.1002/jssc.202100138] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/09/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022]
Abstract
Mass spectrometry is considered the most informative technique for components identification and has been widely adopted in plant sciences. However, the spatial distribution of compounds in the plant, which is vital for the exploration of plant physiological mechanisms, is missed in MS analysis. In recent years, mass spectrometry imaging has brought a great breakthrough in plant analysis because it can determine both the molecular compositions and spatial distributions, which is conducive to understand functions and regulation pathways of specific components in plants. Mass spectrometry imaging analysis of plant tissue is toward high sensitivity, high spatial resolution, and even single-cell analysis. Despite many challenges and technical barriers, such as difficulties of sample pretreatment caused by morphological diversity of plant tissues, obstacles for high spatial resolution imaging, and so on, lots of researches have contributed to remarkable progress, including improvement in tissue preparation, matrix innovation, and ionization mode development. This review focuses on the advances of mass spectrometry imaging analysis of plants in the last 5 years, including commonly used ionization techniques, technical advances, and recent applications of mass spectrometry imaging in plants.
Collapse
Affiliation(s)
- Wenya Hu
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, P. R. China
| | - Yehua Han
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, P. R. China
| | - Yiqi Sheng
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, P. R. China
| | - Yinghao Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, P. R. China
| | - Qiong Pan
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, P. R. China
| | - Honggang Nie
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| |
Collapse
|