1
|
Lin G, Zhang C, Yang Z, Li Y, Liu C, Ma LQ. High geological background concentrations of As and Cd in karstic soils may not contribute to greater risks to human health via rice consumption. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135876. [PMID: 39303608 DOI: 10.1016/j.jhazmat.2024.135876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
High geological background concentrations of toxic metal(loid)s arsenic (As) and cadmium (Cd) from natural enrichment in soils of karst regions have attracted much attention. In this study, paired soil-rice samples were collected from karst and non-karst regions in Guangxi, China to assess the potential risks of metal(loid) transfer from soil to rice grains, and rice grains to humans. Our results indicate that the karstic soils had greater As (25.7 vs. 12.4 mg·kg-1) and Cd (2.12 vs. 1.04 mg·kg-1) contents than those in non-karstic soils. However, metal(loid) transfer from soil to rice grains (ratio of rice grains to soil content) of As and Cd was 40 % and 49 % lower in karst regions, which may relate to their 42 % and 61 % lower HNO3-extractable As and CaCl2-extractable Cd, resulting in similar As/Cd contents in karstic and non-karstic rice grains. In vitro assay using a modified physiologically-based extraction test shows that karstic rice grains had a lower As/Cd bioaccessibility than non-karstic grains, which can be attributed to their ∼50 % greater P content, which negatively correlated with As/Cd bioaccessibility. Additionally, karstic rice grains had 39 % greater phytate and exhibited 45 % and 9.4 % lower As and Cd bioaccessibility in the gastric phase with phytate supplement at 0.6 %. Our work indicates that despite the greater As/Cd contents in karstic soils, the risks of As/Cd transfer from soil to rice grains as well as their exposure risks to humans via rice consumption may not be greater than non-karst regions.
Collapse
Affiliation(s)
- Guobing Lin
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chao Zhang
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhongfang Yang
- School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
| | - Yong Li
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chenjing Liu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Lena Q Ma
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
2
|
Sachdev N, Goomer S, Singh LRK, Chowhan RK. Preparation and nutritional characterisation of protein concentrate prepared from foxtail millet ( Setaria italica). FOOD SCI TECHNOL INT 2024; 30:699-712. [PMID: 36879485 DOI: 10.1177/10820132231159819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Plant-based protein sources as a sustainable alternative to animal sources are highly relevant for food and dietary supplements industries. Plant proteins are becoming popular as an eco-friendly source for meeting global protein requirements due to their importance in nutrition, management of metabolic diseases, biological activities, functionality in processed food products and their low carbon footprints. We applied biochemical protein extraction protocol and prepared protein concentrate from an underutilised cereal, foxtail millet, with plausible applications in foods and supplements. Herein efforts were utilised to obtain foxtail millet protein (FMP) concentrate by means of standardisation of processes of extraction cum isolation. The conditions including flour to solvent ratio, extraction-precipitation pH, dissolution time, etc. were optimised to significantly improve protein yield and recovery. The FMP concentrate prepared was also analysed for nutritional composition, bioactive compounds, amino acid content and digestion properties in comparison to packaged brown rice protein concentrate. The protein concentrate prepared was found to have high digestibility, rich in essential amino acids with good phenolic and flavonoid content, thereby making it a potential sensory and antioxidant additive for food/pharmaceutical applications.
Collapse
Affiliation(s)
- Niharika Sachdev
- Department of Food & Nutrition, Lady Irwin College, New Delhi, India
| | - Sangeeta Goomer
- Department of Food & Nutrition, Lady Irwin College, New Delhi, India
| | - Laishram Rajender Kumar Singh
- Department of Biomedical Science, Dr. Ambedkar Centre for Biomedical Research, North Campus, University of Delhi, New Delhi, India
| | - Rimpy Kaur Chowhan
- Department of Biomedical Science, Acharya Narendra Dev College, University of Delhi, New Delhi, India
| |
Collapse
|
3
|
Wang L, Tao X, Liu C, Liang X, Xu Y, Sun Y. Influence of Foliar Zinc Application on Cadmium and Zinc Bioaccessibility in Brassica chinensis L.: In Vitro Digestion and Chemical Sequential Extraction. Foods 2024; 13:2430. [PMID: 39123624 PMCID: PMC11311326 DOI: 10.3390/foods13152430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Foliar zinc (Zn) application can affect the accumulation and bioaccessibility of cadmium (Cd) and Zn in crops. However, the mechanisms by which foliar Zn application influences Cd and Zn bioaccessibility remain elusive. This study examined the effects of spraying ZnSO4 and ZnNa2EDTA on bioaccessibility and chemical forms of Cd and Zn in pakchoi (Brassica chinensis L.) shoots and evaluated human health risks via pakchoi consumption. Spraying ZnSO4 reduced the concentrations of ethanol-extractable (Fethanol) and deionized water-extractable (Fd-H2O) Cd, as well as the corresponding bioaccessible Cd concentrations (20.3-66.4%) and attendant health risks of Cd, whereas spraying high-dose ZnNa2EDTA significantly increased the concentrations of both Cd forms and bioaccessible Cd. Spraying ZnSO4 and high-dose ZnNa2EDTA significantly increased the concentrations of Zn in Fethanol and Fd-H2O and the corresponding bioaccessible Zn concentrations (0.8-8.3-fold). Fethanol and Fd-H2O were the primary sources of bioaccessible Cd and Zn, contributing more than 59% of the bioaccessible Cd and Zn. These results indicate that foliar Zn application can affect Cd and Zn bioaccessibility in pakchoi mainly by modulating Cd and Zn in Fethanol and Fd-H2O. These findings provide scientific support for the development of more efficient measures to produce safe and high-quality leafy vegetables from Cd-polluted soils.
Collapse
Affiliation(s)
- Lin Wang
- Innovation Team of Heavy Metal Ecotoxicity and Pollution Remediation, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (L.W.); (X.T.); (C.L.); (X.L.); (Y.X.)
- Key Laboratory of Original Agro–Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Xueying Tao
- Innovation Team of Heavy Metal Ecotoxicity and Pollution Remediation, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (L.W.); (X.T.); (C.L.); (X.L.); (Y.X.)
- Key Laboratory of Original Agro–Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Chang Liu
- Innovation Team of Heavy Metal Ecotoxicity and Pollution Remediation, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (L.W.); (X.T.); (C.L.); (X.L.); (Y.X.)
- Key Laboratory of Original Agro–Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Xuefeng Liang
- Innovation Team of Heavy Metal Ecotoxicity and Pollution Remediation, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (L.W.); (X.T.); (C.L.); (X.L.); (Y.X.)
- Key Laboratory of Original Agro–Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Yingming Xu
- Innovation Team of Heavy Metal Ecotoxicity and Pollution Remediation, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (L.W.); (X.T.); (C.L.); (X.L.); (Y.X.)
- Key Laboratory of Original Agro–Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Yuebing Sun
- Innovation Team of Heavy Metal Ecotoxicity and Pollution Remediation, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (L.W.); (X.T.); (C.L.); (X.L.); (Y.X.)
- Key Laboratory of Original Agro–Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| |
Collapse
|
4
|
Wang Y, Chen X, Lin L, Ge J, Huang Y, Gu X. Alleviation of arsenic stress in pakchoi by foliar spraying of engineered nanomaterials. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-34481-6. [PMID: 39052115 DOI: 10.1007/s11356-024-34481-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Addressing heavy metal contamination in leafy vegetables is critically important due to its adverse effects on human health. In this study, we investigated the inhibitory effects of foliar spraying with four nanoparticles (CeO2, ZnO, SiO2, and S NPs) on arsenic (As) stress in pakchoi (Brassica rapa var. Chinensis). The findings reveal that foliar application of ZnO NPs at 1 ~ 2.5 mg plant-1 and CeO2 NPs at 5 mg plant-1 significantly reduces As in shoots by 40.9 ~ 47.3% and 39.4%, respectively. Moreover, 5 mg plant-1 CeO2 NPs increased plant height by 6.06% and chlorophyll a (Chla) content by 30.2% under As stress. Foliar spraying of CeO2 NPs at 0.2-5 mg plant-1 also significantly enhanced superoxide dismutase (SOD) activity in shoots by 9.4 ~ 13.9%, lowered H2O2 content by 42.4 ~ 53.25%, and increased root protein contents by 79 ~ 109.2%. CeO2 NPs regulate the As(III)/As(V) ratio, aiding in As efflux from roots and thereby reducing As toxicity to plants. In vitro digestion experiments reveal that the consumption of CeO2 NPs carries the lowest health risk of As. In addition, foliar spraying of ZnO NPs at 1 ~ 2.5 mg plant-1 can suppress plant As uptake by modulating enzyme activity, reducing leaf damage, and enhancing chlorophyll content. The study demonstrates that high CeO2 NP concentrations and suitable ZnO NP concentrations can alleviate As toxicity in pakchoi, consequently reducing human health risks.
Collapse
Affiliation(s)
- Yaoyao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Xingbei Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Lu Lin
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Jingwen Ge
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Yuhong Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Xueyuan Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
5
|
Shao J, Lai C, Zheng Q, Luo Y, Li C, Zhang B, Sun Y, Liu S, Shi Y, Li J, Zhao Z, Guo L. Effects of dietary arsenic exposure on liver metabolism in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 274:116147. [PMID: 38460405 DOI: 10.1016/j.ecoenv.2024.116147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/11/2024]
Abstract
Arsenic, a ubiquitous environmental toxicant with various forms and complex food matrix interactions, can reportedly exert differential effects on the liver compared to drinking water exposure. To examine its specific liver-related harms, we targeted the liver in C57BL/6 J mice (n=48, 8-week-old) fed with arsenic-contaminated food (30 mg/kg) for 60 days, mimicking the rice arsenic composition observed in real-world scenarios (iAsV: 7.3%, iAsIII: 72.7%, MMA: 1.0%, DMA: 19.0%). We then comprehensively evaluated liver histopathology, metabolic changes, and the potential role of the gut-liver axis using human hepatocellular carcinoma cells (HepG2) and microbiota/metabolite analyses. Rice arsenic exposure significantly altered hepatic lipid (fatty acids, glycerol lipids, phospholipids, sphingolipids) and metabolite (glutathione, thioneine, spermidine, inosine, indole-derivatives, etc.) profiles, disrupting 33 metabolic pathways (bile secretion, unsaturated fatty acid biosynthesis, glutathione metabolism, ferroptosis, etc.). Pathological examination revealed liver cell necrosis/apoptosis, further confirmed by ferroptosis induction in HepG2 cells. Gut microbiome analysis showed enrichment of pathogenic bacteria linked to liver diseases and depletion of beneficial strains. Fecal primary and secondary bile acids, short-chain fatty acids, and branched-chain amino acids were also elevated. Importantly, mediation analysis revealed significant correlations between gut microbiota, fecal metabolites, and liver metabolic alterations, suggesting fecal metabolites may mediate the impact of gut microbiota and liver metabolic disorders. Gut microbiota and its metabolites may play significant roles in arsenic-induced gut-liver injuries. Overall, our findings demonstrate that rice arsenic exposure triggers oxidative stress, disrupts liver metabolism, and induces ferroptosis.
Collapse
Affiliation(s)
- Junli Shao
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Chengze Lai
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Qiuyi Zheng
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Yu Luo
- Guangzhou Liwan District Center for Disease Control and Prevention, Guangzhou, Guangdong 510176, China
| | - Chengji Li
- Yunfu Disease Control and Prevention Center, Guangdong Province 527300, China
| | - Bin Zhang
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Yanqin Sun
- Department of Pathology, School of Basic Medical Sciences, Guangdong Medical University, Dongguan 523808, China
| | - Shizhen Liu
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Yingying Shi
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Jinglin Li
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Zuguo Zhao
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| | - Lianxian Guo
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| |
Collapse
|
6
|
Zhang S, Deng Z, Yin X, Fang H, Song G, Liu Y, Jiang X, Wang X, Wang L. Bioaccessibility of lead and cadmium in soils around typical lead-acid power plants and their effect on gut microorganisms. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:107. [PMID: 38446285 DOI: 10.1007/s10653-023-01840-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 12/18/2023] [Indexed: 03/07/2024]
Abstract
Potentially toxic elements (Pb and Cd) contamination of soil can adversely affect human health. Moreover, these metal ions interact with the gut microbiota after entering the human digestive system. Based on the physiologically based extraction test and the simulator of human intestinal microbial ecosystem, the bioaccessibility of Pb and Cd in soils contaminated with lead-acid power plants was assessed. The gastric stage exhibited the greatest average bioaccessibility of lead and cadmium (63.39% and 57.22%), followed by the small intestinal stage (6.86% and 36.29%); due to gut microorganisms, the bioaccessibility of lead and cadmium was further reduced in the colon stage (1.86% and 4.22%). Furthermore, to investigate soil contamination's effects on gut microbes, 16S rRNA high-throughput sequencing was used to identify the gut microbial species after the colon period. Due to Pb and Cd exposure, the relative abundance of Firmicutes and unidentified_Bacteria decreased, while the relative abundance of Proteobacteria, Synergistota, and Bacteroidota increased. The relationship between environmental factors and the number of microbial species in the gut was also examined using Spearman correlation analysis. Pb and Cd exposure has been found to affect the composition and structure of the gut microbiota.
Collapse
Affiliation(s)
- Shuxi Zhang
- Shandong Analysis and Test Center,, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Zhiwen Deng
- Shandong Analysis and Test Center,, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Xixiang Yin
- Shandong Jinan Eco-Environmental Monitoring Center, Jinan, 250101, China.
| | - Hongke Fang
- Shandong Jinan Eco-Environmental Monitoring Center, Jinan, 250101, China
| | - Guangmin Song
- Shandong Jinan Eco-Environmental Monitoring Center, Jinan, 250101, China
| | - Yuanyuan Liu
- Shandong Analysis and Test Center,, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Xiyan Jiang
- Shandong Analysis and Test Center,, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Xiaodong Wang
- School of Civil Engineering and Architecture, University of Jinan, Jinan, 250022, China
| | - Lihong Wang
- Shandong Analysis and Test Center,, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China.
| |
Collapse
|
7
|
Deng Z, Yin X, Zhang S, Fang H, Gao S, Liu Y, Jiang X, Song G, Jiang W, Wang L. Study on arsenic speciation, bioaccessibility, and gut microbiota in realgar-containing medicines by DGT technique and artificial gastrointestinal extraction (PBET) combine with simulated human intestinal microbial ecosystem (SHIME). JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132863. [PMID: 37918077 DOI: 10.1016/j.jhazmat.2023.132863] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/04/2023]
Abstract
It is well-known that several Chinese patent medicines use realgar as a specific component. People are more aware of the health dangers associated with realgar since it includes arsenic. Previous research overstated the arsenic toxicity of realgar-containing Chinese prescription medications because little thought was given to the influence of arsenic bioaccessibility by gut microbiota. In light of this, this study examined the total content, bioaccessibility and speciation of targeted medications while also examining intestinal epithelial transit utilizing the diffusive gradients in thin-films (DGT). All samples contained arsenic, and the bioaccessibilities of the colon, intestine and gastric regions ranged from 0.19% to 1.73%, 0.25-1.88% and 0.21-1.70% respectively. The range of DGT-bioaccessibility is 0.01-0.0018%. Three steps of analysis were conducted on inorganic As(III) and As(V). In health risk assessment, the ADDs and HQs of DGT-bioaccessibility were below the threshold levels when compared to computing average daily intake dose (ADD) and hazard quotient (HQ) by bioaccessibility of gastric, intestinal and colon. Additionally, Proteobacteria and Firmicutes were discovered to be the two predominant kinds of gut microbes in this study. Under arsenic exposure, the abundance of Christensenellaceae, Desulfovibrionaceae and Akkermansiaceae increased, but the quantity of Rikenellaceae decreased. These findings revealed that alterations in gut microbiota had an impact on host metabolism.
Collapse
Affiliation(s)
- Zhiwen Deng
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Xixiang Yin
- Shandong Jinan Eco-Environmental Monitoring Center, Jinan 250101, China
| | - Shuxi Zhang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Hongke Fang
- Shandong Jinan Eco-Environmental Monitoring Center, Jinan 250101, China
| | - Shuai Gao
- Shandong Provincial Geo-mineral Engineering Exploration Institute, China
| | - Yuanyuan Liu
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Xiyan Jiang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Guangmin Song
- Shandong Jinan Eco-Environmental Monitoring Center, Jinan 250101, China
| | - Wenqiang Jiang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Lihong Wang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| |
Collapse
|
8
|
Ma J, Yin N, Wang P, Cai X, Geng Z, Fan C, Cui Y, Sjödin A. Bioaccessibility assessment of arsenic and cadmium in polished and unpolished rice: Comparison of three in vitro methods. Food Res Int 2024; 177:113853. [PMID: 38225128 DOI: 10.1016/j.foodres.2023.113853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/09/2023] [Accepted: 12/14/2023] [Indexed: 01/17/2024]
Abstract
INFOGEST is a standardized in vitro digestion method suitable for foods, but rarely used to study the bioaccessibility of heavy metals in food. This study aimed to explore the differences between INFOGEST and the extensively used Physiologically Based Extraction Test (PBET) and Unified Bioaccessibility Research Group of Europe Method (UBM) methods for determining the bioaccessibility of As and Cd in rice. Intestinal As (79.3 ± 8.5 %, 75.8 ± 12.7 %, and 72.3 ± 12.2 % for INFOGEST, PBET, and UBM, respectively) and Cd (47.0 ± 6.4 %, 40.7 ± 13.8 %, and 38.1 ± 15.7 % for INFOGEST, PBET, and UBM, respectively) bioaccessibilities in the rice samples determined by the three methods were generally similar (p > 0.1, except for As bioaccessibility between INFOGEST and UBM). Furthermore, PBET was significantly correlated with INFOGEST for As bioaccessibility (R2 = 0.416) and with UBM for Cd bioaccessibility (R2 = 0.879). Additionally, PBET indicated that the bioaccessibilities of As and Cd in the polished rice were 17.0 % and 19.8 % higher, respectively, than that in the unpolished rice. This study highlights the influence of in vitro methods and rice matrices on heavy metal bioaccessibility values, necessitating a more accurate assessment of health risks associated with rice consumption.
Collapse
Affiliation(s)
- Jingnan Ma
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, China.
| | - Naiyi Yin
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Pengfei Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Xiaolin Cai
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Ziqi Geng
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, China.
| | - Chuanfang Fan
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Yanshan Cui
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Anders Sjödin
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg, Denmark.
| |
Collapse
|
9
|
Wang Y, Ma C, Dang F, Zhao L, Zhou D, Gu X. Mixed effects and co-transfer of CeO 2 NPs and arsenic in the pakchoi-snail food chain. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132770. [PMID: 37852136 DOI: 10.1016/j.jhazmat.2023.132770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/20/2023]
Abstract
Nanomaterial application in agriculture offers novel solutions for soil arsenic (As) pollution control, yet safety along the food chain is of concern. We comprehensively assessed CeO2 nanoparticles (NPs) foliar application effects on As uptake by pakchoi and their presence in the pakchoi-snail food chain. CeO2 NPs reduced As transfer from pakchoi roots to shoots by 37.9%, lowered As in snail foot by 39%, and halved human As exposure risk. The NPs alleviated pakchoi shoot As toxicity by regulating antioxidants, enhancing water use efficiency, and photosynthesis. CeO2 +As treatment raised GSH/GSSG ratios by 38.92%- 167.54%, leading to an increased AsIII/AsV ratio and inorganic As detoxification compared to As alone. Metabolomics revealed CeO2's rapid As response via phosphatidylinositol signaling. The enzyme-like activity of CeO2 NPs may drive these effects. While CeO2 foliar application accumulated Ce on pakchoi leaves, > 99% of Ce was excreted following snail consumption. Ce transfer from pakchoi leaves to snail foot was minimal (trophic transfer factor ∼0.00007) due to limited bioavailability. The target hazard quotient of Ce in pakchoi shoot (1.21 ± 0.18) and snails (0.0016 ± 0.0004) indicated low exposure risk, suggesting a 'risk filter' effect for CeO2. Our results contribute to the safe and sustainable application of CeO2 NPs in the future implication.
Collapse
Affiliation(s)
- Yaoyao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Chuanxin Ma
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Fei Dang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Lijuan Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Xueyuan Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
10
|
Fu Y, Du H, Wang P, Yin N, Cai X, Geng Z, Li Y, Cui Y. Effects of foods and food components on the in vitro bioaccessibility of total arsenic and arsenic species from Hizikia fusiforme seaweed. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165775. [PMID: 37499825 DOI: 10.1016/j.scitotenv.2023.165775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 07/21/2023] [Accepted: 07/23/2023] [Indexed: 07/29/2023]
Abstract
Seaweed is an important food source, especially in many Asian countries, because of its high nutritional value; however, increasing arsenic (As) accumulation may pose serious hazards to human health. The influence of food components on As bioaccessibility and transformation in the high As-containing seaweed Hizikia fusiforme was determined using an in vitro gastrointestinal digestion method. The results showed that co-digestion with several daily foods (such as celery, broccoli, onion, green chili, tomato) produced a higher As bioaccessibility (approximately 6-11 % increase) compared with that of seaweed alone. Vegetables such as fennel (Foeniculum valgare Mill.), celery (Apium grareolens L.), blanched garlic leaves (Allium sativum L.), scallions (Allium fistulosum L.), ginger (Zingiber officinale Rosc.), and green pepper (Capsicum frutescens L. vat. grussum Bailey) decreased bioaccessible inorganic As (18-35 %) in both the gastric and small intestinal phases. Meanwhile, the process of reducing As(V) to As(III) also occurred during co-digestion with some food matrices. Egg white and other animal proteins were the most effective reducing agents, transforming >70 % As(V) into As(III) in the solution system. These results may have important implications for health risk assessment via co-consumption. The present study provides the first evidence showing that the co-consumption of some vegetables and proteins leads to a higher toxicity of inorganic arsenic-containing food. In addition, the positive and negative effects of co-digestion on the bioaccessibility of essential metals (iron, manganese) compared to single digestion were evaluated in this study.
Collapse
Affiliation(s)
- Yaqi Fu
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China; Research Center for Eco-environmental sciences, Chinese Academy of Science, Beijing 100085, People's Republic of China
| | - Huili Du
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China; Research Center for Eco-environmental sciences, Chinese Academy of Science, Beijing 100085, People's Republic of China
| | - Pengfei Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China; Research Center for Eco-environmental sciences, Chinese Academy of Science, Beijing 100085, People's Republic of China
| | - Naiyi Yin
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China; Research Center for Eco-environmental sciences, Chinese Academy of Science, Beijing 100085, People's Republic of China
| | - Xiaolin Cai
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China; Research Center for Eco-environmental sciences, Chinese Academy of Science, Beijing 100085, People's Republic of China
| | - Ziqi Geng
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China; Research Center for Eco-environmental sciences, Chinese Academy of Science, Beijing 100085, People's Republic of China
| | - Yunpeng Li
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China; Research Center for Eco-environmental sciences, Chinese Academy of Science, Beijing 100085, People's Republic of China
| | - Yanshan Cui
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China; Research Center for Eco-environmental sciences, Chinese Academy of Science, Beijing 100085, People's Republic of China.
| |
Collapse
|
11
|
Manzoor N, Ali L, Al-Huqail AA, Alghanem SMS, Al-Haithloul HAS, Abbas T, Chen G, Huan L, Liu Y, Wang G. Comparative efficacy of silicon and iron oxide nanoparticles towards improving the plant growth and mitigating arsenic toxicity in wheat (Triticum aestivum L.). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115382. [PMID: 37619453 DOI: 10.1016/j.ecoenv.2023.115382] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/12/2023] [Accepted: 08/15/2023] [Indexed: 08/26/2023]
Abstract
Nano-enabled agriculture has emerged as an attractive approach for facilitating soil pollution mitigation and enhancing crop production and nutrition. In this study, we conducted a greenhouse experiment to explore the efficacy of silicon oxide nanoparticles (SiONPs) and iron oxide nanoparticles (FeONPs) in alleviating arsenic (As) toxicity in wheat (Triticum aestivum L.) and elucidated the underlying mechanisms involved. The application of SiONPs and FeONPs at 25, 50, and 100 mg kg-1 soil concentration significantly reduced As toxicity and concurrently improved plant growth performance, including plant height, dry matter, spike length, and grain yield. The biochemical analysis showed that the enhanced plant growth was mainly due to stimulated antioxidative enzymes (catalase, superoxide dismutase, peroxidase) and reduced reactive oxygen species (electrolyte leakage, malondialdehyde, and hydrogen peroxide) in wheat seedlings under As stress upon NPs application. The nanoparticles (NPs) exposure also enhanced the photosynthesis efficiency, including the total chlorophyll and carotenoid contents as compared with the control treatment. Importantly, soil amendments with 100 mg kg-1 FeONPs significantly reduced the acropetal As translocation in the plant root, shoot and grains by 74%, 54% and 78%, respectively, as compared with the control treatment under As stress condition, with relatively lower reduction levels (i.e., 64%, 37% and 58% for the plant root, shoot and grains, respectively) for SiONPs amendment. Overall, the application of NPs especially the FeONPs as nanoferlizers for agricultural crops is a promising approach towards mitigating the negative impact of HMs toxicity, ensuring food safety, and promoting future sustainable agriculture.
Collapse
Affiliation(s)
- Natasha Manzoor
- Department of Soil and Water Sciences, China Agricultural University, Beijing 100193, China
| | - Liaqat Ali
- University of Agriculture Faisalabad, Sub-Campus Burewala Vehari, 61100, Pakistan
| | - Arwa Abdulkreem Al-Huqail
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O.Box 84428, Riyadh 11671, Saudi Arabia
| | | | | | - Tahir Abbas
- Department of environmental sciences, University of Jhang, Punjab, Pakistan
| | - Guowei Chen
- Department of Civil Engineering, Hefei University of Technology, Hefei 230009, China
| | - Liying Huan
- Department of Soil and Water Sciences, China Agricultural University, Beijing 100193, China
| | - Ying Liu
- National Black Soil & Agriculture Research, China Agricultural University, Beijing 100193, China
| | - Gang Wang
- Department of Soil and Water Sciences, China Agricultural University, Beijing 100193, China; National Black Soil & Agriculture Research, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
12
|
Juang KW, Chu LJ, Syu CH, Chen BC. Coupling phytotoxicity and human health risk assessment to refine the soil quality standard for As in farmlands. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:38212-38225. [PMID: 36580243 DOI: 10.1007/s11356-022-25011-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
In the present study, a field experiment was conducted to investigate arsenic (As) concentrations in soils and in grains of 15 rice varieties in a contaminated site in Taiwan. The studied site was divided into two experimental units, namely plot A and plot B. The results showed that mean total As concentrations were 70.94 and 61.80 mg kg-1 in plot A and plot B, respectively, and thus greater than or approximate to the soil quality standard for total As in Taiwan (60 mg kg-1). The As levels in rhizosphere soil in plot A (19.71-32.33 mg kg-1) were much higher than in plot B (6.41-8.60 mg kg-1); however, As accumulation in brown rice did not significantly differ between the plots. These results implied that a significant variation in the bioconcentration factor (BCF) value of As existed among different rice genotypes, and a negative correlation was observed between BCF value and rhizosphere As level in the soil. In phytotoxicity, the median values of the ecological risk indicator were 104.85 and 103.89 in plot A and plot B, respectively, indicating considerable risk. In human health risk assessment, the median and 97.5%-tile values for cancer risk for both male and female residents were markedly higher than the acceptable risk (1 × 10-4). Furthermore, non-cancer and cancer risks were higher for males than females, mainly due to the greater rice ingestion rate of males. Sensitivity analysis showed that total As concentration in soil was the main factor affecting health risks, suggesting that priority should be given to the reduction of soil As levels. To better manage the phytotoxicity of As on rice, as well as the health risk to residents resulting from exposure to As-contaminated soils, the soil quality standard for As in farmland soils should be set between 5 and 10 mg kg-1. The methodology developed in this study could also be applied to provide the basis for refining and revising the soil quality standard for heavy metals in farmland in other regions and countries.
Collapse
Affiliation(s)
- Kai-Wei Juang
- Department of Agronomy, National Chiayi University, Chiayi, Taiwan
| | - Li-Jia Chu
- Department of Agronomy, National Chiayi University, Chiayi, Taiwan
- Department of Natural Biotechnology, Nanhua University, 622 No. 55, Sec. 1, Nanhua Rd., Dalin Township, Chiayi, Taiwan
| | - Chien-Hui Syu
- Agricultural Chemistry Division, Taiwan Agricultural Research Institute, Taichung, Taiwan
| | - Bo-Ching Chen
- Department of Natural Biotechnology, Nanhua University, 622 No. 55, Sec. 1, Nanhua Rd., Dalin Township, Chiayi, Taiwan.
| |
Collapse
|
13
|
Chen L, Li C, Zhong X, Lai C, Zhang B, Luo Y, Guo H, Liang K, Fang J, Zhu X, Zhang J, Guo L. The gut microbiome promotes arsenic metabolism and alleviates the metabolic disorder for their mammal host under arsenic exposure. ENVIRONMENT INTERNATIONAL 2023; 171:107660. [PMID: 36470123 DOI: 10.1016/j.envint.2022.107660] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 10/27/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Gut microbiome can participate in arsenic metabolism. However, its efficacy in the host under arsenic stress is still controversial. To clarify their roles in fecal arsenic excretion, tissue arsenic accumulation, host physiological states and metabolism, in this study, ninety-six C57BL/6 male mice were randomly divided to four groups, groups A and B were given sterile water, and groups C and D were given the third generation of broad-spectrum antibiotic (ceftriaxone) to erase the background gut microbiome. Subsequently, groups B and D were subchronicly exposed to arsenic containing feed prepared by adding arsenical mixture (rice arsenic composition) into control feed. In group D, the fecal total arsenic (CtAs) decreased by 25.5 %, iAsIII composition increased by 46.9 %, unclarified As (uAs) composition decreased by 92.4 %, and the liver CtAs increased by 26.7 %; the fecal CtAs was positively correlated with microbial richness and some metabolites (organic acids, amino acids, carbohydrates, SCFAs, hydrophilic bile acids and their derivatives); and fecal DMA was positively correlated with microbial richness and some metabolites (ferulic acid, benzenepropanoic acid and pentanoic acid); network analysis showed that the numbers of modules, nodes, links were decreased and vulnerability was increased; some SCFAs and hydrophilic bile acid decreased, and hydrophobic bile acids increased (Ps < 0.05). In the tissue samples of group D, Il-18 and Ifn-γ gene expression increased and intestinal barrier-related genes Muc2, Occludin and Zo-1 expression decreased (Ps < 0.05); serum glutathione and urine malondialdehyde significantly increased (Ps < 0.05); urine metabolome significantly changed and the variation was correlated with six SCFAs-producing bacteria, and some SCFAs including isobutyric acid, valeric acid and heptanoic acid decreased (Ps < 0.05). Therefore, the normal gut microbiome increases fecal arsenic excretion and biotransformation, which can maintain a healthier microbiome and metabolic functions, and alleviate the metabolic disorder for their mammal host under arsenic exposure.
Collapse
Affiliation(s)
- Linkang Chen
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Chengji Li
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China; Yunfu City Center for Disease Control, Guangdong Province 527300, China
| | - Xiaoting Zhong
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Chengze Lai
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Bin Zhang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Yu Luo
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Honghui Guo
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Keqing Liang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Jingwen Fang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Xuan Zhu
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Jingjing Zhang
- Key Laboratory of Zebrafish Model for Development and Disease & Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China.
| | - Lianxian Guo
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| |
Collapse
|
14
|
Chen JY, Zeng JY, Ding S, Li J, Liu X, Guan DX, Ma LQ. Arsenic contents, speciation and bioaccessibility in rice grains from China: Regional and variety differences. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129431. [PMID: 35897189 DOI: 10.1016/j.jhazmat.2022.129431] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/11/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
As the staple food for Asian countries and with its ability in arsenic accumulation, rice consumption becomes a dominant pathway for As exposure to humans. Here, we collected 108 rice samples from local markets and online sources in 13 major rice-producing regions in China, and determined As contents, speciation and bioaccessibility in the samples. Total As contents were 25-327 μg kg-1 (averaging 120), showing regional differences, with Hunan province being greater than other provinces at 180 vs 110. In rice grains, inorganic As was the dominant species, being 39.9-88.5 (61.1 %), but all being within the Chinese standard at 200 μg kg-1. Based on the modified physiologically-based extraction test (MPEBT), arsenic bioaccessibility in rice samples was 20.1-82.2 (52.3 %) in the gastric phase and 47.2-113 (81.2 %) in the intestinal phase. Strong positive correlation between total As and bioaccessible As suggested bioaccessible As was content-dependent. Based on the intestinal phase, the rice samples from northern region had lower As bioaccessibility than other regions (59.2 vs 83.2 %), and Japonica variety had lower As bioaccessibility than Indica variety (71.1 vs 83.1 %). This study suggests that rice from markets in China is safe, with their As contents and bioaccessibility showing regional and variety differences.
Collapse
Affiliation(s)
- Jia-Yi Chen
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jing-Yu Zeng
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Song Ding
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jie Li
- College of Geography and Environment, Shandong Normal University, Jinan 250358, China
| | - Xue Liu
- Institute of Environmental Remediation and Human Health, Southwest Forestry University, Kunming 650224, China
| | - Dong-Xing Guan
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lena Q Ma
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
15
|
Dual-mode colorimetric determination of As(III) based on negatively-charged aptamer-mediated aggregation of positively-charged AuNPs. Anal Chim Acta 2022; 1221:340111. [DOI: 10.1016/j.aca.2022.340111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 11/18/2022]
|
16
|
Zhang T, Tian Z, Sun L, Zhuang Y. Effect of different cadmium levels in Boletus griseus on bioaccessibility, bioavailability, and intestinal flora by establishing a complete bionic digestion system in vitro. J Food Sci 2022; 87:3677-3689. [PMID: 35762635 DOI: 10.1111/1750-3841.16231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/10/2022] [Accepted: 05/27/2022] [Indexed: 11/30/2022]
Abstract
The bioaccessibility and bioavailability of different cadmium (Cd) levels (low: 7.31 mg/kg, medium: 24.20 mg/kg, high: 41.64 mg/kg) in Boletus griseus were evaluated by establishing a bionic digestive system in vitro. The results showed that the bioaccessibility of high Cd level by gastrointestinal digestion was significantly higher than other two levels. Further, colonic digestion significantly increased the bioaccessibilities of low Cd level (p < 0.05). After intestinal flora fermentation, the bioaccessibilities of different Cd levels significantly decreased (p < 0.05), and high and medium Cd levels had no significant difference (p > 0.05). A Caco-2 monolayer cell model was established to evaluate the bioavailability of Cd. The bioavailabilities of low and high Cd levels by gastrointestinal digestion were 8.75 and 10.58%, and the bioavailabilities increased by 38.17% and 5.20% after colonic digestion, respectively. Furthermore, Cd could affect diversity, composition, and balance of intestinal flora, and the relative abundances of several genera were correlation with Cd levels in B. griseus.
Collapse
Affiliation(s)
- Tingting Zhang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Zhen Tian
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Liping Sun
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yongliang Zhuang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
17
|
Yang Y, Zhong H, Yang N, Zhu D, Li J, Yang Z, Yang T. Effects of the proteins of indica rice and indica waxy rice on the formation of volatiles of sweet rice wine. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yurong Yang
- College of Food Science and Engineering Central South University of Forestry and Technology Changsha 410004 China
| | - Haiyan Zhong
- College of Food Science and Engineering Central South University of Forestry and Technology Changsha 410004 China
| | - Ning Yang
- College of Food Science and Engineering Central South University of Forestry and Technology Changsha 410004 China
| | - Dongcai Zhu
- Lidu Liquor Industry Co. Ltd. Nanchang 331725 China
| | - Jie Li
- Lidu Liquor Industry Co. Ltd. Nanchang 331725 China
| | - Zhilong Yang
- Xiangjiao Liquor Industry Co. Ltd. Shaoyang 422000 China
| | - Tao Yang
- College of Food Science and Engineering Central South University of Forestry and Technology Changsha 410004 China
- Lidu Liquor Industry Co. Ltd. Nanchang 331725 China
| |
Collapse
|
18
|
Physico-chemical characteristics of rice protein-based novel textured vegetable proteins as meat analogues produced by low-moisture extrusion cooking technology. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.113056] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
19
|
Ahmed T, Noman M, Manzoor N, Shahid M, Hussaini KM, Rizwan M, Ali S, Maqsood A, Li B. Green magnesium oxide nanoparticles-based modulation of cellular oxidative repair mechanisms to reduce arsenic uptake and translocation in rice (Oryza sativa L.) plants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117785. [PMID: 34273764 DOI: 10.1016/j.envpol.2021.117785] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/22/2021] [Accepted: 07/10/2021] [Indexed: 05/13/2023]
Abstract
Arsenic (As) accumulation catastrophically disturbs the stability of agricultural systems and human health. Rice easily accumulates a high amount of As from agriculture fields as compare with other cereal crops. Hence, innovative soil remediation methods are needed to deal with the detrimental effects of As on human health causing food security challenges. Here, we report the green synthesis and characterization of magnesium oxide nanoparticles (MgO-NPs) from a native Enterobacter sp. strain RTN2, which was genetically identified through 16S rRNA gene sequence analysis. The biosynthesis of MgO-NPs in reaction mixture was confirmed by UV-vis spectral analysis. X-ray diffraction (XRD) and fourier transform-infrared spectroscopy (FTIR) analysis showed the crystalline nature and surface properties of MgO-NPs, respectively. Moreover, electron microscopy (SEM-EDS, and TEM) imaging confirmed the synthesis of spherical shape of MgO-NPs with variable NPs sizes ranging from 38 to 57 nm. The results revealed that application of MgO-NPs (200 mg kg-1) in As contaminated soil significantly increased the plant biomass, antioxidant enzymatic contents, and decreased reactive oxygen species and acropetal As translocation as compared with control treatment. The study concluded that biogenic MgO-NPs could be used to formulate a potent nanofertilizer for sustainable rice production in metal contaminated soils.
Collapse
Affiliation(s)
- Temoor Ahmed
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, 310058, Hangzhou, China
| | - Muhammad Noman
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, 310058, Hangzhou, China
| | - Natasha Manzoor
- Department of Soil and Water Sciences, China Agricultural University, Beijing, 100083, China
| | - Muhammad Shahid
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, 38000, Pakistan
| | - Khalid Mahmud Hussaini
- Institute of Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Awais Maqsood
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, 38000, Pakistan
| | - Bin Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, 310058, Hangzhou, China.
| |
Collapse
|