1
|
Liu Z, Luo J, Chitrakar B, Liu W, Wang D, E H, Sun Z, Li H, Wei X, Hu L, Zhang J, Mo H, Weng R. Program temperature-controlled drying: An effective way to improve the quality of hot-air dried shiitake mushrooms. J Food Sci 2025; 90:e17616. [PMID: 39828400 DOI: 10.1111/1750-3841.17616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/28/2024] [Accepted: 12/04/2024] [Indexed: 01/22/2025]
Abstract
This study applied program temperature-controlled drying (PTCD) to optimize the hot-air drying process for shiitake mushrooms, adjusting the drying temperature based on activity changes of γ-glutamyl transpeptidase (γ-GTase) and cysteine sulfoxide lyase (C-S lyase). Compared with constant temperature drying, PTCD (ST_75 and ST_150) significantly enhanced the umami and aroma profiles and sulfur compounds, increasing the levels of key flavor compounds such as glutamic acid and 5'-GMP. Moreover, PTCD improved rehydration capacity (515.17%) and reduced shrinkage (12.43%) for ST_150 samples, achieving superior texture and color retention. Nutritional analysis indicated that PTCD better preserved nutrients such as ergothioneine, ergosterol, and purines, with ergosterol content reaching 9953.22 µg/g in the ST_150 group. This study provides theoretical support for improving the quality of hot-air-dried shiitake mushrooms in industrial applications. PRACTICAL APPLICATION: Although hot air drying is widely used for mushrooms, it is typically conducted using constant temperature methods. The application of PTCD and its effects on mushroom product quality have been scarcely studied. This study proved that compared with constant drying temperature, PTCD could significantly improve the flavor, texture, and nutrition retention of dried products. This may provide scientific foundation for the industrial application of hot air drying of shiitake mushrooms with improved quality.
Collapse
Affiliation(s)
- Zhenbin Liu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, China
- Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an, China
| | - Jia Luo
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, China
- Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an, China
| | - Bimal Chitrakar
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Wenchao Liu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Dong Wang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, China
- Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an, China
| | - Hengchao E
- Institute of Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Zhenying Sun
- Key Laboratory of Agro-food Quality and Safety of Ministry of Agriculture and Rural Affairs, Institute of Agricultural Quality Standard and Testing Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongbo Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, China
- Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an, China
| | - Xinyu Wei
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Liangbin Hu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, China
- Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an, China
| | - Jiayi Zhang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, China
- Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an, China
| | - Haizhen Mo
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, China
- Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an, China
| | - Rui Weng
- Key Laboratory of Agro-food Quality and Safety of Ministry of Agriculture and Rural Affairs, Institute of Agricultural Quality Standard and Testing Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
2
|
Zhang L, Jiang L, Adnouni M, Li S, Zhang X. Numerical Study on the Variable-Temperature Drying and Rehydration of Shiitake. Foods 2024; 13:3356. [PMID: 39517140 PMCID: PMC11545107 DOI: 10.3390/foods13213356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Variable-temperature convective drying (VTCD) is a promising technology for obtaining high-quality dried mushrooms, particularly when considering rehydration capacity. However, accurate numerical models for variable-temperature convective drying and rehydration of shiitake mushrooms are lacking. This study addresses this gap by employing a model with thermo-hydro and mechanical bidirectional coupling to investigate five dehydration characteristics (moisture ratio, drying rate, temperature, evaporation rate, and volume shrinkage ratio) and a drying load characteristic (enthalpy difference) during VTCD. Additionally, a mathematical model combining drying and rehydration is proposed to analyze the effect of VTCD processes on the rehydration performance of shiitake mushrooms. The results demonstrate that, compared to constant-temperature drying, VTCD-dried mushrooms exhibit moderate shrinkage rates and drying time (16.89 h), along with reduced temperature variation and evaporation rate gradient (Max. 1.50 mol/(m3·s)). VTCD also improves enthalpy stability, reducing the maximum drying load by 58.84% compared to 338.15 K constant-temperature drying. Furthermore, drying time at medium temperatures (318.15-328.15 K) greatly influences rehydration performance. This study quantitatively highlights the superiority of variable-temperature convective drying, offering valuable insights for optimizing the shiitake mushroom drying processes.
Collapse
Affiliation(s)
| | | | | | | | - Xuejun Zhang
- Key Laboratory of Refrigeration and Cryogenic Technology of Zhejiang Province, Institute of Refrigeration and Cryogenics, Zhejiang University, Hangzhou 310027, China; (L.Z.)
| |
Collapse
|
3
|
Wang Z, Ren G, Liu W, Duan X, Zhao Y, Yuan Y, Liu G, Zhang H, Wang L. Innovative hybrid strategy for quality improvement of Goji tea: ultrasonic-ethyl oleate pretreatment combined with heat pump drying. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:8162-8170. [PMID: 38877297 DOI: 10.1002/jsfa.13648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/11/2024] [Accepted: 05/14/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND Goji berries, renowned for their nutritional benefits, are traditionally dried to extend shelf life and preserve quality. However, conventional drying methods often result in uneven drying, color loss and reduced rehydration capacity. This study investigates an innovative hybrid strategy combining ultrasonic-ethyl oleate (US+AEEO) pretreatment with heat pump drying (HPD) to enhance the drying process of Goji berries. RESULTS Fresh Goji berries underwent US+AEEO pretreatment, which significantly disrupted the waxy layer, enhancing drying efficiency and water infiltration during rehydration. Compared to freeze drying (FD), HPD combined with US+AEEO pretreatment resulted in higher retention of total polyphenol content (TPC) and total flavonoid content (TFC) in the Goji soaking soup. Specifically, the HPD-US+AEEO samples exhibited the highest TPC and TFC levels, significantly outperforming FD samples. Additionally, the DPPH and ABTS antioxidant assays demonstrated higher scavenging activities in HPD-US+AEEO samples. The rehydration kinetics revealed that HPD samples had a superior rehydration rate and final moisture content compared to FD samples. Low-field nuclear magnetic resonance and magnetic resonance imaging analyses confirmed enhanced water distribution and higher mobility in HPD-US+AEEO samples. Scanning electron microscopy indicated a more porous structure in US+AEEO-treated samples, facilitating better water absorption and functional component retention. CONCLUSION The combination of US+AEEO pretreatment with HPD significantly improves the drying process of Goji berries, enhancing nutrient retention, color preservation and rehydration properties. This innovative drying method offers a promising solution for producing high-quality dried Goji berries, benefiting both the food industry and health-conscious consumers. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhaokai Wang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Guangyue Ren
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Wenchao Liu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Xu Duan
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Yike Zhao
- Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Yunxia Yuan
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Gangtian Liu
- School of Art and Design, Henan University of Science and Technology, Luoyang, China
| | - Hui Zhang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Libo Wang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
4
|
Chen Z, Wu J, Wang N, Li T, Wu H, Wu H, Xiang W. Isolation, Characterization, Moisturization and Anti-HepG2 Cell Activities of a Novel Polysaccharide from Cyanobacterium aponinum. Molecules 2024; 29:4556. [PMID: 39407483 PMCID: PMC11478272 DOI: 10.3390/molecules29194556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 10/20/2024] Open
Abstract
Polysaccharides from cyanobacteria are extensively reported for their complex structures, good biocompatibility, and diverse bioactivities, but only a few cyanobacterial species have been exploited for the biotechnological production of polysaccharides. According to our previous study, the newly isolated marine cyanobacterium Cyanobacterium aponinum SCSIO-45682 was a good candidate for polysaccharide production. This work provided a systematic study of the extraction optimization, isolation, structural characterization, and bioactivity evaluation of polysaccharides from C. aponinum SCSIO-45682. Results showed that the crude polysaccharide yield of C. aponinum reached 17.02% by hot water extraction. The crude polysaccharides showed a porous and fibrous structure, as well as good moisture absorption and retention capacities comparable to that of sodium alginate. A homogeneous polysaccharide (Cyanobacterium aponinum polysaccharide, CAP) was obtained after cellulose DEAE-52 column and Sephadex G-100 column purification. CAP possessed a high molecular weight of 4596.64 kDa. It was mainly composed of fucose, galactose, and galacturonic acid, with a molar ratio of 15.27:11.39:8.64. The uronic acid content and sulfate content of CAP was 12.96% and 18.06%, respectively. Furthermore, CAP showed an in vitro growth inhibition effect on human hepatocellular carcinoma (HepG2) cells. The above results indicated the potential of polysaccharides from the marine cyanobacterium C. aponinum SCSIO-45682 as a moisturizer and anticancer addictive applied in cosmetical and pharmaceutical industries.
Collapse
Affiliation(s)
- Zishuo Chen
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institution of South China Sea Ecology and Environmental Engineering, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Z.C.); (J.W.); (N.W.); (T.L.); (H.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiayi Wu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institution of South China Sea Ecology and Environmental Engineering, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Z.C.); (J.W.); (N.W.); (T.L.); (H.W.)
- Greater Bay Area Institute of Precision Medicine (Guangzhou), Guangzhou 511466, China
| | - Na Wang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institution of South China Sea Ecology and Environmental Engineering, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Z.C.); (J.W.); (N.W.); (T.L.); (H.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Basic Medical Sciences, Heyang Medical School, University of South China, Hengyang 421001, China
| | - Tao Li
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institution of South China Sea Ecology and Environmental Engineering, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Z.C.); (J.W.); (N.W.); (T.L.); (H.W.)
| | - Houbo Wu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institution of South China Sea Ecology and Environmental Engineering, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Z.C.); (J.W.); (N.W.); (T.L.); (H.W.)
| | - Hualian Wu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institution of South China Sea Ecology and Environmental Engineering, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Z.C.); (J.W.); (N.W.); (T.L.); (H.W.)
| | - Wenzhou Xiang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institution of South China Sea Ecology and Environmental Engineering, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Z.C.); (J.W.); (N.W.); (T.L.); (H.W.)
| |
Collapse
|
5
|
Wang F, Bi J, Wang J, Lyu J. Textural formation of instant controlled pressure drop-dried peach chips: Investigation of the electrical, thermal, and textural properties of predried peach slices with osmotic dehydration pretreatment. Food Chem 2024; 450:139394. [PMID: 38653058 DOI: 10.1016/j.foodchem.2024.139394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/03/2024] [Accepted: 04/14/2024] [Indexed: 04/25/2024]
Abstract
In this study, the effect of osmotic dehydration (OD) pretreatment with various sugar (erythritol, glucose, and trehalose) on the quality of hot-air-predried peach slices was investigated, particularly focusing on electrical properties, texture, thermal stability, and cell wall strength. Furthermore, the correlation between the properties of predried peach slices and the texture of the instant controlled pressure drop (DIC) dried peach chips was explored. OD pretreatments improved the stability and integrity of the cell wall and cell membrane of pre-dried peach slices, which inhibited the excessive expansion of samples during DIC drying. Especially, peach chips with trehalose-OD exhibited the highest crispiness (1.05 mm), the highest hardness (101.34 N) was obtained in erythritol-OD samples. Overall, the type of osmotic agents affected the texture of DIC peach chips with OD pretreatments. It should be noted that trehalose is a promising osmotic agent for controlling and regulating the quality of DIC peach chips.
Collapse
Affiliation(s)
- Fengzhao Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Jinfeng Bi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; College of Food Science, Shenyang Agricultural University, Shenyang 110866, China.
| | - Jingxuan Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Jian Lyu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| |
Collapse
|
6
|
Li Y, Han J, Yarley OPN, Wang Y, Wang Y, Zhang A, Fan X, Zhou C, Lv W. Effects of combined drying techniques and cellulase hydrolysis on the nutritional value and sensory properties of shiitake mushrooms (Lentinus edodes). Food Chem 2024; 450:139387. [PMID: 38643648 DOI: 10.1016/j.foodchem.2024.139387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/06/2024] [Accepted: 04/14/2024] [Indexed: 04/23/2024]
Abstract
Dried shiitake mushrooms offer rich nutritional value and unique sensory properties, prompting further investigation. The effects of different drying techniques (hot air drying (HAD), infrared hot air drying (IRHAD), pulsed vacuum drying (PVD), vacuum freeze drying (VFD), and natural drying (ND)) combined with enzymatic hydrolysis on the release of flavor compounds and nutrients from shiitake mushrooms were explored. The combination of HAD with cellulase hydrolysis yielded notably high levels of umami amino acids (5.4723 ± 0.1501 mg/g) and 5'-nucleotides (4.0536 ± 0.0062 mg/g), and superior volatile flavors. Combined with cellulase hydrolysis, IRHAD achieved the highest level of total sugars (6.57 ± 0.34 mg/mL), VFD resulted in the greatest soluble protein content (153.21 ± 0.23 μg/mL), PVD yielded the highest total phenolics content (93.20 ± 0.41 μg GAE/mL), and ND produced the maximum reducing sugar content (5.79 ± 0.13 mg/mL). This study addresses crucial gap in the post-drying processing of shiitake mushrooms, offering valuable insights for further product development of shiitake mushrooms.
Collapse
Affiliation(s)
- Yao Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jingyi Han
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Otu Phyllis Naa Yarley
- Department of Science Laboratory Technology, Accra Technical University, Barnes Rd., Accra, Ghana
| | - Yujin Wang
- Zhejiang Wufeng Freezing Food Co., Ltd., Hangzhou 310018, China
| | - Yang Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ao Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xingyu Fan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China.
| | - Weiqiao Lv
- College of Engineering, China Agricultural University, Beijing 100091, China
| |
Collapse
|
7
|
Zeng C, Li H, Li J, Li C, Fang Z, Hu B, Wang C, Chen S, Li X, Zeng Z, Liu Y. Effects of different cooking methods on proximate composition, digestion characteristics, and antioxidant activity of Lentinus edodes. Food Chem 2024; 439:138107. [PMID: 38043283 DOI: 10.1016/j.foodchem.2023.138107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/23/2023] [Accepted: 11/26/2023] [Indexed: 12/05/2023]
Abstract
Lentinus edodes (SM) are highly appreciated by the food industry together with consumers for nutrition and flavour. It is hypothesized the results of our study can indicate to the suitable cooking method for maximal nutrient retention, this study investigated the effects of six cooking methods on the proximate composition, digestive properties, and antioxidant activities of SM in vitro simulated digestion. The results revealed that the ash and protein contents of cooked samples were reduced excluding steaming and roasting, and likewise minerals during deep-frying and boiling (e.g., Mg from 1080.07 to 629.03 mg/kg, deep-frying). A conspicuous rise in fat and energy was found in deep-frying and stir-frying. Steaming retained more reducing sugar (3.80 mg/mL). Roasting improved bioaccessibility of most amino acids (e.g., 82.61%, Asp). Using oil as a medium was associated with higher antioxidant activities using water. Steaming and roasting were better for preserving the nutrient composition of cooked Lentinus edodes.
Collapse
Affiliation(s)
- Chunxue Zeng
- Sichuan Agricultural University, College of Food Science, Yaan 625014, China
| | - Hongyu Li
- Sichuan Agricultural University, College of Food Science, Yaan 625014, China
| | - Junqi Li
- Sichuan Agricultural University, College of Food Science, Yaan 625014, China
| | - Cheng Li
- Sichuan Agricultural University, College of Food Science, Yaan 625014, China
| | - Zhengfeng Fang
- Sichuan Agricultural University, College of Food Science, Yaan 625014, China
| | - Bin Hu
- Sichuan Agricultural University, College of Food Science, Yaan 625014, China
| | - Caixia Wang
- Sichuan Agricultural University, College of Food Science, Yaan 625014, China
| | - Saiyan Chen
- Sichuan Agricultural University, College of Food Science, Yaan 625014, China
| | - Xiaolin Li
- Sichuan Academy of Agricultural Sciences, Sichuan Institute of Edible Fungi, Edible Fungi Cultivation and Physiology Research Center, Chengdu 610066, China
| | - Zhen Zeng
- Sichuan Agricultural University, College of Food Science, Yaan 625014, China.
| | - Yuntao Liu
- Sichuan Agricultural University, College of Food Science, Yaan 625014, China.
| |
Collapse
|
8
|
Xian M, Bi J, Hu L, Xie Y, Zhao Y, Jin X. Synergistic mechanism of steam blanching and freezing conditions on the texture of frozen yellow peaches based on macroscopic and microscopic properties. J Texture Stud 2024; 55:e12830. [PMID: 38581175 DOI: 10.1111/jtxs.12830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 04/08/2024]
Abstract
Freezing and blanching are essential processing steps in the production of frozen yellow peaches, inevitably leading to texture softening of the fruit. In this study, the synergistic mechanism of stem blanching, freezing conditions (-20°C, -40°C, -80°C, and liquid nitrogen [-173°C]), and sample sizes (cubes, slices, and half peaches) on macroscopic properties of texture, cellular structure, and ice crystal size distribution of frozen yellow peaches were measured. Blanching enhanced the heat and mass transfer rates in the subsequent freezing process. For nonblanched samples, cell membrane integrity was lost at any freezing rate, causing a significant reduction in textural quality. Slow freezing further exacerbated the texture softening, while the ultra-rapid freezing caused structural rupture. For blanched samples, the half peaches softened the most. The water holding capacity and fracture stress were not significantly affected by changes in freezing rate, although the ice crystal size distribution was more susceptible to the freezing rate. Peach cubes that had undergone blanching and rapid freezing (-80°C) experienced 4% less drip loss than nonblanched samples. However, blanching softened yellow peaches more than any freezing conditions. The implementation of uniform and shorter duration blanching, along with rapid freezing, has been proven to be more effective in preserving the texture of frozen yellow peaches. Optimization of the blanching process may be more important than increasing the freezing rate to improve the textural quality of frozen yellow peaches.
Collapse
Affiliation(s)
- Meilin Xian
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Jinfeng Bi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Lina Hu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yitong Xie
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yinuo Zhao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xin Jin
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
9
|
Zhang AA, Ha BE, Chen C, Xu MQ, Wang QH, Xie L, Zheng ZA, Zhang JS, Lv WQ, Xiao HW. Vacuum-steam pulsed blanching: An emerging method to enhance texture softening, drying behavior and physicochemical properties of Cornus officinalis. J Food Sci 2024; 89:202-216. [PMID: 38078765 DOI: 10.1111/1750-3841.16868] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/12/2023] [Accepted: 11/19/2023] [Indexed: 01/15/2024]
Abstract
Vacuum steam pulsed blanching (VSPB) was employed as a novel blanching technology on Cornus officinalis to soften the tissue for subsequent coring and dehydration. The current work aims to explore its effect on mass transfer behavior, PPO inactivation, drying characteristics, physicochemical properties, antioxidant capacity, and microstructure of C. officinalis. Results showed that VSPB increased water loss, decreased solid gain, and increased weight reduction with increased blanching cycles. Besides, VSPB significantly changed physical properties and extensively reduced drying time which was attributed to the cell wall components dissolving and cell turgor pressure decreasing, also verified by observing microstructure alteration. PPO was completely denatured after blanching in 6 cycles, but phenolic compounds were still diffused or degraded. Notably, the content of flavonoids and antioxidant capacity significantly increased compared to fresh samples probably due to increased extractability caused by the disrupting cell structure. Besides, the carotenoids and ascorbic acid could be well preserved.
Collapse
Affiliation(s)
- An-An Zhang
- College of Engineering, China Agricultural University, Beijing, China
| | - Bu-Er Ha
- College of Engineering, China Agricultural University, Beijing, China
| | - Chang Chen
- Department of Food Science, Cornell University, Geneva, New York, USA
| | - Ming-Qiang Xu
- Institute of Agro-products Storage and Processing, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| | - Qing-Hui Wang
- Agricultural Mechanization Institute, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Long Xie
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Zhi-An Zheng
- College of Engineering, China Agricultural University, Beijing, China
| | - Jing-Shou Zhang
- College of Engineering, China Agricultural University, Beijing, China
| | - Wei-Qiao Lv
- College of Engineering, China Agricultural University, Beijing, China
| | - Hong-Wei Xiao
- College of Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
10
|
Wang B, Jia Y, Li Y, Wang Z, Wen L, He Y, Xu X. Dehydration-rehydration vegetables: Evaluation and future challenges. Food Chem X 2023; 20:100935. [PMID: 38144748 PMCID: PMC10739932 DOI: 10.1016/j.fochx.2023.100935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/19/2023] [Accepted: 10/08/2023] [Indexed: 12/26/2023] Open
Abstract
In this review, the rehydration kinetics model, the quality factors affecting of vegetables during rehydration process, the future challenges and development direction of rehydration process were comprehensively analyzed. Based on the fitting equation for the change in moisture content during rehydration, a suitable rehydration model can be selected to describe the rehydration process of vegetables. Optimal pre-treatment, drying and rehydration methods were selected by considering quality, energy consumption and environmental aspects, and new technologies were developed to improve the quality characteristics of rehydrated vegetables. It is necessary to classify vegetables according to their shape and type to establish the criteria of rehydration processing through mathematical modeling. Industrial production from pre-treatment to product packaging will be precisely adjusted through process parameters. Furthermore, improvements the quality of rehydrated vegetables can be considered in terms of the structural and compositional aspects of the cell wall and cell membrane.
Collapse
Affiliation(s)
- Bixiang Wang
- Department of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Yuanlong Jia
- Department of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Yue Li
- Department of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Zhitong Wang
- Department of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Liankui Wen
- Department of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Yang He
- Department of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Xiuying Xu
- Department of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- National Engineering Research Center for Wheat and Corn Deep Processing, Changchun 130118, China
| |
Collapse
|
11
|
Wang J, Zhao C, Li P, Wang L, Li S. Structural Characteristics and Multiple Bioactivities of Volvariella volvacea Polysaccharide Extracts: The Role of Extractive Solvents. Foods 2023; 12:4357. [PMID: 38231875 DOI: 10.3390/foods12234357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/24/2023] [Accepted: 11/29/2023] [Indexed: 01/19/2024] Open
Abstract
The chemical structures and functional properties of plant-based polysaccharides are critically influenced by extractive solvents, but their roles are not clear. In this study, the structural characteristics and multiple bioactivities of Volvariella volvacea polysaccharides (VVPs) subjected to water (VVP-W), alkalis (sodium hydroxide, VVP-A), and acids (citric acid, VVP-C) as extractive solvents are investigated systematically. Of the above three polysaccharides, VVP-W exhibited the highest molecular weights, apparent viscosity, and viscoelastic properties. Functional analyses revealed that VVP-C had an excellent water-holding capacity, foaming properties, and emulsifying capacity, while VVP-A exhibited a promising oil-holding capacity. Moreover, VVP-C displayed strong inhibitory effects on α-amylase and α-glucosidase, which could be attributed to its content of total phenolics, proteins, and molecular weights. These findings have important implications for selecting the appropriate extraction techniques to obtain functional polysaccharides with targeted bioactive properties as food additives.
Collapse
Affiliation(s)
- Jun Wang
- School of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, China
| | - Changyu Zhao
- School of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, China
| | - Ping Li
- Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, China
| | - Lei Wang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Songnan Li
- Joint International Research Laboratory of Agriculture, Agri-Product Safety of the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
12
|
Zheng C, Li J, Liu H, Wang Y. Review of postharvest processing of edible wild-grown mushrooms. Food Res Int 2023; 173:113223. [PMID: 37803541 DOI: 10.1016/j.foodres.2023.113223] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 10/08/2023]
Abstract
Edible wild-grown mushrooms, plentiful in resources, have excellent organoleptic properties, flavor, nutrition, and bioactive substances. However, fresh mushrooms, which have high water and enzymatic activity, are not protected by cuticles and are easily attacked by microorganisms. And wild-grown mushroom harvesting is seasonal the harvest of edible wild-grown mushrooms is subject to seasonality, so their market availability is challenging. Many processing methods have been used for postharvest mushroom processing, including sun drying, freezing, packaging, electron beam radiation, edible coating, ozone, and cooking, whose effects on the parameters and composition of the mushrooms are not entirely positive. This paper reviews the effect of processing methods on the quality of wild and some cultivated edible mushrooms. Drying and cooking, as thermal processes, reduce hardness, texture, and color browning, with the parallel that drying reduces the content of proteins, polysaccharides, and phenolics while cooking increases the chemical composition. Freezing, which allows mushrooms to retain better hardness, color, and higher chemical content, is a better processing method. Water washing and ozone help maintain color by inhibiting enzymatic browning. Edible coating facilitates the maintenance of hardness and total sugar content. Electrolytic water (EW) maintains total phenol levels and soluble protein content. Pulsed electric field and ultrasound (US) inhibit microbial growth. Frying maintains carbohydrates, lipids, phenolics, and proteins. And the mushrooms processed by these methods are safe. They are the focus of future research that combines different methods or develops new processing methods, molecular mechanisms of chemical composition changes, and exploring the application areas of wild mushrooms.
Collapse
Affiliation(s)
- Chuanmao Zheng
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China
| | - Jieqing Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Honggao Liu
- Yunnan Key Laboratory of Gastrodia and Fungi Symbiotic Biology, Zhaotong University, Zhaotong 657000, Yunnan, China.
| | - Yuanzhong Wang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China.
| |
Collapse
|
13
|
Du Q, Bi J, Yi J, Zhao Y, Feng S, Ma Y. The role of fructose at a range of concentration on the texture and microstructure of freeze-dried pectin-cellulose matrix cryogel. J Texture Stud 2023; 54:763-774. [PMID: 37222133 DOI: 10.1111/jtxs.12777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 04/12/2023] [Accepted: 04/28/2023] [Indexed: 05/25/2023]
Abstract
Freeze-dried (FD) fruit and vegetable materials with a large amount of sugar are unstable. With the aim to understand the structure formation of FD products, the effects of fructose content on the texture and microstructure of FD matrix were investigated by using pectin-cellulose cryogel model. Cryogels containing fructose of 0-40% were produced using freeze-drying at three different primary drying temperatures of -40, -20, and 20°C. The resultant cryogels were characterized by texture profile analyzer, scanning electron microscope, and μCT. Results indicated that at drying temperature of -40°C, increasing fructose concentration promoted the hardness of the cryogels, and cryogels of 16% fructose obtained maximum hardness. Excessive fructose (≥20%) weakened the described hardness, while exhibiting stronger springiness and resilience. The microstructure showed that dense pores and increased wall thickness due to fructose aggregation were critical factors responsible for increased hardness. The porous structure as well as relatively large pore size were necessary for crispness, in addition, rigid pore wall with certain strength were also required. At the drying temperature of 20°C, large hetero-cavities dominated the microstructure of cryogels with 30% and 40% fructose, caused by melting inside during FD process. In this situation, lower Tm (-15.48 and -20.37°C) were responsible for cryogels' melting In conclusion, if possible, regulating fructose content and state may enable the precision texture design of FD fruit and vegetable foods.
Collapse
Affiliation(s)
- Qianqian Du
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Jinfeng Bi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Jianyong Yi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yuanyuan Zhao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Shuhan Feng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Youchuan Ma
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
14
|
Wang B, Li Y, Lv Y, Jiao X, Wang Z, He Y, Wen L. Dehydration-rehydration mechanism of vegetables at the cell-wall and cell-membrane levels and future research challenges. Crit Rev Food Sci Nutr 2023; 64:11179-11195. [PMID: 37435799 DOI: 10.1080/10408398.2023.2233620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
The quality of dehydrated vegetables is affected by the degree to which they are returned to their original state during rehydration (restorability). At present, whether this mechanism occurs at the cell-wall or cell-membrane level is unclear. This paper reviews the important factors affecting the mechanism of dehydration-rehydration, focusing on the analysis of the composition and structure of the cell wall and cell membrane, and summarizes the related detection and analytical techniques that can be used to explore the mechanisms of dehydration-rehydration at the cell-wall and cell-membrane levels. The integrity and permeability of the cell membrane affect water transport during the dehydration-rehydration process. The cell wall and cell membrane are supporting materials for tissue morphology. The arabinan side chains of the primary structure and fibers are important for water retention. Water transport may be classified as symplastic and apoplastic. Cell membrane disruption occurs with symbiotic transport but increases the drying rate. An in-depth analysis of the dehydration-rehydration mechanism of vegetables will help develop and improve their processing methods and inspire new applications.
Collapse
Affiliation(s)
- Bixiang Wang
- Department of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Yue Li
- Department of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Yingchi Lv
- Department of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Xuan Jiao
- Department of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Zhitong Wang
- Department of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Yang He
- Department of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Liankui Wen
- Department of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| |
Collapse
|
15
|
Impact of physical changes in mushroom on variation in moisture sorption. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2023.111506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
16
|
Wang J, Jiang S, Miao S, Zhang L, Deng K, Zheng B. Effects of drying on the quality characteristics and release of umami substances of Flammulina velutipes. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
17
|
Zeng Z, Wang J, Wen X, Wang Y, Li X, Liu D, Geng F. Metabolomic analysis provides insights into the mechanism of color and taste changes in Dictyophora indusiata fruiting bodies under different drying processes. Food Res Int 2022; 162:112090. [PMID: 36461398 DOI: 10.1016/j.foodres.2022.112090] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/17/2022] [Accepted: 10/27/2022] [Indexed: 11/07/2022]
Abstract
In this study, we systematically assessed how the morphology and texture of edible fruiting bodies of D. indusiata (EFD) varied under three drying techniques: vacuum freeze drying (FD), vacuum drying (VD), and hot air drying (HD). It was discovered that freeze-dried EFD samples (FD-EFD) had an intact microstructure, and thus, a good appearance, textural characteristics, and rehydration properties. Quantitative metabolomic analysis revealed 801 metabolites, where 236 211 metabolites were significantly different in abundance in the comparison of hot-air dried EFD samples (HD-EFD) versus FD-EFD and vacuum-dried EFD samples (VD-EFD) versus FD-EFD, respectively. VD and HD significantly affected the abundance of taste-related compounds and resulted in the improvement of EFD's umami. The acidity of EFD is provided by organic acids produced through the tricarboxylic acid cycle. The browning of HD-EFD was caused by Maillard reactions, oxidative degradation of ascorbic acid, and endogenous enzymatic browning process dominated by the phenylalanine metabolic pathway. The metabolomic analysis provides new insights into changes in EFD by different drying processes.
Collapse
Affiliation(s)
- Zhen Zeng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China
| | - Jinqiu Wang
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China.
| | - Xuefei Wen
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China
| | - Yi Wang
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China
| | - Xiang Li
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China
| | - Dayu Liu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China.
| |
Collapse
|
18
|
Hot Air Drying of Seabuckthorn ( Hippophae rhamnoides L.) Berries: Effects of Different Pretreatment Methods on Drying Characteristics and Quality Attributes. Foods 2022; 11:foods11223675. [PMID: 36429267 PMCID: PMC9689206 DOI: 10.3390/foods11223675] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Seabuckthorn berries are difficult to dry because the outermost surface is covered with a dense wax layer, which prevents moisture transfer during the drying process. In this study, uses of ultrasonic-assisted alkali (UA), pricking holes in the skin (PH) and their combination (UA + PH) as pretreatment methods prior to hot air drying and their effects on drying characteristics and quality attributes of seabuckthorn berries were investigated. Selected properties include color, microstructure, rehydration capacity, as well as total flavonoids, phenolics and ascorbic acid contents. Finally, the coefficient of variation method was used for comprehensive evaluation. The results showed that all pretreatment methods increased the drying rate; the combination of ultrasonic-assisted alkali (time, 15 min) and pricking holes (number, 6) (UA15 + PH6) had the highest drying rate that compared with the control group, the drying time was shortened by 33.05%; scanning electron microscopy images revealed that the pretreatment of UA could dissolve the wax layer of seabuckthorn berries, helped to form micropores, which promoted the process of water migration. All the pretreatments reduced the color difference and increased the lightness. The PH3 samples had the highest value of vitamin C content (54.71 mg/100 g), the UA5 and PH1 samples had the highest value of total flavonoid content (11.41 mg/g) and total phenolic content (14.20 mg/g), respectively. Compared to other pretreatment groups, UA15 + PH6 achieved the highest quality comprehensive score (1.013). Results indicate that UA15 + PH6 treatment is the most appropriate pretreatment method for improving the drying characteristics and quality attributes of seabuckthorn berries.
Collapse
|
19
|
Qiu Y, Bi J, Jin X, Wu X, Hu L, Chen L. Investigation on the rehydration mechanism of freeze-dried and hot-air dried shiitake mushrooms from pores and cell wall fibrous material. Food Chem 2022; 383:132360. [PMID: 35180597 DOI: 10.1016/j.foodchem.2022.132360] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 01/29/2022] [Accepted: 02/03/2022] [Indexed: 11/17/2022]
Abstract
Shiitake mushrooms are unique in their porous structure, which could be affected by various chemical/physical changes during freeze-drying process. In this work, rehydration characteristics of freeze-dried products which were pre-frozen at -20 ℃, -40 ℃, -80 ℃, and -196 ℃ (by liquid nitrogen) were explored from aspects of pores and cell wall fibrous material. Although the appearance and rehydration rate of freeze-dried samples was better than hot-air dried samples with drying temperature ranging from 30 ℃ to 90 ℃, the final rehydration ratio was still less than hot-air dried samples dried at low temperature (30 ℃ and 40 ℃) due to the more serious structural damage by freeze-drying. Hydration capacity of the cell wall fiber was increased by freeze-drying, which might be ascribed to the loosen structure of cell wall instead of composition changes. Thus, hot-air drying at low temperature is still recommend and freeze-drying should be further optimized.
Collapse
Affiliation(s)
- Yang Qiu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Jinfeng Bi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| | - Xin Jin
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| | - Xinye Wu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Lina Hu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Lamei Chen
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| |
Collapse
|
20
|
Guo Y, Chen X, Gong P, Guo J, Deng D, He G, Ji C, Wang R, Long H, Wang J, Yao W, Yang W, Chen F. Effect of shiitake mushrooms polysaccharide and chitosan coating on softening and browning of shiitake mushrooms (Lentinus edodes) during postharvest storage. Int J Biol Macromol 2022; 218:816-827. [PMID: 35907449 DOI: 10.1016/j.ijbiomac.2022.07.193] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/18/2022] [Accepted: 07/24/2022] [Indexed: 02/01/2023]
Abstract
We investigated the browning and softening of fresh Lentinula edodes (LE) coated with polysaccharides (LEP) isolated from LE stalks and stored at 4 °C for 15 days. The results showed that compared to the chitosan-coated and uncoated LE, the LEP-treated mushrooms showed significant improvements in several qualities during storage, such as reduced weight loss, retention of hardness and springiness, improved soluble protein content, and reduced browning, malondialdehyde content, and electrolyte leakage rate. The best results were obtained with 1.5 % LEP. LEP improved the activities of peroxidase, catalase, superoxide dismutase, ascorbate peroxidase, and phenylalanine ammonialyase and significantly reduced the accumulation of hydrogen peroxide during storage compared to the control samples. In addition, the LEP treatment maintained the high antioxidant activity of LE during storage. Notably, LEP inhibited browning-related enzymes (polyphenol oxidase and tyrosinase) to reduce browning. It also maintained high levels of cellulase, chitinase, and β-1,3 glucanase to improve softening during storage. These findings suggest the potential of LEP to improve the post-harvest quality of mushrooms, allowing a storage period of up to 15 days (extending the shelf life by six days) and indirectly suggesting that the polysaccharide component of LEP can act as a self-defense additive to protect against spoilage during storage.
Collapse
Affiliation(s)
- Yuxi Guo
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xuefeng Chen
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Pin Gong
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Jing Guo
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Dan Deng
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Guanglian He
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Chenglong Ji
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Ruotong Wang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Hui Long
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jiating Wang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Wenbo Yao
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Wenjuan Yang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Fuxin Chen
- School of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| |
Collapse
|
21
|
Comparison of different drying techniques for shiitake mushroom (Lentinus edodes): Changes in volatile compounds, taste properties, and texture qualities. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
Go HY, Lee SH, Kim HY. The Effect of Hot-Air Dried Lentinula edodes on the Quality and Oranoleptic Properties of Rolled-Dumplings. Food Sci Anim Resour 2022; 42:593-608. [PMID: 35855265 PMCID: PMC9289801 DOI: 10.5851/kosfa.2022.e24] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/29/2022] [Accepted: 05/09/2022] [Indexed: 11/14/2022] Open
Abstract
The effect of hot-air dried Lentinula edodes pileus (DLE) on the quality and organoleptic properties of rolled-dumplings was evaluated. DLE was prepared by drying at 60°C for 24 h and added (Non, 7%, and 9%) to rolled-dumplings. The proximate composition, pH, color (CIE L*, a*, b*), and cooking yield were analyzed. Texture profile analysis, electronic-nose (e-nose), electronic-tongue (e-tongue), and organoleptic evaluation were also conducted. The cooking yield of dumplings with 9% DLE was significantly lower than that of the congeners without DLE, whereas 7% DLE did not lead to significant differences compared without DLE. With increasing DLE addition, the pH and lightness of the dumplings decreased significantly, whereas the redness tended to increase. The texture profile was significantly higher for the dumplings with DLE compared to those without DLE. E-nose analysis confirmed that DLE addition led to the positive odors (methanethiol: meaty, sulfurous; 3-methylbutanal: malty, toasted) and the negative odors (trimethylamine: ammoniacal; acetic acid: acidic, sour). E-tongue analysis showed that DLE addition decreased the intensity of the sourness and increased the intensity of the saltiness and umami of rolled-dumplings. DLE addition improved the overall organoleptic properties, but 9% DLE can be recognized as a foreign substance in organoleptic acceptance. Consequently, DLE has the potential to serve as a flavor and odor enhancer for rolled-dumplings, and the addition of DLE can positively improve consumer acceptance by improving the quality and organoleptic properties.
Collapse
Affiliation(s)
- Ha-Yoon Go
- Department of Animal Resources Science, Kongju National University, Yesan 32439, Korea
| | - Sol-Hee Lee
- Department of Animal Resources Science, Kongju National University, Yesan 32439, Korea
| | - Hack-Youn Kim
- Department of Animal Resources Science, Kongju National University, Yesan 32439, Korea
| |
Collapse
|
23
|
Hu L, Bi J, Jin X, van der Sman R. Microstructure evolution affecting the rehydration of dried mushrooms during instant controlled pressure drop combined hot air drying (DIC-HA). INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
24
|
Li Y, Ding S, Kitazawa H, Wang Y. Storage temperature effect on quality related with cell wall metabolism of shiitake mushrooms (Lentinula edodes) and its modeling. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100865] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Xiao L, Sha W, Tao C, Hou C, Xiao G, Ren J. Effect on purine releasement of Lentinus edodes by different food processing techniques. Food Chem X 2022; 13:100260. [PMID: 35498996 PMCID: PMC9040045 DOI: 10.1016/j.fochx.2022.100260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 11/24/2022] Open
Abstract
Lentinus edodes (LE) is very popular in the world and also considered as high purine food. However, few focuses on purine types and its change during food processing. Here, we first compared 3 drying techniques, including roast-drying, freeze-drying, sun-drying on purine contents of LE by using acidolysis and HPLC. It showed that adenine decreased significantly after roast-drying (120 °C), which may be caused by thermal damage of DNA. Total purine decreased significantly after freeze-drying, while roast-dried and sun-dried LE remained unchanged. The effect of moist heat (boiling) on LE purine were also evaluated. Total purine increased due to xanthine increasement (331.72 ± 50.07%). And purine contents transferred into boiled liquid was higher than that in boiled solid. Compared with sun-dry and roast-dry processing, freeze-drying could notably affect the purine release from LE and decrease purine contents. Therefore, freeze-drying is recommended for process techniques for hyperuricemia and gouts populations.
Collapse
Affiliation(s)
- Lu Xiao
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Wanqian Sha
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Chunlin Tao
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Chuanli Hou
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Ganhong Xiao
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Jiaoyan Ren
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510641, China
- China-Singapore International Joint Research Institute, Guangzhou Knowledge City, Huangpu District, Guangzhou 510663, China
| |
Collapse
|