1
|
Su H, Guo C, Zhao H, Dong H, Sun J, Mao X. Functional characterization of a lytic polysaccharide monooxygenase EbLPMO10A that contributes to β-chitin degradation by chitinase. Food Chem 2025; 474:143225. [PMID: 39923525 DOI: 10.1016/j.foodchem.2025.143225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/21/2025] [Accepted: 02/03/2025] [Indexed: 02/11/2025]
Abstract
The conversion of β-chitin, an abundant polysaccharide in cephalopod seafood byproducts, into high-value N-acetyl chitooligosaccharides (NCOSs) is crucial for the functional food and pharmaceutical industries. Lytic polysaccharide monooxygenases (LPMOs) oxidatively degrade insoluble polysaccharides and promote biomass degradation by hydrolases. However, the existence of LPMOs that specifically act on β-chitin remains unclear. In the study, we recombinantly expressed a novel AA10 LPMO, EbLPMO10A, from Enterobacteriaceae bacterium BIT-l23, which specifically oxidized β-chitin and was inactive against α-chitin. The oxidative depolymerization of β-chitin by EbLPMO10A exhibited a unique explosive granulation and enhanced regional activity of hydrolases. Combining 5.0 μM EbLPMO10A with 1.0 μM ChiB (chitinase from Serratia marcescens) achieved 76.74 % conversion of β-chitin to (GlcNAc)2, a 4.46-fold increase over ChiB alone. These promising results suggest that EbLPMO10A may benefit the targeted conversion of β-chitin in the food and chemical industries.
Collapse
Affiliation(s)
- Haipeng Su
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Chaoran Guo
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Hongjun Zhao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Hao Dong
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China.
| | - Jianan Sun
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China.
| | - Xiangzhao Mao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| |
Collapse
|
2
|
Martínez-Ranz M, Kidibule PE, Jiménez-Ortega E, Valcárcel J, Vázquez JA, Sanz-Aparicio J, Fernández-Lobato M. Boosting Biocatalytic Efficiency: Engineering of Chitinase Chit33 with Chitin and Cellulose Binding Domains for Sustainable Chitin Conversion. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40279401 DOI: 10.1021/acs.jafc.4c10364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/27/2025]
Abstract
Endochitinase Chit33 has shown great potential in converting chitin, a recalcitrant waste, into bioactive chitooligosaccharides (COS). This study evaluates how cellulose-binding domain (CBD) and chitin-binding domain (ChBD) affect the hydrolytic activity and product specificity of Chit33. Recombinant proteins were produced and isolated with a simple yeast extracellular medium concentration. The domain functionality was proved using chitin and cellulose supports. ChBD provided more stable immobilization than CBD but reduced the Chit33 activity. CBD enhanced the enzyme activity on both colloidal (α-/β-allomorphs) and crystalline chitin, doubling it on α-chitin, although not on their deacetylated forms. Besides, CBD increased the COS production from the colloidal forms of α-/β-chitin (by 30% and 85%, respectively) and expanded the product diversity from 1 to 9 N-acetylglucosamine units. In contrast, Chit33-ChBD predominantly yielded chitin tetrasaccharides. These findings highlight the importance of selecting appropriate binding domains to tailor product specificity, as polymerization and acetylation degrees directly impact the COS biological properties.
Collapse
Affiliation(s)
- María Martínez-Ranz
- Department of Molecular Biology, Centre of Molecular Biology Severo Ochoa, CSIC-UAM, University Autonomous of Madrid, Madrid 28049, Spain
| | - Peter E Kidibule
- Department of Molecular Biology, Centre of Molecular Biology Severo Ochoa, CSIC-UAM, University Autonomous of Madrid, Madrid 28049, Spain
- Faculty of Chemistry, Biotechnology, and Food Sciences, Norwegian University of Life Sciences, P.O. Box 5003, Elizabeth N-1432 Ås, Norway
| | - Elena Jiménez-Ortega
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry Blas Cabrera, CSIC, Madrid 28006, Spain
| | - Jesús Valcárcel
- Recycling and Valorisation of Waste Materials Group (REVAL), Institute of Marine Research, IIM-CSIC, Galicia 36208, Spain
| | - José Antonio Vázquez
- Recycling and Valorisation of Waste Materials Group (REVAL), Institute of Marine Research, IIM-CSIC, Galicia 36208, Spain
| | - Julia Sanz-Aparicio
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry Blas Cabrera, CSIC, Madrid 28006, Spain
| | - María Fernández-Lobato
- Department of Molecular Biology, Centre of Molecular Biology Severo Ochoa, CSIC-UAM, University Autonomous of Madrid, Madrid 28049, Spain
| |
Collapse
|
3
|
Sivaramakrishna D, Bhuvanachandra B, Bevara S, Padhy H, Maddu RR, Bellamkonda R, Podile AR. Composition of the pretreatment solvent and the structural features of substrates and chitinases influence the bioconversion of α-chitin. Int J Biol Macromol 2025; 310:143340. [PMID: 40254204 DOI: 10.1016/j.ijbiomac.2025.143340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/16/2025] [Accepted: 04/17/2025] [Indexed: 04/22/2025]
Abstract
Auxiliary domains in chitinases play a significant role in the hydrolysis of chitin and chitooligosaccharides (COS). Pretreatment of α-chitin, followed by enzymatic hydrolysis, considerably enhanced the production of COS with a lower degree of polymerization (DP). We studied the effect of pretreatment solvent composition (KOH-with/without-urea) on the bioconversion of α-chitin and hydrolysis of COS (DP2-6), separately by a multi-modular chitinase CsChiG and its catalytic domain (Cat-CsChiG). Temperature-dependent structural stability of CsChiG and Cat-CsChiG was analyzed using circular dichroism spectroscopy. Deletion of chitin-binding domains in CsChiG influenced the overall secondary structural elements and its thermal stability, affecting the bioconversion of treated substrates and hydrolysis of lower chain length COS. Field emission scanning electron microscope (FESEM) and thermogravimetric analysis-differential thermal analysis (TGA-DTA) corroborate the influence of pretreatment on the structural and thermal stabilities of the pretreated substrates. It is, therefore, concluded that the composition of the pretreatment solvent and structural features of the substrates and modules in the chitinases influence the bioconversion of α-chitin, especially the composition of COS.
Collapse
Affiliation(s)
- Dokku Sivaramakrishna
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India; Department of Chemistry, School of Science, GITAM (Deemed to be University), Visakhapatnam 530045, Andhra Pradesh, India..
| | - Bhoopal Bhuvanachandra
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Samatha Bevara
- Department of Chemistry, School of Science, GITAM (Deemed to be University), Visakhapatnam 530045, Andhra Pradesh, India
| | - Harihara Padhy
- Department of Chemistry, School of Science, GITAM (Deemed to be University), Visakhapatnam 530045, Andhra Pradesh, India
| | - Rajesh Rao Maddu
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Ramakrishna Bellamkonda
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Appa Rao Podile
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India.
| |
Collapse
|
4
|
Su H, Huang H, Guo C, Sun J, Mao X. Biochemical Characterization of a Family GH18 Specific-Domain Chitinase: Chitin-Binding Domain Modulates the Reaction Specificity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40209041 DOI: 10.1021/acs.jafc.4c12762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2025]
Abstract
Chitinase is an essential tool for the high-value utilization of chitin and the production of N-acetyl chito-oligosaccharides (N-acetyl COSs). The reaction specificity of chitinase is a key determinant of product composition. Previous studies have shown that carbohydrate-binding modules (CBMs) may influence the reaction specificity of glycoside hydrolases, though few studies have focused on this aspect in chitinases. Here, we identified a chitinase ChiZg from Zooshikella ganghwensis, characterized by the spatial separation of the chitin-binding domain (ChBD) from the catalytic domain (CD). ChiZg modulated product specificity for (GlcNAc)2 in an atypical exo-mode, and the (GlcNAc)2 yield ultimately maintained a relative balance as the substrate concentration and enzyme amount changed. Additionally, we found that the ChBD in ChiZg could modulate the enzyme's reaction specificity. A ChBD-truncated mutant exhibited additional N-acetylglucosaminidase activity, hydrolyzing (GlcNAc)2 to GlcNAc. We also engineered a mutant by translocating the ChBD from the N-terminus to the C-terminus, which aligned with the CD spatial configuration. It enhanced product specificity for (GlcNAc)3 with minimal GlcNAc production. This work expands the understanding of the ChBD-mediated reaction specificity in chitinases, providing an effective catalytic tool for the efficient degradation of chitin and the production of N-acetyl COSs with specific configurations.
Collapse
Affiliation(s)
- Haipeng Su
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Haiyan Huang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Chaoran Guo
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
| | - Jianan Sun
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Xiangzhao Mao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| |
Collapse
|
5
|
Sun G, Wang C, Liu J, Zhao Q, Wang T, He X, Hu J, Liu Y. Preparation of various aminooligosaccharides using a novel chitinase and its CBM fusion mutants. Int J Biol Macromol 2025; 306:141646. [PMID: 40032111 DOI: 10.1016/j.ijbiomac.2025.141646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 02/10/2025] [Accepted: 02/28/2025] [Indexed: 03/05/2025]
Abstract
Aminooligosaccharides, including N-acetyl chitooligosaccharides (N-acetyl COSs), chitooligosaccharides (COSs), and partially acetylated chitooligosaccharides (paCOSs) have gained significant attention owing to their diverse bioactivities. Thus, the preparation of aminooligosaccharides particularly paCOSs, is a prospective way to reuse the huge amount of crustacean waste for high value-added products. In this study, a novel GH family 18 chitinase (MyChi54) suitable for aminooligosaccharides preparation was identified and characterized. MyChi54 showed maximal activity at pH 5.0 and 45 °C. Two CBM fusion mutants were obtained to enhance the enzyme activity. It should be noted that CBM26MyChi54 exhibited a 2.5-fold increase in chitinase activity (25.8 U mg-1) relative to the wild-type, while CBM26MyChi54 and CBM3MyChi54 demonstrated enhanced chitinase activity against chitosan, displaying a 2.0- and 3.6-fold rise in comparison to the wild-type, respectively. The aminooligosaccharides were subsequently prepared by CBM26MyChi54 and three types of N-acetyl COSs, four types of paCOSs, as well as five types of COSs were obtained, and some of them were identified by HPLC and ESI-MS. It is conceivable that the bioprocess may be employed to considerable advantage in the enrichment of an aminooligosaccharides library.
Collapse
Affiliation(s)
- Guangru Sun
- College of Food Science and Engineering, State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, Economy Technological Development Area, No. 29, 13th Avenue, Tianjin 300222, People's Republic of China
| | - Chunling Wang
- College of Food Science and Engineering, State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, Economy Technological Development Area, No. 29, 13th Avenue, Tianjin 300222, People's Republic of China
| | - Jing Liu
- School of Life Sciences, Tianjin University, No.92, Weijin Road, Nankai District, Tianjin 300072, People's Republic of China
| | - Qingxuan Zhao
- College of Food Science and Engineering, State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, Economy Technological Development Area, No. 29, 13th Avenue, Tianjin 300222, People's Republic of China
| | - Tianyu Wang
- College of Food Science and Engineering, State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, Economy Technological Development Area, No. 29, 13th Avenue, Tianjin 300222, People's Republic of China
| | - Xinyue He
- College of Food Science and Engineering, State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, Economy Technological Development Area, No. 29, 13th Avenue, Tianjin 300222, People's Republic of China
| | - Jianan Hu
- College of Food Science and Engineering, State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, Economy Technological Development Area, No. 29, 13th Avenue, Tianjin 300222, People's Republic of China
| | - Yihao Liu
- College of Food Science and Engineering, State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, Economy Technological Development Area, No. 29, 13th Avenue, Tianjin 300222, People's Republic of China.
| |
Collapse
|
6
|
Liu Y, Sun G, Liu J, Lou Y, Zhu J, Wang C. Enzymatic production of diverse N-acetyl chitooligosaccharides employing a novel bifunctional chitinase and its engineered variants. Food Chem 2024; 453:139675. [PMID: 38781901 DOI: 10.1016/j.foodchem.2024.139675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/17/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Bioproduction of diverse N-acetyl chitooligosaccharides from chitin is of great value. In the study, a novel GH family 18 bifunctional chitinase gene (PsChi82) from Paenibacillus shirakamiensis was identified, expressed and biochemically characterized. PsChi82 was most active at pH 5.0, and 55 °C, and displayed remarkable pH stability with the broad pH range of 3.0-12.0. It showed high chitosanase activity of 10.6 U mg-1 and diverse hydrolysis products of GlcNAc, (GlcNAc)2, GlcN-GlcNAc and (GlcN)2-GlcNAc, which may facilitate comprehensively understanding of structure-function relationships of N-acetyl COSs. Three engineered variants were then expressed and characterized. Among them, PsChi82-CBM26 possessed specific activity of 25.1 U mg-1 against colloidal chitin, which was 2.1 folds higher than that of PsChi82. The diverse N-acetyl COSs were subsequently produced by PsChi82-CBM26 with a sugar content of 23.2 g L-1. These excellent properties may make PsChi82-CBM26 potentially useful for N-acetyl COSs production in the food and chemical industries.
Collapse
Affiliation(s)
- Yihao Liu
- College of Food Science and Engineering, State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin Economy Technological Development Area, No. 29, 13th Avenue, Tianjin 300222, People's Republic of China.
| | - Guangru Sun
- College of Food Science and Engineering, State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin Economy Technological Development Area, No. 29, 13th Avenue, Tianjin 300222, People's Republic of China
| | - Jing Liu
- School of Life Sciences, Tianjin University, No.92, Weijin Road, Nankai District, Tianjin 300072, People's Republic of China
| | - Yimeng Lou
- College of Food Science and Engineering, State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin Economy Technological Development Area, No. 29, 13th Avenue, Tianjin 300222, People's Republic of China
| | - Jingwen Zhu
- College of Food Science and Engineering, State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin Economy Technological Development Area, No. 29, 13th Avenue, Tianjin 300222, People's Republic of China
| | - Chunling Wang
- College of Food Science and Engineering, State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin Economy Technological Development Area, No. 29, 13th Avenue, Tianjin 300222, People's Republic of China.
| |
Collapse
|
7
|
Yang L, Qu M, Wang Z, Huang S, Wang Q, Wei M, Li F, Yang D, Pan L. Biochemical Properties of a Novel Cold-Adapted GH19 Chitinase with Three Chitin-Binding Domains from Chitinilyticum aquatile CSC-1 and Its Potential in Biocontrol of Plant Pathogenic Fungi. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19581-19593. [PMID: 39190598 DOI: 10.1021/acs.jafc.4c02559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
GH19 (glycoside hydrolase 19) chitinases play crucial roles in the enzymatic conversion of chitin and biocontrol of phytopathogenic fungi. Herein, a novel multifunctional chitinase of GH19 (CaChi19A), which contains three chitin-binding domains (ChBDs), was successfully cloned from Chitinilyticum aquatile CSC-1 and heterologously expressed in Escherichia coli. We also generated truncated mutants of CaChi19A_ΔI, CaChi19A_ΔIΔII, and CaChi19A_CatD consisting of two ChBDs and a catalytic domain, one ChBD and a catalytic domain, and only a catalytic domain, respectively. CaChi19A, CaChi19A_ΔI, CaChi19A_ΔIΔII, and CaChi19A_CatD exhibited cold adaptation, as their relative enzyme activities at 5 °C were 40.7, 51.6, 66.2, and 82.6%, respectively. Compared with CaChi19A and other variants, CaChi19A_ΔIΔII demonstrated a higher level of stability below 50 °C and retained relatively high activity over a wide pH range of 5-12. Analysis of the hydrolysis products revealed that CaChi19A and CaChi19A_ΔIΔII exhibit exoacting, endoacting, and N-acetyl-β-d-glucosaminidase activities toward colloidal chitin. Furthermore, CaChi19A and CaChi19A_ΔIΔII exhibited inhibitory effects on the hyphal growth of Fusarium oxysporum, Fusarium redolens, Fusarium fujikuroi, Fusarium solani, and Coniothyrium diplodiella, thereby illustrating effective biocontrol activity. These results indicated that CaChi19A and CaChi19A_ΔIΔII show advantages in some applications where low temperatures were demanded in industries as well as the biocontrol of fungal diseases in agriculture.
Collapse
Affiliation(s)
- Liyan Yang
- National Key Laboratory of Non-food Biomass Energy Technology, Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Institute of Biology, Guangxi Academy of Sciences, Nanning 530007, China
| | - Mingbo Qu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Zhou Wang
- National Key Laboratory of Non-food Biomass Energy Technology, Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Institute of Biology, Guangxi Academy of Sciences, Nanning 530007, China
| | - Shiyong Huang
- Guangxi Research Institute of Chemical Industry Co., Ltd., Nanning 530001, China
| | - Qingyan Wang
- National Key Laboratory of Non-food Biomass Energy Technology, Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Institute of Biology, Guangxi Academy of Sciences, Nanning 530007, China
| | - Maochun Wei
- Guangxi Research Institute of Chemical Industry Co., Ltd., Nanning 530001, China
| | - Fei Li
- National Key Laboratory of Non-food Biomass Energy Technology, Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Institute of Biology, Guangxi Academy of Sciences, Nanning 530007, China
| | - Dengfeng Yang
- National Key Laboratory of Non-food Biomass Energy Technology, Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Institute of Biology, Guangxi Academy of Sciences, Nanning 530007, China
| | - Lixia Pan
- National Key Laboratory of Non-food Biomass Energy Technology, Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Institute of Biology, Guangxi Academy of Sciences, Nanning 530007, China
| |
Collapse
|
8
|
Yu Y, Chen S, Yan M, Li Y, Yang M, Liu X, Miao J, Wang X, Xiao M, Mou H, Leng K. Identification, expression, and characterization of a marine-derived chitinase Ce0303 from Chitiniphilus eburneus YS-30 with exo- and endo-hydrolytic properties. Int J Biol Macromol 2024; 276:133980. [PMID: 39032901 DOI: 10.1016/j.ijbiomac.2024.133980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
N-acetyl-oligosaccharides exhibit antioxidant and antibacterial activities. However, the low catalytic efficiency of chitinase on crystalline chitin hinders the eco-friendly production of N-acetyl-oligosaccharides. A marine-derived chitinase-producing strain Chitiniphilus eburneus YS-30 was screened in this study. The genome of C. eburneus YS-30 spans 4,522,240 bp, with a G + C content of 63.96 % and 4244 coding genes. Among the chitinases secreted by C. eburneus YS-30, Ce0303 showed the highest content at 19.10 %, with a molecular weight of 73.5 kDa. Recombinant Ce0303 exhibited optimal activity at 50 °C and pH 5.0, maintaining stability across pH 4.0-10.0. Ce0303 demonstrated strict substrate specificity, with a specific activity toward colloidal chitin of 6.41 U mg-1, Km of 2.34 mg mL-1, and kcat of 3.27 s-1. The specific activity of Ce0303 toward α-chitin was 18.87 % of its activity on colloidal chitin. Ce0303 displayed both exo- and endo-hydrolytic properties, primarily producing (GlcNAc)1-3 from colloidal chitin. The structure of Ce0303 includes one catalytic domain and two chitin-binding domains. Docking results revealed that the GlcNAc at -1 subsite formed two hydrogen bonds with conserved Trp380. The hydrolytic properties of Ce0303 will provide technical support for the comprehensive utilization of crustacean raw materials.
Collapse
Affiliation(s)
- Yuan Yu
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
| | - Sunan Chen
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Mingyan Yan
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Yinping Li
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Min Yang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266100, China
| | - Xiaofang Liu
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
| | - Junkui Miao
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
| | - Xixi Wang
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
| | - Mengshi Xiao
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266100, China
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266100, China.
| | - Kailiang Leng
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, China.
| |
Collapse
|
9
|
You Y, Kong H, Li C, Gu Z, Ban X, Li Z. Carbohydrate binding modules: Compact yet potent accessories in the specific substrate binding and performance evolution of carbohydrate-active enzymes. Biotechnol Adv 2024; 73:108365. [PMID: 38677391 DOI: 10.1016/j.biotechadv.2024.108365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/29/2024]
Abstract
Carbohydrate binding modules (CBMs) are independent non-catalytic domains widely found in carbohydrate-active enzymes (CAZymes), and they play an essential role in the substrate binding process of CAZymes by guiding the appended catalytic modules to the target substrates. Owing to their precise recognition and selective affinity for different substrates, CBMs have received increasing research attention over the past few decades. To date, CBMs from different origins have formed a large number of families that show a variety of substrate types, structural features, and ligand recognition mechanisms. Moreover, through the modification of specific sites of CBMs and the fusion of heterologous CBMs with catalytic domains, improved enzymatic properties and catalytic patterns of numerous CAZymes have been achieved. Based on cutting-edge technologies in computational biology, gene editing, and protein engineering, CBMs as auxiliary components have become portable and efficient tools for the evolution and application of CAZymes. With the aim to provide a theoretical reference for the functional research, rational design, and targeted utilization of novel CBMs in the future, we systematically reviewed the function-related characteristics and potentials of CAZyme-derived CBMs in this review, including substrate recognition and binding mechanisms, non-catalytic contributions to enzyme performances, module modifications, and innovative applications in various fields.
Collapse
Affiliation(s)
- Yuxian You
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Haocun Kong
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Caiming Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Zhengbiao Gu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiaofeng Ban
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhaofeng Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China.
| |
Collapse
|
10
|
Guan F, Tian X, Zhang R, Zhang Y, Wu N, Sun J, Zhang H, Tu T, Luo H, Yao B, Tian J, Huang H. Enhancing the endo-activity of the thermophilic chitinase to yield chitooligosaccharides with high degrees of polymerization. BIORESOUR BIOPROCESS 2024; 11:29. [PMID: 38647930 PMCID: PMC10991111 DOI: 10.1186/s40643-024-00735-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/21/2024] [Indexed: 04/25/2024] Open
Abstract
Thermophilic endo-chitinases are essential for production of highly polymerized chitooligosaccharides, which are advantageous for plant immunity, animal nutrition and health. However, thermophilic endo-chitinases are scarce and the transformation from exo- to endo-activity of chitinases is still a challenging problem. In this study, to enhance the endo-activity of the thermophilic chitinase Chi304, we proposed two approaches for rational design based on comprehensive structural and evolutionary analyses. Four effective single-point mutants were identified among 28 designed mutations. The ratio of (GlcNAc)3 to (GlcNAc)2 quantity (DP3/2) in the hydrolysates of the four single-point mutants undertaking colloidal chitin degradation were 1.89, 1.65, 1.24, and 1.38 times that of Chi304, respectively. When combining to double-point mutants, the DP3/2 proportions produced by F79A/W140R, F79A/M264L, F79A/W272R, and M264L/W272R were 2.06, 1.67, 1.82, and 1.86 times that of Chi304 and all four double-point mutants exhibited enhanced endo-activity. When applied to produce chitooligosaccharides (DP ≥ 3), F79A/W140R accumulated the most (GlcNAc)4, while M264L/W272R was the best to produce (GlcNAc)3, which was 2.28 times that of Chi304. The two mutants had exposed shallower substrate-binding pockets and stronger binding abilities to shape the substrate. Overall, this research offers a practical approach to altering the cutting pattern of a chitinase to generate functional chitooligosaccharides.
Collapse
Affiliation(s)
- Feifei Guan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaoqian Tian
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- College of Food Science and Technology, Hebei Agricultural University, Hebei Baoding, 071000, China
| | - Ruohan Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yan Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- College of Food Science and Technology, Hebei Agricultural University, Hebei Baoding, 071000, China
| | - Ningfeng Wu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jilu Sun
- College of Food Science and Technology, Hebei Agricultural University, Hebei Baoding, 071000, China
| | - Honglian Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Tao Tu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Huiying Luo
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Bin Yao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jian Tian
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Huoqing Huang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
11
|
Chen J, Yang D, Zhang Y, Yang L, Wang Q, Jiang M, Pan L. A novel bi-functional cold-adaptive chitinase from Chitinilyticum aquatile CSC-1 for efficient synthesis of N-acetyl-D-glucosaminidase. Int J Biol Macromol 2024; 259:129063. [PMID: 38159710 DOI: 10.1016/j.ijbiomac.2023.129063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/21/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
In order to better utilize chitinolytic enzymes to produce high-value N-acetyl-D-glucosamine (GlcNAc) from chitinous waste, there is an urgent need to explore bi-functional chitinases with exceptional properties of temperature, pH and metal tolerance. In this study, we cloned and characterized a novel bi-functional cold-adaptive chitinase called CaChi18A from a newly isolated strain, Chitinilyticum aquatile CSC-1, in Bama longevity village of Guangxi Province, China. The activity of CaChi18A at 50 °C was 4.07 U/mg. However, it exhibited significant catalytic activity even at 5 °C. Its truncated variant CaChi18A_ΔChBDs, containing only catalytic domain, demonstrated significant activity levels, exceeding 40 %, over a temperature range of 5-60 °C and a pH range of 3 to 10. It was noteworthy that it displayed tolerance towards most metal ions at a final concentration of 0.1 mM, including Fe3+ and Cu2+ ions, retaining 122.52 ± 0.17 % and 116.42 ± 1.52 % activity, respectively. Additionally, it exhibited favorable tolerance towards organic solvents with the exception of formic acid. Interestedly, CaChi18A and CaChi18A_ΔChBDs had a low Km value towards colloidal chitin (CC), 0.94 mg mL-1 and 2.13 mg mL-1, respectively. Both enzymes exhibited chitobiosidase and N-acetyl-D-glucosaminidase activities, producing GlcNAc as the primary product when hydrolyzing CC. The high activities across a broader temperature and pH range, strong environmental adaptability, and hydrolytic properties of CaChi18A_ΔChBDs suggested that it could be a promising candidate for GlcNAc production.
Collapse
Affiliation(s)
- Jianrong Chen
- National Key Laboratory of Non-food Biomass Energy Technology, Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Institute of Biology, Guangxi Academy of Sciences, Nanning 530007, China; College of Life Science and Technology, Guangxi University, Nanning 530004, Guangxi, China
| | - Dengfeng Yang
- National Key Laboratory of Non-food Biomass Energy Technology, Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Institute of Biology, Guangxi Academy of Sciences, Nanning 530007, China
| | - Yunkai Zhang
- College of Life Science and Technology, Guangxi University, Nanning 530004, Guangxi, China
| | - Liyan Yang
- National Key Laboratory of Non-food Biomass Energy Technology, Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Institute of Biology, Guangxi Academy of Sciences, Nanning 530007, China
| | - Qingyan Wang
- National Key Laboratory of Non-food Biomass Energy Technology, Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Institute of Biology, Guangxi Academy of Sciences, Nanning 530007, China
| | - Mingguo Jiang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530008, China
| | - Lixia Pan
- National Key Laboratory of Non-food Biomass Energy Technology, Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Institute of Biology, Guangxi Academy of Sciences, Nanning 530007, China; College of Food and Quality Engineering, Nanning University, Nanning 530200, China.
| |
Collapse
|
12
|
Gao W, Li T, Zhou H, Ju J, Yin H. Carbohydrate-binding modules enhance H 2O 2 tolerance by promoting lytic polysaccharide monooxygenase active site H 2O 2 consumption. J Biol Chem 2024; 300:105573. [PMID: 38122901 PMCID: PMC10825053 DOI: 10.1016/j.jbc.2023.105573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/26/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
Lytic polysaccharide monooxygenases (LPMOs) oxidatively depolymerize recalcitrant polysaccharides, which is important for biomass conversion. The catalytic domains of many LPMOs are linked to carbohydrate-binding modules (CBMs) through flexible linkers, but the function of these CBMs in LPMO catalysis is not well understood. In this study, we utilized MtLPMO9L and MtLPMO9G derived from Myceliophthora thermophila to investigate the impact of CBMs on LPMO activity, with particular emphasis on their influence on H2O2 tolerance. Using truncated forms of MtLPMO9G generated by removing the CBM, we found reduced substrate binding affinity and enzymatic activity. Conversely, when the CBM was fused to the C terminus of the single-domain MtLPMO9L to create MtLPMO9L-CBM, we observed a substantial improvement in substrate binding affinity, enzymatic activity, and notably, H2O2 tolerance. Furthermore, molecular dynamics simulations confirmed that the CBM fusion enhances the proximity of the active site to the substrate, thereby promoting multilocal cleavage and impacting the exposure of the copper active site to H2O2. Importantly, the fusion of CBM resulted in more efficient consumption of H2O2 by LPMO, leading to improved enzymatic activity and reduced auto-oxidative damage of the copper active center.
Collapse
Affiliation(s)
- Wa Gao
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China; University of Chinese Academy of Sciences, Beijing, China
| | - Tang Li
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Haichuan Zhou
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Jiu Ju
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Heng Yin
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
13
|
Martínez-Zavala SA, Ortiz-Rodríguez T, Salcedo-Hernández R, Casados-Vázquez LE, Del Rincón-Castro MC, Bideshi DK, Barboza-Corona JE. The chitin-binding domain of Bacillus thuringiensis ChiA74 inhibits gram-negative bacterial and fungal pathogens of humans and plants. Int J Biol Macromol 2024; 254:128049. [PMID: 37963502 DOI: 10.1016/j.ijbiomac.2023.128049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 11/16/2023]
Abstract
The chitinase ChiA74 is synthesized by Bacillus thuringiensis and possesses a modular organization composed of four domains. In the C-terminal of the enzyme is located the chitin-binding domain (CBD), which has not been isolated as a single unit or characterized. Here, we aimed to isolate the ChiA74's CBD as a single unit, determine the binding properties, and evaluate its antimicrobial and hemolytic activities. We cloned the ChiA74's CBD and expressed it in Escherichia coli BL21. The single domain was purified, analyzed by SDS-PAGE, and characterized. The recombinant CBD (rCBD) showed a molecular mass of ∼14 kDa and binds strongly to α-chitin, with Kd and Bmax of ∼4.7 ± 0.9 μM and 1.5 ± 0.1 μmoles/g chitin, respectively. Besides, the binding potential (Bmax/Kd) was stronger for α-chitin (∼0.31) than microcrystalline cellulose (∼0.19). It was also shown that the purified rCBD inhibited the growth of the clinically relevant Gram-negative bacteria (GNB) Vibrio cholerae, and V. parahemolyticus CVP2 with minimum inhibitory concentrations (MICs) of 121 ± 9.9 and 138 ± 3.2 μg/mL, respectively, and of one of the most common GNB plant pathogens, Pseudomonas syringae with a MIC of 230 ± 13.8 μg/mL. In addition, the rCBD possessed antifungal activity inhibiting the conidia germination of Fusarium oxysporum (MIC = 192 ± 37.5 μg/mL) and lacked hemolytic and agglutination activities against human erythrocytes. The significance of this work lies in the fact that data provided here show for the first time that ChiA74's CBD from B. thuringiensis has antimicrobial activity, suggesting its potential use against significant pathogenic microorganisms. Future works will be focused on testing the inhibitory effect against other pathogenic microorganisms and elucidating the mechanism of action.
Collapse
Affiliation(s)
- Sheila A Martínez-Zavala
- Graduate Program in Biosciences, Life Science Division, University of Guanajuato Campus Irapuato-Salamanca, Irapuato, Guanajuato 36500, México
| | - Tomás Ortiz-Rodríguez
- Graduate Program in Biosciences, Life Science Division, University of Guanajuato Campus Irapuato-Salamanca, Irapuato, Guanajuato 36500, México
| | - Rubén Salcedo-Hernández
- Graduate Program in Biosciences, Life Science Division, University of Guanajuato Campus Irapuato-Salamanca, Irapuato, Guanajuato 36500, México
| | - Luz E Casados-Vázquez
- Graduate Program in Biosciences, Life Science Division, University of Guanajuato Campus Irapuato-Salamanca, Irapuato, Guanajuato 36500, México; Food Department, Life Science Division, University of Guanajuato Campus Irapuato-Salamanca, Irapuato, Guanajuato 36500, México; CONACyT-University of Guanajuato, México
| | - Ma Cristina Del Rincón-Castro
- Graduate Program in Biosciences, Life Science Division, University of Guanajuato Campus Irapuato-Salamanca, Irapuato, Guanajuato 36500, México; Food Department, Life Science Division, University of Guanajuato Campus Irapuato-Salamanca, Irapuato, Guanajuato 36500, México
| | - Dennis K Bideshi
- Department of Biological Sciences, Program in Biomedical Sciences, California Baptist University, Riverside, CA, United States of America
| | - José E Barboza-Corona
- Graduate Program in Biosciences, Life Science Division, University of Guanajuato Campus Irapuato-Salamanca, Irapuato, Guanajuato 36500, México; Food Department, Life Science Division, University of Guanajuato Campus Irapuato-Salamanca, Irapuato, Guanajuato 36500, México.
| |
Collapse
|
14
|
Liu Y, Qin Z, Wang C, Jiang Z. N-acetyl-d-glucosamine-based oligosaccharides from chitin: Enzymatic production, characterization and biological activities. Carbohydr Polym 2023; 315:121019. [PMID: 37230627 DOI: 10.1016/j.carbpol.2023.121019] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/28/2023] [Accepted: 05/09/2023] [Indexed: 05/27/2023]
Abstract
Chitin, the second most abundant biopolymer, possesses diverse applications in the food, agricultural, and pharmaceutical industries due to its functional properties. However, the potential applications of chitin are limited owing to its high crystallinity and low solubility. N-acetyl chitooligosaccharides and lacto-N-triose II, the two types of GlcNAc-based oligosaccharides, can be obtained from chitin by enzymatic methods. With their lower molecular weights and improved solubility, these two types of GlcNAc-based oligosaccharides display more various beneficial health effects when compared to chitin. Among their abilities, they have exhibited antioxidant, anti-inflammatory, anti-tumor, antimicrobial, and plant elicitor activities as well as immunomodulatory and prebiotic effects, which suggests they have the potential to be utilized as food additives, functional daily supplements, drug precursors, elicitors for plants, and prebiotics. This review comprehensively covers the enzymatic methods used for the two types of GlcNAc-based oligosaccharides production from chitin by chitinolytic enzymes. Moreover, current advances in the structural characterization and biological activities of these two types of GlcNAc-based oligosaccharides are summarized in the review. We also highlight current problems in the production of these oligosaccharides and trends in their development, aiming to offer some directions for producing functional oligosaccharides from chitin.
Collapse
Affiliation(s)
- Yihao Liu
- College of Food Science and Engineering, State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science & Technology, Tianjin Economy Technological Development Area, No. 29, 13th Avenue, Tianjin 300222, People's Republic of China
| | - Zhen Qin
- School of Life Sciences, Shanghai University, Baoshan District, No.99 Shangda Road, Shanghai 200444, People's Republic of China
| | - Chunling Wang
- College of Food Science and Engineering, State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science & Technology, Tianjin Economy Technological Development Area, No. 29, 13th Avenue, Tianjin 300222, People's Republic of China.
| | - Zhengqiang Jiang
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Haidian District, No.17 Qinghua East Road, Beijing 100083, People's Republic of China.
| |
Collapse
|
15
|
Ji X, Peng Z, Song J, Zhang G, Zhang J. Fusion of Substrate-Binding Domains Enhances the Catalytic Capacity of Keratinases and Promotes Enzymatic Conversion of Feather Waste. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:11579-11586. [PMID: 37462367 DOI: 10.1021/acs.jafc.3c03064] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
The unique role of keratinases in keratin hydrolysis has garnered huge interest in the recovery of feather waste. However, owing to the high hydrophobicity of feather keratins, the catalytic capacity of keratinases for hydrolyzing feathers is typically low. In this study, we aimed to improve the keratinase feather hydrolysis efficiency by fusing a substrate-binding domain into the enzyme. We screened several carbohydrate-binding modules (CBMs) and linking peptides. We selected the most promising candidates to construct, clone, and express a fusion keratinase enzyme KerZ1/CBM-L8 with a feather hydrolysis efficiency of 7.8 × 10-8 g/U. Compared with those of KerZ1, KerZ1/CBM-L8 has a feather hydrolysis efficiency that is 2.71 times higher, a kcat value that is 179% higher, which translates to higher catalytic efficiency, and Km and binding constant (K) values that are lower, which indicate a higher KerZ1/CBM-L8-keratin binding affinity. Moreover, the number of binding sites to the substrate (N), determined using isothermal titration calorimetry, was 24.1 times higher than that of KerZ1. Thus, the fusion of the substrate-binding domain improved the binding ability of the keratinase enzyme to the hydrophobic substrate, which improved its feather hydrolysis efficiency. Therefore, using the fusion keratinase would significantly improve the recovery of feather waste.
Collapse
Affiliation(s)
- Xiaomei Ji
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zheng Peng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jie Song
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Guoqiang Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Juan Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
16
|
Zhao Q, Fan L, Deng C, Ma C, Zhang C, Zhao L. Bioconversion of chitin into chitin oligosaccharides using a novel chitinase with high chitin-binding capacity. Int J Biol Macromol 2023:125241. [PMID: 37301336 DOI: 10.1016/j.ijbiomac.2023.125241] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/04/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023]
Abstract
Chitin is the second largest renewable biomass resource in nature, it can be enzymatically degraded into high-value chitin oligosaccharides (CHOSs) by chitinases. In this study, a chitinase (ChiC8-1) was purified and biochemically characterized, its structure was analyzed by molecular modeling. ChiC8-1 had a molecular mass of approximately 96 kDa, exhibited its optimal activity at pH 6.0 and 50 °C. The Km and Vmax values of ChiC8-1 towards colloidal chitin were 10.17 mg mL-1 and 13.32 U/mg, respectively. Notably, ChiC8-1 showed high chitin-binding capacity, which may be related to the two chitin binding domains in the N-terminal. Based on the unique properties of ChiC8-1, a modified affinity chromatography method, which combines protein purification with chitin hydrolysis process, was developed to purify ChiC8-1 while hydrolyzing chitin. In this way, 9.36 ± 0.18 g CHOSs powder was directly obtained by hydrolyzing 10 g colloidal chitin with crude enzyme solution. The CHOSs were composed of 14.77-2.83 % GlcNAc and 85.23-97.17 % (GlcNAc)2 at different enzyme-substrate ratio. This process simplifies the tedious purification and separation steps, and may enable its potential application in the field of green production of chitin oligosaccharides.
Collapse
Affiliation(s)
- Qiong Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai 200237, China
| | - Liqiang Fan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai 200237, China
| | - Chen Deng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai 200237, China
| | - Chunyu Ma
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai 200237, China
| | - Chunyue Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai 200237, China.
| | - Liming Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai 200237, China; Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China.
| |
Collapse
|
17
|
Su H, Zhao H, Jia Z, Guo C, Sun J, Mao X. Biochemical Characterization of a GH46 Chitosanase Provides Insights into the Novel Digestion Specificity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2038-2048. [PMID: 36661321 DOI: 10.1021/acs.jafc.2c08127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Endo-chitosanases (EC 3.2.1.132) are generally considered to selectively release functional chito-oligosaccharides (COSs) with degrees of polymerization (DPs) ≥ 2. Although numerous endo-chitosanases have been characterized, the digestion specificity of endo-chitosanases needs to be further explored. In this study, a GH46 endo-chitosanase OUC-CsnPa was cloned, expressed, and characterized from Paenibacillus sp. 1-18. The digestion pattern analysis indicated that OUC-CsnPa could produce monosaccharides from chitotetraose [(GlcN)4], the smallest recognized substrate, in a random endo-acting manner. Especially, the enzyme specificities during chitosan digestion including the regulation of product abundance through a transglycosylation reaction were also evaluated. It was hypothesized that an insertion region in OUC-CsnPa may form a strong force to be involved in stabilizing (GlcN)4 at its negative subsite for efficient hydrolysis. This is the first comprehensive report to reveal the digestion specificity and subsite specificity of monosaccharide production by endo-chitosanases. Overall, OUC-CsnPa described here highlights the previously unknown digestion properties of the endo-acting chitosanases and provides a unique example of possible structure-function relationships.
Collapse
Affiliation(s)
- Haipeng Su
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Hongjun Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Zhenrong Jia
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Chaoran Guo
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Jianan Sun
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
18
|
Liu Q, Wei G, Yang P, Wang C, Chen K, Ouyang P, Zhang A. One-pot biosynthesis of N-acetylneuraminic acid from chitin via combination of chitin-degrading enzymes, N-acetylglucosamine-2-epimerase, and N-neuraminic acid aldolase. Front Microbiol 2023; 14:1156924. [PMID: 37025634 PMCID: PMC10072123 DOI: 10.3389/fmicb.2023.1156924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 02/28/2023] [Indexed: 04/08/2023] Open
Abstract
N-acetylneuraminic acid (Neu5Ac) possesses the ability to promote mental health and enhance immunity and is widely used in both medicine and food fields as a supplement. Enzymatic production of Neu5Ac using N-acetyl-D-glucosamine (GlcNAc) as substrate was significant. However, the high-cost GlcNAc limited its development. In this study, an in vitro multi-enzyme catalysis was built to produce Neu5Ac using affordable chitin as substrate. Firstly, exochitinase SmChiA from Serratia proteamaculans and N-acetylglucosaminosidase CmNAGase from Chitinolyticbacter meiyuanensis SYBC-H1 were screened and combined to produce GlcNAc, effectively. Then, the chitinase was cascaded with N-acetylglucosamine-2-epimerase (AGE) and N-neuraminic acid aldolase (NanA) to produce Neu5Ac; the optimal conditions of the multi-enzyme catalysis system were 37°C and pH 8.5, the ratio of AGE to NanA (1:4) and addition of pyruvate (70 mM), respectively. Finally, 9.2 g/L Neu5Ac could be obtained from 20 g/L chitin within 24 h along with two supplementations with pyruvate. This work will lay a good foundation for the production of Neu5Ac from cheap chitin resources.
Collapse
|
19
|
Yin C, Zhang H, Mao X. Cellulose nanofibril-stabilized Pickering emulsion as a high-performance interfacial biocatalysis system for the synthesis of phosphatidylserine. Food Chem 2023; 399:133865. [DOI: 10.1016/j.foodchem.2022.133865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 10/15/2022]
|
20
|
Liu J, Xu Q, Wu Y, Sun D, Zhu J, Liu C, Liu W. Carbohydrate-binding modules of ChiB and ChiC promote the chitinolytic system of Serratia marcescens BWL1001. Enzyme Microb Technol 2022; 162:110118. [DOI: 10.1016/j.enzmictec.2022.110118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022]
|
21
|
Qiu S, Zhou S, Tan Y, Feng J, Bai Y, He J, Cao H, Che Q, Guo J, Su Z. Biodegradation and Prospect of Polysaccharide from Crustaceans. Mar Drugs 2022; 20:310. [PMID: 35621961 PMCID: PMC9146327 DOI: 10.3390/md20050310] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 01/27/2023] Open
Abstract
Marine crustacean waste has not been fully utilized and is a rich source of chitin. Enzymatic degradation has attracted the wide attention of researchers due to its unique biocatalytic ability to protect the environment. Chitosan (CTS) and its derivative chitosan oligosaccharides (COSs) with various biological activities can be obtained by the enzymatic degradation of chitin. Many studies have shown that chitosan and its derivatives, chitosan oligosaccharides (COSs), have beneficial properties, including lipid-lowering, anti-inflammatory and antitumor activities, and have important application value in the medical treatment field, the food industry and agriculture. In this review, we describe the classification, biochemical characteristics and catalytic mechanisms of the major degrading enzymes: chitinases, chitin deacetylases (CDAs) and chitosanases. We also introduced the technology for enzymatic design and modification and proposed the current problems and development trends of enzymatic degradation of chitin polysaccharides. The discussion on the characteristics and catalytic mechanism of chitosan-degrading enzymes will help to develop new types of hydrolases by various biotechnology methods and promote their application in chitosan.
Collapse
Affiliation(s)
- Shuting Qiu
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (S.Q.); (S.Z.); (Y.T.); (J.F.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Shipeng Zhou
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (S.Q.); (S.Z.); (Y.T.); (J.F.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yue Tan
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (S.Q.); (S.Z.); (Y.T.); (J.F.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiayao Feng
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (S.Q.); (S.Z.); (Y.T.); (J.F.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China; (Y.B.); (J.H.)
| | - Jincan He
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China; (Y.B.); (J.H.)
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China;
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd., Science City, Guangzhou 510663, China;
| | - Jiao Guo
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (S.Q.); (S.Z.); (Y.T.); (J.F.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
22
|
Yu P, Wang X, Ma J, Zhang Q, Chen Q. Chaperone-assisted soluble expression and characterization of chitinase chiZJ408 in Escherichia coli BL21 and the chitin degradation by recombinant enzyme. Prep Biochem Biotechnol 2021; 52:273-282. [PMID: 34110982 DOI: 10.1080/10826068.2021.1934698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The chaperone-assisted soluble expression and characterization of high molecular weight chitinase chiZJ408 in Escherichia coli BL21 were investigated. Chitin degradation products by chitinase chiZJ408 were analyzed. The results indicated that the introduction of the chaperone GroELS promoted the correct folding of chitinase chiZJ408 and increased its soluble expression by 14.9% (p < 0.05) in E. coli BL21. The optimal pH and temperature of chitinase chiZJ408 were respectively 6.0 and 50 °C. Chitinase chiZJ408 was stable at pHs of 4.0 ∼ 7.0 and at below 40 °C. Mg2+and Ca2+ had a significant impact on improving the activity of chitinase chiZJ408. Chitinase chiZJ408 was demonstrated to be exochitinase that cleaved the β-1,4-glycosidic bond of the chitin chain to generate only N,N'-diacetylchitobiose. This study broadens our understanding of chitinase and provides a basis for solving the problem of inclusion body formed by long fragment gene expression in E. coli.
Collapse
Affiliation(s)
- Ping Yu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, People's Republic of China
| | - Xinxin Wang
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, People's Republic of China
| | - Jian Ma
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, People's Republic of China
| | - Qili Zhang
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, People's Republic of China
| | - Qingwei Chen
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, People's Republic of China
| |
Collapse
|