1
|
Nam NN, Trinh TND, Do HDK, Phan TB, Trinh KTL, Lee NY. Advances and Opportunities of luminescence Nanomaterial for bioanalysis and diagnostics. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 327:125347. [PMID: 39486236 DOI: 10.1016/j.saa.2024.125347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/15/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024]
Abstract
Luminescence nanomaterials (LNMs) have recently received great attention in biological analysis and sensing owing to their key advances in easy design and functionalization with high photostability, luminescence stability, low autofluorescence, and multiphoton capacity. The number of publications surrounding LNMs for biological applications has grown rapidly. LNMs based on Stokes and anti-Stokes shifts are powerful tools for biological analysis. Especially, unique properties of anti-Stokes luminescence such as upconversion nanoparticles (UCNPs) with an implementation strategy to use longer-wavelength excitation sources such as near-infrared (NIR) light can depth penetrate to biological tissue for bioanalysis and bioimaging. We observed that the LNMs-based metal-organic frameworks (MOFs) have been developed and paid attention to the field of bioimaging and luminescence-based sensors, because of their structural flexibility, and multifunctionality for the encapsulation of luminophores. This article provides an overview of innovative LNMs such as quantum dots (QDs), UCNPs, and LMOFs. A brief summary of recent progress in design strategies and applications of LNMs including pH and temperature sensing in biologically responsive platforms, pathogen detection, molecular diagnosis, bioimaging, photodynamic, and radiation therapy published within the past three years is highlighted. It was found that the integrated nanosystem of lab-on-a-chip (LOC) with nanomaterials was rapidly widespread and erupting in interest after the COVID-19 pandemic. The simple operation and close processes of the integration nanosystem together with the optimized size and low energy and materials consumption of biochips and devices allow their trend study and application to develop portable and intelligent diagnostics tools. The last part of this work is the introduction of the utilization use of LNMs in LOC applications in terms of microfluidics and biodevices.
Collapse
Affiliation(s)
- Nguyen Nhat Nam
- Biotechnology Center, School of Agriculture and Aquaculture, Tra Vinh University, Tra Vinh City 87000, Vietnam
| | - Thi Ngoc Diep Trinh
- Department of Materials Science, School of Applied Chemistry, Tra Vinh University, Tra Vinh City 87000, Vietnam
| | - Hoang Dang Khoa Do
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City 72820, Vietnam
| | - Thang Bach Phan
- Center for Innovative Materials and Architectures (INOMAR), Ho Chi Minh City 72820, VietNam; Vietnam National University, Ho Chi Minh City 72820, VietNam
| | - Kieu The Loan Trinh
- BioNano Applications Research Center, Gachon University 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, South Korea.
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, South Korea.
| |
Collapse
|
2
|
Asnaashari M, Kenari RE, Taghdisi SM, Abnous K, Farahmandfar R. A Novel Fluorescent DNA Sensor for Acrylamide Detection in Food Samples Based on Single-Stranded DNA and GelRed. J Fluoresc 2024; 34:2845-2860. [PMID: 37930599 DOI: 10.1007/s10895-023-03479-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/16/2023] [Indexed: 11/07/2023]
Abstract
The presence of acylamide (AA) in large group of food products and its health hazards have been confirmed by scientists. In this study, a simple and innovative biosensor for AA determination was designed based on single-stranded DNA (ssDNA) with partial guanine and GelRed. The idea of this biosensor is based on the formation of AA-ssDNA adduct through the strong binding interaction between AA and guanine base of ssDNA, which subsequently inhibits the interaction of ssDNA and GelRed, leading to a weak fluorescence intensity. The binding interaction between AA and ssDNA was confirmed by UV-Vis absorption spectrometry and fluorescence intensity. Under optimum conditions, the designed biosensor exhibited excellent linear response in range of 0.01-95 mM, moreover it showed high selectivity toward AA. The limit of detection was 0.003 mM. This biosensor was successfully applied for the determination of AA in water extract of potato fries and coffee in the range of 0.05-100 mM with LOD of 0.01 mM and 0.05-95 mM with LOD of 0.004 mM, respectively.
Collapse
Affiliation(s)
- Maryam Asnaashari
- Department of Animal Processing, Animal Science Research Institute of Iran (ASRI), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
| | - Reza Esmaeilzadeh Kenari
- Department of Food Science and Technology, Sari Agricultural Sciences & Natural Resources University (SANRU), Sari, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Farahmandfar
- Department of Food Science and Technology, Sari Agricultural Sciences & Natural Resources University (SANRU), Sari, Iran
| |
Collapse
|
3
|
Qi Y, Cheng J, Ding W, Wang L, Qian H, Qi X, Wu G, Zhu L, Yang T, Xu B, Zhang H. Epicatechin-Promoted Formation of Acrylamide from 3-Aminopropionamide Via Postoxidative Reaction of B-Ring. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15301-15310. [PMID: 38917412 DOI: 10.1021/acs.jafc.4c01116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
The role of thermally generated 3-aminopropionamide as an intermediate in acrylamide formation in the Maillard reaction has been well established. Herein, the effect of epicatechin on the conversion of 3-aminopropionamide into acrylamide under oxidative conditions was investigated at 160-220 °C. Epicatechin promoted acrylamide generation and 3-aminopropionamide degradation. The stable isotope-labeling technique combined with UHPLC-Orbitrap-MS/MS analysis showed adduct formation between 3-aminopropionamide and the oxidized B ring of epicatechin to form a Schiff base. This initially formed Schiff base could directly degrade to acrylamide, undergo reduction or dehydration to other intermediates, and subsequently generate acrylamide. Based on accurate mass analysis, five intermediates with intact or dehydrated C rings were tentatively identified. Furthermore, reaction pathways were proposed that were supported by the changes in the levels of adducts formed during heating. To the authors' knowledge, this study is the first to reveal pathways through which flavanols promoted the formation of acrylamide in Maillard reactions.
Collapse
Affiliation(s)
- Yajing Qi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Jiahao Cheng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Wangmin Ding
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Li Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Haifeng Qian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Xiguang Qi
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Gangcheng Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Ling Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Tianyi Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Bin Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hui Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
4
|
Shang Y, Wang J, Xia H, Jiao C, Javaid N, Liu X, Li J, Zeng J. A highly sensitive point-of-care detection platform for Salmonella typhimurium by integrating magnetic enrichment and fluorescent CsPbBr 3@SiO 2. Mikrochim Acta 2024; 191:303. [PMID: 38709340 DOI: 10.1007/s00604-024-06361-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/09/2024] [Indexed: 05/07/2024]
Abstract
A platform was designed based on Fe3O4 and CsPbBr3@SiO2 for integrated magnetic enrichment-fluorescence detection of Salmonella typhimurium, which significantly simplifies the detection process and enhances the working efficiency. Fe3O4 served as a magnetic enrichment unit for the capture of S. typhimurium. CsPbBr3@SiO2 was employed as a fluorescence-sensing unit for quantitative signal output, where SiO2 was introduced to strengthen the stability of CsPbBr3, improve its biomodificability, and prevent lead leakage. More importantly, the SiO2 shell shows neglectable absorption or scattering towards fluorescence, making the CsPbBr3@SiO2 exhibit a high quantum yield of 74.4%. After magnetic enrichment, the decreasing rate of the fluorescence emission intensity of the CsPbBr3@SiO2 supernatant at 527 nm under excitation light at UV 365 nm showed a strong linear correlation with S. typhimurium concentration of 1 × 102~1 × 108 CFU∙mL-1, and the limit of detection (LOD) reached 12.72 CFU∙mL-1. This platform has demonstrated outstanding stability, reproducibility, and resistance to interference, which provides an alternative for convenient and quantitative detection of S. typhimurium.
Collapse
Affiliation(s)
- Yanxue Shang
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemical Safety, China University of Petroleum (East China), Qingdao, 266580, China
| | - Jinling Wang
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemical Safety, China University of Petroleum (East China), Qingdao, 266580, China
| | - Hongkun Xia
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemical Safety, China University of Petroleum (East China), Qingdao, 266580, China
| | - Chunpeng Jiao
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemical Safety, China University of Petroleum (East China), Qingdao, 266580, China
| | - Nafisa Javaid
- Lahore College for Women University, Lahore, Pakistan
| | - Xiangyi Liu
- Department of Laboratory Medicine, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Jingwen Li
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemical Safety, China University of Petroleum (East China), Qingdao, 266580, China.
| | - Jingbin Zeng
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemical Safety, China University of Petroleum (East China), Qingdao, 266580, China.
| |
Collapse
|
5
|
Cheng B, Xia X, Han Z, Yu H, Xie Y, Guo Y, Yao W, Qian H, Cheng Y. A ratiometric fluorescent "off-on" sensor for acrylamide detection in toast based on red-emitting copper nanoclusters stabilized by bovine serum albumin. Food Chem 2024; 437:137878. [PMID: 37913709 DOI: 10.1016/j.foodchem.2023.137878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/03/2023]
Abstract
Acrylamide, as a Class 2A carcinogen, poses serious threats to human health. To achieve rapid and accurate determination of acrylamide in food, a ratiometric fluorescent "off-on" sensor was designed by incorporating red-emitting copper nanoclusters and glutathione. Copper nanoclusters with bimodal emission at 395 nm and 650 nm (excited at 310 nm) were synthesized by using bovine serum albumin as the ligand and ascorbic acid as the reductant. With glutathione addition, the fluorescence intensity at 650 nm gradually decreased, while the case at 395 nm slightly increased. The quenched fluorescence at 650 nm was subsequently restored by acrylamide through thiol-ene Michael addition reaction between acrylamide and glutathione. The constructed sensor showed excellent performance towards acrylamide detection in the range of 5-300 μM with a detection limit of 1.48 μM, and was further applied to real-sample detection of acrylamide in toast and exhibited good recoveries (90.29-101.30 %), indicating potential applications of this sensor.
Collapse
Affiliation(s)
- Baoxin Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiuhua Xia
- Wuxi Vocational Institute of Commerce, Wuxi 214122, China
| | - Zhiqiang Han
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Hang Yu
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Yufei Xie
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Yahui Guo
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Weirong Yao
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - He Qian
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
6
|
Rong Y, Hassan MM, Wu J, Chen S, Yang W, Li Y, Zhu J, Huang J, Chen Q. Enhanced detection of acrylamide using a versatile solid-state upconversion sensor through spectral and visual analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133369. [PMID: 38278076 DOI: 10.1016/j.jhazmat.2023.133369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/14/2023] [Accepted: 12/23/2023] [Indexed: 01/28/2024]
Abstract
Acrylamide (AM) generally forms in high-temperature processes and has been classified as a potential carcinogen. In this study, we put forward a maneuverable solid-state luminescence sensor using polydimethylsiloxane (PDMS) as the matrix coupled with upconversion nanoparticles as the indicator. The core-shell upconversion nanoparticles emitting cyan light were uniformly encapsulated in PDMS. Then it was further modified with complementary DNA of AM aptamer. The nanocrystalline fluorescein isothiocyanate isomer (FITC), coupled with AM aptamer, was attached to the surface of PDMS. FITC effectively quenched the upconversion luminescence through fluorescence resonance energy transfer (FRET). The introduction of AM resulted in preferentially bound to aptamer caused the separation of the quencher and the donor, and led to luminescence recovery. The developed sensor was applied for both spectral and visual monitoring, demonstrating a detection limit (LOD) of 1.00 nM and 1.07 nM, respectively. Importantly, in the actual foodstuffs detection, there is no obvious difference between the results of this study and the standard method, which indicates the developed method has good accuracy. Therefore, this solid-state sensor has the potential for on-site detection using a smartphone device and an Android application.
Collapse
Affiliation(s)
- Yawen Rong
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, 310023, PR China
| | - Md Mehedi Hassan
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | - Jizhong Wu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Shuo Chen
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, 310023, PR China
| | - Wancheng Yang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, 310023, PR China
| | - Yunhao Li
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, 310023, PR China
| | - Jiaji Zhu
- School of Electrical Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Jun Huang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, 310023, PR China.
| | - Quansheng Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
7
|
Ouyang Q, Rong Y, Wang B, Ahmad W, Liu S, Chen Q. An innovative solid-phase biosensor for rapid on-site detection of N-nitrosodimethylamine incorporating zein film and upconversion nanoparticles. Food Chem 2024; 430:136981. [PMID: 37541034 DOI: 10.1016/j.foodchem.2023.136981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/12/2023] [Accepted: 07/21/2023] [Indexed: 08/06/2023]
Abstract
Pickled frequently contains nitrosodimethylamine (NDMA), a mutagenic and carcinogenic substance that is dangerous for the general public's health. This study reports on the fabrication of a fluorescent biosensor using zein film and aptamer functionalized upconversion nanoparticles (UCNPs) for on-site monitoring of NDMA in meat. UCNPs were first prepared followed by aptamer binding and mixing with zein film, which was further conjugated with cDNA of dabcyl modified at 5'. The fluorescence resonance energy transfer (FRET) mechanism between the UCNPs and dabcyl was exploited. The fluorescence signals of the zein film recovered when NDMA was present because it was selectively collected by the particular aptamer and damaged the cDNA structure. The designed functionalized zein film was used for on-site and portable determination of NDMA with a lower limit of detection of 0.017 ng/mL, and possessed a satisfactory recovery ranging from 95.8% to 100.2% with no significant difference compared with the GC-MS method.
Collapse
Affiliation(s)
- Qin Ouyang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Yanna Rong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Baoning Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Waqas Ahmad
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Shuangshuang Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
8
|
Wei S, Li L, Gou L, Wu L, Hou X. Thiol-ene click derivatization reaction coupled with ratiometric surface-enhanced Raman scattering for reproducible and accurate determination of acrylamide. Food Chem 2023; 429:136991. [PMID: 37523913 DOI: 10.1016/j.foodchem.2023.136991] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/14/2023] [Accepted: 07/23/2023] [Indexed: 08/02/2023]
Abstract
Acrylamide (AA) is a carcinogen mainly ingested through food and drinking water, making its accurate determination crucial for both food safety and environmental protection. Herein, we proposed a derivatization-based ratiometric surface-enhanced Raman scattering (SERS) method for the quantification of AA. High density Au NPs were anchored to the surface of Cu-TCPP MOF nanosheets (MOFNs) to form the SERS sensor. The abundant Raman "hot spots" at the nanogaps generated by the Au NPs and the internal standard (IS) signal provided by Cu-TCPP MOFNs improved the sensitivity and quantitative accuracy of the method. Following the thiol-ene click derivatization reaction between p-aminothiophenol (PATP) and AA, the Raman peak intensity ratio (I1080/I395) was employed to quantify AA. The linear range was 0.1 nM to 10 μM, and the limit of detection (LOD) was as low as 0.08 nM. Trace amounts of AA in food and water samples were successfully determined using this method.
Collapse
Affiliation(s)
- Siqi Wei
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Ling Li
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Lichen Gou
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Li Wu
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China.
| | - Xiandeng Hou
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China; College of Chemistry and Key Lab of Green Chem & Tech of MOE, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|
9
|
Shang Y, Sun H, Yu R, Zhang F, Liang X, Li H, Li J, Yan Z, Zeng T, Chen X, Zeng J. Quantitative Time-Resolved Visualization of Catalytic Degradation Reactions of Environmental Pollutants by Integrating Single-Drop Microextraction and Fluorescence Sensing. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37467161 DOI: 10.1021/acs.est.3c02344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Current methods for evaluating catalytic degradation reactions of environmental pollutants primarily rely on chromatography that often suffers from intermittent analysis, a long turnaround period, and complex sample pretreatment. Herein, we propose a quantitative time-resolved visualization method to evaluate the progress of catalytic degradation reactions by integrating sample pretreatment [single-drop microextraction, (SDME)], fluorescence sensing, and a smartphone detection platform. The dechlorination reaction of chlorobenzene derivatives was first investigated to validate the feasibility of this approach, in which SDME plays a critical role in direct sample pretreatment, and inorganic CsPbBr3 perovskite encapsulated in a metal-organic framework (MOF-5) was utilized as the fluorescent chromogenic agent (FLCA) in SDME to realize fast in situ colorimetric detection via the color switching from green (CsPbBr3) to blue (chlorine lead bromide, inorganic CsPbCl3 perovskite). The smartphone, which can calculate the B/G value of FLCA, serves as a data output window for quantitative time-resolved visualization. Further, a [Eu(PMA)]n (PMA= pyromellitic acid) fluorescent probe was constructed to use as an FLCA for the in situ evaluation of cinnamaldehyde and p-nitrophenol catalytic reduction. This approach not only minimizes the utilization of organic solvents and achieves quantitively efficient time-resolved visualization but also provides a feasible method for in situ monitoring of the progress of catalytic degradation reactions.
Collapse
Affiliation(s)
- Yanxue Shang
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Hongman Sun
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Ruyue Yu
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Fangdou Zhang
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Xinyi Liang
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Honglin Li
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Jingwen Li
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Zifeng Yan
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Teng Zeng
- Department of Civil and Environmental Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - Xi Chen
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jingbin Zeng
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
10
|
Chen H, Li Q, Hu B, Zhu W, Xia H, Yang W. Analyte-triggered cascade signal amplification strategy for highly sensitive detection of iodate in table salt with dual-readout signals. Talanta 2023; 261:124661. [PMID: 37201339 DOI: 10.1016/j.talanta.2023.124661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/20/2023]
Abstract
A novel and highly sensitive upconversion fluorescence and colorimetric dual readout iodate (IO3-) nanosensor system was constructed by using both the outstanding optical performance of NaYF4:Yb, Tm upconversion nanoparticles (UCNPs) and the analyte-triggered cascade signal amplification (CSA) technique. The construction of the sensing system consisted of three processes. First, IO3- oxidized o-phenylenediamine (OPD) to diaminophenazine (OPDox), while IO3- was reduced to I2. Second, the generated I2 can further oxidize OPD to OPDox. This mechanism has been verified by 1H NMR spectra titration analysis and HRMS measurement, which effectively improves the selectivity and sensitivity of the measurement of IO3-. Third, the generated OPDox can effectively quench the fluorescence of UCNPs via the inner filter effect (IFE), realize analyte-triggered CSA, and allow quantitative determination of IO3-. Under the optimized conditions, the fluorescence quenching efficiency showed a good linear relationship to IO3- concentration in the range of 0.06-100 μM, and the detection limit reached 0.026 μM (3RSD/slope). Moreover, this method was applied to detect IO3- in table salt samples, yielding satisfactory determination results with excellent recoveries (95.5-105%) and high precision (RSD <5.5%). These results suggest that the dual-readout sensing strategy with well-defined response mechanisms has promising application prospects in physiological and pathological studies.
Collapse
Affiliation(s)
- Hongyu Chen
- Henan Key Laboratory of Rare Earth Functional Materials; International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou, 466001, China; Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
| | - Qingfeng Li
- Henan Key Laboratory of Rare Earth Functional Materials; International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou, 466001, China
| | - Bin Hu
- Henan Key Laboratory of Rare Earth Functional Materials; International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou, 466001, China
| | - Wenping Zhu
- Henan Key Laboratory of Rare Earth Functional Materials; International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou, 466001, China
| | - Hongjun Xia
- Henan Key Laboratory of Rare Earth Functional Materials; International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou, 466001, China
| | - Weijie Yang
- Henan Key Laboratory of Rare Earth Functional Materials; International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou, 466001, China
| |
Collapse
|
11
|
Li H, Bei Q, Zhang W, Marimuthu M, Hassan MM, Haruna SA, Chen Q. Ultrasensitive fluorescence sensor for Hg 2+ in food based on three-dimensional upconversion nanoclusters and aptamer-modulated thymine-Hg 2+-thymine strategy. Food Chem 2023; 422:136202. [PMID: 37130452 DOI: 10.1016/j.foodchem.2023.136202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 03/03/2023] [Accepted: 04/17/2023] [Indexed: 05/04/2023]
Abstract
Mercury (Hg2+) is a potentially toxic heavy metal ion found to be drastically deleterious to humans. Herein, an ultrasensitive fluorescence sensor was developed using three-dimensional upconversion nanoclusters (EBSUCNPs) and aptamer-modulated thymine-Hg2+-thymine strategy. The EBSUCNPs were used as the energy donors, the PDANPs served as the acceptors, and the aptamer was applied as an identification tag for Hg2+. Due to the energy transfer effect, the fluorescence of EBSUCNPs can be effectively quenched by Polydopamine nanoparticles (PDANPs). In the existence of Hg2+, T (thymine)-rich aptamers between EBSUCNPs and PDANPs were hybridized with Hg2+ to yield thymine-Hg2+-thymine and folded back to hairpin structure, causing PDANPs to detach from the EBSUCNPS and the recovery of fluorescence. Under optimum conditions, the linear sensing range of Hg2+ was 0.5-20 µg/L, and the detection limit was 0.28 µg/L. Furthermore, it exhibited excellent selectivity and anti-interference, which made it an ideal method for identifying Hg2+ in spiked samples.
Collapse
Affiliation(s)
- Huanhuan Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Qiyi Bei
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Wenhao Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Murugavelu Marimuthu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Md Mehedi Hassan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Suleiman A Haruna
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; College of Food and Biological Engineering, Jimei University, Xiamen 361021, PR China.
| |
Collapse
|
12
|
Pattnayak BC, Mohapatra S. A smartphone-assisted ultrasensitive detection of acrylamide in thermally processed snacks using CQD@Au NP integrated FRET sensor. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 286:122009. [PMID: 36279796 DOI: 10.1016/j.saa.2022.122009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Selective, sensitive, and accurate detection of acrylamide (AA) in thermally processed food is a great challenge for food safety. This paper describes a "turn-on" fluorescence strategy to detect AA in real samples. Herein, the fluorescence intensity of glutathione-modified carbon quantum dots (GSHCQDs) was quenched initially upon the addition of gold nanoparticles (Au NPs) via fluorescence resonance electron transfer (FRET) to form a quenched GSHCQD-Au nanoprobe. When AA was introduced to the quenched GSHCQD-Au nanoprobe, the strong thiol-ene Michael addition (M-A) reaction among the -SH group of GSHCQD and AA occurred which releases GSHCQD to the medium and FL intensity at 520 nm is regained. The GSHCQD-Au nanoprobe can detect the AA in a normal aqueous solution (pH 7) selectively over a short response time of 5 min. Under the optimized conditions, the detection limit of AA was obtained to be 0.12 pM, over a wide linear range of 0-200 nM. Especially, this FRET-based sensing method was utilized successfully for the sensitive detection of AA using an RGB app installed on a smartphone, opening a new approach for the smart sensing of food contaminants.
Collapse
Affiliation(s)
| | - Sasmita Mohapatra
- Department of Chemistry, National Institute of Technology Rourkela, India.
| |
Collapse
|
13
|
Sun W, Li R, Liu W, Liu X. Carbon dot-based molecularly imprinted fluorescent nanopomegranate for selective detection of quinoline in coking wastewater. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 284:121770. [PMID: 36067622 DOI: 10.1016/j.saa.2022.121770] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/09/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Quinoline, as a refractory and toxic organic pollutant in coking wastewater, causes great harm to the environment and human health even in trace amount. To realize the selective and sensitive detection of quinoline in coking wastewater, a novel molecularly imprinted fluorescent nanopomegranate with carbon dots (CDs) as seeds and fluorescence source (CD-MIP) was prepared, using quinoline as the template, and N-(β-aminoethyl)-γ-aminopropyl trimethoxysilane (KH792) as the monomer. The preparation and detection conditions of CD-MIP were systematically optimized. The structure and detection performance of CD-MIP were investigated in detail. The resulting CD-MIP exhibits excellent photoluminescence performance, high detection sensitivity, good selectivity and reproducibility towards quinoline. Under the optimized conditions, the fluorescence intensity of CD-MIP shows a satisfying linearity with quinoline concentration in the range of 20-200 mg/L with a detection limit of 6.7 mg/L. Owing to the existence of imprinted cavities that highly match with quinoline, a high imprinting factor (3.46) for CD-MIP was obtained. In addition, CD-MIP represents a greater affinity towards quinoline than towards other analogues, as well as an outstanding anti-interference capability. For trace analysis in real coking wastewater, CD-MIP also gives satisfactory results. Therefore, CD-MIP shows promising application in the selective detection of trace quinoline in wastewater.
Collapse
Affiliation(s)
- Wenjin Sun
- Institute of New Carbon Materials, Taiyuan University of Technology, Taiyuan 030024, China; College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan 030024, China
| | - Ruizhen Li
- Institute of New Carbon Materials, Taiyuan University of Technology, Taiyuan 030024, China; College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan 030024, China
| | - Weifeng Liu
- Institute of New Carbon Materials, Taiyuan University of Technology, Taiyuan 030024, China; College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan 030024, China; National Engineering Research Center for Integrated Utilization of Salt Lake Resource, East China University of Science and Technology, Shanghai 200237, China.
| | - Xuguang Liu
- Institute of New Carbon Materials, Taiyuan University of Technology, Taiyuan 030024, China; College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan 030024, China.
| |
Collapse
|
14
|
Ramirez-Montes S, Zárate-Hernández LA, Rodriguez JA, Santos EM, Cruz-Borbolla J. A DFT Study of the Reaction of Acrylamide with L-Cysteine and L-Glutathione. Molecules 2022; 27:molecules27238220. [PMID: 36500312 PMCID: PMC9736526 DOI: 10.3390/molecules27238220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Thermal processing of certain foods implies the formation of acrylamide, which has been proven to provoke adverse effects on human health. Thus, several strategies to mitigate it have been developed. One of them could be the application of organosulfur compounds obtained from natural sources to react with the acrylamide, forming non-toxic adducts. A DFT study of the acrylamide reaction with the organosulfur model compounds L-cysteine and L-glutathione by Michael addition and a free radical pathway complemented by a kinetic study of these model molecules has been applied. The kinetic evaluation results demonstrate that the L-glutathione reaction exhibited a higher rate constant than the other studied compound.
Collapse
|
15
|
Jiang W, Yi J, Li X, He F, Niu N, Chen L. A Comprehensive Review on Upconversion Nanomaterials-Based Fluorescent Sensor for Environment, Biology, Food and Medicine Applications. BIOSENSORS 2022; 12:1036. [PMID: 36421153 PMCID: PMC9688752 DOI: 10.3390/bios12111036] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/07/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Near-infrared-excited upconversion nanoparticles (UCNPs) have multicolor emissions, a low auto-fluorescence background, a high chemical stability, and a long fluorescence lifetime. The fluorescent probes based on UCNPs have achieved great success in the analysis of different samples. Here, we presented the research results of UCNPs probes utilized in analytical applications including environment, biology, food and medicine in the last five years; we also introduced the design and construction of upconversion optical sensing platforms. Future trends and challenges of the UCNPs used in the analytical field have also been discussed with particular emphasis.
Collapse
Affiliation(s)
- Wei Jiang
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Jiaqi Yi
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Xiaoshuang Li
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Fei He
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Na Niu
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Ligang Chen
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| |
Collapse
|
16
|
Determination of acrylamide by a quartz crystal microbalance sensor based on nitrogen-doped ordered mesoporous carbon composite and molecularly imprinted poly (3-thiophene acetic acid) with gold nanoparticles. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
17
|
Ksenofontov AA, Lukanov MM, Bocharov PS. Can machine learning methods accurately predict the molar absorption coefficient of different classes of dyes? SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 279:121442. [PMID: 35660154 DOI: 10.1016/j.saa.2022.121442] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
In this article, we provide a convenient tool for all researchers to predict the value of the molar absorption coefficient for a wide number of dyes without any computer costs. The new model is based on RFR method (ALogPS, OEstate + Fragmentor + QNPR) and is able to predict the molar absorption coefficient with an accuracy (5-fold cross-validation RMSE) of 0.26 log unit. This accuracy was achieved due to the fact that the model was trained on data for more than 20,000 unique dye molecules. To our knowledge, this is the first model for predicting the molar absorption coefficient trained on such a large and diverse set of dyes. The model is available at https://ochem.eu/article/145413. We hope that the new model will allow researchers to predict dyes with practically significant spectral characteristics and verify existing experimental data.
Collapse
Affiliation(s)
- Alexander A Ksenofontov
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Akademicheskaya Street, 153045 Ivanovo, Russia.
| | - Michail M Lukanov
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Akademicheskaya Street, 153045 Ivanovo, Russia; Ivanovo State University of Chemistry and Technology, 7, Sheremetevskiy Avenue, Ivanovo 153000, Russia
| | - Pavel S Bocharov
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Akademicheskaya Street, 153045 Ivanovo, Russia
| |
Collapse
|
18
|
An upconversion biosensor based on DNA hybridization and DNA-templated silver nanoclusters for the determination of acrylamide. Biosens Bioelectron 2022; 215:114581. [DOI: 10.1016/j.bios.2022.114581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/19/2022] [Accepted: 07/17/2022] [Indexed: 11/17/2022]
|
19
|
Muñoz R, Santos EM, Guevara-Lara A, Vazquez-Garcia RA, Islas-Rodriguez N, Rodriguez JA. Fluorescence assay for acrylamide determination in fried products based on AgInS 2/ZnS quantum dots. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1797-1802. [PMID: 35476040 DOI: 10.1039/d2ay00356b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
AgInS2/ZnS quantum dots were synthesized via solvothermal aqueous phase method using 3-mercaptopropionic acid as the stabilizer. AgInS2/ZnS quantum dots were employed for acrylamide sensing under two strategies: (1) quenching of the fluorescence signal by the synthesis of polyacrylamide under UV light and (2) use of 2-naphthalenethiol for quenching of the fluorescence signal of quantum dots followed by a recovery of the signal after the addition of acrylamide. Both methodologies display adequate limits of detection, 15.6 and 4.8 μg L-1, respectively. However, the 2-napthalenethiol based method exhibited better precision and selectivity compared to the other methodology. Both methodologies were applied for acrylamide detection in fried snack products and acceptable accuracy was obtained using 2-napthalenethiol method.
Collapse
Affiliation(s)
- Raybel Muñoz
- Area Academica de Quimica, Universidad Autonoma del Estado de Hidalgo, Carr. Pachuca-Tulancingo Km. 4.5, 42184, Mineral de la Reforma, Hidalgo, Mexico.
| | - Eva M Santos
- Area Academica de Quimica, Universidad Autonoma del Estado de Hidalgo, Carr. Pachuca-Tulancingo Km. 4.5, 42184, Mineral de la Reforma, Hidalgo, Mexico.
| | - Alfredo Guevara-Lara
- Area Academica de Quimica, Universidad Autonoma del Estado de Hidalgo, Carr. Pachuca-Tulancingo Km. 4.5, 42184, Mineral de la Reforma, Hidalgo, Mexico.
| | - Rosa A Vazquez-Garcia
- Area Academica de Ciencias de la Tierra y Materiales, Universidad Autonoma del Estado de Hidalgo, Cd. Universitaria, Carr. Pachuca-Tulancingo Km. 4.5., C.P. 42184, Mineral de la Reforma, Hidalgo, Mexico
| | - Nery Islas-Rodriguez
- Area Academica de Ciencias de la Tierra y Materiales, Universidad Autonoma del Estado de Hidalgo, Cd. Universitaria, Carr. Pachuca-Tulancingo Km. 4.5., C.P. 42184, Mineral de la Reforma, Hidalgo, Mexico
| | - Jose A Rodriguez
- Area Academica de Quimica, Universidad Autonoma del Estado de Hidalgo, Carr. Pachuca-Tulancingo Km. 4.5, 42184, Mineral de la Reforma, Hidalgo, Mexico.
| |
Collapse
|
20
|
Liu T, Chen S, Ruan K, Zhang S, He K, Li J, Chen M, Yin J, Sun M, Wang X, Wang Y, Lu Z, Rao H. A handheld multifunctional smartphone platform integrated with 3D printing portable device: On-site evaluation for glutathione and azodicarbonamide with machine learning. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:128091. [PMID: 34952493 DOI: 10.1016/j.jhazmat.2021.128091] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/01/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Azodicarbonamide (ADA) in flour can be easily decomposed to semi-carbazide and biuret, exhibiting strong genotoxicity in vitro and carcinogenicity. Glutathione (GSH) can be conjugated with some ketone-containing compounds and unsaturated aldehydes to form toxic metabolites. Here, a novel ratio fluorescence probe based on blue emitting biomass-derived carbon dots (BCDs) and yellow emitting 2,3-diaminophenazine (OxOPD) was prepared for the bifunctional determination of glutathione (GSH) and ADA. This strategy includes three processes: (1) Ag+ oxidizes o-phenylenediamine (OPD) to produce OxOPD. The peak at 562 nm was enhanced, and the peak at 442 nm was reduced due to fluorescence resonance energy transfer (FRET), (2) glutathione binds Ag+ and inhibits the production of OxOPD, (3) ADA oxidizes GSH to form GSSG, resulting in the release of Ag+ by GSH. Therefore, the newly designed ratio fluorescence probe can be based on the intensity ratio (I442/I562) changes and significant fluorescent color changes to detect GSH and ADA. Moreover, a smartphone WeChat applet and a yolov3-assisted deep learning classification model have been developed to quickly detect GSH and ADA on-site based on an image processing algorithm. These results indicate that smartphone ratiometric fluorescence sensing combined with machine learning has broad prospects for biomedical analysis.
Collapse
Affiliation(s)
- Tao Liu
- College of Information Engineering, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Suru Chen
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Kun Ruan
- College of Information Engineering, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Shuxin Zhang
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Keqiao He
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Jian Li
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Maoting Chen
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Jiajian Yin
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Mengmeng Sun
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Xianxiang Wang
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Yanying Wang
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Zhiwei Lu
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China.
| | - Hanbing Rao
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China.
| |
Collapse
|
21
|
Wang H, Pei F, Liu C, Ni Y, Xia M, Feng S, Hao Q, Yang T, Lei W. Efficient detection for Nitrofurazone based on novel Ag 2S QDs/g-C 3N 4 fluorescent probe. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 269:120727. [PMID: 34979470 DOI: 10.1016/j.saa.2021.120727] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/19/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
In the paper, a novel fluorescent probe based on Ag2S QDs/g-C3N4 composite was synthesized by loading Ag2S quantum dots (Ag2S QDs) on the surface of g-C3N4 through in-situ synthesis method and developed to detect Nitrofurazone (NFZ) sensitively. The results showed that the linear detection range of Ag2S QDs/g-C3N4 to NFZ was 0-30 μM, with a low detection limit of 0.054 μM. The results of time-fluorescence-resolved spectroscopy and UV-vis absorption spectroscopy exhibited that the possible detection mechanism of Ag2S QDs/g-C3N4 to NFZ was proposed to be Internal Filtration Effect (IFE). Moreover, Multiwfn wavefunction analysis was employed to uncover the possible interaction between the Ag2S QDs/g-C3N4 and NFZ, thereby further revealing the fluorescence detection mechanism from the scale of atoms. Combining experiments and theoretical calculations, we proposed the sensing mechanism of the formation of non-fluorescent ground state complex linked by hydrogen bonds. This work indicated that the Ag2S QDs/g-C3N4 composite processed the ability to detect NFZ efficiently and sensitively.
Collapse
Affiliation(s)
- Hualai Wang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, JiangSu 210094, China
| | - Fubin Pei
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, JiangSu 210094, China
| | - Chun Liu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, JiangSu 210094, China
| | - Yue Ni
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, JiangSu 210094, China
| | - Mingzhu Xia
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, JiangSu 210094, China
| | - Shasha Feng
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, JiangSu 210094, China
| | - Qingli Hao
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, JiangSu 210094, China
| | - Tinghai Yang
- School of Chemistry & Environmental Engineering, Jiangsu University of Technology, Changzhou 23001, PR China
| | - Wu Lei
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, JiangSu 210094, China.
| |
Collapse
|
22
|
Hoang VT, Ngo XD, Le Nhat Trang N, Thi Nguyet Nga D, Khi NT, Trang VT, Lam VD, Le AT. Highly selective recognition of acrylamide in food samples using colorimetric sensor based on electrochemically synthesized colloidal silver nanoparticles: Role of supporting agent on cross-linking aggregation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128165] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Das J, Mishra HN. Recent advances in sensors for detecting food pathogens, contaminants, and toxins: a review. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-021-03951-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
24
|
Development of a fluorescence sensing platform for specific and sensitive detection of pathogenic bacteria in food samples. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108419] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Wu J, Ahmad W, Ouyang Q, Zhang J, Zhang M, Chen Q. Regenerative Flexible Upconversion-Luminescence Biosensor for Visual Detection of Diethylstilbestrol Based on Smartphone Imaging. Anal Chem 2021; 93:15667-15676. [PMID: 34787394 DOI: 10.1021/acs.analchem.1c03325] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Diethylstilbestrol (DES), an endocrine disrupting chemical, has been linked to serious health problems in humans. In this work, a regenerative flexible upconversion-fluorescence biosensor was designed for the detection of DES in foodstuffs and environmental samples. Herein, amino-functionalized upconversion nanoparticles (UCNPs) were synthesized and immobilized on the surface of a flexible polydimethylsiloxane substrate, which was further modified with complementary DNA and dabcyl-labeled DES aptamer. The fluorescence resonance energy transfer (FRET) system was established for DES detection between dabcyl and UCNPs as the acceptor and donor pairs, respectively, which resulted in the quenching of the upconversion luminescence intensity. In the presence of a target, the FRET system was destroyed and upconversion fluorescence was restored due to the stronger affinity of the aptamer toward DES. The designed biosensor was also implemented in a dual-mode signal readout based on images from a smartphone and spectra from a spectrometer. Under the optimized experimental conditions, good linear relationships were achieved based on imaging (y = 53.055x + 36.175, R2 = 0.9851) and spectral data (y = 1.1582x + 1.9561, R2 = 0.9897). The designed biosensor revealed great practicability with a spiked recovery rate of 77.91-97.95% for DES detection in real environment and foodstuff samples. Furthermore, the proposed biosensor was regenerated seven times with an accuracy threshold of 80% demonstrating its durability and reusability. Thus, this biosensor is expected to be applied to point-of-care and on-site detection based on the developed portable smartphone device and android application.
Collapse
Affiliation(s)
- Jizhong Wu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Waqas Ahmad
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Qin Ouyang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Jingui Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Mingming Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| |
Collapse
|
26
|
Zhang Y, Tang Y, Zhang J, Harrisson S. Amphiphilic Asymmetric Diblock Copolymer with pH-Responsive Fluorescent Properties. ACS Macro Lett 2021; 10:1346-1352. [PMID: 35549021 DOI: 10.1021/acsmacrolett.1c00553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Stimuli-responsive polymers with changeable fluorescent properties have numerous applications in sensing, bioimaging, and detection. Here we describe the facile synthesis of a pH-responsive amphiphilic asymmetric diblock copolymer of acrylic acid and butyl acrylate that incorporates a polarity-sensitive fluorophore. The asymmetric structure enhances the stimuli-responsive behavior: as the environmental pH decreases, the fluorescent intensity of the asymmetric diblock copolymer gradually increases, whereas its symmetric block counterpart shows limited and stepwise change. Besides, this remarkable difference was demonstrated to be concentration-independent, as similar emission behavior was found for both polymers at lower concentrations. These results indicate that the fluorescence properties of the copolymer can be adjusted by rationally designing the copolymer structure. This work provides a novel and general strategy for the design and synthesis of polymeric materials with encapsulated structures showing stimuli-responsive fluorescent properties to be applied as fluorescent probes with a smoothly varying response curve rather than the simple on-off switch that is typical of block copolymer systems.
Collapse
Affiliation(s)
- Yanyao Zhang
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, People’s Republic of China
| | - Yusheng Tang
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, People’s Republic of China
| | - Junliang Zhang
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, People’s Republic of China
| | - Simon Harrisson
- LCPO UMR 5629, Université Bordeaux/CNRS/Ecole Nationale Supérieure de Chimie, de Biologie and de Physique, 16 Avenue Pey-Berland, 33607 Pessac Cedex, France
| |
Collapse
|
27
|
Marquezin CA, Lamy MT, de Souza ES. Molecular collisions or resonance energy transfer in lipid vesicles? A methodology to tackle this question. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
28
|
Sharma AS, Ali S, Sabarinathan D, Murugavelu M, Li H, Chen Q. Recent progress on graphene quantum dots-based fluorescence sensors for food safety and quality assessment applications. Compr Rev Food Sci Food Saf 2021; 20:5765-5801. [PMID: 34601802 DOI: 10.1111/1541-4337.12834] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 08/04/2021] [Accepted: 08/08/2021] [Indexed: 12/23/2022]
Abstract
The versatile photophysicalproperties, high surface-to-volume ratio, superior photostability, higher biocompatibility, and availability of active sites make graphene quantum dots (GQDs) an ideal candidate for applications in sensing, bioimaging, photocatalysis, energy storage, and flexible electronics. GQDs-based sensors involve luminescence sensors, electrochemical sensors, optical biosensors, electrochemical biosensors, and photoelectrochemical biosensors. Although plenty of sensing strategies have been developed using GQDs for biosensing and environmental applications, the use of GQDs-based fluorescence techniques remains unexplored or underutilized in the field of food science and technology. To the best of our knowledge, comprehensive review of the GQDs-based fluorescence sensing applications concerning food quality analysis has not yet been done. This review article focuses on the recent progress on the synthesis strategies, electronic properties, and fluorescence mechanisms of GQDs. The various GQDs-based fluorescence detection strategies involving Förster resonance energy transfer- or inner filter effect-driven fluorescence turn-on and turn-off response mechanisms toward trace-level detection of toxic metal ions, toxic adulterants, and banned chemical substances in foodstuffs are summarized. The challenges associated with the pretreatment steps of complex food matrices and prospects and challenges associated with the GQDs-based fluorescent probes are discussed. This review could serve as a precedent for further advancement in interdisciplinary research involving the development of versatile GQDs-based fluorescent probes toward food science and technology applications.
Collapse
Affiliation(s)
| | - Shujat Ali
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | | | | | - Huanhuan Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China.,College of Food and Biological Engineering, Jimei University, Xiamen, China
| |
Collapse
|
29
|
Development of a bimodal sensor based on upconversion nanoparticles and surface-enhanced Raman for the sensitive determination of dibutyl phthalate in food. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.103929] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
30
|
Rong Y, Hassan MM, Ouyang Q, Chen Q. Lanthanide ion (Ln 3+ )-based upconversion sensor for quantification of food contaminants: A review. Compr Rev Food Sci Food Saf 2021; 20:3531-3578. [PMID: 34076359 DOI: 10.1111/1541-4337.12765] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/31/2021] [Accepted: 04/03/2021] [Indexed: 12/23/2022]
Abstract
The food safety issue has gradually become the focus of attention in modern society. The presence of food contaminants poses a threat to human health and there are a number of interesting researches on the detection of food contaminants. Upconversion nanoparticles (UCNPs) are superior to other fluorescence materials, considering the benefits of large anti-Stokes shifts, high chemical stability, non-autofluorescence, good light penetration ability, and low toxicity. These properties render UCNPs promising candidates as luminescent labels in biodetection, which provides opportunities as a sensitive, accurate, and rapid detection method. This paper intended to review the research progress of food contaminants detection by UCNPs-based sensors. We have proposed the key criteria for UCNPs in the detection of food contaminants. Additionally, it highlighted the construction process of the UCNPs-based sensors, which includes the synthesis and modification of UCNPs, selection of the recognition elements, and consideration of the detection principle. Moreover, six kinds of food contaminants detected by UCNPs technology in the past 5 years have been summarized and discussed fairly. Last but not least, it is outlined that UCNPs have great potential to be applied in food safety detection and threw new insight into the challenges ahead.
Collapse
Affiliation(s)
- Yawen Rong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Md Mehedi Hassan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Qin Ouyang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
31
|
Rayappa MK, Viswanathan PA, Rattu G, Krishna PM. Nanomaterials Enabled and Bio/Chemical Analytical Sensors for Acrylamide Detection in Thermally Processed Foods: Advances and Outlook. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4578-4603. [PMID: 33851531 DOI: 10.1021/acs.jafc.0c07956] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Acrylamide, a food processing contaminant with demonstrated genotoxicity, carcinogenicity, and reproductive toxicity, is largely present in numerous prominent and commonly consumed food products that are produced by thermal processing methods. Food regulatory bodies such as the U.S. Food and Drug Administration (U.S. FDA) and European Union Commission regulations have disseminated various acrylamide mitigation strategies in food processing practices. Hence, in the wake of such food and public health safety efforts, there is a rising demand for economic, rapid, and portable detection and quantification methods for these contaminants. Since conventional quantification techniques like liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) methods are expensive and have many drawbacks, sensing platforms with various transduction systems have become an efficient alternative tool for quantifying various target molecules in a wide variety of food samples. Therefore, this present review discusses in detail the state of robust, nanomaterials-based and other bio/chemical sensor fabrication techniques, the sensing mechanism, and the selective qualitative and quantitative measurement of acrylamide in various food materials. The discussed sensors use analytical measurements ranging from diverse and disparate optical, electrochemical, as well as piezoelectric methods. Further, discussions about challenges and also the potential development of the lab-on-chip applications for acrylamide detection and quantification are entailed at the end of this review.
Collapse
Affiliation(s)
- Mirinal Kumar Rayappa
- Physics Research Group, Department of Basic and Applied Sciences, National Institute of Food Technology Entrepreneurship and Management (NIFTEM) (Deemed to be University, Under MOFPI, Government of India), Sonipat, Haryana, India, 131028
| | - Priyanka A Viswanathan
- Physics Research Group, Department of Basic and Applied Sciences, National Institute of Food Technology Entrepreneurship and Management (NIFTEM) (Deemed to be University, Under MOFPI, Government of India), Sonipat, Haryana, India, 131028
| | - Gurdeep Rattu
- Physics Research Group, Department of Basic and Applied Sciences, National Institute of Food Technology Entrepreneurship and Management (NIFTEM) (Deemed to be University, Under MOFPI, Government of India), Sonipat, Haryana, India, 131028
| | - P Murali Krishna
- Physics Research Group, Department of Basic and Applied Sciences, National Institute of Food Technology Entrepreneurship and Management (NIFTEM) (Deemed to be University, Under MOFPI, Government of India), Sonipat, Haryana, India, 131028
| |
Collapse
|
32
|
Fang Wong S, Mei Khor S. Differential colorimetric nanobiosensor array as bioelectronic tongue for discrimination and quantitation of multiple foodborne carcinogens. Food Chem 2021; 357:129801. [PMID: 33930694 DOI: 10.1016/j.foodchem.2021.129801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 02/08/2023]
Abstract
Foodborne amides, specifically acrylamide, are vitally important for food safety and security, as they are the most common food toxicants and suspected human carcinogens. A facile and novel differential-based colorimetric nanobiosensor array composed of three surface-bioengineered gold nanoparticles (AuNPs) was developed for the rapid detection, differentiation, and quantification of acrylamide and six analogues. Diverse cross-reactive receptors demonstrated differential binding affinities toward target analytes, resulting in distinctive AuNP aggregation behaviors and distinguishable response patterns. The sensor array, integrated with principal component analysis and hierarchical cluster analysis, accurately discriminated foodborne amides based on their amine subgroups, International Agency for Research on Cancer (IARC) carcinogen classifications, and food additive types, even at ultra-low concentrations (500 pM). Additionally, the sensor array successfully differentiated non-targeted analytes by sweetener and food ingredients types with 100% correct classification. Partial least squares regression outcomes exhibited high correlation coefficients (R2 > 0.95). Thus, the sensor array has practical potential for food safety monitoring in the food and beverage industries.
Collapse
Affiliation(s)
- Siew Fang Wong
- Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Sook Mei Khor
- Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia; Centre for Innovation in Medical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|