1
|
Falade EO, Kouamé KJEP, Zhu Y, Zheng Y, Ye X. A review: Examining the effects of modern extraction techniques on functional and structural properties of cellulose and hemicellulose in Brewer's Spent Grain dietary fiber. Carbohydr Polym 2025; 348:122883. [PMID: 39562135 DOI: 10.1016/j.carbpol.2024.122883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/27/2024] [Accepted: 10/14/2024] [Indexed: 11/21/2024]
Abstract
Brewer's Spent Grain (BSG) is a by-product of the brewing industry, rich in dietary fibers that offer various health benefits. This review delves into the molecular and structural transformations of BSG and dietary fibers (arabinoxylan, beta-glucan, cellulose etc.) extracted from BSG, triggered by recent advancements in extraction technologies. Through an analysis of current methodologies, such as advanced solubilization methods and emerging technologies like ultrasonication, this paper discusses their significant improvement in yield of BSG-dietary fiber and impact on the structural and functional properties of BSG-dietary fibers (BSG-DF). The review highlights how these technologies enhance fiber solubilization and modify physicochemical properties, thereby improving their functionality in food applications. Furthermore, the review aims to bridge gaps in current research and suggest future directions for optimizing extraction processes to better exploit these fibers in the food industries.
Collapse
Affiliation(s)
- Ebenezer Ola Falade
- College of Biosystem Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China; Zhejiang University-Zhongyuan Institue, Zhengzhou 45001, Henan, China; Organization of African Academic Doctors (OAAD), Off Kamiti Road, P.O. Box 25305-00100, Nairobi, Kenya
| | - Kouadio Jean Eric-Parfait Kouamé
- College of Biosystem Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China; Zhejiang University-Zhongyuan Institue, Zhengzhou 45001, Henan, China
| | - Yanyun Zhu
- College of Biosystem Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China; Zhejiang University-Zhongyuan Institue, Zhengzhou 45001, Henan, China
| | - Yunyun Zheng
- Zhejiang University-Zhongyuan Institue, Zhengzhou 45001, Henan, China
| | - Xingqian Ye
- College of Biosystem Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China; Zhejiang University-Zhongyuan Institue, Zhengzhou 45001, Henan, China.
| |
Collapse
|
2
|
Tang Y, Huang Y, Li M, Zhu W, Zhang W, Luo S, Zhang Y, Ma J, Jiang Y. Balancing Maillard reaction products formation and antioxidant activities for improved sensory quality and health benefit properties of pan baked buns. Food Res Int 2024; 195:114984. [PMID: 39277245 DOI: 10.1016/j.foodres.2024.114984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/02/2024] [Accepted: 08/21/2024] [Indexed: 09/17/2024]
Abstract
This study investigated the impact of processing temperatures (190 °C, 210 °C, and 230 °C) and durations (7 min, 10 min, and 14 min) on the formation of Maillard reaction products (MRPs) and antioxidant activities in pan baked buns. Key Maillard reaction indicators, including glyoxal (GO), methylglyoxal (MGO), 5-hydroxymethylfurfural (5-HMF), melanoidins, and fluorescent advanced glycation end products (AGEs) were quantified. The results demonstrated significant increases in GO, MGO, 5-HMF contents (p < 0.05), and antioxidant activities (p < 0.05) when the buns were baked at 210 °C for 14 min, 230 °C for 10 min and 14 min. However, the interior MRPs of baked buns were minimally affected by the baking temperature and duration. Prolonged heating temperatures and durations exacerbated MRPs production (43.8 %-1038 %) in the bottom crust. Nonetheless, this process promoted the release of bound phenolic compounds and enhanced the antioxidant activity. Heating induces the thermal degradation of macromolecules in food, such as proteins and polysaccharides, which releases bound phenolic compounds by disrupting their chemical bonds within the food matrix. Appropriate selections of baking parameters can effectively reduce the formation of MRPs while simultaneously improve sensory quality and health benefit of the pan baked buns. Considering the balance between higher antioxidant properties and lower MRPs, the optimal thermal parameters for pan baked buns were 210 °C for 10 min. Furthermore, a normalized analysis revealed a consistent trend for GO, MGO, 5-HMF, fluorescent AGEs, and melanoidins. Moreover, MRPs were positively correlated with total contents of phenolic compounds, ferric-reducing antioxidant power (FRAP), and color, but negatively correlated with moisture contents and reducing sugars. Additionally, the interaction between baking conditions and Maillard reactions probably contributed to enhanced primary flavors in the final product. This study highlights the importance of optimizing baking parameters to achieve desirable MRPs levels, higher antioxidant activity, and optimal sensory attributes in baked buns.
Collapse
Affiliation(s)
- Yao Tang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yuan Huang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Mengru Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Wen Zhu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Wei Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Sha Luo
- Food Safety Facility, Tianjin Centers for Disease Control and Prevention, Tianjin 300011, China
| | - Yingying Zhang
- Department of Cardiology, Tianjin Chest Hospital, Tianjin 300222, China
| | - Jie Ma
- Food Safety Facility, Tianjin Centers for Disease Control and Prevention, Tianjin 300011, China.
| | - Yuqian Jiang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
3
|
Ruíz Suarez CB, Schalchli Sáez HL, Melo PS, Moreira CDS, Sartori AGDO, de Alencar SM, Scheuermann Salinas ES. Effect of Physical Separation with Ultrasound Application on Brewers' Spent Grain to Obtain Powders for Potential Application in Foodstuffs. Foods 2024; 13:3000. [PMID: 39335928 PMCID: PMC11431214 DOI: 10.3390/foods13183000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Brewers' spent grain (BSG) is the primary by-product of beer production, and its potential use in food products is largely dependent on its processing, given its moisture content of up to 80%. This study aimed to evaluate the effects of physical separation with ultrasound application on the color, total phenolic content (TPC), antioxidant activity, proximate composition, total dietary fibers, and particle size distribution of BSG powders. Wet BSG (W) was subjected to two processes: one without ultrasound (A) and one with ultrasound (B). Both processes included pressing, convective air-drying, sieving, fraction separation (A1 and B1 as coarse with particles ≥ 2.36 mm; A2 and B2 as fine with particles < 2.36 mm), and milling. The total color difference compared to W increased through both processes, ranging from 1.1 (B1 vs. A1) to 5.7 (B1 vs. A2). There was no significant difference in TPC, but process B powders, particularly B2, showed lower antioxidant activity against ABTS•+, likely due to the release of antioxidant compounds into the liquid fraction during pressing after ultrasound treatment. Nonetheless, process B powders exhibited a higher content of soluble dietary fibers. In conclusion, ultrasound application shows potential for further extraction of soluble fibers. However, process A might be more practical for industrial and craft brewers. Further studies on the use of the resulting BSG powders as food ingredients are recommended.
Collapse
Affiliation(s)
- Camila Belén Ruíz Suarez
- Undergraduate Program Chemical Civil Engineering, Faculty of Engineering and Sciences, Universidad de La Frontera, Temuco CP 4780000, Chile;
| | - Heidi Laura Schalchli Sáez
- Biotechnological Research Center Applied to the Environment (CIBAMA-BIOREN), Universidad de La Frontera, Temuco CP 4780000, Chile;
| | - Priscilla Siqueira Melo
- Department of Food Science and Technology, Escola Superior de Agricultura Luiz Queiroz (ESALQ), Universidade de São Paulo, Piracicaba CEP 13418-900, Brazil; (P.S.M.); (C.d.S.M.); (A.G.d.O.S.)
| | - Carolina de Souza Moreira
- Department of Food Science and Technology, Escola Superior de Agricultura Luiz Queiroz (ESALQ), Universidade de São Paulo, Piracicaba CEP 13418-900, Brazil; (P.S.M.); (C.d.S.M.); (A.G.d.O.S.)
| | - Alan Giovanini de Oliveira Sartori
- Department of Food Science and Technology, Escola Superior de Agricultura Luiz Queiroz (ESALQ), Universidade de São Paulo, Piracicaba CEP 13418-900, Brazil; (P.S.M.); (C.d.S.M.); (A.G.d.O.S.)
| | - Severino Matias de Alencar
- Department of Food Science and Technology, Escola Superior de Agricultura Luiz Queiroz (ESALQ), Universidade de São Paulo, Piracicaba CEP 13418-900, Brazil; (P.S.M.); (C.d.S.M.); (A.G.d.O.S.)
| | - Erick Sigisfredo Scheuermann Salinas
- Biotechnological Research Center Applied to the Environment (CIBAMA-BIOREN), Universidad de La Frontera, Temuco CP 4780000, Chile;
- Chemical Engineering Department, Universidad de La Frontera, Temuco CP 4780000, Chile
- Center of Food Biotechnology and Bioseparations (BIOREN), Universidad de La Frontera, Temuco CP 4780000, Chile
| |
Collapse
|
4
|
Syeunda C, Awika JM. Mechanisms of flavonoid inhibition of Maillard reaction product formation in relation to whole grains processing. Food Chem 2024; 449:139237. [PMID: 38581780 DOI: 10.1016/j.foodchem.2024.139237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/23/2024] [Accepted: 04/02/2024] [Indexed: 04/08/2024]
Abstract
Whole grains (WG) are beneficial to health but have reduced sensory quality, partly attributable to inhibition of Maillard reaction products (MRP) by WG phenolics. The study investigated how major flavonoid classes in cereals affect Maillard reaction pathways. Flavonoids were reacted with xylose-lysine aqueous system at 160 °C/12 min. Additionally, breads were made with catechin, and wheat and sorghum bran fortification. Low Mw MRP were profiled using UPLC-MS/MS, while melanoidins were characterized using fluorescence spectroscopy and HPSEC-MALS. The flavonoids significantly (p < 0.05) reduced both melanoidin content (by 33-86%) and Mw (3.5-15 kDa vs 20 kDa control), leading to lighter bread crust. Flavonoids inhibited MRP via direct condensation with early-stage amines and carbonyls into stable adducts, and reduction of late-stage polymerization reactions, increasing accumulation of cyclic N-containing intermediates. Inhibitory trend was flavones>flavanones>flavanols. C-Ring π-bond dramatically enhance flavonoid MRP inhibition; thus flavone-rich cereal grains are likely to strongly impact MRP-dependent sensory attributes of WG products.
Collapse
Affiliation(s)
- Cyprian Syeunda
- Texas A&M University, Department of Food Science & Technology, College Station, TX 77843, USA.
| | - Joseph M Awika
- Texas A&M University, Department of Food Science & Technology, College Station, TX 77843, USA.
| |
Collapse
|
5
|
Duke K, Syeunda C, Brantsen JF, Nindawat S, Awika JM. Polyphenol recovery from sorghum bran waste by microwave assisted extraction: Structural transformations as affected by grain phenolic profile. Food Chem 2024; 444:138645. [PMID: 38325084 DOI: 10.1016/j.foodchem.2024.138645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
Sorghum milling waste stream (bran), contains diverse phenolic compounds with bioactive properties. The study determined the potential of microwave assisted extraction (MAE) to recover the bran phenolic compounds. Red, white, and lemon-yellow pericarp sorghum brans were subjected to MAE and phenolic yield and structural transformation vs conventional extraction (control) assessed by UPLC-MS/MS, Folin-Ciocalteu and Trolox equivalent antioxidant capacity methods. Phenols yield increased from 3.7-20.3 to 12.6-75.5 mg/g, while antioxidants capacity increased average 3.3X in MAE extracts vs controls. Hydroxycinnamic acids increased most dramatically (3.0-32X) in MAE extracts (0.08-2.64 to 2.57-8.01 mg/g), largely driven by release of cell-wall derived feruloyl- and coumaroyl-arabinose. MAE hydrolyzed flavonoid glycosides into aglycones, and depolymerized condensed flavonoid heteropolymers into flavanones, flavanols and (deoxy)anthocyanidins. Thus, MAE dramatically enhances yield of valuable phenolics from sorghum bran waste, but also alters the phenolic profile in ways that may influence their chemical and biological properties.
Collapse
Affiliation(s)
- Kaitlyn Duke
- Texas A&M University, Department of Food Science & Technology, College Station, TX 77843, USA.
| | - Cyprian Syeunda
- Texas A&M University, Department of Food Science & Technology, College Station, TX 77843, USA.
| | - Julia F Brantsen
- Texas A&M University, Department of Food Science & Technology, College Station, TX 77843, USA; General Mills, Minneapolis, MN 55440, USA(1).
| | - Shruti Nindawat
- Texas A&M University, Department of Food Science & Technology, College Station, TX 77843, USA.
| | - Joseph M Awika
- Texas A&M University, Department of Food Science & Technology, College Station, TX 77843, USA.
| |
Collapse
|
6
|
Cheng J, Zheng L, Zhao J, Yu M, Cao R, Wang D, Li J, Zhou L. Study on the Effect of Microwaved Brewer's Spent Grains on the Quality and Flavor Characteristics of Bread. Foods 2024; 13:461. [PMID: 38338596 PMCID: PMC10855328 DOI: 10.3390/foods13030461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
To enable a wider utilization of co-products from beer processing and minimize the negative effect of added grain on bread quality, flavor, and other attributes, brewer's spent grains (BSG) are processed through microwave pretreatment, and then the microwave-treated BSG (MW-BSG) is added to bread. So far, there has been no investigation on the effect of microwave-pretreated BSG on bread quality and flavor. In this study, we examined the effects of diverse microwave treatment variables on the physicochemical structure of BSG and explored the consequences of MW-BSG on the quality and flavor of bread. The results showed that soluble dietary fiber and water-soluble protein levels in MW-BSG increased significantly (144.88% and 23.35%) at a 540 W microwave power, 3 min processing time, and 1:5 material-liquid ratio of BSG to water. The proper addition of MW-BSG positively affected the bread texture properties and color, but excessive amounts led to an irregular size and distribution of the bread crumbs. The result of electronic nose and HS-SPME-GC-MS analyses showed that the addition of MW-BSG modified the odor profile of the bread. A sensory evaluation showed mean scores ranging from 6.81 to 4.41 for bread containing 0-10% MW-BSG. Consumers found a maximum level of 6% MW-BSG acceptable. This study endeavors to decrease environmental contamination caused by brewing waste by broadening the methods by which beer co-products can be utilized through an innovative approach.
Collapse
Affiliation(s)
- Jieyi Cheng
- College of Food Science, Beijing Technology and Business University, Beijing 100048, China; (J.C.); (J.Z.); (M.Y.); (R.C.); (D.W.); (J.L.)
| | - Li Zheng
- College of Food Science, Northeast Agricultural University, Harbin 150030, China;
| | - Jinling Zhao
- College of Food Science, Beijing Technology and Business University, Beijing 100048, China; (J.C.); (J.Z.); (M.Y.); (R.C.); (D.W.); (J.L.)
| | - Meihong Yu
- College of Food Science, Beijing Technology and Business University, Beijing 100048, China; (J.C.); (J.Z.); (M.Y.); (R.C.); (D.W.); (J.L.)
| | - Rui Cao
- College of Food Science, Beijing Technology and Business University, Beijing 100048, China; (J.C.); (J.Z.); (M.Y.); (R.C.); (D.W.); (J.L.)
| | - Dan Wang
- College of Food Science, Beijing Technology and Business University, Beijing 100048, China; (J.C.); (J.Z.); (M.Y.); (R.C.); (D.W.); (J.L.)
| | - Jian Li
- College of Food Science, Beijing Technology and Business University, Beijing 100048, China; (J.C.); (J.Z.); (M.Y.); (R.C.); (D.W.); (J.L.)
| | - Linyi Zhou
- College of Food Science, Beijing Technology and Business University, Beijing 100048, China; (J.C.); (J.Z.); (M.Y.); (R.C.); (D.W.); (J.L.)
| |
Collapse
|
7
|
Ramu Ganesan A, Hoellrigl P, Mayr H, Martini Loesch D, Tocci N, Venir E, Conterno L. The Rheology and Textural Properties of Bakery Products Upcycling Brewers' Spent Grain. Foods 2023; 12:3524. [PMID: 37835177 PMCID: PMC10572393 DOI: 10.3390/foods12193524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 10/15/2023] Open
Abstract
This study aimed to evaluate the rheological properties of doughs with 50% brewers' spent grain (BSG) derived from a rye-based (RBSG) and barley-based (BBSG) beer added, and the textural profile of the related baked products. Simple model systems using BSG flour mixed with water were studied. Two bakery products, focaccia and cookies, were made as food systems using BSG in a 1:1 ratio with wheat flour (WF). Their rheological properties and texture after baking were characterized. BSG-added dough exhibited viscoelastic properties with a solid gel-like behavior. The addition of BSG increased G' > G″ and decreased the dough flexibility. BSG addition in baked RBSG focaccia increased the hardness, gumminess, and chewiness by 10%, 9%, and 12%, respectively. BBSG cookies had a 20% increase in fracturability. A positive correlation was found between the rheological metrics of the dough and the textural parameters of BBSG-added cookies. PCA analysis revealed that complex viscosity, G', G″, and cohesiveness separated BBSG focaccia from RBSG focaccia and the control. Therefore, the rheological properties of BSG dough will have industrial relevance for 3D-printed customized food products with fiber. Adding RBSG and BBSG to selected foods will increase the up-cycling potential by combining techno-functional properties.
Collapse
Affiliation(s)
- Abirami Ramu Ganesan
- Division of Food Production and Society, Biomarine Resource Valorisation, Norwegian Institute of Bioeconomy Research, Torggården, Kudalsveien 6, NO-8027 Bodø, Norway;
- Food Technology Area, Institute for Mountain Agriculture and Food Technology Laimburg Research Centre, Laimburg 6, 39051 Pfatten/Vadena, BZ, Italy; (P.H.); (H.M.); (D.M.L.); (N.T.); (E.V.)
| | - Philipp Hoellrigl
- Food Technology Area, Institute for Mountain Agriculture and Food Technology Laimburg Research Centre, Laimburg 6, 39051 Pfatten/Vadena, BZ, Italy; (P.H.); (H.M.); (D.M.L.); (N.T.); (E.V.)
| | - Hannah Mayr
- Food Technology Area, Institute for Mountain Agriculture and Food Technology Laimburg Research Centre, Laimburg 6, 39051 Pfatten/Vadena, BZ, Italy; (P.H.); (H.M.); (D.M.L.); (N.T.); (E.V.)
| | - Demian Martini Loesch
- Food Technology Area, Institute for Mountain Agriculture and Food Technology Laimburg Research Centre, Laimburg 6, 39051 Pfatten/Vadena, BZ, Italy; (P.H.); (H.M.); (D.M.L.); (N.T.); (E.V.)
| | - Noemi Tocci
- Food Technology Area, Institute for Mountain Agriculture and Food Technology Laimburg Research Centre, Laimburg 6, 39051 Pfatten/Vadena, BZ, Italy; (P.H.); (H.M.); (D.M.L.); (N.T.); (E.V.)
| | - Elena Venir
- Food Technology Area, Institute for Mountain Agriculture and Food Technology Laimburg Research Centre, Laimburg 6, 39051 Pfatten/Vadena, BZ, Italy; (P.H.); (H.M.); (D.M.L.); (N.T.); (E.V.)
| | - Lorenza Conterno
- Food Technology Area, Institute for Mountain Agriculture and Food Technology Laimburg Research Centre, Laimburg 6, 39051 Pfatten/Vadena, BZ, Italy; (P.H.); (H.M.); (D.M.L.); (N.T.); (E.V.)
| |
Collapse
|
8
|
Syeunda CO, Awika JM. Effect of cereal bran phenolic profile on Maillard reaction products formation during hydrothermal treatment. Food Chem 2023; 423:136320. [PMID: 37182494 DOI: 10.1016/j.foodchem.2023.136320] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/02/2023] [Accepted: 05/03/2023] [Indexed: 05/16/2023]
Abstract
Maillard reaction products (MRP) contribute to sensory quality of various foods. Whole grains (WG) are rich in phenols which may influence Maillard reaction pathways during thermal processing and impact WG product sensory attributes. This study investigated how WG phenolic profile affects MRP formation. Amylase-hydrolyzed wheat (white and red) and sorghum (white, red, tannin) brans were hydrothermally processed at 150 °C/6 min, and characterized for MRP using colorimetry, fluorescence spectroscopy, HPLC-MS/MS, and HS-SPME/GC-MS. Bran phenolic structure, and to a lesser extent content, had larger influence on MRP formation than protein/amino acid profile. Polymeric tannins (both in situ and when added to wheat brans) strongly inhibited volatile and non-volatile MRP intermediates and melanoidin formation, likely via their carbocation depolymerization intermediates trapping furans. Principle component analysis demonstrated clear segregation of volatiles formation based on bran phenolic profile. Phenolic composition should be considered in WG product formulation and processing to achieve desired MRP formation.
Collapse
Affiliation(s)
- Cyprian O Syeunda
- Texas A&M University, Department of Food Science & Technology, College Station, TX 77843, USA.
| | - Joseph M Awika
- Texas A&M University, Department of Food Science & Technology, College Station, TX 77843, USA.
| |
Collapse
|
9
|
Chetrariu A, Dabija A. Spent Grain: A Functional Ingredient for Food Applications. Foods 2023; 12:foods12071533. [PMID: 37048354 PMCID: PMC10094003 DOI: 10.3390/foods12071533] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/25/2023] [Accepted: 04/01/2023] [Indexed: 04/08/2023] Open
Abstract
Spent grain is the solid fraction remaining after wort removal. It is nutritionally rich, composed of fibers—mainly hemicellulose, cellulose, and lignin—proteins, lipids, vitamins, and minerals, and must be managed properly. Spent grain is a by-product with high moisture, high protein and high fiber content and is susceptible to microbial contamination; thus, a suitable, cost-effective, and environmentally friendly valorization method of processing it is required. This by-product is used as a raw material in the production of many other food products—bakery products, pasta, cookies, muffins, wafers, snacks, yogurt or plant-based yogurt alternatives, Frankfurter sausages or fruit beverages—due to its nutritional values. The circular economy is built on waste reduction and the reuse of by-products, which find opportunities in the regeneration and recycling of waste materials and energy that become inputs in other processes and food products. Waste disposal in the food industry has become a major issue in recent years when attempting to maintain hygiene standards and avoid soil, air and water contamination. Fortifying food products with spent grain follows the precepts of the circular bio-economy and industrial symbiosis of strengthening sustainable development. The purpose of this review is to update information on the addition of spent grain to various foods and the influence of spent grain on these foods.
Collapse
Affiliation(s)
- Ancuța Chetrariu
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
| | - Adriana Dabija
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
| |
Collapse
|
10
|
Wang B, Li G, Li L, Zhang M, Yang T, Xu Z, Qin T. Novel processing strategies to enhance the bioaccessibility and bioavailability of functional components in wheat bran. Crit Rev Food Sci Nutr 2022; 64:3044-3058. [PMID: 36190261 DOI: 10.1080/10408398.2022.2129582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Dietary fiber, polysaccharides and phenols are the representative functional components in wheat bran, which have important nutritional properties and pharmacological effects. However, the most functional components in wheat bran exist in bound form with low bioaccessibility. This paper reviews these functional components, analyzes modification methods, and focuses on novel solid-state fermentation (SSF) strategies in the release of functional components. Mining efficient microbial resources from traditional fermented foods, exploring the law of material exchange between cell populations, and building a stable self-regulation co-culture system are expected to strengthen the SSF process. In addition, emerging biotechnology such as synthetic biology and genome editing are used to transform the mixed fermentation system. Furthermore, combined with the emerging physical-field pretreatment coupled with SSF strategies applied to the modification of wheat bran, which provides a theoretical basis for the high-value utilization of wheat bran and the development of related functional foods and drugs.
Collapse
Affiliation(s)
- Baoshi Wang
- School of Life Science and Technology, Henan Collaborative Innovation Center in Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China
| | - Guangyao Li
- School of Life Science and Technology, Henan Collaborative Innovation Center in Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China
| | - Linbo Li
- School of Life Science and Technology, Henan Collaborative Innovation Center in Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China
| | - Mingxia Zhang
- School of Life Science and Technology, Henan Collaborative Innovation Center in Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China
| | - Tianyou Yang
- School of Life Science and Technology, Henan Collaborative Innovation Center in Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China
| | - Zhichao Xu
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Tengfei Qin
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS); Beijing Capital Agribusiness Future Biotechnology, Beijing, China
| |
Collapse
|
11
|
Carboni Martins C, Rodrigues RC, Domeneghini Mercali G, Rodrigues E. New insights into non-extractable phenolic compounds analysis. Food Res Int 2022; 157:111487. [PMID: 35761711 DOI: 10.1016/j.foodres.2022.111487] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/03/2022] [Accepted: 06/05/2022] [Indexed: 11/25/2022]
Abstract
Most of the studies regarding phenolic compounds (PC) have been focused only on one fraction of PC, named extractable phenolic compounds (EPC). As the name suggests, EPC can be directly extracted from the food matrix by using an appropriate solvent. Otherwise, non-extractable phenolic compounds (NEPC) remain in the food matrix after the conventional extraction, and their analysis depends on a hydrolysis process. NEPC is a relevant fraction of PC that acts in the colon, where they are extensively fermented by the action of the microbiota. To understand the health effects associated with the NEPC intake, it is necessary to know which types of compounds are present and their content in foods. In this review, 182 studies published in the last five years about NEPC in foods were evaluated, focusing on critical points of the NEPC analysis. First, EPC exhaustive extraction should be performed before the hydrolysis processes to avoid overestimation of the NEPC fraction. NEPC hydrolysis by aggressive methods modifies their original structure and makes their complete elucidation difficult. These methods must be optimized considering the research objective, as different conditions may result in different amounts and profiles of compounds. Concerning quantification, the widely used spectrophotometric Folin-Ciocalteu method should be avoided as it leads to overestimation. Liquid chromatography coupled to a diode array detector is the most appropriate technique for this purpose. Although pure standard compounds are unavailable in most cases, standards representative of a PC family can be used, and results can be expressed as equivalent. The best approach for NEPC identification is liquid chromatography coupled to a diode array detector and tandem high-resolution mass spectrometry, which generates information regarding chromatographic behavior, UV-vis absorption, accuracy mass and fragmentation pattern. The identification process should associate manual data handling with the bioinformatics-assisted approach.
Collapse
Affiliation(s)
- Caroline Carboni Martins
- Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, Brazil
| | - Rafael C Rodrigues
- Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, Brazil
| | - Giovana Domeneghini Mercali
- Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, Brazil
| | - Eliseu Rodrigues
- Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, Brazil.
| |
Collapse
|
12
|
Naibaho J, Wojdyło A, Korzeniowska M, Laaksonen O, Föste M, Kütt ML, Yang B. Antioxidant activities and polyphenolic identification by UPLC-MS/MS of autoclaved brewers’ spent grain. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Naibaho J, Butula N, Jonuzi E, Korzeniowska M, Laaksonen O, Föste M, Kütt ML, Yang B. Potential of brewers’ spent grain in yogurt fermentation and evaluation of its impact in rheological behaviour, consistency, microstructural properties and acidity profile during the refrigerated storage. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107412] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
14
|
|
15
|
Spent Grain from Malt Whisky: Assessment of the Phenolic Compounds. Molecules 2021; 26:molecules26113236. [PMID: 34072250 PMCID: PMC8199313 DOI: 10.3390/molecules26113236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 11/23/2022] Open
Abstract
In order to extract antioxidant phenolic compounds from spent grain (SG) two extraction methods were studied: the ultrasound-assisted method (US) and the Ultra-Turrax method (high stirring rate) (UT). Liquid to solid ratios, solvent concentration, time, and temperature/stirring rate were optimized. Spent grain extracts were analyzed for their total phenol content (TPC) (0.62 to 1.76 mg GAE/g SG DW for Ultra-Turrax pretreatment, and 0.57 to 2.11 mg GAE/g SG DW for ultrasound-assisted pretreatment), total flavonoid content (TFC) (0.6 to 1.67 mg QE/g SG DW for UT, and 0.5 to 1.63 mg QE/g SG DW for US), and antioxidant activity was measured using 2,2-diphenyl-2-picrylhydrazyl (DPPH) free radical (25.88% to 79.58% for UT, and 27.49% to 78.30% for UT). TPC was greater at a high stirring rate and high exposure time up to a certain extent for the Ultra-Turrax method, and at a high temperature for the ultrasound-assisted method. P-coumaric acid (20.4 ± 1.72 mg/100 SG DW for UT, and 14.0 ± 1.14 mg/100 SG DW for US) accounted for the majority of the phenolic found compounds, followed by rosmarinic (6.5 ± 0.96 mg/100 SG DW for UT, and 4.0 ± 0.76 mg/100 SG DW for US), chlorogenic (5.4 ± 1.1 mg/100 SG DW for UT, and non-detectable for US), and vanillic acids (3.1 ± 0.8 mg/100 SG DW for UT, and 10.0 ± 1.03 mg/100 SG DW for US) were found in lower quantities. Protocatechuic (0.7 ± 0.05 mg/100 SG DW for UT, and non-detectable for US), 4-hydroxy benzoic (1.1 ± 0.06 mg/100 SG DW for UT, and non-detectable for US), and caffeic acids (0.7 ± 0.03 mg/100 SG DW for UT, and non-detectable for US) were present in very small amounts. Ultrasound-assisted and Ultra-Turrax pretreatments were demonstrated to be efficient methods to recover these value-added compounds.
Collapse
|