1
|
Maojin T, Zheng Z, Ying H, Yanyan H, Liang Z. Bacterial Spore Inactivation Technology in Solid Foods: A Review. J Food Prot 2025; 88:100479. [PMID: 40081811 DOI: 10.1016/j.jfp.2025.100479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 03/03/2025] [Accepted: 03/07/2025] [Indexed: 03/16/2025]
Abstract
In response to physiological stress, some bacterial strains have the ability to produce spores that are able to resist conventional food heating processes and even more extreme environmental factors. Dormant spores can germinate and return to their vegetative state during food preservation, leading to food spoilage, or safety issues that pose a risk to human health. Thus, spore inactivation technology is gaining more and more attention. Several techniques have been used in liquid foods to efficiently inactivate spores, including novel thermal and nonthermal treatments. However, solid foods have unique characteristics that make it challenging to achieve the same spore inactivation effect as in previous liquid food studies. Therefore, exploring the effectiveness of spore inactivation techniques in solid foods is of great significance, and clarifying the mechanism for deactivating spore through related techniques is informative in enhancing the effectiveness of spore deactivation in solid foods. This article reviews the practical applications of spore inactivation technology in solid foods.
Collapse
Affiliation(s)
- Tian Maojin
- School of Public Health, Zunyi Medical University, Zunyi, China
| | - Zhou Zheng
- School of Public Health, Zunyi Medical University, Zunyi, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, Guizhou Province, China
| | - Hu Ying
- School of Public Health, Zunyi Medical University, Zunyi, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, Guizhou Province, China
| | - Han Yanyan
- School of Public Health, Zunyi Medical University, Zunyi, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, Guizhou Province, China
| | - Zhou Liang
- School of Public Health, Zunyi Medical University, Zunyi, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, Guizhou Province, China.
| |
Collapse
|
2
|
Wu Z, Liu H, Li X, Yu J, Huang Y, Liu Y, Wang F. Influence of silver carp muscle hydrolysate on the volatiles and aroma characteristics of frozen wheat dough and its resultant steamed bread. J Food Sci 2025; 90:e70141. [PMID: 40111046 DOI: 10.1111/1750-3841.70141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 02/21/2025] [Accepted: 03/03/2025] [Indexed: 03/22/2025]
Abstract
This study investigated the effects of silver carp muscle hydrolysate (SCMH) on volatile odor characteristics in frozen dough (FD) and its derived products using electronic nose and gas chromatography-mass spectrometry (GC-MS) analyses. Results demonstrated that steamed bread (SB) prepared from SCMH-incorporated FD after six freeze-thaw cycles exhibited significantly improved specific volume, textural properties, and gas-cell structure compared to controls (p < 0.05). GC-MS identified 29 volatile compounds in SCMH, predominantly 2,3-butanediol (32.05%) and 1-penten-3-ol (22.88%). SCMH addition altered the olfactory sense and volatile profiles of FD, yet introduced no undesirable fishy odor substances in the final SB. Moreover, the volatile compounds in dough and SB were mainly enriched during dough fermentation, while the key aroma components, such as 3-methyl-1-butanol, 3-methylthio-1-propanol, phenethyl alcohol, 3-hydroxy-2-butanone, and 2,3-butanediol, were enhanced by adding SCMH. These findings suggested that SCMH could effectively maintain the quality of FD without compromising its final product flavor, while potentially improving the aroma characteristics of SB, although the detailed mechanism remained to be further clarified.
Collapse
Affiliation(s)
- Zixuan Wu
- Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources Processing, School of food science and bioengineering, Changsha University of Science and Technology, Changsha, China
| | - Haidong Liu
- Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources Processing, School of food science and bioengineering, Changsha University of Science and Technology, Changsha, China
| | - Xianghong Li
- Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources Processing, School of food science and bioengineering, Changsha University of Science and Technology, Changsha, China
| | - Jian Yu
- Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources Processing, School of food science and bioengineering, Changsha University of Science and Technology, Changsha, China
| | - Yiqun Huang
- Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources Processing, School of food science and bioengineering, Changsha University of Science and Technology, Changsha, China
| | - Yongle Liu
- Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources Processing, School of food science and bioengineering, Changsha University of Science and Technology, Changsha, China
| | - Faxiang Wang
- Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources Processing, School of food science and bioengineering, Changsha University of Science and Technology, Changsha, China
| |
Collapse
|
3
|
Zhao F, Guo J, Zhang G, Zhang L. Insight into konjac glucomannan-retarding deterioration of steamed bread during frozen storage: Quality characteristics, water status, multi-scale structure, and flavor compounds. Food Res Int 2024; 195:114962. [PMID: 39277233 DOI: 10.1016/j.foodres.2024.114962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 09/17/2024]
Abstract
Konjac glucomannan (KGM), a water-soluble hydrocolloid, holds considerable potential in the food industry, especially for improving the quality and nutritional properties of frozen products. This study explored the alleviative effect of KGM on the quality characteristics, water status, multi-scale structure, and flavor compounds of steamed bread throughout frozen storage. KGM significantly improved the quality of steamed bread by slowing down the decrease in water content and the increase in water migration while maintaining softness and taste during frozen storage. Notably, KGM also delayed amylopectin retrogradation and starch recrystallization, thus preserving the texture and structure of the steamed bread. At week 3, the microstructure of the steamed bread with 1.0 % KGM remained intact, with the lowest free sulfhydryl content. Additionally, heat map analysis revealed that KGM contributed to flavor retention in steamed bread frozen for 3 weeks. These results indicate that KGM holds promise as an effective cryoprotectant for improving the quality of frozen steamed bread.
Collapse
Affiliation(s)
- Fen Zhao
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, PR China
| | - Jinying Guo
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, PR China.
| | - Gege Zhang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, PR China
| | - Lantian Zhang
- Hebei Food Safety Key Laboratory, Key Laboratory of Special Food Supervision Technology for State Market Regulation, Hebei Engineering Research Center for Special Food Safety and Health, Hebei Food Inspection and Research Institute, Shijiazhuang 050227, PR China
| |
Collapse
|
4
|
Jiang S, Jiang P, Feng D, Jin M, Qi H. Characterization of flavor substances in cooking and seasoned cooking brown seaweeds by GC-IMS and E-nose. Food Chem X 2024; 22:101325. [PMID: 38699587 PMCID: PMC11063391 DOI: 10.1016/j.fochx.2024.101325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 05/05/2024] Open
Abstract
The flavor of algae was one of the key factors for consumer acceptance. The objective of this study was to investigate the characteristic volatile compounds in cooking and seasoned cooking edible brown seaweeds (Undaria pinnatifida and Laminaria japonica). The gas chromatography-ion mobility spectrometry (GC-IMS) and electronic nose (E-nose) analysis showed that baking resulted in significant difference in flavor of brown seaweeds. However, the overall effect of cooking was not as significant as that of the seasoning solution treatment. Additionally, brown seaweeds treated with the seasoning solution were more acceptable. Undaria pinnatifida was found to contain 72 volatile flavor compounds, while Laminaria japonica had a total of 70. This study proved the applicability of GC-IMS combined with E-nose technology to detect the changes of volatile components of brown seaweeds after processing, providing beneficial knowledge and basic theory for the deep processing of brown seaweeds.
Collapse
Affiliation(s)
- Shan Jiang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Pengfei Jiang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Dingding Feng
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Meiran Jin
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Hang Qi
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
5
|
Pacher N, Burtscher J, Bender D, Fieseler L, Domig KJ. Aerobic spore-forming bacteria associated with ropy bread: Identification, characterization and spoilage potential assessment. Int J Food Microbiol 2024; 418:110730. [PMID: 38714095 DOI: 10.1016/j.ijfoodmicro.2024.110730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/15/2024] [Accepted: 04/29/2024] [Indexed: 05/09/2024]
Abstract
Aerobic spore-forming (ASF) bacteria have been reported to cause ropiness in bread. Sticky and stringy degradation, discoloration, and an odor reminiscent of rotting fruit are typical characteristics of ropy bread spoilage. In addition to economic losses, ropy bread spoilage may lead to health risks, as virulent strains of ASF bacteria are not uncommon. However, the lack of systematic approaches to quantify physicochemical spoilage characteristics makes it extremely difficult to assess rope formation in bread. To address this problem, the aim of this study was to identify, characterize and objectively assess the spoilage potential of ASF bacteria associated with ropy bread. Hence, a set of 82 ASF bacteria, including isolates from raw materials and bakery environments as well as strains from international culture collections, were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and their species identity confirmed by 16S rRNA and gyrA or panC gene sequencing. A standardized approach supported by objective colorimetric measurements was developed to assess the rope-inducing potential (RIP) of a strain by inoculating autoclaved bread slices with bacterial spores. In addition, the presence of potential virulence factors such as swarming motility or hemolysis was investigated. This study adds B. velezensis, B. inaquosorum and B. spizizenii to the species potentially implicated of causing ropy bread spoilage. Most importantly, this study introduces a standardized classification protocol for assessing the RIP of a bacterial strain. Colorimetric measurements are used to objectively quantify the degree of breadcrumb discoloration. Furthermore, our results indicate that strains capable of inducing rope spoilage in bread often exhibit swarming motility and virulence factors such as hemolysis, raising important food quality considerations.
Collapse
Affiliation(s)
- Nicola Pacher
- University of Natural Resources and Life Sciences, Vienna, Department of Food Science and Technology, Institute of Food Science, Muthgasse 18, 1190 Vienna, Austria
| | - Johanna Burtscher
- University of Natural Resources and Life Sciences, Vienna, Department of Food Science and Technology, Institute of Food Science, Muthgasse 18, 1190 Vienna, Austria.
| | - Denisse Bender
- University of Natural Resources and Life Sciences, Vienna, Department of Food Science and Technology, Institute of Food Science, Muthgasse 18, 1190 Vienna, Austria
| | - Lars Fieseler
- ZHAW Zurich University of Applied Sciences, Institute of Food and Beverage Innovation, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland
| | - Konrad J Domig
- University of Natural Resources and Life Sciences, Vienna, Department of Food Science and Technology, Institute of Food Science, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
6
|
Yang Q, Li M, Gu C, Lu A, Dong L, Zhang X, Hu X, Liu Y, Lu J. Effect of Fucoidan on Structure and Bioactivity of Chinese Steamed Bread. Foods 2024; 13:1057. [PMID: 38611362 PMCID: PMC11011307 DOI: 10.3390/foods13071057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/23/2024] [Accepted: 03/24/2024] [Indexed: 04/14/2024] Open
Abstract
Fucoidan refers to a group of sulphated polysaccharides obtained from brown seaweed, with numerous biological activities. In this study, fucoidan was fortified into Chinese steamed bread (CSB) at different concentrations (0, 1%, 3% and 5%) and the effect of fucoidan on the dough properties, structure properties and bioactivity were investigated. The results showed that fucoidan could change the viscosity of unfermented dough, and a high concentration of fucoidan could remove the free radicals produced by the SH-SS exchange reaction (GS-) in the dough, which significantly reduced the content of disulfide bond and reduced the expanded volume of fermented dough (p < 0.05). In addition, fucoidan forms a physical barrier on the surface of starch particles and hinders the reaction between protein-to-protein; therefore, fucoidan increased the hardness, gumminess and chewiness in CSB, and reduced the specific volume in CSB. Furthermore, the fucoidan-fortified CSB samples were found to have both the ability to significantly reduce the predicted glycemic index (pGI) (p < 0.05) and improve antioxidant activity (p < 0.05). Collectively, these findings could provide a theoretical basis for the applications of fucoidan as a functional component in fermented foods.
Collapse
Affiliation(s)
- Qingyu Yang
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China; (Q.Y.)
- State Key Laboratory of Food Nutrition and Safety, Shenyang Normal University, Shenyang 110034, China
| | - Man Li
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China; (Q.Y.)
- State Key Laboratory of Food Nutrition and Safety, Shenyang Normal University, Shenyang 110034, China
| | - Chenqi Gu
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China; (Q.Y.)
- State Key Laboratory of Food Nutrition and Safety, Shenyang Normal University, Shenyang 110034, China
| | - Anni Lu
- Pinehurst School, Albany, Auckland 302-308, New Zealand
| | - Lijun Dong
- Beijing Imperial Food Garden Food Co., Ltd., Beijing 101407, China
| | - Xiling Zhang
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China; (Q.Y.)
- State Key Laboratory of Food Nutrition and Safety, Shenyang Normal University, Shenyang 110034, China
| | - Xiufa Hu
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China; (Q.Y.)
- State Key Laboratory of Food Nutrition and Safety, Shenyang Normal University, Shenyang 110034, China
| | - Yao Liu
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China; (Q.Y.)
- State Key Laboratory of Food Nutrition and Safety, Shenyang Normal University, Shenyang 110034, China
| | - Jun Lu
- Auckland Bioengineering Institute, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- Department of Food and Agriculture Technology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, China
| |
Collapse
|
7
|
Ruan H, Wu Y, Zhang N, Tao Y, Wang K, Yan B, Zhao J, Zhang H, Gänzle MG, Chen W, Fan D. Serratia marcescens Causes the Brown Discoloration of Frozen Steamed Stuffed Buns during Resteaming. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4991-5002. [PMID: 38346801 DOI: 10.1021/acs.jafc.3c08467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Brown discoloration was observed in the crust of commercial frozen steamed stuffed buns (FSSBs) during resteaming. Culture-dependent and culture-independent analyses demonstrated that Serratia marcescens, a prodigiosin-producing species, was more abundant in spoiled samples than in unspoiled samples. Inoculation of experimental FSSBs with S. marcescens isolated from spoiled FSSBs confirmed that this species causes brown discoloration of FSSBs during resteaming. S. marcescens formed prodigiosin only between 15 and 28 °C but brown discoloration appeared only upon resteaming after storage at 4 °C. High-performance liquid chromatography analyses revealed that prodigiosin was absent from yellow-brown FSSBs. The pigmentation observed during resteaming is thus likely attributable to the intermediate 2-methyl-3-amylpyrrole. These findings provide valuable insights into the microbial contamination of FSSBs and will facilitate the prevention of spoilage of FSSBs.
Collapse
Affiliation(s)
- Huan Ruan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yejun Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Nana Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yuan Tao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Kai Wang
- Wuxi Huashun Minsheng Food Co. Ltd., Wuxi 214218, China
| | - Bowen Yan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Michael G Gänzle
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Ag/For Centre, Edmonton, AB T6G 2P5, Canada
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Daming Fan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
8
|
Miao X, Li S, Shang S, Sun N, Dong X, Jiang P. Characterization of volatile flavor compounds from fish maw soaked in five different seasonings. Food Chem X 2023; 19:100805. [PMID: 37780270 PMCID: PMC10534178 DOI: 10.1016/j.fochx.2023.100805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 10/03/2023] Open
Abstract
In this study, sensory evaluation, electronic nose, and HS-GC-IMS were used to investigate the effects of different seasonings (deionized water, onion, ginger, Sichuan pepper, and mixed seasonings) on the flavor of fish maw. The results showed that the volatile compounds of fish maw soaked in different seasonings were mainly organic sulfides and aromatic compounds. A total of 95 volatile compounds were identified, including 25 aldehydes, 23 olefins, 19 alcohols, 11 esters, 9 ketones, 3 acids, 2 sulfides, 1 furan, 1 ether and 1 ketoxime. Sichuan pepper group and mixed seasoning group had the most significant changes in volatile components, and had the most effective improvement on the flavor of fish maw compared with other groups. These findings will provide reference for producing high quality fish maw and improving its flavor quality. These findings will provide feasible theoretical support for the pretreatment and exploration of fish maw products in the future.
Collapse
Affiliation(s)
- Xiaoqing Miao
- School of Food Science and Technology, Dalian Polytechnic University, Liaoning, Dalian 116034, China
- National Engineering Research Center of Seafood, Liaoning, Dalian 116034, China
| | - Shuang Li
- School of Food Science and Technology, Dalian Polytechnic University, Liaoning, Dalian 116034, China
- National Engineering Research Center of Seafood, Liaoning, Dalian 116034, China
| | - Shan Shang
- School of Food Science and Technology, Dalian Polytechnic University, Liaoning, Dalian 116034, China
- National Engineering Research Center of Seafood, Liaoning, Dalian 116034, China
| | - Na Sun
- School of Food Science and Technology, Dalian Polytechnic University, Liaoning, Dalian 116034, China
- National Engineering Research Center of Seafood, Liaoning, Dalian 116034, China
| | - Xiuping Dong
- School of Food Science and Technology, Dalian Polytechnic University, Liaoning, Dalian 116034, China
- National Engineering Research Center of Seafood, Liaoning, Dalian 116034, China
| | - Pengfei Jiang
- School of Food Science and Technology, Dalian Polytechnic University, Liaoning, Dalian 116034, China
- National Engineering Research Center of Seafood, Liaoning, Dalian 116034, China
| |
Collapse
|
9
|
Pacher N, Burtscher J, Johler S, Etter D, Bender D, Fieseler L, Domig KJ. Ropiness in Bread-A Re-Emerging Spoilage Phenomenon. Foods 2022; 11:3021. [PMID: 36230100 PMCID: PMC9564316 DOI: 10.3390/foods11193021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
As bread is a very important staple food, its spoilage threatens global food security. Ropy bread spoilage manifests in sticky and stringy degradation of the crumb, slime formation, discoloration, and an odor reminiscent of rotting fruit. Increasing consumer demand for preservative-free products and global warming may increase the occurrence of ropy spoilage. Bacillus amyloliquefaciens, B. subtilis, B. licheniformis, the B. cereus group, B. pumilus, B. sonorensis, Cytobacillus firmus, Niallia circulans, Paenibacillus polymyxa, and Priestia megaterium were reported to cause ropiness in bread. Process hygiene does not prevent ropy spoilage, as contamination of flour with these Bacillus species is unavoidable due to their occurrence as a part of the endophytic commensal microbiota of wheat and the formation of heat-stable endospores that are not inactivated during processing, baking, or storage. To date, the underlying mechanisms behind ropy bread spoilage remain unclear, high-throughput screening tools to identify rope-forming bacteria are missing, and only a limited number of strategies to reduce rope spoilage were described. This review provides a current overview on (i) routes of entry of Bacillus endospores into bread, (ii) bacterial species implicated in rope spoilage, (iii) factors influencing rope development, and (iv) methods used to assess bacterial rope-forming potential. Finally, we pinpoint key gaps in knowledge and related challenges, as well as future research questions.
Collapse
Affiliation(s)
- Nicola Pacher
- Institute of Food Science, Department of Food Science and Technology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Johanna Burtscher
- Institute of Food Science, Department of Food Science and Technology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Sophia Johler
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Winterthurerstr. 272, 8057 Zurich, Switzerland
| | - Danai Etter
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Winterthurerstr. 272, 8057 Zurich, Switzerland
| | - Denisse Bender
- Institute of Food Science, Department of Food Science and Technology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Lars Fieseler
- Institute of Food and Beverage Innovation, ZHAW Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland
| | - Konrad J. Domig
- Institute of Food Science, Department of Food Science and Technology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
10
|
Steglińska A, Pielech-Przybylska K, Janas R, Grzesik M, Borowski S, Kręgiel D, Gutarowska B. Volatile Organic Compounds and Physiological Parameters as Markers of Potato ( Solanum tuberosum L.) Infection with Phytopathogens. Molecules 2022; 27:molecules27123708. [PMID: 35744835 PMCID: PMC9230024 DOI: 10.3390/molecules27123708] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022] Open
Abstract
The feasibility of early disease detection in potato seeds storage monitoring of volatile organic compounds (VOCs) and plant physiological markers was evaluated using 10 fungal and bacterial pathogens of potato in laboratory-scale experiments. Data analysis of HS-SPME-GC-MS revealed 130 compounds released from infected potatoes, including sesquiterpenes, dimethyl disulfide, 1,2,4-trimethylbenzene, 2,6,11-trimethyldodecane, benzothiazole, 3-octanol, and 2-butanol, which may have been associated with the activity of Fusarium sambucinum, Alternaria tenuissima and Pectobacterium carotovorum. In turn, acetic acid was detected in all infected samples. The criteria of selection for volatiles for possible use as incipient disease indicators were discussed in terms of potato physiology. The established physiological markers proved to demonstrate a negative effect of phytopathogens infecting seed potatoes not only on the kinetics of stem and root growth and the development of the entire root system, but also on gas exchange, chlorophyll content in leaves, and yield. The negative effect of phytopathogens on plant growth was dependent on the time of planting after infection. The research also showed different usefulness of VOCs and physiological markers as the indicators of the toxic effect of inoculated phytopathogens at different stages of plant development and their individual organs.
Collapse
Affiliation(s)
- Aleksandra Steglińska
- Department of Environmental Biotechnology, Lodz University of Technology, Wólczańska 171/173, 90-530 Łódź, Poland; (S.B.); (D.K.); (B.G.)
- Correspondence:
| | - Katarzyna Pielech-Przybylska
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wólczańska 171/173, 90-530 Łódź, Poland;
| | - Regina Janas
- The National Institute of Horticultural Research, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland; (R.J.); (M.G.)
| | - Mieczysław Grzesik
- The National Institute of Horticultural Research, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland; (R.J.); (M.G.)
| | - Sebastian Borowski
- Department of Environmental Biotechnology, Lodz University of Technology, Wólczańska 171/173, 90-530 Łódź, Poland; (S.B.); (D.K.); (B.G.)
| | - Dorota Kręgiel
- Department of Environmental Biotechnology, Lodz University of Technology, Wólczańska 171/173, 90-530 Łódź, Poland; (S.B.); (D.K.); (B.G.)
| | - Beata Gutarowska
- Department of Environmental Biotechnology, Lodz University of Technology, Wólczańska 171/173, 90-530 Łódź, Poland; (S.B.); (D.K.); (B.G.)
| |
Collapse
|
11
|
Hu Y, Sun H, Mu T. Effects of sweet potato leaf powder on sensory, texture, nutrition and digestive characteristics of steamed bread. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yuwei Hu
- Laboratory of Food Chemistry and Nutrition Science Institute of Food Science and Technology Chinese Academy of Agricultural Sciences; Key Laboratory of Agro‐Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193 China
| | - Hongnan Sun
- Laboratory of Food Chemistry and Nutrition Science Institute of Food Science and Technology Chinese Academy of Agricultural Sciences; Key Laboratory of Agro‐Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193 China
| | - Taihua Mu
- Laboratory of Food Chemistry and Nutrition Science Institute of Food Science and Technology Chinese Academy of Agricultural Sciences; Key Laboratory of Agro‐Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193 China
| |
Collapse
|
12
|
Xi J, Zhao Q, Xu D, Jin Y, Wu F, Xu X. Evolution of volatiles and quality of Chinese steamed bread during storage at different temperatures. Food Chem 2022; 381:132213. [PMID: 35121328 DOI: 10.1016/j.foodchem.2022.132213] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 01/11/2022] [Accepted: 01/18/2022] [Indexed: 02/06/2023]
Abstract
The aim of this work is to investigate the evolution of volatiles and quality of CSB during 4 d of storage at 4 °C and 25 °C, respectively. Rapidly increasing hardness and decreasing resilience were observed in CSB after 1 d of storage at 4 °C. However, relative soft CSB was found after 1 d of storage at 25 °C as a result of the lower rate of retrogradation. Volatiles were monitored by gas chromatography-mass spectrometer. Significant (P < 0.05) decrease of 4 esters and 2-pentylfuran were observed with prolonged storage time for CSB stored at both 4 °C and 25 °C. PCA analysis indicated that the storage temperature of 4 °C was beneficial to remain CSB volatiles during long storage time (2-4 d). These findings might be beneficial to retain more volatiles and quality and finally extend shelf-life of CSB.
Collapse
Affiliation(s)
- Jinzhong Xi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qiyan Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Dan Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yamei Jin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Fengfeng Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xueming Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
13
|
Characterization of Key Odorants in Scallion Pancake and Investigation on Their Changes during Storage. Molecules 2021; 26:molecules26247647. [PMID: 34946729 PMCID: PMC8704002 DOI: 10.3390/molecules26247647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/10/2021] [Accepted: 12/14/2021] [Indexed: 12/04/2022] Open
Abstract
To characterize key odorants in scallion pancake (SP), volatiles were extracted by solvent extraction-solvent assisted flavor evaporation. A total of 51 odor-active compounds were identified by gas chromatography-olfactometry (GC-O) and chromatography–mass spectrometry (GC-MS). (Z/E)-3,6-Diethyl-1,2,4,5-tetrathiane was detected for the first time in scallion food. Application of aroma extract dilution analysis to extracts showed maltol, methyl propyl disulfide, dipropyl disulfide and 2-pentylfuran had the highest flavor dilution (FD) factor of 4096. Twenty-three odorants with FD factors ≥ 8 were quantitated, and their odor active values (OAVs) were calculated. Ten compounds with OAVs ≥ 1 were determined as the key odorants; a recombinate model prepared from the key odorants, including (E,E)-2,4-decadienal, dimethyl trisulfide, methyl propyl disulfide, hexanal, dipropyl trisulfide, maltol, acetoin, 2-methylnaphthalene, 2-pentylfuran and 2(5H)-furanone, successfully simulated the overall aroma profile of SP. The changes in odorants during storage were investigated further. With increasing concentrations and OAVs during storage, hexanal became an off-flavor compound.
Collapse
|