1
|
Zhu B, Zhang X, Liu S, Liu S, Li X, Liu L, Hao D, Cui L, Zhou W. Preparation of infant formula simulating the fat composition and structure of human milk based on MFGM and exogenous phospholipid to modulate lipid digestion. Food Res Int 2025; 209:116256. [PMID: 40253139 DOI: 10.1016/j.foodres.2025.116256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/24/2025] [Accepted: 03/11/2025] [Indexed: 04/21/2025]
Abstract
In this study, raw cow's milk was used as raw material to investigate the impact of the order of egg yolk phospholipids (EYPL) addition in the actual production process on the structural integrity of milk fat globule membrane (MFGM) MFGM in infant formula (IF), and then to explore the impact of the addition of exogenous MFGM material concentration on the simulation of the physicochemical properties, microstructure, and lipid digestion in the IF emulsion and powder, and the determination of the base formulation of the IF. A portion of EYPL was added to raw cow's milk prior to homogenization (SIF1) and 2 % (w/w) EYPL was added directly to raw cow's milk along with other milk base ingredients (SIF2). The effects of human milk (HM) and three different infant formulas (SIF1, CIF1: no MFGM; CIF2: added MFGM) on their in vitro infant gastrointestinal digestion were also analyzed and compared. The results of the study show that the highest encapsulation rate (85.21 ± 1.03 %) and physical stability of the emulsions were achieved when a portion of EYPL was added to raw cow's milk first in the order of SIF preparation (SIF1) and at a concentration of MFGM addition of 2 % (w/w), which led to the identification of SIF1 as the order of simulated infant formula (SIF) preparation for the subsequent in vitro digestion experiments. After gastrointestinal digestion, only SIF had the closest free fatty acid composition to breast milk. Free fatty acid release was ranked in the order of HM > SIF > CIF2 ≥ CIF1. Overall, the addition of EYPL to SIF reduced the damage to the integrity of the milk fat globules caused by CIF while manufacturing and resulted in the highest similarity of fat digestion to HM.
Collapse
Affiliation(s)
- Bin Zhu
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
| | - Xiuxiu Zhang
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
| | - Shuming Liu
- Heilongjiang Beingmate Dairy Co, Ltd, Suihua, China
| | - Shuai Liu
- Heilongjiang Beingmate Dairy Co, Ltd, Suihua, China
| | - Xiaodong Li
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China.
| | - Lu Liu
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China.
| | - Donghai Hao
- Heilongjiang Beingmate Dairy Co, Ltd, Suihua, China
| | - Liqin Cui
- Heilongjiang Beingmate Dairy Co, Ltd, Suihua, China
| | - Wenli Zhou
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
| |
Collapse
|
2
|
Yu J, Wang Y, Wei W, Wang X. A review on lipid inclusion in preterm formula: Characteristics, nutritional support, challenges, and future perspectives. Compr Rev Food Sci Food Saf 2025; 24:e70099. [PMID: 39898899 DOI: 10.1111/1541-4337.70099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/08/2024] [Accepted: 12/11/2024] [Indexed: 02/04/2025]
Abstract
The lack of nutrient accumulation during the last trimester and the physiological immaturity at birth make nutrition for preterm infants a significant challenge. Lipids are essential for preterm infant growth, neurodevelopment, immune function, and intestinal health. However, the inclusion of novel lipids in preterm formulas has rarely been discussed. This study discusses specific lipid recommendations for preterm infants according to authoritative legislation based on their physiological characteristics. The gaps in lipid composition, such as fatty acids, triacylglycerols, and complex lipids, between preterm formulas and human milk have been summarized. The focus of this study is mainly on the vital roles of lipids in nutritional support, including long-chain polyunsaturated fatty acids, structural lipids, milk fat global membrane ingredients, and other minor components. These lipids have potential applications in preterm formulas for improving lipid absorption, regulating lipid metabolism, and protecting against intestinal inflammation. The lipidome and microbiome can be used to provide adequately powered evidence of the effects of lipids. This study proposes nutritional strategies for preterm infants and suggests approaches to enhance their lipid quality in preterm formula.
Collapse
Affiliation(s)
- Jiahui Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yandan Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wei Wei
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xingguo Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
3
|
Kupikowska-Stobba B, Niu H, Klojdová I, Agregán R, Lorenzo JM, Kasprzak M. Controlled lipid digestion in the development of functional and personalized foods for a tailored delivery of dietary fats. Food Chem 2025; 466:142151. [PMID: 39615348 DOI: 10.1016/j.foodchem.2024.142151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/04/2024] [Accepted: 11/17/2024] [Indexed: 12/14/2024]
Abstract
In recent decades, obesity and its associated health issues have risen dramatically. The COVID-19 pandemic has further exacerbated this trend, underscoring the pressing need for new strategies to manage weight. Functional foods designed to modulate lipid digestion and absorption rates and thereby reduce the assimilation of dietary fats have gained increasing attention in food science as a potentially safer alternative to weight-loss medications. This review provides insights into controlled lipid digestion and customized delivery of fats. The first section introduces basic concepts of lipid digestion and absorption in the human gastrointestinal tract. The second section discusses factors regulating lipid digestion and absorption rates, as well as strategies for modulating lipid assimilation from food. The third section focuses on applications of controlled lipid digestion in developing personalized foods designed for specific consumer groups, with particular emphasis on two target populations: overweight individuals and infants.
Collapse
Affiliation(s)
- Barbara Kupikowska-Stobba
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland.
| | - Hui Niu
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Iveta Klojdová
- DRIFT-FOOD, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 21 Prague, Czech Republic
| | - Ruben Agregán
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia N° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Jose Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia N° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, Ourense, Spain
| | - Mirosław Kasprzak
- Department of Animal Product Technology, Faculty of Food Technology, University of Agriculture, Balicka 122, 30-149 Kraków, Poland
| |
Collapse
|
4
|
Hossain MM, Tovar J, Cloetens L, de Kam S, Nilsson A. Oat polar lipids and sunflower lecithin similarly improve cardiometabolic risk markers and appetite controlling hormone responses after breakfast and a subsequent lunch. A randomized crossover study in healthy adults. Front Nutr 2024; 11:1497844. [PMID: 39568724 PMCID: PMC11576272 DOI: 10.3389/fnut.2024.1497844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 10/17/2024] [Indexed: 11/22/2024] Open
Abstract
Introduction The alarming global increase in lifestyle-related disorders such as obesity and type 2 diabetes mellitus (T2DM) has increased during the last several decades. Poor dietary choices significantly contribute to this increase and prevention measures are urgently needed. Dietary intake of bioactive compounds found in foods are linked to a decrease likelihood of these disorders. For this purpose, a randomized crossover meal study was performed to compare the postprandial metabolic effects of lecithin and oat polar lipids in healthy subjects. Materials and methods Eighteen young healthy subjects ingested test meals enriched with lecithin, oat polar lipids (PLs) or rapeseed oil. There were four test meals (i) 15 g oat polar lipids: OPL, (ii) 18 g sunflower lecithin (of which 15 g were polar lipids): LPL, (iii) 18 g rapeseed oil: RSO, and (iv) reference white wheat bread: WWB. Lipid-enriched test meals contained equivalent amounts of total fat (18 g), and all breakfast meals contained 50 g available carbohydrates. The meals were served as breakfast followed by a standardised lunch (white wheat bread and meat balls) after 3.5 h. Test variables were measured at fasting and repeatedly during 5.5 h after ingestion of the breakfast. Results Our study demonstrated that both LPL and OPL had beneficial effects on postprandial glucose and insulin responses, and appetite regulating gut hormones, as compared to RSO and WWB. Significant increase in GLP-1, GIP, and PYY concentrations were seen after consuming breakfast meals with LPL and OPL, and ghrelin concentration was reduced compared to meals with RSO and WWB (p < 0.05). Furthermore, triglycerides (TG) concentration was significantly reduced after OPL compared to RSO (p < 0.05). Our data show that there were no significant variations in glycaemic and insulin responses, TG, and gut hormone concentrations between LPL and OPL during breakfast (0-210 min) or over the whole study period (0-330 min). Conclusion Our study revealed that the consumption of both lecithin and oat PLs included in breakfast meal may similarly enhance postprandial glucose tolerance, reduce TG, and enhance the secretion of incretins and appetite regulating hormones in healthy young adults. Clinical trial registration ClinicalTrials.gov, identifier NCT05139355.
Collapse
Affiliation(s)
| | | | | | - Soraya de Kam
- Division of Food and Pharma, Lund University, Lund, Sweden
| | - Anne Nilsson
- Division of Food and Pharma, Lund University, Lund, Sweden
| |
Collapse
|
5
|
Thomassen G, Abrahamse E, Mischke M, Becker M, Bartke N, Knol J, Renes I. In vitro gastrointestinal lipid handling and bioaccessibility rate of infant formula with large phospholipid-coated lipid droplets are different from those of standard formula and closer to human milk. Food Hydrocoll 2024; 156:110336. [DOI: 10.1016/j.foodhyd.2024.110336] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
6
|
Zhang L, Hu Y, Jiang L. Advancements in emulsion systems for specialized infant formulas: Research process and formulation proposals for optimizing bioavailability of nutraceuticals. Compr Rev Food Sci Food Saf 2024; 23:e70043. [PMID: 39455164 DOI: 10.1111/1541-4337.70043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/13/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024]
Abstract
With the rapid advancements in nutrition and dietary management, infant formulas for special medical purposes (IFSMPs) have been developed to cater to the unique nutraceutical requirements of infants with specific medical conditions or physiological features. However, there are various challenges in effectively preserving and maximizing the health benefits of the specific nutraceuticals incorporated in IFSMPs. This review provides an overview of the nutritional compositions of various IFSMPs and highlights the challenges associated with the effective supplementation of specific nutraceuticals for infants. In addition, it emphasizes the promising potential of emulsion delivery systems, which possess both encapsulation and delivery features, to significantly improve the solubility, stability, oral acceptance, and bioavailability (BA) of nutraceutical bioactives. Based on this information, this work proposes detailed strategies for designing and developing model IFSMP emulsions to enhance the BA of specially required nutraceuticals. Key areas covered include emulsion stabilization, selective release mechanisms, and effective absorption of nutraceuticals. By following these proposals, researchers and industry professionals can design and optimize emulsion-based IFSMPs with enhanced health benefits. This review not only outlines the developmental states of IFSMP formulations but also identifies future research directions aimed at improving the physiological health benefits of IFSMPs. This effort lays the theoretical groundwork for the further development of emulsion-type IFSMP in infant formula (IF) industry, positioning the IF industry to better meet the complex needs of infants requiring specialized nutrition.
Collapse
Affiliation(s)
- Liling Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, Jiangsu, China
| | - Yang Hu
- Department of Scientific and Technological Innovation, Future Food (Bai Ma) Research Institute, Nanjing, Jiangsu, China
- Division of Microbiology, Brewing and Biotechnology, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Ling Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, Jiangsu, China
| |
Collapse
|
7
|
Zhang Y, Dong J, Wang F, Li Q, Fan Y, Zhao X, Hao L, Hou H. Stability of oil-in-water emulsion and immunomodulating activity in S180 tumor-bearing mice. J Food Sci 2024; 89:5884-5899. [PMID: 39150694 DOI: 10.1111/1750-3841.17237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/12/2024] [Accepted: 06/20/2024] [Indexed: 08/17/2024]
Abstract
The stability and nutritional integrity of emulsions are susceptible to various factors including thermal treatment, solid-liquid ratio, and sterilization. In this study, the physicochemical stability and immunomodulatory activities of an oil-in-water emulsion containing immune peptides (TUFSE) were assessed through particle size, zeta potential, related cytokines, and so on. When the temperature was 70°C and a solid-liquid ratio of 1:4, the emulsion revealed stability at high-pressure homogenization, with the small particle size. The loss rates of vitamins were 8.57%-62.26% in 6 months at 25°C. After treatment with cyclophosphamide (CTX), lymphocyte proliferation activity in TUFSE-H group increased (p < 0.05), and immune globulin levels were notably elevated (p < 0.05) in TUFSE groups compared to model group. It confirms the parameters of the emulsion, suggesting its ability to be prepared with minimal vitamin loss while simultaneously improving the disease status in CTX-treated tumor-bearing mice. It shows potential as an immune-enhancing supplement with significant potential value. PRACTICAL APPLICATION: This study validated the parameters of the oil-in-water emulsion and showed that it can be stably prepared with minor vitamin loss while simultaneously improving the disease status in CTX-treated tumor-bearing mice. TUFSE-H group exhibited a notable increase in lymphocytes proliferation activity, whereas serum cytokines and immune globulin levels were elevated compared to MC group, indicating its potential as an immune-enhancing supplement with substantial value.
Collapse
Affiliation(s)
- Yanying Zhang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, P. R. China
| | - Jingning Dong
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, P. R. China
| | - FeiFei Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, P. R. China
| | - Qiqi Li
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, P. R. China
| | - Yan Fan
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, P. R. China
| | - Xue Zhao
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, P. R. China
| | - Li Hao
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, P. R. China
| | - Hu Hou
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, Shandong, China
- Sanya Oceanographic Institution, Ocean University of China, Sanya, Hainan, China
- Qingdao Institute of Marine Bioresources for Nutrition & Health Innovation, Qingdao, Shandong, China
| |
Collapse
|
8
|
Pan Y, Liu Y, Zhao J, Cui L, Li X, Liu L, Kouame KJEP, Wang Z, Tan X, Jiang Y, Gao C. Simulated in vitro infant digestion and lipidomic analysis to explore how the milk fat globule membrane modulates fat digestion. Food Chem 2024; 447:139008. [PMID: 38513488 DOI: 10.1016/j.foodchem.2024.139008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/04/2024] [Accepted: 03/09/2024] [Indexed: 03/23/2024]
Abstract
We hypothesized that the addition of milk fat globule membranes (MFGMs) to infant formula would improve its lipolysis, making it more similar to human milk (HM) and superior to commercial infant formula (CIF) in fat digestion. Therefore, we prepared two model infant formulas (MIFs) by adding MFGMs to dairy ingredients in different ways and compared their fat digestion behavior with those of HM and CIF. MFGMs were added alone (MIF1) and with other milk-based materials (MIF2) before homogenization. The addition of MFGMs reduced the flocculation of lipids and proteins in the gastric phase and promoted lipolysis in the intestine phase. The amount of free fatty acids released followed the order of HM > MIF1 > CIF ≥ MIF2. After digestion, the number of different glyceride species between each sample and HM reached 64 (MIF1), 73 (MIF2), 67 (CIF1), and 72 (CIF2). In conclusion, the fat digestion of MIF1 had the highest similarity with HM.
Collapse
Affiliation(s)
- Yue Pan
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
| | - Yibo Liu
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
| | - Jiayi Zhao
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
| | - Liqin Cui
- Heilongjiang Beingmate Dairy Co., Ltd., 151400 Suihua, China
| | - Xiaodong Li
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China.
| | - Lu Liu
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China.
| | - Kouadio Jean Eric-Parfait Kouame
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
| | - Zhong Wang
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
| | - Xin Tan
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
| | - Yanxi Jiang
- Beingmate Group Co., Ltd., 311113 Hangzhou, China
| | - Chao Gao
- Heilongjiang Beingmate Dairy Co., Ltd., 151400 Suihua, China
| |
Collapse
|
9
|
Yuan Y, Zhao J, Liu Q, Liu Y, Liu Y, Tian X, Qiao W, Zhao Y, Liu Y, Chen L. Human milk sphingomyelin: Function, metabolism, composition and mimicking. Food Chem 2024; 447:138991. [PMID: 38520905 DOI: 10.1016/j.foodchem.2024.138991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/28/2024] [Accepted: 03/08/2024] [Indexed: 03/25/2024]
Abstract
Human milk, which contains various nutrients, is the "gold standard" for infant nutrition. Healthy human milk meets all the nutritional needs of early infant development. Polar lipids mainly exist in the milk fat globule membrane, accounting for approximately 1-2% of human milk lipids; sphingomyelin (SM) accounts for approximately 21-24% of polar lipids. SM plays an important role in promoting the development of the brain and nervous system, regulating intestinal flora, and improving skin barriers. Though SM could be synthesized de novo, SM nutrition from dietary is also important for infants. The content and composition of SM in human milk has been reported, however, the molecular mechanisms of nutritional functions of SM for infants required further research. This review summarizes the functional mechanisms, metabolic pathways, and compositional, influencing factors, and mimicking of SM in human milk, and highlights the challenges of improving maternal and infant early/long-term nutrition.
Collapse
Affiliation(s)
- Yuying Yuan
- Key Laboratory of Dairy Science, Ministry of Education, Food Science College, Northeast Agricultural University, Harbin 150030, China; National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Junying Zhao
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Qian Liu
- Key Laboratory of Dairy Science, Ministry of Education, Food Science College, Northeast Agricultural University, Harbin 150030, China; National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Yan Liu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Yan Liu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Xiaoyan Tian
- Key Laboratory of Dairy Science, Ministry of Education, Food Science College, Northeast Agricultural University, Harbin 150030, China; National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Weicang Qiao
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Yanyan Zhao
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, China
| | - Yanpin Liu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Lijun Chen
- Key Laboratory of Dairy Science, Ministry of Education, Food Science College, Northeast Agricultural University, Harbin 150030, China; National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China.
| |
Collapse
|
10
|
Ma MY, Wu FY, Xu YP, Mu GQ, Qian F, Zhu XM. Study on the interaction mechanism of whey protein isolate with phosphatidylcholine: By multispectral methods and molecular docking. J Food Sci 2024; 89:4109-4122. [PMID: 38957103 DOI: 10.1111/1750-3841.17175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/17/2024] [Accepted: 05/30/2024] [Indexed: 07/04/2024]
Abstract
The elucidation of the interaction mechanism between phospholipids and milk proteins within emulsions is pivotal for comprehending the properties of infant formula fat globules. In this study, multispectral methods and molecular docking were employed to explore the relationship between phosphatidylcholine (PC) and whey protein isolate (WPI). Observations indicate that the binding constant, alongside thermodynamic parameters, diminishes as temperature ascends, hinting at a predominantly static quenching mechanism. Predominantly, van der Waals forces and hydrogen bonds constitute the core interactions between WPI and PC. This assertion is further substantiated by Fourier transform infrared spectroscopy, which verifies PC's influence on WPI's secondary structure. A detailed assessment of thermodynamic parameters coupled with molecular docking reveals that PC predominantly adheres to specific sites within α-lactalbumin, β-lactoglobulin, and bovine serum albumin, propelled by a synergy of hydrophobic interactions, hydrogen bonding, and van der Waals forces, with binding energies noted at -5.59, -6.71, and -7.85 kcal/mol, respectively. An increment in PC concentration is observed to amplify the emulsification properties of WPI whilst concurrently diminishing the zeta potential. This study establishes a theoretical foundation for applying the PC-WPI interaction mechanism in food.
Collapse
Affiliation(s)
- Ming-Yang Ma
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| | - Fei-Yang Wu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| | - Yun-Peng Xu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| | - Guang-Qing Mu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| | - Fang Qian
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| | - Xue-Mei Zhu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| |
Collapse
|
11
|
Wang Y, Liu Q, Liu Y, Qiao W, Zhao J, Cao H, Liu Y, Chen L. Advances in the composition, efficacy, and mimicking of human milk phospholipids. Food Funct 2024; 15:6254-6273. [PMID: 38787648 DOI: 10.1039/d4fo00539b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Phospholipids are the essential components of human milk, contributing to the enhancement of cognitive development, regulation of immune functions, and mitigation of elevated cholesterol levels. Infant formulas supplemented with phospholipids can change the composition, content, and globule membrane structure of milk lipids, improving their digestive properties and nutritional value. However, mimicking phospholipids in infant formulas is currently limited, and the supplemented standards of phospholipid species and amounts in infant formulas are unknown. Consequently, there is a significant difference between the phospholipids in infant formulas and those in human milk. This article reviews the recent progress in human milk phospholipid research, aiming to describe the composition, content, and positive effects of human milk phospholipids, as well as summarises the dietary sources of phospholipid supplementation and the current state of human milk phospholipid mimicking in infant formulas. This review provides clear directions for research on mimicking human milk phospholipids and evaluating the nutritional functions of phospholipids in infants.
Collapse
Affiliation(s)
- Yuru Wang
- Key Laboratory of Dairy Science, Ministry of Education, Food Science College, Northeast Agricultural University, Harbin, 150030, China.
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd, Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd, Beijing 100163, China
| | - Qian Liu
- Key Laboratory of Dairy Science, Ministry of Education, Food Science College, Northeast Agricultural University, Harbin, 150030, China.
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd, Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd, Beijing 100163, China
| | - Yan Liu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd, Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd, Beijing 100163, China
| | - Weicang Qiao
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd, Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd, Beijing 100163, China
| | - Junying Zhao
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd, Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd, Beijing 100163, China
| | - Huiru Cao
- Key Laboratory of Dairy Science, Ministry of Education, Food Science College, Northeast Agricultural University, Harbin, 150030, China.
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd, Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd, Beijing 100163, China
| | - Yan Liu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd, Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd, Beijing 100163, China
| | - Lijun Chen
- Key Laboratory of Dairy Science, Ministry of Education, Food Science College, Northeast Agricultural University, Harbin, 150030, China.
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd, Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd, Beijing 100163, China
- Beijing Sanyuan Foods Co. Ltd., No. 8, Yingchang Street 100076, Yinghai Town, Daxing District, Beijing, China.
| |
Collapse
|
12
|
Pan Y, Liu S, Zhang X, Li X, Liu L, Hao D, Cui L, Ma C, Dang X, Xu Y, Wang Y. Influence of pasteurization and spray drying on the fat digestion behavior of human milk fat analog emulsion: a simulated in vitro infant digestion study. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:4331-4341. [PMID: 38299439 DOI: 10.1002/jsfa.13319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/19/2023] [Accepted: 01/18/2024] [Indexed: 02/02/2024]
Abstract
BACKGROUND Human milk fat analog emulsion (HMFAE) is an emulsion that mimics the composition and structure of human milk (HM) fat globules. The application of HMFAE in infant formula requires a series of milk powder processing steps, such as pasteurization and spray drying. However, the effect of milk powder processing on fat digestion of HMFAE is still unclear. In this study, the influence of pasteurization and spray drying on the lipolysis behavior of HMFAE was studied and compared with HM using a simulated infant in vitro digestion model. RESULTS Pasteurization and spray drying increased the flocculation and aggregation of lipid droplets in HMFAE during digestion. Spray drying destroyed the lipid droplet structure of HMFAE, and partial milk fat globule membrane-covered lipid droplets turned into protein-covered lipid droplets, which aggravated lipid-protein aggregation during gastric digestion and hindered fat digestion in the small intestine. The final lipolysis degree was in the order HM (64.55%) > HMFAE (63.41%) > pasteurized HMFAE (61.75%) > spray-dried HMFAE (60.57%). After complete gastrointestinal digestion, there were no significant differences in free fatty acid and sn-2 monoacylglycerol profile among the HMFAE, pasteurized HMFAE, and spray-dried HMFAE. CONCLUSION Milk powder processing can reduce lipolysis by altering the lipid droplet structure of HMFAE and the degree of lipid droplet aggregation during digestion. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yue Pan
- Food College, Northeast Agricultural University, Harbin, China
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Shuming Liu
- Heilongjiang Beingmate Dairy Co., Ltd, Suihua, China
| | - Xueying Zhang
- Food College, Northeast Agricultural University, Harbin, China
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Xiaodong Li
- Food College, Northeast Agricultural University, Harbin, China
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Lu Liu
- Food College, Northeast Agricultural University, Harbin, China
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Donghai Hao
- Heilongjiang Beingmate Dairy Co., Ltd, Suihua, China
| | - Liqin Cui
- Heilongjiang Beingmate Dairy Co., Ltd, Suihua, China
| | - Chunli Ma
- Food College, Northeast Agricultural University, Harbin, China
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Xiaoqing Dang
- Food College, Northeast Agricultural University, Harbin, China
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Yanling Xu
- Food College, Northeast Agricultural University, Harbin, China
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Yongshun Wang
- Food College, Northeast Agricultural University, Harbin, China
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| |
Collapse
|
13
|
Ren Y, Jia F, Li D. Ingredients, structure and reconstitution properties of instant powder foods and the potential for healthy product development: a comprehensive review. Food Funct 2024; 15:37-61. [PMID: 38059502 DOI: 10.1039/d3fo04216b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Instant foods are widely presented in powder forms across different food segments, which potentially can be formulated with functional or beneficial compounds to provide health benefits. Many reconstituted instant powder foods form colloidal suspensions with complex structures. However, designing instant powder food could be challenging due to the structural complexity and high flexibility in formulation. This review proposed a new classification method for instant powder foods according to the solubility of ingredients and the structure of the reconstituted products. Instant powder foods containing insoluble ingredients are discussed. It summarised challenges and current advances in powder treatments, reconstitution improvement, and influences on food texture and structure to facilitate product design in related industries. The characteristics and incorporation of the main ingredients and ingredients with health benefits in product development were reviewed. Different products vary significantly in the ratios of macronutrients. The macronutrients have limited solubility in water. After being reconstituted by water, the insoluble components are dispersed and swell to form colloidal dispersions with complex structures and textures. Soluble components, which dissolve in the continuous phase, may facilitate the dispersing process or influence the solution environment. The structure of reconstituted products and destabilising factors are discussed. Both particle and molecular structuring strategies have been developed to improve wettability and prevent the formation of lumps and, therefore, to improve reconstitution properties. Various types of instant food have been developed based on healthy or functional ingredients and exhibit positive effects on the prevention of non-communicable diseases and overall health. Less processed materials and by-products are often chosen to enhance the contents of dietary fibre and phenolic compounds. The enrichment of phenolic compounds, dietary fibres and/or probiotics tend to be simultaneous in plant-based products. The process of the ingredients and the formulation of products must be tailored to design the desired structure and to improve the reconstitution property.
Collapse
Affiliation(s)
- Yi Ren
- School of Public Health and Institute of Nutrition & Health, Qingdao University, Qingdao 266021, China.
- Ningbo Yu Fang Tang Biological Science and Technology Co., Ltd, Ningbo 315012, China
| | - Fuhuai Jia
- Ningbo Yu Fang Tang Biological Science and Technology Co., Ltd, Ningbo 315012, China
| | - Duo Li
- School of Public Health and Institute of Nutrition & Health, Qingdao University, Qingdao 266021, China.
| |
Collapse
|
14
|
Ding J, Huang L, Yang J, Qi L, Zhu C, Lin S. Dual Action of Reduced Allergenicity and Improved Memory of Instant Soybean Powder Hydrolysates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18815-18828. [PMID: 37991338 DOI: 10.1021/acs.jafc.3c06490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Soy allergens are susceptible to inducing allergic reactions in infants and young animals, which have an impact on the effective daily utilization of proteins. In this study, we used Alcalase-hydrolyzed instant soybean powder (ISP) to clarify the sensitization changes of instant soybean powder hydrolysates (ISPH), and we explored the assisted memory-enhancing effects. BALB/c mice in the ISPH group showed significant improvement in the allergy symptoms, with their allergy symptom scores decreasing to (1.57 ± 0.53) and their specific serum IgE and IgG1 binding capacity decreasing by 28.00 and 25.73% (P < 0.05), which suppressed the mast cell degranulation rate. Meanwhile, the plasma HIS and IL-4 levels decreased by 12.59 and 25.32%, and the plasma INF-γ and IL- 10 levels increased by 30.64 and 27.79%, which obviously regulated the imbalance of Th1/Th2 cells and attenuated the tissue damage (P < 0.05). Furthermore, ISPH improved behavioral characteristics, increased cholinergic system activity, reduced neuronal cell damage or apoptosis, and increased the number of Nissl bodies to help improve memory in Kunming mice (P < 0.05). In general, alcalase-hydrolyzed ISP had the dual effects of reducing allergenicity and aiding in memory improvement.
Collapse
Affiliation(s)
- Jie Ding
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- Engineering Research Center of Special Dietary Food, The Education Department of Liaoning Province, Dalian 116034, P. R. China
| | - Luyue Huang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- Engineering Research Center of Food, The Education Department of Liaoning Province, Dalian 116034, P. R. China
| | - Jingqi Yang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- Ganzhou Quanbiao Biological Technology Co. Ltd., Ganzhou 341100, P. R. China
| | - Libo Qi
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Chunyan Zhu
- Ganzhou Quanbiao Biological Technology Co. Ltd., Ganzhou 341100, P. R. China
| | - Songyi Lin
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- Engineering Research Center of Special Dietary Food, The Education Department of Liaoning Province, Dalian 116034, P. R. China
- Engineering Research Center of Food, The Education Department of Liaoning Province, Dalian 116034, P. R. China
- Ganzhou Quanbiao Biological Technology Co. Ltd., Ganzhou 341100, P. R. China
| |
Collapse
|
15
|
Sun Y, Liu S, Ma S, Sun L, Li X, Liu L, Ma C, Fanny MBA, Jiao Y, Bi L. Interfacial compositions of fat globules modulate structural characteristics and lipolysis of its model emulsions during in-vitro digestion. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4668-4675. [PMID: 36997692 DOI: 10.1002/jsfa.12591] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 03/03/2023] [Accepted: 03/30/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND This study investigated whether milk fat globule membrane as an emulsifier could make fat easier for infants to digest. An emulsion was formed using the membrane material, where anhydrous milk fat was used as the core material, milk fat globule membrane polar lipid (MPL) as the emulsifier, and soybean phospholipid (PL) and milk protein concentrate (MPC) incorporated as control emulsifiers. Structural characterization, glyceride composition, and fatty acid release from emulsions by in vitro digestion were investigated. RESULTS The average particle size at the end of intestinal digestion was in the order MPL < PL < MPC, with diameters of 3.41 ± 0.51 μm, 3.53 ± 0.47 μm, and 10.46 ± 2.33 μm respectively. Meanwhile, laser scanning confocal microscopy results also illustrated that MPL could reduce the degree of aggregation during digestion. The lipolysis degree of MPL emulsion was higher than that of PL and MPC emulsions. MPL not only released higher levels of long-chain fatty acids, such as C18:1, C18:2, C18:3, which are of great significance for infant growth and development, but also released increased levels of C20:4 (arachidonic acid) and C22:6 (docosahexaenoic acid) than PL and MPC emulsions did. CONCLUSION Fat droplets enveloped by milk fat globule MPLs were easier to digest and are therefore more suitable for infant formula. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yue Sun
- Food College, Northeast Agricultural University, Harbin, China
| | - Shuming Liu
- Heilongjiang Beingmate Dairy Co., Ltd, Suihua, China
| | - Shuaiyi Ma
- Food College, Northeast Agricultural University, Harbin, China
- National Center of Technology Innovation for Dairy, Hohhot, China
| | - Lina Sun
- Food College, Northeast Agricultural University, Harbin, China
| | - Xiaodong Li
- Food College, Northeast Agricultural University, Harbin, China
| | - Lu Liu
- Food College, Northeast Agricultural University, Harbin, China
| | - Chunli Ma
- Food College, Northeast Agricultural University, Harbin, China
| | | | - Yang Jiao
- Food College, Northeast Agricultural University, Harbin, China
| | - Lianji Bi
- Food College, Northeast Agricultural University, Harbin, China
| |
Collapse
|
16
|
Wei T, Wu Y, Sun Y, Deng Z, Li J. Human milk phospholipid analog improved the digestion and absorption of 1,3-dioleoyl-2-palmitoyl-glycerol. Food Funct 2023. [PMID: 37326107 DOI: 10.1039/d2fo03759a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The present study investigated the effects of a human milk phospholipid analog (HPLA) on the digestion and absorption of 1,3-dioleoyl-2-palmitoyl-glycerol (OPO). The HPLA contained 26.48% phosphatidylethanolamine (PE), 24.64% phosphatidylcholine (PC), 36.19% sphingomyelin (SM), 6.35% phosphatidylinositol (PI), and 6.32% phosphatidylserine (PS), with 40.51% C16:0, 17.02% C18:0, 29.19% C18:1, and 13.26% C18:2. The HPLA prevented OPO from hydrolysis during the in vitro gastric phase, while it facilitated the digestion of OPO during the in vitro intestinal stage, resulting in the production of large amounts of diglycerides (DAGs) and monoglycerides (MAGs). In vivo experimental results showed that the HPLA might increase the gastric emptying rate of OPO and increase the hydrolysis and absorption of OPO at an early stage of intestinal digestion. Notably, fatty acids in the serum of the OPO group decreased to their initial value at 5 h, while the serum of the OPO + HPLA (OPOH) group still contained a high level of fatty acids indicating that the HPLA was helpful in maintaining serum lipid at a high level, which might be beneficial for sustainably providing energy for babies. The present study provides data support for the potential application of Chinese human milk phospholipid analogs in infant formulas.
Collapse
Affiliation(s)
- Teng Wei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China.
| | - Yanping Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China.
| | - Yong Sun
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China.
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China.
| | - Jing Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China.
| |
Collapse
|
17
|
Yu X, Zhou W, Jia Z, Liu L, Li X, Zhang X, Cheng J, Ma C, Sun L, Jiao Y. Interfacial composition in infant formulas powder modulate lipid digestion in simulated in-vitro infant gastrointestinal digestion. Food Res Int 2023; 165:112553. [PMID: 36869459 DOI: 10.1016/j.foodres.2023.112553] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/19/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023]
Abstract
The interface structure and composition of fat globules are very important for the digestion and metabolism of fat and growth in infants. Interface composition of fat globules in infant formula (IF) supplemented with milk fat globule membranes (MFGM) and lecithin in different ways were analyzed and their effects on fat digestion properties were evaluated. The results showed that the distribution of phospholipids at the interface and structural of Concept IF1 and Concept IF2 that were more similar to those of human milk (HM) than that of conventionally processed IF3. Concept IF2 and IF3 supplemented with lecithin had larger initial particle size and more sphingomyelin (SM) (23.12 ± 0.26 %, 26.94 ± 0.34 %) than Concept IF1, and Concept IF2 had the smallest proportion of casein in the interfacial. Due to its interface composition, Concept IF2 had the highest degree of lipolysis (85.07 ± 0.76 %), the phospholipid ring structure can always be observed during gastric digestion, and a final fatty acid composition released that was more similar to HM. Concept IF1 and IF3 were different from HM and Concept IF2 in terms of structure and lipolysis rate, although superior to commercial IF4. These indicate that changes in the interfacial composition and structure of fat globules improve the digestive properties of fats in IF. Overall, the results reported herein are useful in designing new milk formulas that better simulate HM.
Collapse
Affiliation(s)
- Xiaoxue Yu
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
| | - Wenli Zhou
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
| | - Zhibing Jia
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
| | - Lu Liu
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
| | - Xiaodong Li
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China.
| | - Xiuxiu Zhang
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China.
| | - Jinju Cheng
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
| | - Chunli Ma
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
| | - Lina Sun
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
| | - Yang Jiao
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
| |
Collapse
|
18
|
Zhao Q, Wang Z, Yu Z, Gao Z, Mu G, Wu X. Influence on physical properties and digestive characters of fermented coconut milk with different loading proportion of skimmed coconut drink using Lactiplantibacillus plantarum MWLp-4 from human milk mixing with commercial bacteria. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
19
|
Liu Y, Liu L, Liu S, Sun M, Jiao Y, Chai J, Bi L, Fanny Massounga Bora A, Li X, Zhang X, Liu B, Cheng J, Ma C, Li J. The influence of MPL addition on structure, interfacial compositions and physicochemical properties on infant formula fat globules. Food Res Int 2023; 168:112769. [PMID: 37120219 DOI: 10.1016/j.foodres.2023.112769] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]
Abstract
The lack of milk fat globule membrane phospholipids (MPL) at the interface of infant formula fat globules has an impact on the stability of fat globules, compared to human milk. Therefore, infant formula powders with different MPL contents (0%, 10%, 20%, 40%, 80%, w/w of MPL/whey protein mixture) were prepared, and the effect of interfacial compositions on the stability of globules was investigated. With increasing MPL amount, the particle size distribution had two peaks and returned to a uniform state when 80% MPL was added. At this composition, the MPL at the oil-water interface formed a continuous thin layer. Moreover, the addition of MPL improved the electronegativity and the emulsion stability. In terms of the rheological properties, increasing the concentration of MPL improved the elastic properties of the emulsion and the physical stability of the fat globules, while reducing the aggregation and agglomeration between fat globules. However, the potential for oxidation increased. Based on these results, the interfacial properties and stability on infant formula fat globules was significantly influenced by the level of MPL, which should be considered in the design of infant milk powders.
Collapse
Affiliation(s)
- Yibo Liu
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
| | - Lu Liu
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
| | - Shuming Liu
- Heilongjiang Beingmate Dairy Co., Ltd., 151400 Suihua, China
| | - Meng Sun
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
| | - Yang Jiao
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
| | - Jing Chai
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
| | - Lianji Bi
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
| | - Awa Fanny Massounga Bora
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
| | - Xiaodong Li
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China.
| | - Xiuxiu Zhang
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China.
| | - Bincheng Liu
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
| | - Jinju Cheng
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
| | - Chunli Ma
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
| | - Jiajun Li
- Heilongjiang Yaolan Dairy Technology Stock Company Ltd, 150010, Harbin, China
| |
Collapse
|
20
|
Kansakar U, Trimarco V, Mone P, Varzideh F, Lombardi A, Santulli G. Choline supplements: An update. Front Endocrinol (Lausanne) 2023; 14:1148166. [PMID: 36950691 PMCID: PMC10025538 DOI: 10.3389/fendo.2023.1148166] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/07/2023] [Indexed: 03/08/2023] Open
Abstract
In this comprehensive review, we examine the main preclinical and clinical investigations assessing the effects of different forms of choline supplementation currently available, including choline alfoscerate (C8H20NO6P), also known as alpha-glycerophosphocholine (α-GPC, or GPC), choline bitartrate, lecithin, and citicoline, which are cholinergic compounds and precursors of acetylcholine. Extensively used as food supplements, they have been shown to represent an effective strategy for boosting memory and enhancing cognitive function.
Collapse
Affiliation(s)
- Urna Kansakar
- Department of Medicine, Division of Cardiology, Einstein Institute for Aging Research, Montefiore Health System, New York, NY, United States
| | | | - Pasquale Mone
- Department of Medicine, Division of Cardiology, Einstein Institute for Aging Research, Montefiore Health System, New York, NY, United States
- ASL Avellino, Montefiore Health System, New York, NY, United States
| | - Fahimeh Varzideh
- Department of Medicine, Division of Cardiology, Einstein Institute for Aging Research, Montefiore Health System, New York, NY, United States
| | - Angela Lombardi
- Department of Microbiology and Immunology, Montefiore Health System, New York, NY, United States
- *Correspondence: Angela Lombardi,
| | - Gaetano Santulli
- Department of Medicine, Division of Cardiology, Einstein Institute for Aging Research, Montefiore Health System, New York, NY, United States
- University of Naples “Federico II”, Naples, Italy
- Department of Molecular Pharmacology, Einstein-Sinai Diabetes Research Center (ES-DRC), Montefiore Health System, New York, NY, United States
| |
Collapse
|
21
|
Ahn N, Imm JY. Effect of phospholipid matrix on emulsion stability, microstructure, proteolysis, and in vitro digestibility in model infant formula emulsion. Food Res Int 2023; 163:112218. [PMID: 36596147 DOI: 10.1016/j.foodres.2022.112218] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/15/2022] [Accepted: 11/20/2022] [Indexed: 11/25/2022]
Abstract
The effects of adding different phospholipid (PL) matrices [milk sphingomyelin (SM) vs soy phosphatidylcholine (PC)] on emulsion stability, microstructure, and in vitro simulated lipid digestion were examined using a Model Infant Formula Emulsion (MIFE). The emulsion stability of MIFE increased significantly with PL addition (0.1 and 0.2 %). Compared to sole MIFE or MIFE + PC, the incorporation of SM resulted in increased emulsion stability (p < 0.05) and a greater amount of free fatty acid release (p < 0.05) during in vitro simulated digestion. This was mainly due to the reduction of intensive droplet aggregation, thus providing a large surface area and improved digestibility. This is further experimentally supported by the evolution of particle size distribution, zeta-potential, and microstructure analysis using confocal laser scanning microscopy. The incorporation of SM in the emulsion formation significantly delayed digestion of β-lactoglobulin during in vitro digestion. Lipid digestibility in MIFE was altered depending on the type of PL matrix, and SM displayed a superior effect to PC. Thus, the creation of a novel emulsion interface by the appropriate selection of emulsifiers can be used to improve lipid digestion in infants and obtain desirable nutritional consequences.
Collapse
Affiliation(s)
- Nahyun Ahn
- Department of Interdisciplinary Program for Bio-health Convergence, Kookmin University, Seoul 02707, Republic of Korea.
| | - Jee-Young Imm
- Department of Interdisciplinary Program for Bio-health Convergence, Kookmin University, Seoul 02707, Republic of Korea; Department of Foods and Nutrition, Kookmin University, Seoul 02707, Republic of Korea.
| |
Collapse
|
22
|
Kim YJ, Lee IY, Kim TE, Lee JH, Chun YG, Kim BK, Lee MH. Cholecalciferol- and α-tocopherol-loaded walnut oil emulsions stabilized by whey protein isolate and soy lecithin for food applications. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5738-5749. [PMID: 35396740 DOI: 10.1002/jsfa.11923] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/19/2022] [Accepted: 04/09/2022] [Indexed: 05/23/2023]
Abstract
BACKGROUND To overcome the limitations in the use of protein as an emulsifier, soy lecithin, a natural surfactant, was used along with whey protein isolate (WPI) to produce o/w emulsions containing cholecalciferol and α-tocopherol. The physical stability of the emulsions prepared with WPI and varying concentrations of lecithin (0, 1, 2, and 3% w/w) was measured in different heat, pH, and ionic-strength food environmental conditions. RESULTS All emulsions were shown to be less than 250 nm in size and less than 0.3 in polydispersity index (PDI). The morphology of the emulsions was spherical, and the droplets of the emulsion containing lecithin were thicker and larger than those of the emulsion without lecithin (WPI_L0). After autoclaving, WPI_L0 increased in size from 197.8 ± 1.7 nm to 528.5 ± 28.4 nm, and the retention of cholecalciferol and α-tocopherol decreased to 40.83 ± 0.63% and 49.68 ± 1.84%, respectively. At pH 5.5, near the isoelectric point of WPI, WPI_L0 increased in size due to aggregation, but emulsions containing lecithin remained stable at a PDI under 0.3. Turbiscan stability index of the emulsion prepared with WPI and 3% lecithin was the lowest, indicating good storage stability. In addition, it was confirmed that the higher the lecithin content, the higher the viscosity, and the higher the amount of free fatty acids released in the in vitro digestion model. CONCLUSION This study can provide theoretical evidence for enhancing the physical stability of protein emulsions by co-stabilization with lecithin, promoting their application in various foods. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yun Jeong Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju, Republic of Korea
- Department of Food Biotechnology, University of Science and Technology, Daejeon, Republic of Korea
| | - In Young Lee
- Food Convergence Infrastructure Team, Korea Food Research Institute, Wanju, Republic of Korea
| | - Tae-Eun Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju, Republic of Korea
| | - Jae Hoon Lee
- Research Group of Food Processing, Korea Food Research Institute, Wanju, Republic of Korea
| | - Yong Gi Chun
- Research Group of Food Processing, Korea Food Research Institute, Wanju, Republic of Korea
| | - Bum-Keun Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju, Republic of Korea
- Department of Food Biotechnology, University of Science and Technology, Daejeon, Republic of Korea
| | - Min Hyeock Lee
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin, Republic of Korea
| |
Collapse
|
23
|
Yu X, Zhao Y, Sun M, Liu L, Li X, Zhang X, Sun Y, Bora AFM, Li C, Leng Y, Jiang S. Effects of egg yolk lecithin/milk fat globule membrane material ratio on the structure and stability of oil-in-water emulsions. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
24
|
Jie Y, Chen F. Progress in the Application of Food-Grade Emulsions. Foods 2022; 11:2883. [PMID: 36141011 PMCID: PMC9498284 DOI: 10.3390/foods11182883] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
The detailed investigation of food-grade emulsions, which possess considerable structural and functional advantages, remains ongoing to enhance our understanding of these dispersion systems and to expand their application scope. This work reviews the applications of food-grade emulsions on the dispersed phase, interface structure, and macroscopic scales; further, it discusses the corresponding factors of influence, the selection and design of food dispersion systems, and the expansion of their application scope. Specifically, applications on the dispersed-phase scale mainly include delivery by soft matter carriers and auxiliary extraction/separation, while applications on the scale of the interface structure involve biphasic systems for enzymatic catalysis and systems that can influence substance digestion/absorption, washing, and disinfection. Future research on these scales should therefore focus on surface-active substances, real interface structure compositions, and the design of interface layers with antioxidant properties. By contrast, applications on the macroscopic scale mainly include the design of soft materials for structured food, in addition to various material applications and other emerging uses. In this case, future research should focus on the interactions between emulsion systems and food ingredients, the effects of food process engineering, safety, nutrition, and metabolism. Considering the ongoing research in this field, we believe that this review will be useful for researchers aiming to explore the applications of food-grade emulsions.
Collapse
Affiliation(s)
| | - Fusheng Chen
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
25
|
Wang Z, Zhao J, Zhang T, Karrar E, Chang M, Liu R, Wang X. Impact of interactions between whey protein isolate and different phospholipids on the properties of krill oil emulsions: A consideration for functional lipids efficient delivery. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
26
|
Li J, Chang C, Gu L, Su Y, Yang Y, Zhai J. Improved retention ratio and bioaccessibility of lutein loaded in emulsions stabilized by egg yolk granules-lecithin complex. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5153-5161. [PMID: 35288955 DOI: 10.1002/jsfa.11867] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/26/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Egg yolk granules (EYGs)-soy lecithin (SL) complex is a newly developed delivery system that is effective for improving the storage stability of hydrophobic bioactive compounds. However, the formation mechanism of EYGs and SL complex and its effect on the gastrointestinal fate of lutein-loaded emulsions needs to be investigated further. RESULTS Adding SL greatly improved the surface activity of the EYGs, as evidenced by reduced surface tension and an increased adsorption rate to the oil/water interface. Hydrophobic interaction was the dominant force in the formation of EYG-SL complex, with hydrogen and ionic bonds playing complementary roles. Using the EYG-SL complex, stable oil-in-water emulsions were formed and exhibited an enhanced retention ratio and bioaccessibility of lutein after simulated digestion. Correlation analysis demonstrated that the additional anti-oxidant activity as a result of EYGs was responsible for the high retention of lutein, whereas low surface tension facilitated the micellization of bioaccessible lutein. CONCLUSION The present study shows that the EYG and SL have a synergistic effect with respect to improving the retention ratio and bioaccessibility of lutein in emulsions stabilized by EYG-SL complex after digestion and this will guide the development of value-added oil-in-water emulsion products using protein-lecithin complex as a promising nutrient delivery vehicle. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Junhua Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- Hunan Engineering and Technology Research Center for Food Flavors and Flavorings, Jinshi, China
| | - Cuihua Chang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Luping Gu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yujie Su
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yanjun Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- Hunan Engineering and Technology Research Center for Food Flavors and Flavorings, Jinshi, China
| | - Jiali Zhai
- School of Science, STEM College, RMIT University, Melbourne, VIC, Australia
| |
Collapse
|
27
|
Ju H, Wu C, Jiang P, Qi L, Lin S. Inhibition effect of nitrogen‐filled technology on flavor degradation of infant nutrition powder. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Huapeng Ju
- National Engineering Research Center of Seafood, School of Food Science and Technology Dalian Polytechnic University Dalian Liaoning P. R. China
| | - Chao Wu
- National Engineering Research Center of Seafood, School of Food Science and Technology Dalian Polytechnic University Dalian Liaoning P. R. China
| | - Pengfei Jiang
- National Engineering Research Center of Seafood, School of Food Science and Technology Dalian Polytechnic University Dalian Liaoning P. R. China
| | - Libo Qi
- National Engineering Research Center of Seafood, School of Food Science and Technology Dalian Polytechnic University Dalian Liaoning P. R. China
| | - Songyi Lin
- National Engineering Research Center of Seafood, School of Food Science and Technology Dalian Polytechnic University Dalian Liaoning P. R. China
| |
Collapse
|
28
|
Enhancement of the Digestion of Virgin Silkworm Pupae Oil (Bombyx mori) by Forming a Two-Layer Emulsion Using Lecithin and Whey Protein Isolate. FOOD BIOPHYS 2022. [DOI: 10.1007/s11483-022-09749-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
29
|
Song S, Cui Y, Ji X, Gao F, Zhu H, Zhu J, Liu X, Guan J. Microencapsulation of Lactobacillus plantarum with enzymatic hydrolysate of soybean protein isolate for improved acid resistance and gastrointestinal survival in vitro. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2022. [DOI: 10.1515/ijfe-2021-0374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
This study aimed to improve the acid resistance effect of Lactobacillus plantarum through microencapsulation with enzymatic hydrolysate of soybean protein isolate (EHSPI) and modified phospholipid. Response surface methodology was adopted to establish the optimal microencapsulation technology of L. plantarum, while coating characters were evaluated. Through response surface methodology, the optimal conditions were obtained as follows based on microencapsulation efficiency: the ratio of bacteria/EHSPI 1:1.83, EHSPI content 4.01%, modified phospholipid content 11.41%. The results of digestion in vitro showed that after passing through the simulated gastric fluid (SGF), the L. plantarum was released and reached 3.55 × 108 CFU/mL in the simulated intestinal fluid. Meanwhile, the surviving bacteria number of control significantly decreased to 2.63 × 104 CFU/mL (P < 0.05) at 120 min in SGF. In sum, the acid resistance and survival of L. plantarum were improved in SGF in vitro, through the microencapsulation technology based on EHSPI.
Collapse
Affiliation(s)
- Shijia Song
- College of Biological Engineering, Henan University of Technology , No.100 Lianhua street , Zhengzhou , 450001 , China
| | - Yaoming Cui
- College of Biological Engineering, Henan University of Technology , No.100 Lianhua street , Zhengzhou , 450001 , China
| | - Xuyang Ji
- College of Biological Engineering, Henan University of Technology , No.100 Lianhua street , Zhengzhou , 450001 , China
| | - Feng Gao
- College of Biological Engineering, Henan University of Technology , No.100 Lianhua street , Zhengzhou , 450001 , China
| | - Hao Zhu
- College of Biological Engineering, Henan University of Technology , No.100 Lianhua street , Zhengzhou , 450001 , China
| | - Jinfeng Zhu
- College of Biological Engineering, Henan University of Technology , No.100 Lianhua street , Zhengzhou , 450001 , China
| | - Xinyu Liu
- College of Biological Engineering, Henan University of Technology , No.100 Lianhua street , Zhengzhou , 450001 , China
| | - Junjun Guan
- College of Biological Engineering, Henan University of Technology , No.100 Lianhua street , Zhengzhou , 450001 , China
| |
Collapse
|
30
|
Wu F, Chen F, Pu Y, Qian F, Leng Y, Mu G, Zhu X. Effects of soy lecithin concentration on the physicochemical properties of whey protein isolate, casein‐stabilised simulated infant formula emulsion and their corresponding microcapsules. INT J DAIRY TECHNOL 2022. [DOI: 10.1111/1471-0307.12861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Feiyang Wu
- School of Food Science and Technology Dalian Polytechnic University Dalian 116034 China
| | - Fang Chen
- State Key Lab of Food Science and Technology College of Food Science Nanchang University Nanchang Jiangxi 330047 China
| | - Yizhen Pu
- School of Food Science and Technology Dalian Polytechnic University Dalian 116034 China
| | - Fang Qian
- School of Food Science and Technology Dalian Polytechnic University Dalian 116034 China
| | - Youbin Leng
- Heilongjiang Feihe Dairy Co., Ltd Beijing 100000 China
| | - Guangqing Mu
- School of Food Science and Technology Dalian Polytechnic University Dalian 116034 China
| | - Xuemei Zhu
- School of Food Science and Technology Dalian Polytechnic University Dalian 116034 China
| |
Collapse
|
31
|
Zhang J, Du X, Jiang S, Xie Q, Mu G, Wu X. Formulation of infant formula with different casein fractions and their effects on physical properties and digestion characteristics. Food Funct 2021; 13:769-780. [PMID: 34951425 DOI: 10.1039/d1fo02682h] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study investigated whether casein (CN) fractions exhibit better physical properties and digestibility than native casein micelles presently used in the production of infant formula. The structural performance of native casein micelles (micellar casein concentrates, MCC), β-CN, κ-CN and β + κ-CN were explored, and physical properties and digestion characteristics (i.e., digestibility, particle size, zeta potential and microscopic morphology) of the infant formula with MCC, β-CN, κ-CN or β + κ-CN were determined to elucidate the applicability of these casein types in infant formula. Results indicated that the β + κ-CN infant formula solution had the largest particle size with the most unstable potential. Moreover, both β-CN and κ-CN infant formula showed high solubility, while κ-CN displayed the lowest foaming capacity and high foaming stability. β-CN infant formula expressed an effective digestibility property, however, it possessed the largest particle size after gastrointestinal digestion. Therefore, β-CN fraction infant formula showed better digestibility than casein infant formula, and thus this work provides a theoretical basis for the development of infant formula.
Collapse
Affiliation(s)
- Junpeng Zhang
- School of Food Science and Technology, Dalian Polytechnic University, Liaoning, 116000, China.
| | - Xinyu Du
- School of Food Science and Technology, Dalian Polytechnic University, Liaoning, 116000, China.
| | - Shilong Jiang
- Heilongjiang Feihe Dairy Co., Ltd, Beijing, 100000, China
| | - Qinggang Xie
- Heilongjiang Feihe Dairy Co., Ltd, Beijing, 100000, China
| | - Guangqing Mu
- School of Food Science and Technology, Dalian Polytechnic University, Liaoning, 116000, China.
| | - Xiaomeng Wu
- School of Food Science and Technology, Dalian Polytechnic University, Liaoning, 116000, China.
| |
Collapse
|
32
|
Bhat ZF, Morton JD, El-Din A. Bekhit A, Kumar S, Bhat HF. Processing technologies for improved digestibility of milk proteins. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.09.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
33
|
Sun G, Liu F, Zhao R, Hu Y, Li B, Liu S, Li Y, Shah BR. Enhanced stability and bioaccessibility of nobiletin in whey protein/cinnamaldehyde-stabilized microcapsules and application in yogurt. FOOD STRUCTURE 2021. [DOI: 10.1016/j.foostr.2021.100217] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|