1
|
Goswami S, Ghosh M, Roy S, Basak S, Bhattacharjee S. Quercetin combined with ciprofloxacin and gentamicin inhibits biofilm formation and virulence in Staphylococcus aureus. Microb Pathog 2025; 200:107297. [PMID: 39814109 DOI: 10.1016/j.micpath.2025.107297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 12/19/2024] [Accepted: 01/10/2025] [Indexed: 01/18/2025]
Abstract
Biofilm formation, extracellular substance synthesis, and virulence factor production all have a major impact on drug tolerance and infection propagation caused by Staphylococcus aureus. Flavonoid compounds have been explored as potential solutions to enhance antibiotic efficacy against the biofilm formation of pathogenic microbes. Quercetin (QER) has previously demonstrated antibacterial and antibiofilm properties. This study examines the potential of QER on enhancing the antibacterial, antibiofilm, and antivirulent potential of conventional antibiotics gentamicin (GEN), and ciprofloxacin (CIP) and aims to decipher the underlying mechanisms of action. Our research demonstrates that combining QER with GEN or CIP enhances their antibacterial activity, disrupts S. aureus cell membrane integrity, and increases reactive oxygen species production, leading to enhanced bacterial cell lysis. Furthermore, the combinatorial effect of QER with sub-MIC of GEN and CIP markedly inhibits biofilm formation, reduces viable cell counts, and diminishes the extracellular matrix components. The inhibition of biofilm after combinatorial treatment is confirmed through fluorescence microscopy and scanning electron microscopy. The study also found that QER-antibiotics combinations strongly reduce virulence characteristics in S. aureus, (spreading ability, protease, and hemolysin production) controlled by global key regulatory factors AgrA and SarA.Gene expression analysis revealed down regulation of key regulatory genes (sarA and agrA) and the virulence gene (hla). Molecular docking experiments have revealed the interaction between QER and the quorum sensing regulatory proteins SarA and AgrA, predicting another possible mechanism by which QER improves the anti-biofilm and antivirulence efficacy of GEN and CIP. Collectively, our findings indicate that QER enhances the efficacy of GEN and CIP antibiotics in reducing the antibiofilm and virulent characteristics of S. aureus, highlighting its potential as a broad-spectrum strategy for controlling S. aureus pathogenicity.
Collapse
Affiliation(s)
- Sanghamitra Goswami
- Department of Molecular Biology & Bioinformatics, Tripura University (A Central University), Suryamaninagar, 799022, Tripura, India
| | - Manisha Ghosh
- Division of Bioinformatics, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Saikat Roy
- Department of Molecular Biology & Bioinformatics, Tripura University (A Central University), Suryamaninagar, 799022, Tripura, India
| | - Surajit Basak
- Division of Bioinformatics, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Surajit Bhattacharjee
- Department of Molecular Biology & Bioinformatics, Tripura University (A Central University), Suryamaninagar, 799022, Tripura, India.
| |
Collapse
|
2
|
Chen X, Wang X, Wang Q, Cai D, Yu J, Zhu B, Zhou D, Yin F. In vitro hydrolysis of V-type starch inclusion complexes of alkyl gallates: the controlled two-step release behavior of gallic acid and its beneficial effect on glycemic control. Food Funct 2025; 16:1550-1561. [PMID: 39907005 DOI: 10.1039/d4fo05743k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
The heat treatment method was used to synthesize starch inclusion complexes from starch and short-chain alkyl gallates (a typical representative of phenololipids), such as butyl gallate, propyl gallate, ethyl gallate and methyl gallate. In an everted rat gut sac model, HPLC-UV analysis revealed that the released alkyl gallates from inclusion complexes were degraded to produce gallic acid. Gallic acids (0.009455-0.014160 nmol min-1) and alkyl gallates (0.2695-0.9441 nmol min-1) were both able to pass through intestinal membranes. After transmembrane transfer, alkyl gallates could also be hydrolyzed to produce gallic acid (1.947 × 10-5-2.290 × 10-5 min-1). It was evident that such an inclusion complex demonstrated superior dual sustained-release characteristics for phenolic compounds. Meanwhile, starch inclusion complexes can also slow down starch digestion by raising resistant starch (from 12.2% to 27.2-46.0%) and lowering rapidly digestible starch (from 51.2% to 22.2-51.2%), according to a glucose oxidase-peroxidase analysis. The delayed digestion behavior of starch in inclusion complexes is very beneficial for blood glucose control. Thus, our work effectively established a theoretical foundation for modifying the dual sustained-release behavior of phenolic compounds and the retardation of starch digestion by adjusting the carbon-chain length in starch inclusion complexes.
Collapse
Affiliation(s)
- Xuan Chen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, People's Republic of China
| | - Xinmiao Wang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China.
| | - Qian Wang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China.
| | - Dong Cai
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China.
| | - Jinghan Yu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China.
| | - Beiwei Zhu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China.
| | - Dayong Zhou
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China.
| | - Fawen Yin
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China.
| |
Collapse
|
3
|
Tao W, Li W, Jin R, Liang D, Weng W, Lin R, Yang S. BCP4: A novel antimicrobial peptide with potent efficacy against Bacillus cereus in rice porridge. Int J Food Microbiol 2025; 429:111001. [PMID: 39631214 DOI: 10.1016/j.ijfoodmicro.2024.111001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/12/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Bacillus cereus is a common foodborne pathogen that frequently contaminates rice products and produces cereulide toxins, presenting a significant risk to food safety and human health. In contrast, Bacillus subtilis is a promising source of antimicrobial peptides (AMPs). In this research, a novel AMP named BCP4 (KGKTLLQ) was discovered through the fermentation of shrimp waste with B. subtilis, which speculated that BCP4 might be generated through enzymatic hydrolysis catalyzed by endogenous enzymes naturally present in shrimp waste. BCP4 demonstrated potent antibacterial activity against B. cereus with a minimum bactericidal concentration (MBC) of 62.5 μg/mL and bacterial time-kill of 3 h. BCP4 surpassed the bactericidal efficiency of nisin (500 μg/mL), a commonly used AMP of microbial origin. BCP4 operates by causing damage to the bacterial cell wall and membrane, which allows the contents of the cell to flow out. BCP4 also penetrates the cell membrane and binds with DNA, effectively sterilizing the bacteria. Meanwhile, treatment of BCP4 with mammalian red blood cells revealed that it was nonhemolytic. Furthermore, the growth of B. cereus in rice porridge was significantly inhibited by BCP4 at a concentration of 62.5 μg/mL. This study provides a theoretical basis for using BCP4 to control B. cereus contamination.
Collapse
Affiliation(s)
- Weihong Tao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China
| | - Wenjie Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China
| | - Ritian Jin
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, Fujian 361021, China
| | - Duo Liang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China
| | - Wuyin Weng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China
| | - Rong Lin
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, Fujian 361021, China.
| | - Shen Yang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, Fujian 361021, China.
| |
Collapse
|
4
|
Cai R, Jing Z, Li Y, Zhong X, Sheng Q, Yue T, Wang Z, Yuan Y. Inactivation activity and mechanism of high-voltage pulsed electric fields combined with antibacterial agents against Alicyclobacillus spp. in apple juice. Int J Food Microbiol 2025; 431:111079. [PMID: 39842316 DOI: 10.1016/j.ijfoodmicro.2025.111079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/10/2025] [Accepted: 01/20/2025] [Indexed: 01/24/2025]
Abstract
Alicyclobacillus spp. are crucial factors affecting the quality of fruit juice, so it is very important to control their contamination. In this study, the inactivation activity and mechanism of high-voltage pulsed electric fields (HVPEF) combined with antibacterial agents against Alicyclobacillus spp. in apple juice were investigated. It was found that under the optimal conditions of electric field strength 9.6 kV/cm, treatment time 20 min, frequency 1000 Hz, and duty ratio 50 %, HVPEF treatment could reduce bacteria by 1.89-4.76 log CFU/mL. Moreover, the inactivation activities of six antibacterial agents (propyl paraben, glycerol monocaprate, octyl gallate, heptyl paraben, nisin, carvacrol) alone and their combination with HVPEF were further investigated. The results showed that with the combined treatment, the minimum bactericidal concentrations of carvacrol, nisin, and heptyl paraben were reduced by >50 % to 1 mg/mL, 10 IU/mL, and 0.02 mg/mL, respectively. Based on this, the most resistant strain of A. acidoterrestris (DSM 3922) was identified to elucidate the inactivation mechanism. It was demonstrated that the antibacterial process could alter the permeability and fatty acid composition of the cell membrane, causing the cells to deform and shrink, leading to leakage of intracellular proteins, and also affect the synthesis of ROS and ATP, ultimately resulting in bacterial death. In addition, the various treatments had no significant effect on the soluble solids content, titratable acid, soluble sugar content, organic acids and aroma components of apple juice. The combination of HVPEF treatment and antibacterial agents could effectively maintain the quality of apple juice.
Collapse
Affiliation(s)
- Rui Cai
- College of Food Science and Engineering, Northwest University, Xi'an, Shaanxi 710069, China
| | - Zhihuan Jing
- School of Food Science and technology, Dalian polytechnic University, Dalian, Liaoning 116034, China
| | - Yue Li
- College of Food Science and Engineering, Northwest University, Xi'an, Shaanxi 710069, China
| | - Xinyi Zhong
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qingling Sheng
- College of Food Science and Engineering, Northwest University, Xi'an, Shaanxi 710069, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest University, Xi'an, Shaanxi 710069, China
| | - Zhouli Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest University, Xi'an, Shaanxi 710069, China.
| |
Collapse
|
5
|
Lee CR, Lee SJ, Kim TI, Chathuranga K, Lee JS, Kim S, Kim MH, Park WH. Chitosan-gallic acid conjugate edible coating film for perishable fruits. Food Chem 2025; 463:141322. [PMID: 39303471 DOI: 10.1016/j.foodchem.2024.141322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/08/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
Approximately 30 % of global agricultural land is used to produce food that is ultimately lost or wasted, making it imperative to explore strategies for mitigating this waste. This study explored the potential of chitosan (CS) derivatives as edible coatings to extend food shelf life. Although soluble CS derivatives such as glycol CS are suitable coatings, their antimicrobial properties often diminish with increased solubility. To address this issue, gallic acid (GA), a polyphenol, was conjugated with CS using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide/N-hydroxysuccinimide (EDC/NHS) chemistry to create edible coating solutions. The resulting CS-GA films exhibited remarkable solubility, mechanical strength, UV-blocking properties, and superior antioxidant and antimicrobial properties. Furthermore, these films exhibited a high affinity for hydrophobic fruit surfaces while also facilitating easy washing, making them an alternative for consumers who are averse to film-coated products. The CS-GA-coated fruits exhibited minimal surface spoilage, decreased mass loss, and increased firmness. Therefore, these CS-GA conjugate coatings hold significant potential as eco-friendly, edible, and washable food packaging coatings.
Collapse
Affiliation(s)
- Cho Rok Lee
- Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134, South Korea
| | - Su Jin Lee
- Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134, South Korea
| | - Tae In Kim
- Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134, South Korea
| | - Kiramage Chathuranga
- Department of Veterinary Microbiology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, South Korea
| | - Jong Soo Lee
- Department of Veterinary Microbiology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, South Korea
| | - Sangsik Kim
- Department of Energy Chemical Engineering, Kyungpook National University, Sangju 37224, South Korea
| | - Min Hee Kim
- Department of Textile Engineering, Kyungpook National University, Sangju 37224, South Korea.
| | - Won Ho Park
- Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134, South Korea.
| |
Collapse
|
6
|
Dai J, Li Q, Li Z, Zang Z, Luo Y, Zhou C. Discovery of Quinazolone Pyridiniums as Potential Broad-Spectrum Antibacterial Agents. Molecules 2025; 30:243. [PMID: 39860113 PMCID: PMC11767251 DOI: 10.3390/molecules30020243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/02/2025] [Accepted: 01/04/2025] [Indexed: 01/27/2025] Open
Abstract
The overprescription of antibiotics in medicine and agriculture has accelerated the development and spread of antibiotic resistance in bacteria, which severely limits the arsenal available to clinicians for treating bacterial infections. This work discovered a new class of heteroarylcyanovinyl quinazolones and quinazolone pyridiniums to surmount the increasingly severe bacterial resistance. Bioactive assays manifested that the highly active compound 19a exhibited strong inhibition against MRSA and Escherichia coli with extremely low MICs of 0.5 μg/mL, being eightfold more active than that of norfloxacin (MICs = 4 μg/mL). The highly active 19a with rapid bactericidal properties displayed imperceptible resistance development trends, negligible hemolytic toxicity, and effective biofilm inhibitory effects. Preliminary explorations on antibacterial mechanisms revealed that compound 19a could cause membrane damage, embed in intracellular DNA to hinder bacterial DNA replication, and induce metabolic dysfunction. Surprisingly, active 19a was found to trigger the conformational change in PBP2a of MRSA to open the active site, which might account for its high inhibition against MRSA. In addition, the little effect of molecule 19a on the production of reactive oxygen species indicated that bacterial death was not caused by oxidative stress. The above comprehensive analyses highlighted the large potential of quinazolone pyridiniums as multitargeting broad-spectrum antibacterial agents.
Collapse
Affiliation(s)
- Jie Dai
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Qianyue Li
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Ziyi Li
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Zhonglin Zang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yan Luo
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Chenghe Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
7
|
Chen X, Wang Y, Li C, Hua Z, Cui H, Lin L. Antibacterial effect of protease-responsive cationic eugenol liposomes modified by gamma-polyglutamic acid against Staphylococcus aureus. J Liposome Res 2024; 34:411-420. [PMID: 37966062 DOI: 10.1080/08982104.2023.2280829] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 11/03/2023] [Indexed: 11/16/2023]
Abstract
Eugenol, as a natural antibacterial agent, has been widely studied for its inhibitory effect on the common food-borne pathogen Staphylococcus aureus (S. aureus). However, the widespread application of eugenol is still limited by its instability and volatility. Herein, γ-polyglutamic acid coated eugenol cationic liposomes (pGA-ECLPs) were successfully constructed by self-assembly with an average particle size of 170.7 nm and an encapsulation efficiency of 36.2%. The formation of pGA shell significantly improved the stability of liposomes, and the encapsulation efficiency of eugenol only decreased by 20.7% after 30 days of storage at 4 °C. On the other hand, the pGA layer can be hydrolyzed by S. aureus, achieving effective control of release through response to bacterial stimuli. The application experiments further confirmed that pGA-ECLPs effectively prolonged the antibacterial effect of eugenol in fresh chicken without causing obvious sensory effects on the food. The above results of this study provide an important reference for extending the action time of natural antibacterial substances and developing new stimuli-responsive antibacterial systems.
Collapse
Affiliation(s)
- Xiaochen Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yiwei Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Changzhu Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, China
| | - Zichun Hua
- School of Life Sciences, Nanjing University, Nanjing, China
- Changzhou High-Tech Research Institute of Nanjing University, Changzhou China
| | - Haiying Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Lin Lin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, China
| |
Collapse
|
8
|
Medrano-Padial C, Pérez-Novas I, Domínguez-Perles R, García-Viguera C, Medina S. Bioaccessible Phenolic Alkyl Esters of Wine Lees Decrease COX-2-Catalyzed Lipid Mediators of Oxidative Stress and Inflammation in a Time-Dependent Manner. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19016-19027. [PMID: 39145698 PMCID: PMC11363137 DOI: 10.1021/acs.jafc.4c05086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 08/16/2024]
Abstract
Lipophenols, phenolic compounds esterified with fatty alcohols or fatty acids, provide greater health benefits upon dietary ingestion of plant-based foods than unesterified (poly)phenols. Based on this premise, the present study aimed to demonstrate the role of gastrointestinal enzymes (pepsin, pancreatin, and pancreatic lipase) in releasing alkyl gallates and trans-caffeates from wine lees, providing bioactive compounds with enhanced capacities against oxidative stress (OS) and para-inflammation. The UHPLC-ESI-QqQ-MS/MS-based analysis revealed ethyl gallate and ethyl trans-caffeate as the most prominent compounds (1.675 and 0.872 μg/g dw, respectively), while the bioaccessibility of the derivatives of gallic and caffeic acids was dependent on the alkyl chain properties. The de novo formation of alkyl gallates during gastric and intestinal digestion resulted from intestinal enzyme activity. Moreover, the in vitro capacity of bioaccessible alkyl esters of gallic and trans-caffeic acids to reduce cyclooxygenase-2 concentration and modulate oxilipins related to OS (8-iso-PGF2α) and inflammation (PGF2α and PGE2) was demonstrated in a time-dependent manner. In conclusion, the presence of alkyl esters of gallic and trans-caffeic acids in wine lees and their subsequent formation during digestion of this byproduct emphasize their value as a source of antioxidant and anti-inflammatory compounds, encouraging the consideration of wine lees as a valuable ingredient for health-promoting coproducts.
Collapse
Affiliation(s)
- Concepción Medrano-Padial
- Laboratorio de Fitoquímica
y Alimentos Saludables (LabFAS), CSIC, CEBAS, Campus Universitario de Espinardo
25, 30100 Espinardo, Murcia, Spain
| | - Irene Pérez-Novas
- Laboratorio de Fitoquímica
y Alimentos Saludables (LabFAS), CSIC, CEBAS, Campus Universitario de Espinardo
25, 30100 Espinardo, Murcia, Spain
| | - Raúl Domínguez-Perles
- Laboratorio de Fitoquímica
y Alimentos Saludables (LabFAS), CSIC, CEBAS, Campus Universitario de Espinardo
25, 30100 Espinardo, Murcia, Spain
| | - Cristina García-Viguera
- Laboratorio de Fitoquímica
y Alimentos Saludables (LabFAS), CSIC, CEBAS, Campus Universitario de Espinardo
25, 30100 Espinardo, Murcia, Spain
| | - Sonia Medina
- Laboratorio de Fitoquímica
y Alimentos Saludables (LabFAS), CSIC, CEBAS, Campus Universitario de Espinardo
25, 30100 Espinardo, Murcia, Spain
| |
Collapse
|
9
|
Zheng MZ, Chen WX, Zhao YX, Fang Q, Wang LG, Tian SY, Shi YG, Chen JS. Ascorbic acid potentiates photodynamic inactivation mediated by octyl gallate and blue light for rapid eradication of planktonic bacteria and biofilms. Food Chem 2024; 448:139073. [PMID: 38574713 DOI: 10.1016/j.foodchem.2024.139073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 03/07/2024] [Accepted: 03/16/2024] [Indexed: 04/06/2024]
Abstract
This study reported for the first time that Ascorbic acid (AA) could appreciably boost the efficiency of Octyl gallate (OG)-mediated photodynamic inactivation (PDI) on Escherichia coli and Staphylococcus aureus in planktonic and biofilm states. The combination of OG (0.075 mM) and AA (200 mM) with 420 nm blue light (212 mW/cm2) led to a >6 Log killing within only 5 min for E. coli and S. aureus and rapid eradication of biofilms. The mechanism of action appears to be the generation of highly toxic hydroxyl radicals (•OH) via photochemical pathways. OG was exposed to BL irradiation to generate various reactive oxygen radicals (ROS) and the addition of AA could transform singlet oxygen (1O2) into hydrogen peroxide (H2O2), which could further react with AA to generate enormous •OH. These ROS jeopardized bacteria and biofilms by nonspecifically attacking various biomacromolecules. Overall, this PDI strategy provides a powerful microbiological decontamination modality to guarantee safe food products.
Collapse
Affiliation(s)
- Mei-Zhi Zheng
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Wen-Xuan Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Yue-Xin Zhao
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Qiang Fang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Ling-Gang Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Shi-Yi Tian
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Yu-Gang Shi
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China.
| | - Jian-She Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| |
Collapse
|
10
|
Chen R, Zhang K, Shi Y, Ettelaie R, Shi Y, Li D, Zhang S, Dang Y, Chen J. Advancing Photodynamic Antimicrobial Strategy: Sustainable Fabrication of Novel Lauryl Gallate-Chitosan Hydrophobic Films with Rapid Bacterial Capture and Biofilms Elimination Capabilities for Promoting Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:19571-19584. [PMID: 38564737 DOI: 10.1021/acsami.4c01735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Bioinspired photoactive composites, in terms of photodynamic inactivation, cost-effectiveness, and biosafety, are promising alternatives to antibiotics for combating bacterial infections while avoiding antibacterial resistance. However, the weak bacterial membrane affinity of the photoactive substrate and the lack of synergistic antibacterial effect remain crucial shortcomings for their antibacterial applications. Herein, we developed a hydrophobic film from food antioxidant lauryl gallate covalently functionalized chitosan (LG-g-CS conjugates) through a green radical-induced grafting reaction that utilizes synergistic bacteria capture, contact-killing, and photodynamic inactivation activities to achieve enhanced bactericidal and biofilm elimination capabilities. Besides, the grafting reaction mechanism between LG and CS in the ascorbic acid (AA)/H2O2 redox system was further proposed. The LG-g-CS films feature hydrophobic side chains and photoactive phenolic hydroxyl groups, facilitating dual bactericidal activities through bacteria capture and contact-killing via strong hydrophobic and electrostatic interactions with bacterial membranes as well as blue light (BL)-driven photodynamic bacterial eradication through the enhanced generation of reactive oxygen species. As a result, the LG-g-CS films efficiently capture and immobilize bacteria and exhibit excellent photodynamic antibacterial activity against model bacteria (Escherichia coli and Staphylococcus aureus) and their biofilms under BL irradiation. Moreover, LG-g-CS films could significantly promote the healing process of S. aureus-infected wounds. This research demonstrates a new strategy for designing and fabricating sustainable bactericidal and biofilm-removing materials with a high bacterial membrane affinity and photodynamic activity.
Collapse
Affiliation(s)
- Rukang Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035, Zhejiang, China
| | - Ke Zhang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035, Zhejiang, China
| | - Yugang Shi
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035, Zhejiang, China
- Institute of Food Microbiology, Zhejiang Gongshang University, Hangzhou 310035, Zhejiang, China
| | - Rammile Ettelaie
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, U.K
| | - Yu Shi
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035, Zhejiang, China
| | - Donghui Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035, Zhejiang, China
| | - Siying Zhang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035, Zhejiang, China
| | - Yali Dang
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315211, China
| | - Jianshen Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035, Zhejiang, China
| |
Collapse
|
11
|
Wang Q, Yang Y, Dong X, Wang H, Ding L, Wang X. Design of a Novel Lysine Isopeptide 1018KI11 with Potent Antimicrobial Activity as a Safe and Stable Food Preservative Candidate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7894-7905. [PMID: 38551085 DOI: 10.1021/acs.jafc.3c09484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Antimicrobial peptides are potent food additive candidates, but most of them are sensitive to proteases, which limits their application. Therefore, we substituted arginine for lysine and introduced a lysine isopeptide bond to peptide IDR-1018 in order to improve its enzymatic stability. Subsequently, the protease stability and antimicrobial/antibiofilm activity of the novel peptides (1018K2-1018KI11) were investigated. The data revealed that the antienzymatic potential of 1018KI11 to bromelain and papain increased by 2-8 folds and 16 folds, respectively. The minimum inhibitory concentration (MIC) of 1018KI11 against methicillin-resistant Staphylococcus aureus (MRSA) ATCC43300 and Escherichia coli (E. coli) ATCC25922 was reduced 2-fold compared to 1018K11. Mechanism exploration suggested that 1018KI11 was more effective than 1018K11 in disrupting the cell barrier and damaging genomic DNA. Additionally, 1018KI11 at certain concentration conditions (2-64 μg/mL) reduced biofilm development of MRSA ATCC43300 by 4.9-85.9%. These data indicated that novel peptide 1018KI11 is a potential food preservative candidate.
Collapse
Affiliation(s)
- Qiang Wang
- Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
- School of Food and Pharmacy, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Yuxin Yang
- Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Xunxi Dong
- Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Hao Wang
- Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Lijian Ding
- Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Xiao Wang
- Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| |
Collapse
|
12
|
Zhang Y, Yang Z, Huang Q, Zhan X, Liu X, Guo D, Wang S, Rui W, Lü X, Shi C. Antimicrobial Activity of Eugenol Against Bacillus cereus and Its Application in Skim Milk. Foodborne Pathog Dis 2024; 21:147-159. [PMID: 38100031 DOI: 10.1089/fpd.2023.0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024] Open
Abstract
Bacillus cereus is a foodborne pathogen widely distributed in the large-scale catering industry and produces spores. The study explored the antibacterial activity, potential mechanism of eugenol against B. cereus, and spores with germination rate. The minimum inhibitory concentration (MIC; 0.6 mg/mL) of eugenol to six B. cereus strains was compared with the control; B. cereus treated with eugenol had a longer lag phase. Eugenol at a concentration of more than 1/2MIC decreased viable B. cereus (∼5.7 log colony-forming unit [CFU]/mL) counts below detectable limits within 2 h, and eugenol of 3MIC reduced B. cereus (∼5.9 log CFU/mL) in skim milk below detectable limits within 30 min. The pH values of skim milk were unaffected by the addition of eugenol. The ΔE values below 2 show that the color variations of skim milk were not visible to the human eye. For sensory evaluation, eugenol did not significantly affect the color or structural integrity of the skim milk. It had a negative impact on the flavor and general sensory acceptance of the treated milk. Eugenol hyperpolarized B. cereus cell membrane, decreased intracellular ATP concentration, and increased intracellular reactive oxygen species contents and extracellular malondialdehyde contents, resulting in the cell membrane of B. cereus being damaged and permeabilized, and cell morphology being changed. In addition, according to the viable count, confocal laser scanning microscopy, and spore morphology changes, eugenol reduced the germination rate of B. cereus spores. These findings suggest that eugenol can be used as a new natural antibacterial agent to control B. cereus and spores in the food production chain.
Collapse
Affiliation(s)
- Yingying Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Zhuokai Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Qianning Huang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xiangjun Zhan
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xing Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Du Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Shuo Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Wushuang Rui
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
13
|
Aghababaei F, McClements DJ, Martinez MM, Hadidi M. Electrospun plant protein-based nanofibers in food packaging. Food Chem 2024; 432:137236. [PMID: 37657333 DOI: 10.1016/j.foodchem.2023.137236] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/22/2023] [Accepted: 08/20/2023] [Indexed: 09/03/2023]
Abstract
Electrospinning is a relatively simple technology capable to produce nano- and micron-scale fibers with different properties depending on the electrospinning conditions. This review critically investigates the fabrication of electrospun plant protein nanofibers (EPPNFs) that can be used in food and food packaging applications. Recent progress in the development and optimization of electrospinning techniques for production of EPPNFs is discussed. Finally, current challenges to the implementation of EPPNFs in food and food packaging applications are highlighted, including potential safety and scalability issues. The production of plant protein nanofibers and microfibers is likely to increase in the future as many industries wish to replace synthetic materials with more sustainable, renewable, and environmentally friendly biopolymers. It is therefore likely that EPPNFs will find increasing applications in various fields including active food packaging and drug delivery.
Collapse
Affiliation(s)
- Fatemeh Aghababaei
- Centre d'Innovació, Recerca i Transferència en Tecnologia dels Aliments (CIRTTA), TECNIO-UAB, XIA, Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, UAB-Campus, 08193 Bellaterra, Spain
| | | | - Mario M Martinez
- Centre for Innovative Food (CiFOOD), Department of Food Science, Aarhus University, Agro Food Park 48, Aarhus N 8200, Denmark
| | - Milad Hadidi
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain.
| |
Collapse
|
14
|
Cui T, Fan Y, Liu Y, Fan X, Sun Y, Cheng G, Cheng J. Antibacterial Activity and Mechanism of Self-Assembly Spermidine-Capped Carbon Dots against Staphylococcus aureus. Foods 2023; 13:67. [PMID: 38201095 PMCID: PMC10778379 DOI: 10.3390/foods13010067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
This paper investigated the antibacterial mechanism of spermidine-capped carbon dots (S-PCDs) against Staphylococcus aureus. The results showed that there were a large number of amino groups on the surface of S-PCDs and they had a high positive charge (+47.06 mV), which could be adsorbed on the negatively charged bacterial surface through electrostatic interaction and changed the permeability of the bacterial cell membrane. The extracellular protein and nucleic acid contents of S. aureus treated with S-PCDs were 5.4 and 1.2 times higher than those of the control group, respectively. The surface folds and defects of the bacterial cell membrane, and the leakage of cell contents were observed using SEM and TEM. The expression of metabolic oxidation regulatory genes dmpI, narJ and narK was upregulated and the intracellular ROS generation was induced, causing bacterial oxidative stress and eventually bacterial death. S-PCDs can effectively inhibit biofilm formation and had low cytotoxicity. The S-PCD treatment successfully inhibited microbial reproduction when pasteurized milk was stored at 25 °C and 4 °C. These results provide important insights into the antimicrobial mechanism of S-PCDs and lay the foundation for their application in the food field as a potentially novel bacteriostatic nanomaterial.
Collapse
Affiliation(s)
- Tianqi Cui
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Ya Fan
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China
| | - Yaping Liu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China
| | - Xuejing Fan
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China
| | - Yuxue Sun
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Guiguang Cheng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China
| | - Jianjun Cheng
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
15
|
Toyomoto T, Ono K, Shiba T, Momitani K, Zhang T, Tsutsuki H, Ishikawa T, Hoso K, Hamada K, Rahman A, Wen L, Maeda Y, Yamamoto K, Matsuoka M, Hanaoka K, Niidome T, Akaike T, Sawa T. Alkyl gallates inhibit serine O-acetyltransferase in bacteria and enhance susceptibility of drug-resistant Gram-negative bacteria to antibiotics. Front Microbiol 2023; 14:1276447. [PMID: 37965540 PMCID: PMC10641863 DOI: 10.3389/fmicb.2023.1276447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/12/2023] [Indexed: 11/16/2023] Open
Abstract
A principal concept in developing antibacterial agents with selective toxicity is blocking metabolic pathways that are critical for bacterial growth but that mammalian cells lack. Serine O-acetyltransferase (CysE) is an enzyme in many bacteria that catalyzes the first step in l-cysteine biosynthesis by transferring an acetyl group from acetyl coenzyme A (acetyl-CoA) to l-serine to form O-acetylserine. Because mammalian cells lack this l-cysteine biosynthesis pathway, developing an inhibitor of CysE has been thought to be a way to establish a new class of antibacterial agents. Here, we demonstrated that alkyl gallates such as octyl gallate (OGA) could act as potent CysE inhibitors in vitro and in bacteria. Mass spectrometry analyses indicated that OGA treatment markedly reduced intrabacterial levels of l-cysteine and its metabolites including glutathione and glutathione persulfide in Escherichia coli to a level similar to that found in E. coli lacking the cysE gene. Consistent with the reduction of those antioxidant molecules in bacteria, E. coli became vulnerable to hydrogen peroxide-mediated bacterial killing in the presence of OGA. More important, OGA treatment intensified susceptibilities of metallo-β-lactamase-expressing Gram-negative bacteria (E. coli and Klebsiella pneumoniae) to carbapenem. Structural analyses showed that alkyl gallate bound to the binding site for acetyl-CoA that limits access of acetyl-CoA to the active site. Our data thus suggest that CysE inhibitors may be used to treat infectious diseases caused by drug-resistant Gram-negative bacteria not only via direct antibacterial activity but also by enhancing therapeutic potentials of existing antibiotics.
Collapse
Affiliation(s)
- Touya Toyomoto
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Katsuhiko Ono
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tomoo Shiba
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto, Japan
| | - Kenta Momitani
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto, Japan
| | - Tianli Zhang
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiroyasu Tsutsuki
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takeshi Ishikawa
- Department of Chemistry, Biotechnology, and Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University, Kagoshima, Japan
| | - Kanae Hoso
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Koma Hamada
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Azizur Rahman
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Liping Wen
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yosuke Maeda
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Keiichi Yamamoto
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Masao Matsuoka
- Department of Hematology, Rheumatology, and Infectious Diseases, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kenjiro Hanaoka
- Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan
| | - Takuro Niidome
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Takaaki Akaike
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomohiro Sawa
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
16
|
Domínguez-Perles R, García-Viguera C, Medina S. New anti-α-Glucosidase and Antioxidant Ingredients from Winery Byproducts: Contribution of Alkyl Gallates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14615-14625. [PMID: 37766493 PMCID: PMC10571075 DOI: 10.1021/acs.jafc.3c03759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
Wine-making activity entails the production of solid and semisolid byproducts (grape stems and pomace and wine lees) that negatively impact the environment and industrial sustainability. Their features as sources of bioactive compounds support valorization procedures for functional and healthy ingredients. This work uncovers the quantitative alkyl gallates (gallic acid esters, C1-C12) profile of fresh (freeze-dried) materials and the effect of oven-drying on their stability by UHPLC-ESI-QqQ-MS/MS. The functionality was established concerning DPPH• scavenging and antihyperglycemic power. Wine lees exerted the highest high-free concentration of galloyl derivatives, ethyl gallate being the most abundant ester (3472.62 ng/g dw, on average). About the impact of the stabilization process, although as a general trend, the thermal treatment reduced the concentration, the reduction dimensions depended on the compound/matrix, remaining in valuable concentrations. Concerning radical scavenging, ze-dried stems and pomace displayed the highest capacity (24.11 and 18.46 mg TE/g dw, respectively), being correlated with propyl gallate (r2 = 0.690), butyl gallate (r2 = 0.686), and octyl gallate (r2 = 0.514). These two matrices exerted α-glucosidase inhibitory activity (1.58 and 1.46 units/L) equivalent to that of acarbose (a recognized α-glucosidase inhibitor). The newly described bioactive phytochemicals in winery residues (galloyl esters) and their correlation with functional traits allow for envisioning valorization alternatives.
Collapse
Affiliation(s)
- Raúl Domínguez-Perles
- Laboratorio de Fitoquímica y
Alimentos Saludables (LabFAS), CEBAS-CSIC, Campus of the University of Murcia-25, Espinardo, Murcia 30100, Spain
| | - Cristina García-Viguera
- Laboratorio de Fitoquímica y
Alimentos Saludables (LabFAS), CEBAS-CSIC, Campus of the University of Murcia-25, Espinardo, Murcia 30100, Spain
| | - Sonia Medina
- Laboratorio de Fitoquímica y
Alimentos Saludables (LabFAS), CEBAS-CSIC, Campus of the University of Murcia-25, Espinardo, Murcia 30100, Spain
| |
Collapse
|
17
|
Keyvani‐Ghamsari S, Rahimi M, Khorsandi K. An update on the potential mechanism of gallic acid as an antibacterial and anticancer agent. Food Sci Nutr 2023; 11:5856-5872. [PMID: 37823155 PMCID: PMC10563697 DOI: 10.1002/fsn3.3615] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/15/2023] [Accepted: 07/25/2023] [Indexed: 10/13/2023] Open
Abstract
Drug resistance to antibacterial and anticancer drugs is one of the most important global problems in the treatment field that is constantly expanding and hinders the recovery and survival of patients. Therefore, it is necessary to identify compounds that have antibacterial and anticancer properties or increase the effectiveness of existing drugs. One of these approaches is using natural compounds that have few side effects and are effective. Gallic acid (GA) has been identified as one of the most important plant polyphenols that health-promoting effects in various aspects such as bacterial and viral infections, cancer, inflammatory, neuropsychological, gastrointestinal, and metabolic disease. Various studies have shown that GA inhibits bacterial growth by altering membrane structure, and bacterial metabolism, and inhibits biofilm formation. Also, GA inhibits cancer cell growth by targeting different signaling pathways in apoptosis, increasing reactive oxygen species (ROS) production, targeting the cell cycle, and inhibiting oncogenes and matrix metalloproteinases (MMPs) expression. Due to the powerful function of GA against bacteria and cancer cells. In this review, we describe the latest findings in the field of the sources and chemical properties of GA, its pharmacological properties and bioavailability, the antibacterial and anticancer activities of GA, and its derivatives alone, in combination with other drugs and in the form of nanoformulation. This review can be a comprehensive perspective for scientists to use medicinal compounds containing GA in future research and expand its clinical applications.
Collapse
Affiliation(s)
- Saeedeh Keyvani‐Ghamsari
- Clinical Cares and Health Promotion Research Center, Karaj BranchIslamic Azad UniversityKarajIran
| | - Maryam Rahimi
- Clinical Cares and Health Promotion Research Center, Karaj BranchIslamic Azad UniversityKarajIran
| | - Khatereh Khorsandi
- Department of Photodynamic, Medical Laser Research CenterYara Institute, ACECRTehranIran
| |
Collapse
|
18
|
Shi YG, Chen WX, Zheng MZ, Zhao YX, Wang YR, Chu YH, Du ST, Shi ZY, Gu Q, Chen JS. Ultraefficient OG-Mediated Photodynamic Inactivation Mechanism for Ablation of Bacteria and Biofilms in Water Augmented by Potassium Iodide under Blue Light Irradiation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13672-13687. [PMID: 37671932 DOI: 10.1021/acs.jafc.3c03182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
While photodynamic inactivation (PDI) has emerged as a novel sterilization strategy for drinking water treatment that recently attracted tremendous attention, its efficiency needs to be further improved. In this study, we aimed to clarify the ultraefficient mechanism by which potassium iodide (KI) potentiates octyl gallate (OG)-mediated PDI against bacteria and biofilms in water. When OG (0.15 mM) and bacteria were exposed to blue light (BL, 420 nm, 210 mW/cm2), complete sterilization (>7.5 Log cfu/mL of killing) was achieved by the addition of KI (250 mM) within only 5 min (63.9 J/cm2). In addition, at lower doses of OG (0.1 mM) with KI (100 mM), the biofilm was completely eradicated within 10 min (127.8 J/cm2). The KI-potentiated mechanism involves in situ rapid photogeneration of a multitude of reactive oxygen species, especially hydroxyl radicals (•OH), reactive iodine species, and new photocytocidal substances (quinone) by multiple photochemical pathways, which led to the destruction of cell membranes and membrane proteins, the cleavage of genomic DNA and extracellular DNA within biofilms, and the degradation of QS signaling molecules. This multitarget synergistic strategy provided new insights into the development of an environmentally friendly, safe, and ultraefficient photodynamic drinking water sterilization technology.
Collapse
Affiliation(s)
- Yu-Gang Shi
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035 Zhejiang, China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou 310035 Zhejiang, China
| | - Wen-Xuan Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035 Zhejiang, China
| | - Mei-Zhi Zheng
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035 Zhejiang, China
| | - Yue-Xin Zhao
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035 Zhejiang, China
| | - Yi-Ran Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035 Zhejiang, China
| | - Yen-Ho Chu
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi 62102 Taiwan, China
| | - Shao-Ting Du
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Ze-Yu Shi
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Qing Gu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035 Zhejiang, China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou 310035 Zhejiang, China
| | - Jian-She Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035 Zhejiang, China
| |
Collapse
|
19
|
Pang Y, Guan L, Zhu Y, Niu R, Zhu S, Lin Q. Gallic acid-grafted chitosan antibacterial hydrogel incorporated with polydopamine-modified hydroxyapatite for enhancing bone healing. Front Bioeng Biotechnol 2023; 11:1162202. [PMID: 37334266 PMCID: PMC10273101 DOI: 10.3389/fbioe.2023.1162202] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/18/2023] [Indexed: 06/20/2023] Open
Abstract
An open critical-size bone defect is a major medical problem because of the difficulty in self-healing, leading to an increased risk of bacterial infection owing to wound exposure, resulting in treatment failure. Herein, a composite hydrogel was synthesized by chitosan, gallic acid, and hyaluronic acid, termed "CGH." Hydroxyapatite was modified with polydopamine (PDA@HAP) and introduced to CGH to obtain a mussel-inspired mineralized hydrogel (CGH/PDA@HAP). The CGH/PDA@HAP hydrogel exhibited excellent mechanical performances, including self-healing and injectable properties. Owing to its three-dimensional porous structure and polydopamine modifications, the cellular affinity of the hydrogel was enhanced. When adding PDA@HAP into CGH, Ca2+ and PO4 3- could release and then promoted differentiation of BMSCs into osteoblasts. Without any osteogenic agent or stem cells, the area of new bone at the site of defect was enhanced and the newly formed bone had a dense trabecular structure after implanting of the CGH/PDA@HAP hydrogel for 4 and 8 weeks. Moreover, the growth of Staphylococcus aureus and Escherichia coli was effectively inhibited through the grafting of gallic acid onto chitosan. Above, this study provides a reasonable alternative strategy to manage open bone defects.
Collapse
Affiliation(s)
- Yuxuan Pang
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Lin Guan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| | - Yanlin Zhu
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Ruijuan Niu
- Meilong Community Health Service Center, Shanghai, China
| | - Song Zhu
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Quan Lin
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| |
Collapse
|
20
|
Silva RTC, Guidotti-Takeuchi M, Peixoto JLM, Demarqui FM, Mori AP, Dumont CF, Ferreira GRA, Pereira GDM, Rossi DA, Corbi PP, Pavan FR, Rezende Júnior CDO, Melo RTD, Guerra W. New Palladium(II) Complexes Containing Methyl Gallate and Octyl Gallate: Effect against Mycobacterium tuberculosis and Campylobacter jejuni. Molecules 2023; 28:molecules28093887. [PMID: 37175297 PMCID: PMC10179749 DOI: 10.3390/molecules28093887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 05/15/2023] Open
Abstract
This work describes the preparation, characterization and antimicrobial activity of four palladium(II) complexes, namely, [Pd(meg)(1,10-phen)] 1, [Pd(meg)(PPh3)2] 2, [Pd(og)(1,10-phen)] 3 and [Pd(og)(PPh3)2] 4, where meg = methyl gallate, og = octyl gallate, 1,10-phen = 1,10-phenanthroline and PPh3 = triphenylphosphine. As to the chemical structures, spectral and physicochemical studies of 1-4 indicated that methyl or octyl gallate coordinates a palladium(II) ion through two oxygen atoms upon deprotonation. A chelating bidentate phenanthroline or two triphenylphosphine molecules complete the coordination sphere of palladium(II) ion, depending on the complex. The metal complexes were tested against the Mycobacterium tuberculosis H37Rv strain and 2 exhibited high activity (MIC = 3.28 μg/mL). As to the tests with Campylobacter jejuni, complex 1 showed a significant effect in reducing bacterial population (greater than 7 log CFU) in planktonic forms, as well as in the biomass intensity (IBF: 0.87) when compared to peracetic acid (IBF: 1.11) at a concentration of 400 μg/mL. The effect provided by these complexes has specificity according to the target microorganism and represent a promising alternative for the control of microorganisms of public health importance.
Collapse
Affiliation(s)
| | - Micaela Guidotti-Takeuchi
- Laboratory of Experimental Molecular Epidemiology, Federal University of Uberlândia-UFU, Umuarama Campus, Uberlândia 87504-000, MG, Brazil
| | - Jéssica Laura Miranda Peixoto
- Laboratory of Experimental Molecular Epidemiology, Federal University of Uberlândia-UFU, Umuarama Campus, Uberlândia 87504-000, MG, Brazil
| | - Fernanda Manaia Demarqui
- Faculty of Pharmaceutical Sciences, Paulista State University-UNESP, Araraquara Campus, Araraquara 14800-060, SP, Brazil
| | - Ananda Paula Mori
- Institute of Chemistry, Federal University of Uberlândia-UFU, Santa Mônica Campus, Uberlândia 38402-018, MG, Brazil
| | - Carolyne Ferreira Dumont
- Laboratory of Experimental Molecular Epidemiology, Federal University of Uberlândia-UFU, Umuarama Campus, Uberlândia 87504-000, MG, Brazil
| | | | | | - Daise Aparecida Rossi
- Laboratory of Experimental Molecular Epidemiology, Federal University of Uberlândia-UFU, Umuarama Campus, Uberlândia 87504-000, MG, Brazil
| | - Pedro Paulo Corbi
- Institute of Chemistry, State University of Campinas-UNICAMP, Campinas 13083-872, SP, Brazil
| | - Fernando Rogério Pavan
- Faculty of Pharmaceutical Sciences, Paulista State University-UNESP, Araraquara Campus, Araraquara 14800-060, SP, Brazil
| | | | - Roberta Torres de Melo
- Laboratory of Experimental Molecular Epidemiology, Federal University of Uberlândia-UFU, Umuarama Campus, Uberlândia 87504-000, MG, Brazil
| | - Wendell Guerra
- Institute of Chemistry, Federal University of Uberlândia-UFU, Santa Mônica Campus, Uberlândia 38402-018, MG, Brazil
| |
Collapse
|
21
|
Tian H, Li W, Chen C, Yu H, Yuan H. Antibacterial Activity and Mechanism of Oxidized Bacterial Nanocellulose with Different Carboxyl Content. Macromol Biosci 2023; 23:e2200459. [PMID: 36575859 DOI: 10.1002/mabi.202200459] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/20/2022] [Indexed: 12/29/2022]
Abstract
Oxidized bacterial nanocellulose (OBC) is reported to prevent microbial growth, but its antibacterial characteristics and mechanism are still unclear. Here, the antibacterial mechanism of OBC is explored by detecting and assessing the interaction of OBC with different carboxyl content on Staphylococcus aureus and Escherichia coli. The results show that OBC has strong antibacterial activity and antibiofilm activity against S. aureus and E. coli, which is positively correlated with the carboxyl content of OBC. After OBC treatment, the bacteria adhesion is inhibited and the cell membrane is destroyed leading to increased permeability. Further investigation reveals that the concentration of cyclic diguanosine monophosphate (c-di-GMP) that induced biofilm formation is significantly decreased to 1.81 pmol mg-1 after OBC treatment. In addition, OBC inactivates mature biofilms, with inactivation rates up to 79.3%. This study suggests that OBC has excellent antibacterial and antiadhesion properties, which can increase the cell membrane permeability and inhibit c-di-GMP formation. In addition, OBC also has a strong inactivation effect on mature biofilm, which can be used as an effective antibiofilm agent.
Collapse
Affiliation(s)
- Huaixiang Tian
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Haiquan Road 100, Shanghai, 201418, China
| | - Wei Li
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Haiquan Road 100, Shanghai, 201418, China
| | - Chen Chen
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Haiquan Road 100, Shanghai, 201418, China
| | - Haiyan Yu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Haiquan Road 100, Shanghai, 201418, China
| | - Haibin Yuan
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Haiquan Road 100, Shanghai, 201418, China
| |
Collapse
|
22
|
Antimicrobial activity and mechanism of preservatives against Alicyclobacillus acidoterrestris and its application in apple juice. Int J Food Microbiol 2023; 386:110039. [PMID: 36473316 DOI: 10.1016/j.ijfoodmicro.2022.110039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022]
Abstract
Alicyclobacillus acidoterrestris has great influence on the quality of apple juice products. In this study, the antibacterial activity of five preservatives (ε-polylysine, propylparaben, monocaprin, octyl gallate and heptylparaben) against A. acidoterrestris and its underlying mechanism were investigated. Results showed that these five preservatives all exerted antibacterial activity through a multiple bactericidal mechanism, and monocaprin and octyl gallate had the highest antibacterial activity, with the minimum inhibitory concentration (MIC) values of 22.5 and 6.25 mg/L, respectively. Five preservatives all changed the permeability of the cell membrane and destroyed the complete cell morphology, with the leakages of the intracellular electrolytes. Moreover, the treatment of ε-polylysine, propylparaben and monocaprin increased the leakage of intracellular protein; propylparaben and octyl gallate reduced the levels of cellular adenosine triphosphate. Also, monocaprin and octyl gallate may stimulate bacteria to release a large amount of reactive oxygen species, so that certain oxidative damage can kill the bacteria. Furthermore, monocaprin and octyl gallate could effectively inactivate the contamination of A. acidoterrestris in apple juices, with the slightly decrease of soluble sugars and organic acids, without significant adverse effects on total sugars and titratable acids. This research highlights the great promise of using monocaprin and octyl gallate as the safe multi-functionalized food additives for food preservations.
Collapse
|
23
|
Zhang M, Fan L, Liu Y, Li J. Food–grade interface design based on antioxidants to enhance the performance, functionality and application of oil–in–water emulsions: Monomeric, binary and ternary systems. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
24
|
Sun H, Li ZZ, Jeyakkumar P, Zang ZL, Fang B, Zhou CH. A New Discovery of Unique 13-(Benzimidazolylmethyl)berberines as Promising Broad-Spectrum Antibacterial Agents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12320-12329. [PMID: 36135960 DOI: 10.1021/acs.jafc.2c03849] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A new hybridization of berberine and benzimidazoles was performed to produce 13-(benzimidazolylmethyl)berberines (BMB) as potentially broad-spectrum antibacterial agents with the hope of confronting multidrug-resistant bacterial infections in the livestock industry. Some of the newly prepared hybrids showed obvious antibacterial effects against tested strains. Particularly, 13-((1-octyl-benzimidazolyl)methyl)berberine 6f (OBMB-6f) was found to be the most promising compound that not only exerted a strong activity (MIC = 0.25-2 μg/mL) and low cytotoxicity but also possessed a fast bactericidal capacity and low propensity to develop resistance toward Staphylococcus aureus and Escherichia coli even after 26 serial passages. Moreover, OBMB-6f displayed the ability to prevent bacterial biofilm formation at low and high temperatures. The mechanistic exploration revealed that OBMB-6f could significantly disintegrate bacterial membranes, markedly facilitate intracellular ROS generation, and efficiently intercalate into DNA. These results provided a profound insight into BMB against multidrug-resistant bacterial infections in the livestock industry.
Collapse
Affiliation(s)
- Hang Sun
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Zhen-Zhen Li
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Ponmani Jeyakkumar
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Zhong-Lin Zang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Bo Fang
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
25
|
Zhan X, Tan Y, Lv Y, Fang J, Zhou Y, Gao X, Zhu H, Shi C. The Antimicrobial and Antibiofilm Activity of Oregano Essential Oil against Enterococcus faecalis and Its Application in Chicken Breast. Foods 2022; 11:2296. [PMID: 35954060 PMCID: PMC9368637 DOI: 10.3390/foods11152296] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 02/05/2023] Open
Abstract
Oregano essential oil (OEO) possesses anti-inflammatory, antioxidant, and cancer-suppressive properties. Enterococcus faecalis is a foodborne opportunistic pathogen that can be found in nature and the food processing industry. The goal of this investigation was to explore the antimicrobial action and mechanism of OEO against E. faecalis, inactivation action of OEO on E. faecalis in mature biofilms, and its application in chicken breast. The minimum inhibitory concentration (MIC) of OEO against E. faecalis strains (ATCC 29212 and nine isolates) ranged from 0.25 to 0.50 μL/mL. OEO therapy reduced intracellular adenosine triphosphate (ATP) levels, caused cell membrane hyperpolarization, increased the intracellular reactive oxygen species (ROS), and elevated extracellular malondialdehyde (MDA) concentrations. Furthermore, OEO treatment diminished cell membrane integrity and caused morphological alterations in the cells. In biofilms on stainless-steel, OEO showed effective inactivation activity against E. faecalis. OEO reduced the number of viable cells, cell viability and exopolysaccharides in the biofilm, as well as destroying its structure. Application of OEO on chicken breast results in a considerable reduction in E. faecalis counts and pH values, in comparison to control samples. These findings suggest that OEO could be utilized as a natural antibacterial preservative and could effectively control E. faecalis in food manufacturing.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; (X.Z.); (Y.T.); (Y.L.); (J.F.); (Y.Z.); (X.G.); (H.Z.)
| |
Collapse
|
26
|
Raj KC H, Gilmore DF, Alam MA. Development of 4-[4-(Anilinomethyl)-3-phenyl-pyrazol-1-yl] Benzoic Acid Derivatives as Potent Anti-Staphylococci and Anti-Enterococci Agents. Antibiotics (Basel) 2022; 11:939. [PMID: 35884194 PMCID: PMC9311742 DOI: 10.3390/antibiotics11070939] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/09/2022] [Accepted: 07/10/2022] [Indexed: 11/17/2022] Open
Abstract
From a library of compounds, 11 hit antibacterial agents have been identified as potent anti-Gram-positive bacterial agents. These pyrazole derivatives are active against two groups of pathogens, staphylococci and enterococci, with minimum inhibitory concentration (MIC) values as low as 0.78 μg/mL. These potent compounds showed bactericidal action, and some were effective at inhibiting and eradicating Staphylococcus aureus and Enterococcus faecalis biofilms. Real-time biofilm inhibition by the potent compounds was studied, by using Bioscreen C. These lead compounds were also very potent against S. aureus persisters as compared to controls, gentamycin and vancomycin. In multiple passage studies, bacteria developed little resistance to these compounds (no more than 2 × MIC). The plausible mode of action of the lead compounds is the permeabilization of the cell membrane determined by flow cytometry and protein leakage assays. With the detailed antimicrobial studies, both in planktonic and biofilm contexts, some of these potent compounds have the potential for further antimicrobial drug development.
Collapse
Affiliation(s)
- Hansa Raj KC
- Department of Chemistry and Physics, The College of Sciences and Mathematics, Arkansas State University, Jonesboro, AR 72401, USA;
| | - David F. Gilmore
- Department of Biological Sciences, The College of Sciences and Mathematics, Arkansas State University, Jonesboro, AR 72401, USA;
| | - Mohammad A. Alam
- Department of Chemistry and Physics, The College of Sciences and Mathematics, Arkansas State University, Jonesboro, AR 72401, USA;
| |
Collapse
|
27
|
Shi YG, Lin S, Chen WX, Jiang L, Gu Q, Li DH, Chen YW. Dual-Stage Blue-Light-Guided Membrane and DNA-Targeted Photodynamic Inactivation Using Octyl Gallate for Ultraefficient Eradication of Planktonic Bacteria and Sessile Biofilms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7547-7565. [PMID: 35687111 DOI: 10.1021/acs.jafc.2c01667] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This study aimed to investigate the synergistic bactericidal activity and mechanism of dual-stage light-guided membrane and DNA-targeted photodynamic inactivation (PDI) by the combination of blue light (BL, 420 nm) and the food additive octyl gallate (OG) against Vibrio parahaemolyticus in planktonic and biofilm growth modes. While OG serves as an outstanding exogenous photosensitizer, the planktonic cells were not visibly detectable after the OG-mediated PDI treatment with 0.2 mM OG within 15 min (191.7 J/cm2), and its biofilm was nearly eradicated within 60 min (383.4 J/cm2). Gram-positive Staphylococcus aureus was more susceptible to the PDI than Gram-negative V. parahaemolyticus. The cellular wall and proteins, as well as DNA, were the vulnerable targets for PDI. The membrane integrity could be initially disrupted by OG bearing a hydrophilic head and a hydrophobic tail via transmembrane insertion. The enhancement of OG uptake due to the first-stage light-assisted photochemical internalization (PCI) promoted the accumulation of OG in cells. It further boosted the second-stage light irradiation of the photosensitizer-inducing massive cell death. Upon the second-stage BL irradiation, reactive oxygen species (ROS) generated through the OG-mediated PDI in situ could extensively deconstruct membranes, proteins, and DNA, as well as biofilms, while OG could be activated by BL to carry out photochemical reactions involving the formation of OG-bacterial membrane protein (BMP) covalent conjugates and the interactions with DNA. This dual-stage light-guided subcellular dual-targeted PDI strategy exhibits encouraging effects on the eradication of planktonic bacteria and sessile biofilms, which provides a new insight into the development of an ultraeffective antimicrobial and biofilm removing/reducing technique to improve microbiological safety in the food industry.
Collapse
|
28
|
Food additive octyl gallate eliminates acrolein and inhibits bacterial growth in oil-rich food. Food Chem 2022; 395:133546. [DOI: 10.1016/j.foodchem.2022.133546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 06/04/2022] [Accepted: 06/19/2022] [Indexed: 11/18/2022]
|
29
|
Antimicrobial and Mechanical Properties of β-Cyclodextrin Inclusion with Octyl Gallate in Chitosan Films and their Application in Fresh Vegetables. FOOD BIOPHYS 2022. [DOI: 10.1007/s11483-022-09746-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
30
|
Jiang S, Li Q, Jia W, Wang F, Cao X, Shen X, Yao Z. Expanding the application of ion exchange resins for the preparation of antimicrobial membranes to control foodborne pathogens. CHEMOSPHERE 2022; 295:133963. [PMID: 35167836 DOI: 10.1016/j.chemosphere.2022.133963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Although ion exchange resins (IERs) have been extensively adopted in water treatment, there are no reports on the application thereof for synthesizing antibacterial materials against pathogenic bacteria. The present study is the first in which the ion exchange characteristic of IERs was utilized to introduce silver ions that possess efficient antibacterial properties. The resulting antibacterial materials were incorporated into polylactic acid (PLA) and/or polybutylene adipate terephthalate (PBAT) to prepare antibacterial membranes. XPS spectra revealed the occurrence of in-situ reduction of silver ions to metallic silver, which was preferable since the stability of silver in the materials was improved. EDS mapping analysis indicated that the distribution of silver was consistent with the distribution of sulfur in the membranes, verifying the ion exchange methodology proposed in the present study. To investigate the antibacterial performance of the prepared membranes, zone of inhibition tests and bacteria-killing tests were performed. The results revealed that neither bare polymeric membranes of PLA and PBAT nor IER-incorporated polymeric membranes exhibited noticeable antibacterial activities. In comparison, the antibacterial membranes demonstrated effective and sustainable antibacterial activities against pathogenic bacteria Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). The prepared antibacterial membranes exhibited potential in food-related applications such as food packaging to delay food spoilage due to microbial growth.
Collapse
Affiliation(s)
- Shanxue Jiang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Qirun Li
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Wenting Jia
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Fang Wang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Xinyue Cao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Xianbao Shen
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Zhiliang Yao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China.
| |
Collapse
|
31
|
Xie YP, Sangaraiah N, Meng JP, Zhou CH. Unique Carbazole-Oxadiazole Derivatives as New Potential Antibiotics for Combating Gram-Positive and -Negative Bacteria. J Med Chem 2022; 65:6171-6190. [PMID: 35389643 DOI: 10.1021/acs.jmedchem.2c00001] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Novel carbazole-oxadiazoles were developed as new potential antibacterial agents to combat dreadful resistance. Some target compounds displayed predominant inhibitory effects on the tested Gram-positive and -negative bacteria, and carbazole-oxadiazoles 5g, 5i-k, 16a-c, and tetrazole analogues 23b-c were found to be efficient in impeding the growth of MRSA and Pseudomonas aeruginosa ATCC 27853 (MICs = 0.25-4 μg/mL). Furthermore, compounds 5g and 23b-c not only possessed rapid bactericidal ability and low tendency to develop resistance but also exhibited low cytotoxic effects toward Hek 293T, HeLa, and red blood cells (RBCs), especially molecule 5g also showed low toxicity in vivo, which showed the therapeutic potential of these compounds. Further exploration indicated that compounds 5g, 5i, and 23b-c could disintegrate the integrity of bacterial cell membranes to leak the cytoplasmic contents, thus exerting excellent antibacterial effects. These facts mean that carbazole-based antibacterial agents might have bright prospects in confronting bacterial infections.
Collapse
Affiliation(s)
- Yun-Peng Xie
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Nagarajan Sangaraiah
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Jiang-Ping Meng
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, College of Pharmacy, Chongqing University of Arts and Sciences, Chongqing 402160, P. R. China
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
32
|
Sun W, Feng L, Zhang J, Lin K, Wang H, Yan B, Feng T, Cao M, Liu T, Yuan Y, Wang N. Amidoxime Group-Anchored Single Cobalt Atoms for Anti-Biofouling during Uranium Extraction from Seawater. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105008. [PMID: 35064758 PMCID: PMC8981433 DOI: 10.1002/advs.202105008] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/24/2021] [Indexed: 05/14/2023]
Abstract
Marine biofouling is one of the most significant challenges hindering practical uranium extraction from seawater. Single atoms have been widely used in catalytic applications because of their remarkable redox property, implying that the single atom is highly capable of catalyzing the generation of reactive oxygen species (ROS) and acts as an anti-biofouling substance for controlling biofouling. In this study, the Co single atom loaded polyacrylamidoxime (PAO) material, PAO-Co, is fabricated based on the binding ability of the amidoxime group to uranyl and cobalt ions. Nitrogen and oxygen atoms from the amidoxime group stabilize the Co single atom. The fabricated PAO-Co exhibits a broad range of antimicrobial activity against diverse marine microorganisms by producing ROS, with an inhibition rate up to 93.4%. The present study is the first to apply the single atom for controlling biofouling. The adsorbent achieves an ultrahigh uranium adsorption capacity of 9.7 mg g-1 in biofouling-containing natural seawater, which decreased only by 11% compared with that in biofouling-removed natural seawater. These findings indicate that applying single atoms would be a promising strategy for designing biofouling-resistant adsorbents for uranium extraction from seawater.
Collapse
Affiliation(s)
- Wenyan Sun
- State Key Laboratory of Marine Resource Utilization in South China SeaHainan UniversityHaikou570228P. R. China
| | - Lijuan Feng
- State Key Laboratory of Marine Resource Utilization in South China SeaHainan UniversityHaikou570228P. R. China
| | - Jiacheng Zhang
- State Key Laboratory of Marine Resource Utilization in South China SeaHainan UniversityHaikou570228P. R. China
| | - Ke Lin
- State Key Laboratory of Marine Resource Utilization in South China SeaHainan UniversityHaikou570228P. R. China
| | - Hui Wang
- State Key Laboratory of Marine Resource Utilization in South China SeaHainan UniversityHaikou570228P. R. China
| | - Bingjie Yan
- State Key Laboratory of Marine Resource Utilization in South China SeaHainan UniversityHaikou570228P. R. China
| | - Tiantian Feng
- State Key Laboratory of Marine Resource Utilization in South China SeaHainan UniversityHaikou570228P. R. China
| | - Meng Cao
- State Key Laboratory of Marine Resource Utilization in South China SeaHainan UniversityHaikou570228P. R. China
| | - Tao Liu
- State Key Laboratory of Marine Resource Utilization in South China SeaHainan UniversityHaikou570228P. R. China
| | - Yihui Yuan
- State Key Laboratory of Marine Resource Utilization in South China SeaHainan UniversityHaikou570228P. R. China
| | - Ning Wang
- State Key Laboratory of Marine Resource Utilization in South China SeaHainan UniversityHaikou570228P. R. China
| |
Collapse
|
33
|
Comparative Transcriptomic Analysis of Staphylococcus aureus Reveals the Genes Involved in Survival at Low Temperature. Foods 2022; 11:foods11070996. [PMID: 35407083 PMCID: PMC8997709 DOI: 10.3390/foods11070996] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/23/2022] [Accepted: 03/26/2022] [Indexed: 02/05/2023] Open
Abstract
In food processing, the temperature is usually reduced to limit bacterial reproduction and maintain food safety. However, Staphylococcus aureus can adapt to low temperatures by controlling gene expression and protein activity, although its survival strategies normally vary between different strains. The present study investigated the molecular mechanisms of S. aureus with different survival strategies in response to low temperatures (4 °C). The survival curve showed that strain BA-26 was inactivated by 6.0 logCFU/mL after 4 weeks of low-temperature treatment, while strain BB-11 only decreased by 1.8 logCFU/mL. Intracellular nucleic acid leakage, transmission electron microscopy, and confocal laser scanning microscopy analyses revealed better cell membrane integrity of strain BB-11 than that of strain BA-26 after low-temperature treatment. Regarding oxidative stress, the superoxide dismutase activity and the reduced glutathione content in BB-11 were higher than those in BA-26; thus, BB-11 contained less malondialdehyde than BA-26. RNA-seq showed a significantly upregulated expression of the fatty acid biosynthesis in membrane gene (fabG) in BB-11 compared with BA-26 because of the damaged cell membrane. Then, catalase (katA), reduced glutathione (grxC), and peroxidase (ahpC) were found to be significantly upregulated in BB-11, leading to an increase in the oxidative stress response, but BA-26-related genes were downregulated. NADH dehydrogenase (nadE) and α-glucosidase (malA) were upregulated in the cold-tolerant strain BB-11 but were downregulated in the cold-sensitive strain BA-26, suggesting that energy metabolism might play a role in S. aureus under low-temperature stress. Furthermore, defense mechanisms, such as those involving asp23, greA, and yafY, played a pivotal role in the response of BB-11 to stress. The study provided a new perspective for understanding the survival mechanism of S. aureus at low temperatures.
Collapse
|
34
|
Liu Y, Liu Y, Li P, Li Z. Antibacterial properties of cyclolinopeptides from flaxseed oil and their application on beef. Food Chem 2022; 385:132715. [PMID: 35305434 DOI: 10.1016/j.foodchem.2022.132715] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/19/2022] [Accepted: 03/13/2022] [Indexed: 11/19/2022]
Abstract
The objective of this study was to investigate the antibacterial activity and potential mechanism of cyclolinopeptides, a type of cyclic hydrophobic peptides present in flaxseed oil. In this study, 1-Mso cyclolinopeptides B and 1-Mso, 3-Mso-cyclolinopeptides F from flaxseed oil exhibited excellent antibacterial activity against Listeria monocytogenes through destroying bacterial cell membrane. Our results indicated that cyclolinopeptides are one of the antibacterial components in flaxseed oil. Also, the application of cyclolinopeptides B and 1-Mso, 3-Mso-cyclolinopeptides F in inhibiting the microbial contamination of beef was investigated as well. Thus, our study highlights the promising potential of cyclolinopeptides to serve as food additives or food preservations due to their strong antibacterial activity against Listeria monocytogenes.
Collapse
Affiliation(s)
- Yanjun Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China.
| | - Yi Liu
- West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Panpan Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Ziwei Li
- Wuxi Food Safety Inspection and Test Center, Technology Innovation Center of Special Food for State Market Regulation, 214142 Wuxi, China
| |
Collapse
|
35
|
He R, Zhang Z, Xu L, Chen W, Zhang M, Zhong Q, Chen H, Chen W. Antibacterial mechanism of linalool emulsion against Pseudomonas aeruginosa and its application to cold fresh beef. World J Microbiol Biotechnol 2022; 38:56. [PMID: 35165818 DOI: 10.1007/s11274-022-03233-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/10/2022] [Indexed: 12/29/2022]
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is the dominant spoilage bacterium in cold fresh beef. The current strategy is undertaken to overcome the low water solubility of linalool by encapsulating linalool into emulsions. The results of field emission scanning electron microscopy and particle size distribution revealed that the appearance of the bacterial cells was severely disrupted after exposure to linalool emulsion (LE) with an minimum inhibitory concentration (MIC) of 1.5 mL/L. Probes combined with fluorescence spectroscopy were performed to detect cell membrane permeability, while intracellular components (protein and ion leakage) and crystal violet staining were further measured to characterize cell membrane integrity and biofilm formation ability. The results confirmed that LE could destroy the structure of the cell membrane, thereby leading to the leakage of intracellular material and effective removal of biofilms. Molecular docking confirmed that LE can interact with the flagellar cap protein (FliD) and DNA of P. aeruginosa, inhibiting biofilm formation and causing genetic damage. Furthermore, the results of respiratory metabolism and reactive oxygen species (ROS) accumulation revealed that LE could significantly inhibit the metabolic activity of P. aeruginosa and induce oxidative stress. In particular, the inhibition rate of LE on P. aeruginosa was 23.03% and inhibited mainly the tricarboxylic acid cycle (TCA). Finally, LE was applied to preserve cold fresh beef, and the results showed that LE could effectively inhibit the activity of P. aeruginosa and delay the quality change of cold fresh beef during the storage period. These results are of great significance to developing natural preservatives and extending the shelf life of cold fresh beef.
Collapse
Affiliation(s)
- Rongrong He
- College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou, 570228, People's Republic of China
| | - Zhengke Zhang
- College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou, 570228, People's Republic of China
| | - Lilan Xu
- College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou, 570228, People's Republic of China
| | - Weijun Chen
- College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou, 570228, People's Republic of China
| | - Ming Zhang
- College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou, 570228, People's Republic of China
| | - Qiuping Zhong
- College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou, 570228, People's Republic of China
| | - Haiming Chen
- College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou, 570228, People's Republic of China.
| | - Wenxue Chen
- College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou, 570228, People's Republic of China. .,Spice and Beverage Research Institute, Chinese Academy of Tropical Agriculture Science, Wanning, Hainan, 571533, People's Republic of China.
| |
Collapse
|
36
|
Han WH, Li X, Yu GF, Wang BC, Huang LP, Wang J, Long YZ. Recent Advances in the Food Application of Electrospun Nanofibers. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.02.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
37
|
Shi YG, Li DH, Kong YM, Zhang RR, Gu Q, Hu MX, Tian SY, Jin WG. Enhanced antibacterial efficacy and mechanism of octyl gallate/beta-cyclodextrins against Pseudomonas fluorescens and Vibrio parahaemolyticus and incorporated electrospun nanofibers for Chinese giant salamander fillets preservation. Int J Food Microbiol 2022; 361:109460. [PMID: 34785387 DOI: 10.1016/j.ijfoodmicro.2021.109460] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/24/2021] [Accepted: 10/25/2021] [Indexed: 10/20/2022]
Abstract
A series of alkyl gallates were evaluated for the antibacterial activity against two common Gram-negative foodborne bacteria (Pseudomonas fluorescens and Vibrio parahaemolyticus) associated with seafood. The length of the alkyl chain plays a pivotal role in eliciting their antibacterial activities and octyl gallate (OG) exerted an excellent inhibitory efficacy. To extend the aqueous solubility, stability, and bactericidal properties of octyl gallate (OG), an inclusion complex between OG and β-cyclodextrin (βCD), OG/βCD, was prepared and identified with various methods including X-ray diffraction (XRD), differential scanning calorimeter (DSC) and Fourier transform infrared spectroscopy (FTIR). Furthermore, the enhanced inhibitory effect and potential antibacterial mechanism of OG/βCD against two Gram-negative and Gram-positive foodborne bacteria were comprehensively investigated. The results show that OG/βCD could function against bacteria through effectively damaging the membrane, permeating into cells, and then disturbing the activity of the respiratory electron transport chain to cause the production of high-level intracellular hydroxyl radicals. Moreover, the reinforced OG/βCD-incorporated polylactic acid (PLA) nanofibers were fabricated using the electrospinning technique as food packaging to extend the Chinese giant salamander fillet's shelf life at 4 °C. This research highlights the antibacterial effectiveness of OG/βCD in aqueous media, which can be used as a safe multi-functionalized food additive combined with the benefits of electrospun nanofibers to extend the Chinese giant salamander fillets shelf life by 15 d at 4 °C.
Collapse
Affiliation(s)
- Yu-Gang Shi
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China.
| | - Dong-Hui Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Yi-Ming Kong
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Run-Run Zhang
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| | - Qing Gu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China.
| | - Meng-Xin Hu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Shi-Yi Tian
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Wen-Gang Jin
- Bio-resources Key Laboratory of Shaanxi Province, School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China
| |
Collapse
|
38
|
Shi YG, Zhu CM, Li DH, Shi ZY, Gu Q, Chen YW, Wang JQ, Ettelaie R, Chen JS. New Horizons in Microbiological Food Safety: Ultraefficient Photodynamic Inactivation Based on a Gallic Acid Derivative and UV-A Light and Its Application with Electrospun Cyclodextrin Nanofibers. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14961-14974. [PMID: 34843236 DOI: 10.1021/acs.jafc.1c04827] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
An excellent bactericidal effect of octyl gallate (OG)-mediated photodynamic inactivation (PDI) against foodborne pathogens (Escherichia coli and Staphylococcus aureus) was evaluated in relation to the mode of action. UV-A irradiation (wavelength, 365 nm; irradiance, 8.254 ± 0.18 mW/cm2) of the bacterial suspension containing 0.15 mM OG could lead to a >5-log reduction of viable cell counts within 30 min for E. coli and only 5 min for S. aureus. Reactive oxygen species (ROS) formation was considered the main reason for the bactericidal effect of OG + UV-A light treatment because toxic ROS induced by OG-mediated PDI could attack the cellular wall, proteins, and DNA of microbes. Moreover, the bactericidal effect, as well as the yields of ROS, depended on OG concentrations, irradiation time, and laser output power. Furthermore, we prepared an edible photodynamic antimicrobial membrane comprising electrospun cyclodextrin nanofibers (NFs) by embedding OG. The resultant OG/HPβCD NFs (273.6 μg/mL) under UV-A irradiation for 30 min (14.58 J/cm) could cause a great reduction (>5-log) of viable bacterial counts of E. coli. The in situ photodynamic antibacterial activity of OG/HPβCD NF-based packaging was evaluated during the Chinese giant salamander storage. Overall, this research highlights the dual functionalities (antibacterial and photodynamic properties) of OG as both an antibacterial agent and photosensitizer and the effectiveness of electrospun NFs containing OG as an active antibacterial packaging material for food preservation upon UV light illumination.
Collapse
Affiliation(s)
- Yu-Gang Shi
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Zhejiang, Hangzhou 310035, China
- Institute of Food Microbiology, Zhejiang Gongshang University, Zhejiang, Hangzhou 310035, China
| | - Chen-Min Zhu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Zhejiang, Hangzhou 310035, China
- Institute of Food Microbiology, Zhejiang Gongshang University, Zhejiang, Hangzhou 310035, China
| | - Dong-Hui Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Zhejiang, Hangzhou 310035, China
- Institute of Food Microbiology, Zhejiang Gongshang University, Zhejiang, Hangzhou 310035, China
| | - Ze-Yu Shi
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Qing Gu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Zhejiang, Hangzhou 310035, China
- Institute of Food Microbiology, Zhejiang Gongshang University, Zhejiang, Hangzhou 310035, China
| | - Yue-Wen Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Zhejiang, Hangzhou 310035, China
- Institute of Food Microbiology, Zhejiang Gongshang University, Zhejiang, Hangzhou 310035, China
| | - Jie-Qian Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Zhejiang, Hangzhou 310035, China
- Institute of Food Microbiology, Zhejiang Gongshang University, Zhejiang, Hangzhou 310035, China
| | - Rammile Ettelaie
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, U.K
| | - Jian-She Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Zhejiang, Hangzhou 310035, China
| |
Collapse
|
39
|
Shi YG, Jiang L, Lin S, Jin WG, Gu Q, Chen YW, Zhang K, Ettelaie R. Ultra-efficient antimicrobial photodynamic inactivation system based on blue light and octyl gallate for ablation of planktonic bacteria and biofilms of Pseudomonas fluorescens. Food Chem 2021; 374:131585. [PMID: 34802804 DOI: 10.1016/j.foodchem.2021.131585] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 11/06/2021] [Accepted: 11/08/2021] [Indexed: 11/04/2022]
Abstract
Pseudomonas fluorescens is a Gram-negative spoilage bacterium and dense biofilm producer, causing food spoilage and persistent contamination. Here, we report an ultra-efficient photodynamic inactivation (PDI) system based on blue light (BL) and octyl gallate (OG) to eradicate bacteria and biofilms of P. fluorescens. OG-mediated PDI could lead to a > 5-Log reduction of viable cell counts within 15 min for P. fluorescens. The activity is exerted through rapid penetration of OG towards the cells with the generation of a high-level toxic reactive oxygen species triggered by BL irradiation. Moreover, OG plus BL irradiation can efficiently not only prevent the formation of biofilms but also scavenge the existing biofilms. Additionally, it was shown that the combination of OG/poly(lactic acid) electrospun nanofibers and BL have great potential as antimicrobial packagings for maintaining the freshness of the salamander storge. These prove that OG-mediated PDI can provide a superior platform for eradicating bacteria and biofilm.
Collapse
Affiliation(s)
- Yu-Gang Shi
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Institute of Food Microbiology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China.
| | - Lai Jiang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Institute of Food Microbiology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Shan Lin
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Institute of Food Microbiology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Wen-Gang Jin
- Bio-resources Key Laboratory of Shaanxi Province, School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China
| | - Qing Gu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Institute of Food Microbiology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Yue-Wen Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Institute of Food Microbiology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Ke Zhang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Institute of Food Microbiology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Rammile Ettelaie
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
40
|
Sun H, Ansari MF, Fang B, Zhou CH. Natural Berberine-Hybridized Benzimidazoles as Novel Unique Bactericides against Staphylococcus aureus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7831-7840. [PMID: 34228443 DOI: 10.1021/acs.jafc.1c02545] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Natural berberine-hybridized benzimidazoles as potential antibacterial agents were constructed to treat Staphylococcus aureus infection in the livestock industry. Bioassay showed that some new berberine-benzimidazole hybrids exhibited potent antibacterial efficacies, especially, the 2,4-dichlorobenzyl derivative 7d not only showed strong activity against S. aureus ATCC 29213 with the MIC value of 0.006 mM but also effectively eradicated bacterial biofilm and exhibited low toxicity toward mammalian cells. The drug combination experiments showed that compound 7d together with norfloxacin could enhance the antibacterial efficacy. Moreover, the 2,4-dichlorobenzyl derivative 7d did not show obvious propensity to develop bacterial resistance. Preliminary mechanism studies revealed that the active molecule 7d could damage the membrane integrity, stimulate ROS generation, and bind with DNA as well as S. aureus sortase A, thus exerting powerful antibacterial ability. In light of these facts, berberine-benzimidazole hybrid 7d showed a large potentiality as a new bactericide for treating S. aureus in the livestock industry.
Collapse
Affiliation(s)
- Hang Sun
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Mohammad Fawad Ansari
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Bo Fang
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
41
|
Zhang M, Ye S, Wang J, Yu K, Cao J, Li G, Liao X. In situ growth zeolite imidazole framework materials on chitosan for greatly enhanced antibacterial effect. Int J Biol Macromol 2021; 186:639-648. [PMID: 34273340 DOI: 10.1016/j.ijbiomac.2021.07.072] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/03/2021] [Accepted: 07/11/2021] [Indexed: 12/17/2022]
Abstract
Zeolite imidazole framework materials (ZIFs) are a new type of antibacterial material with high chemical and thermal stability, and good antibacterial effect. However, powder ZIFs materials have the disadvantages of difficult separation and easy aggregation, which limit their application. In this work, ZIFs and chitosan (CS) were compounded by in-situ growth method to prepare a new antibacterial agent. The synergism of CS and ZIFs can effectively promote antibacterial effect compared with CS and pristine ZIFs, and CS/ZIF-67(1:6) has the best antibacterial activity, and its inhibitory rate (in 15 h) of E. coli is 96.75%, and the inhibitory rate of S. aureus reaches as high as 100%. This composites can effectively cause bacterial cell membrane rupture and leakage of internal nucleic acid and protein, leads to achieve antibacterial effect, and also exhibit excellent long-term (at least 5 days) antibacterial properties, the leaching of cobalt is below than 0.5 mg·L-1, and this composites are with excellent bio-compatibility.
Collapse
Affiliation(s)
- Meng Zhang
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, China
| | - Shan Ye
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, China
| | - Jiao Wang
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, China
| | - Kuo Yu
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, China
| | - Jingguo Cao
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, China
| | - Guangbi Li
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, China.
| | - Xiaoyuan Liao
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, China.
| |
Collapse
|