1
|
Wang J, Qin M, Wang W, Xia Y, Wu G, Deng H, Lin Q. Konjac glucomannan/ carboxylated cellulose nanofiber-based edible coating with tannic acid maintains quality and prolongs shelf-life of mango fruit. Food Chem 2025; 478:143750. [PMID: 40058258 DOI: 10.1016/j.foodchem.2025.143750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/27/2024] [Accepted: 03/03/2025] [Indexed: 04/06/2025]
Abstract
Polysaccharide films containing antimicrobial agents have good prospects for application in the fruit industry. However, poor film-forming properties of polysaccharides remain a major challenge. In this work, the konjac glucomannan (KGM) was modified by cross-linking with carboxylated cellulose nanofibers (CNF) to form a composite coating film, and tannic acid (TA) was provided as an active ingredient to improve the antibacterial effect. The optimal formula was: CNF/KGM (w:w) 3.05:10, TA content was 0.40 %, and glycerol content was 0.57 %. KGM/CNF/TA film had good compatibility and a compact structure. The thermal stability and water contact angle of the composite film were higher than those of KGM. Furthermore, the KGM/CNF/TA film reduced the black spot incidence, maintained fruit firmness, decreased ethylene release and respiration rate, increased the antioxidant enzyme activities, and extended the shelf-life of mango. Thus, KGM/CNF/TA is expected to expand polysaccharide/ polymer composite application in the fruit industry.
Collapse
Affiliation(s)
- Jiaxin Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Mian Qin
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wei Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yining Xia
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; National Nafan Research Institute, Chinese Academy of Agricultural Sciences, Sanya 572024, China.
| | - Guang Wu
- Key Laboratory of Tropical Fruit and Vegetable Cold-chain of Hainan Province/ Institute of Agro-products Processing and Design, Hainan Academy of Agricultural Sciences, Haikou 571100, China
| | - Hao Deng
- Key Laboratory of Tropical Fruit and Vegetable Cold-chain of Hainan Province/ Institute of Agro-products Processing and Design, Hainan Academy of Agricultural Sciences, Haikou 571100, China.
| | - Qiong Lin
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; National Nafan Research Institute, Chinese Academy of Agricultural Sciences, Sanya 572024, China.
| |
Collapse
|
2
|
Gidado MJ, Gunny AAN, Gopinath SCB, Devi M, Jayavalli R, Ilyas RA. Challenges in selecting edible coating materials for fruit postharvest preservation and recent advances in edible coating techniques: a review. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2025; 62:612-622. [PMID: 40109676 PMCID: PMC11914441 DOI: 10.1007/s13197-025-06214-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 11/12/2024] [Accepted: 01/06/2025] [Indexed: 03/22/2025]
Abstract
Fruits are a vital component of a healthy diet, offering essential nutrients and appealing sensory attributes. However, their high perishability leads to significant postharvest losses, which are influenced by factors such as physiological changes, microbial spoilage, and inadequate handling practices. These losses not only reduce fruit quality and marketability but also contribute to increased food waste. Edible coatings have emerged as a promising solution to extend shelf life by forming a protective barrier that reduces moisture loss and prevents microbial spoilage. Despite considerable research into edible coatings, there remains a notable gap in understanding the challenges related to material selection, safety, and scalability. This study critically reviews these challenges and highlights recent advancements in coating technologies. By examining material compatibility, safety concerns, and commercial scalability, the study aims to optimize edible coatings for more sustainable and efficient postharvest fruit preservation.
Collapse
Affiliation(s)
- M J Gidado
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis, Kawasan Perindustrian Jejawi, Kompleks Pusat Pengajian Jejawi 3, 02600 Arau, Perlis, 08544 Malaysia
| | - Ahmad Anas Nagoor Gunny
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis, Kawasan Perindustrian Jejawi, Kompleks Pusat Pengajian Jejawi 3, 02600 Arau, Perlis, 08544 Malaysia
- Centre of Excellence for Biomass Utilisation, Universiti Malaysia Perlis, Kawasan Perindustrian Jejawi, Kompleks Pusat Pengajian Jejawi 3, Arau, Perlis, 02600 Malaysia
| | - Subash C B Gopinath
- Centre for Global Health Research, Saveetha Medical College & Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, Tamil Nadu 602 105 India
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Perlis 01000 Kangar, Malaysia
| | - Monisha Devi
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis, Kawasan Perindustrian Jejawi, Kompleks Pusat Pengajian Jejawi 3, 02600 Arau, Perlis, 08544 Malaysia
| | - Rajappa Jayavalli
- Horticultural College and Research Institute for Women, Tamil Nadu Agricultural University, Tiruchirappalli, Tamil Nadu 620 027 India
| | - R A Ilyas
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, UTM Johor Bahru, Johor Bahru, Johor 81310 Malaysia
- Institute of Tropical Forest and Forest Products, Universiti Putra Malaysia, Serdang, Selangor, 43400 UPM Malaysia
| |
Collapse
|
3
|
Lieu DM, Dang TTK, Nguyen HT. Protein and polysaccharide edible coatings: A promising approach for fruits preservation - recent advances. Food Chem X 2025; 27:102388. [PMID: 40206034 PMCID: PMC11979911 DOI: 10.1016/j.fochx.2025.102388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/11/2025] [Accepted: 03/15/2025] [Indexed: 04/11/2025] Open
Abstract
Biodegradable packaging, especially edible coatings (EC) for fruit preservation, is a sustainable and eco-friendly approach. ECs, such as polysaccharides and proteins, are widely used in fruit preservation, with a preference for polysaccharides in coating studies. Fundamental EC properties include barrier properties, tensile strength, elongation at break, and UV blocking. Extra materials such as antimicrobial agents, antioxidants, anti-browning agents, and antagonistic microorganisms enhance EC benefits. ECs impact fruit metabolism by reducing malondialdehyde production and enhancing the activities of key enzymes. However, extra materials at high concentrations affect the bonding network of the EC and weaken its structure. Therefore, selecting an appropriate concentration of extra materials is crucial to ensure adequate preservation and safety without affecting sensory properties. Combining coating materials and extra materials to reduce fruit metabolism, maintain fruit quality, inhibit damage pathogens, prevent browning, and provide antioxidants would be an excellent way to promote the green potential of fruit preservation approaches.
Collapse
Affiliation(s)
- Dong My Lieu
- Faculty of Food Science and Technology, Ho Chi Minh City University of Industry and Trade, 140 Le Trong Tan, Tay Thanh Ward, Tan Phu District, Ho Chi Minh City, Viet Nam
- Department of Biotechnology, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), VNU-HCM, Ho Chi Minh City, Viet Nam
| | - Thuy Thi Kim Dang
- Department of Plant Cell Technology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, 9/621 Xa lo Ha Noi Street, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Viet Nam
| | - Huong Thuy Nguyen
- Department of Biotechnology, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), VNU-HCM, Ho Chi Minh City, Viet Nam
| |
Collapse
|
4
|
Wang X, Luo D, Kou X, Ye S, Li J, Ba L, Cao S. Carvacrol enhances antioxidant activity and slows down cell wall metabolism by maintaining the energy level of 'Guifei' mango. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:2134-2145. [PMID: 39460516 DOI: 10.1002/jsfa.13984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024]
Abstract
BACKGROUND Postharvest mango fruit are highly susceptible to rapid ripening, softening and senescence, greatly limiting their distribution. In this study, we evaluated the potential effects of carvacrol (0.06 g L-1) on mango (25 ± 1 °C) and the mechanisms by which it regulates antioxidant activity, energy and cell wall metabolism. RESULTS The results showed that carvacrol treatment delayed the 'Guifei' mango color transformation (from green to yellow) and the decrease in firmness, titratable acidity, weight loss and soluble solids content, and suppressed the increase in relative conductivity, malondialdehyde content and reactive oxygen species (H2O2 and O2 ·-) as well as enhancing antioxidant activity. In addition, carvacrol treatment increased ascorbic acid and reduced glutathione levels, ascorbate peroxidase, glutathione reductase, monodehydroascorbate reductase and dehydroascorbate reductase activities in mango. Meanwhile, energy level (adenosine triphosphate, adenosine diphosphate, adenosine monophosphate and energy charge) content and energy metabolizing enzyme activities (H+-ATPase, Ca2+-ATPase, succinate dehydrogenasepears and cytochrome C oxidase) were increased on carvacrol treatment, which resulted in the maintenance of higher energy levels. Finally, the application of carvacrol was effective in maintaining firmness and cell wall components by inhibiting the activities of polygalacturonase, cellulase, pectin methyl esterase and β-galactosidase. CONCLUSION The current study demonstrates that carvacrol effectively delays the ripening and softening of mangoes by modulating energy metabolism and cell wall dynamics through the attenuation of oxidative stress. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaogang Wang
- School of Food Science and Engineering, Guiyang University, Guiyang, China
| | - Donglan Luo
- School of Food Science and Engineering, Guiyang University, Guiyang, China
| | - Xiaohong Kou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Shenjie Ye
- School of Food Science and Engineering, Guiyang University, Guiyang, China
| | - Jiangkuo Li
- Institute of Agricultural Products Preservation and Processing Technology, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Liangjie Ba
- School of Food Science and Engineering, Guiyang University, Guiyang, China
| | - Sen Cao
- School of Food Science and Engineering, Guiyang University, Guiyang, China
| |
Collapse
|
5
|
Yu K, Yang L, Zhang S, Zhang N, Zhu D, He Y, Cao X, Liu H. Tough, antibacterial, antioxidant, antifogging and washable chitosan/nanocellulose-based edible coatings for grape preservation. Food Chem 2025; 468:142513. [PMID: 39700797 DOI: 10.1016/j.foodchem.2024.142513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/08/2024] [Accepted: 12/14/2024] [Indexed: 12/21/2024]
Abstract
This study focused on extracting nanocellulose from food processing waste to create a multi-functional edible coating for preserving grapes. Nanocellulose, in the form of short rods with diameters ranging from 30 to 130 nm, was extracted from soy hulls. Edible coatings were then prepared through an ion cross-linking method. Results revealed that the film surfaces and cross-sections were smooth, flat and pore-free, with monomers cross-linked through hydrogen bonding, ester bonds and electrostatic interactions. Further, the incorporation of soy-hull nanocellulose (2 g) effectively improved the mechanical strength (elongation = 281.03 % and tensile strength = 114.88 MPa), barrier properties and antifogging and antibacterial properties (95.55 %) of SCT composite films. Moreover, compared with the control, the SCT-3 coating can extend the shelf life of grapes to 10 d at 25 °C. This study offers a new perspective on the high-value use of agricultural by-products and development of edible films.
Collapse
Affiliation(s)
- Kejin Yu
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China
| | - Lina Yang
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China.
| | - Siyu Zhang
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China
| | - Ning Zhang
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China
| | - Danshi Zhu
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China
| | - Yutang He
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China
| | - Xuehui Cao
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China
| | - He Liu
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China.
| |
Collapse
|
6
|
Wang J, Wang X, Liu B, Xiao J, Fang Z. Shellac-based films/coatings: Progress, applications and future trends in the field of food packaging. Food Chem 2025; 467:142326. [PMID: 39644663 DOI: 10.1016/j.foodchem.2024.142326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/26/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
As a natural biopolymer from the secretion of insect Laccifer Lacca, shellac shows excellent film-forming ability and safety, making it an attractive material to replace synthetic materials for food packaging. On the basis of an introduction to the structure and properties of shellac, the information on single shellac films/coatings and composite films/coatings of shellac and other bio-based materials such as proteins, polysaccharides, and lipids, including the effects of adding antimicrobial agents (i.e., natural antimicrobials, synthetic antimicrobials, and metal oxide nanoparticles) on films/coatings, was comprehensively summarized. Besides, the current application status of shellac-based films/coatings as preservation packaging for poultry products, fruits, vegetables and other food products was systematically documented. Finally, the future research directions of shellac-based films/coatings such as optimizing shellac concentrations, conducting toxicological evaluation and reducing production costs were discussed. This paper will provide guidance for a systematic understanding of the research advances on shellac-based films/coatings and possible future directions.
Collapse
Affiliation(s)
- Jiayi Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Xin Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Bingjie Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, E32004 Ourense, Spain
| | - Zhang Fang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China.
| |
Collapse
|
7
|
Ali M, Ali A, Ali S, Chen H, Wu W, Liu R, Chen H, Ahmed ZFR, Gao H. Global insights and advances in edible coatings or films toward quality maintenance and reduced postharvest losses of fruit and vegetables: An updated review. Compr Rev Food Sci Food Saf 2025; 24:e70103. [PMID: 39812151 PMCID: PMC11734098 DOI: 10.1111/1541-4337.70103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/29/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025]
Abstract
Transitioning to safe, nonthermal, and edible strategies for maintaining fruit and vegetable (F&V) quality, reducing postharvest losses (up to 55% annually), and ensuring food security requires extensive research and innovation in postharvest technologies. This review aims to provide an updated understanding of edible coatings or films (ECF), focusing on their role in reducing F&V postharvest losses, based on data from the last 40 years retrieved from the Web of Science database. The global ECF research network is represented by publication trends, majorly researched F&V, key research areas, influential and emerging authors, and global research ranking. The role of ECF in preserving F&V quality has been assessed by examining critical quality parameters, including weight loss, total soluble solids, titratable acidity, ripening, softening, sensory and organoleptic characteristics, browning, chilling injury, and microbial safety. Furthermore, recent advancements in ECF formulations, including nanoscale ingredients and application methodologies, have been critically discussed. Sources, categorization, application strategies, mode of action, functional properties, sustainable development goals (SDGs), challenges, safety, legislations, and future perspectives in ECF research have also been discussed. The key findings indicate that China (20.34%) and the USA (9.94%) are the leading countries in ECF research. Studies have demonstrated ECF's potential in reducing F&V postharvest losses by maintaining quality parameters through advanced nanoscale compositions and methodologies. Notably, ECF research supports multiple SDG targets, including SDGs 2, 3, 8, 9, 12, 13, and 15. Future ECF research should explore 3D-printed coatings, nonflavor-altering components, and potential crosslinking agents to enhance F&V quality and reduce postharvest losses.
Collapse
Affiliation(s)
- Maratab Ali
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Key Laboratory of Post‐Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co‐Construction by Ministry and Province), Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Food Science InstituteZhejiang Academy of Agricultural SciencesHangzhouChina
- Department of Food Science and Technology, School of Food and Agricultural SciencesUniversity of Management and TechnologyLahorePunjab ProvincePakistan
| | - Akhtar Ali
- Department of Health, Nutrition and Food SciencesFlorida State UniversityTallahasseeFloridaUSA
| | - Sajid Ali
- Department of Horticulture, Faculty of Agricultural Sciences and TechnologyBahauddin Zakariya UniversityMultanPunjab ProvincePakistan
| | - Hangjun Chen
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Key Laboratory of Post‐Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co‐Construction by Ministry and Province), Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Food Science InstituteZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Weijie Wu
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Key Laboratory of Post‐Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co‐Construction by Ministry and Province), Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Food Science InstituteZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Ruiling Liu
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Key Laboratory of Post‐Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co‐Construction by Ministry and Province), Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Food Science InstituteZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Huizhi Chen
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Key Laboratory of Post‐Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co‐Construction by Ministry and Province), Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Food Science InstituteZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Zienab F. R. Ahmed
- Integrative Agriculture Department, College of Agriculture and Veterinary MedicineUnited Arab Emirates UniversityAl AinUAE
| | - Haiyan Gao
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Key Laboratory of Post‐Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co‐Construction by Ministry and Province), Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Food Science InstituteZhejiang Academy of Agricultural SciencesHangzhouChina
| |
Collapse
|
8
|
Chen Y, Zhu Z, Shi K, Jiang Z, Guan C, Zhang L, Yang T, Xie F. Shellac-based materials: Structures, properties, and applications. Int J Biol Macromol 2024; 279:135102. [PMID: 39197605 DOI: 10.1016/j.ijbiomac.2024.135102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/20/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
Shellac stands out among natural polymers as the sole animal-derived resin, boasting a complex polyester composition comprising polyhydroxy long-chain fatty acids and sesquiterpene acids. Its unique attributes include biocompatibility, non-toxicity, distinctive amphiphilicity, superb film-forming and adhesive properties, excellent dielectric properties, rapid drying, and solubility in alkaline solutions while resisting acidic ones. These exceptional qualities have propelled shellac beyond its traditional role as a varnish and decorative material, positioning it as a viable option for diverse applications such as food packaging, pharmaceutical formulations, electronic devices, fiber dyeing, and wood restoration. Furthermore, shellac serves as a crucial carbon source for graphene materials. This review comprehensively explores shellac's contributions to prolonging food shelf life, enhancing the carbon sourcing of graphene materials, facilitating the delivery of active substances, boosting the performance of organic field-effect transistors, enabling environmentally friendly textile dyeing, and providing protective coatings for wood. Additionally, it delves into the current limitations and future directions of shellac's applications. By disseminating this knowledge, we aim to deepen researchers' comprehension of shellac and inspire further exploration, thereby fostering sustainable advancements across various industries.
Collapse
Affiliation(s)
- Ying Chen
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, China
| | - Zhu Zhu
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, China
| | - Kunbo Shi
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, China
| | - Zhiyao Jiang
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, China
| | - Chengran Guan
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, China; Jiangsu Dairy Biotechnology Engineering Research Center, Yangzhou, Jiangsu 225127, China
| | - Liang Zhang
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, China.
| | - Tao Yang
- School of Pharmacy, Hainan Medical University, Haikou 571199, China.
| | - Fengwei Xie
- Department of Chemical Engineering, University of Bath, Bath BA2 7AY, United Kingdom.
| |
Collapse
|
9
|
Bátora D, Dienes-Nagy Á, Zeng L, Gerber CE, Fischer JP, Lochner M, Gertsch J. Hypersensitive quantification of major astringency markers in food and wine by substoichiometric quenching of silicon-rhodamine conjugates. Food Chem X 2024; 23:101592. [PMID: 39040149 PMCID: PMC11261284 DOI: 10.1016/j.fochx.2024.101592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/17/2024] [Accepted: 06/22/2024] [Indexed: 07/24/2024] Open
Abstract
Tannins are chemically diverse polyphenols in plant-derived products that not only show diverse biological activities but also play a crucial role in determining the sensory attributes of food and beverages. Therefore, their accurate and cost-effective quantification is essential. Here, we identified a novel fluorescence quenching mechanism of different synthetic rhodamine fluorophores, with a high selectivity towards tannic acid (TA) and catechin-3-gallate (C3G) compared to a structurally diverse panel of tannins and polyphenols. Specific chemical conjugates of silicon-rhodamine with alkyl linkers attached to bulky apolar moieties had a limit of detection near 500 pM and a linear range spanning 5-100 nM for TA. We validated the assay on 18 distinct red wine samples, which showed high linearity (R2 = 0.92) with methylcellulose precipitation with no interference from anthocyanins. In conclusion, a novel assay was developed and validated that allows the sensitive and selective quantification of major astringency markers abundant in food and beverages.
Collapse
Affiliation(s)
- Daniel Bátora
- Institute of Biochemistry and Molecular Medicine, University of Bern, 3012 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | | | - Liming Zeng
- University of Applied Sciences and Arts of Western Switzerland (HES-SO), Changins Viticulture and Enology College, 1260 Nyon, Switzerland
| | - Christian E. Gerber
- Institute of Biochemistry and Molecular Medicine, University of Bern, 3012 Bern, Switzerland
| | - Jérôme P. Fischer
- Institute of Biochemistry and Molecular Medicine, University of Bern, 3012 Bern, Switzerland
| | - Martin Lochner
- Institute of Biochemistry and Molecular Medicine, University of Bern, 3012 Bern, Switzerland
| | - Jürg Gertsch
- Institute of Biochemistry and Molecular Medicine, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
10
|
Das B, Devi LS, Dutta J, Kumar S. Eugenol and Aloe vera blended natural wax-based coating for preserving postharvest quality of Kaji lemon ( Citrus jambhiri). Food Chem X 2024; 22:101349. [PMID: 38623512 PMCID: PMC11016979 DOI: 10.1016/j.fochx.2024.101349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/16/2024] [Accepted: 04/01/2024] [Indexed: 04/17/2024] Open
Abstract
Edible coatings on fruits and vegetables preserve postharvest quality by reducing water loss and lowering respiration, and metabolic activities. The primary objectives of this study were to develop composite coating formulations using natural waxes (carnauba and shellac wax), eugenol nanoemulsion, and Aloe vera gel, and assess the potential impacts of the coating formulations on the postharvest quality and shelf-life of the Kaji lemon. The results show that eugenol nanoemulsion and Aloe vera gel enhanced the physico-chemical, antimicrobial and antioxidant properties of the developed coating. Notably, the fruits coated with optimized nanocomposite of wax with eugenol and aloe vera gel inclusion (SW + CW/EuNE-20/AVG-2) showed the lowest weight loss (16.56%), while the coatings of wax with only aloe vera gel (SW + CW/AVG-2) exhibited the highest firmness (48 N), in contrast to the control fruit, which had 27.33% weight loss and 9.6 N firmness after 28 days of storage, respectively.
Collapse
Affiliation(s)
- Bhaswati Das
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar, Assam 783370, India
| | - L. Susmita Devi
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar, Assam 783370, India
| | - Joydeep Dutta
- Functional NanoMaterials Group, Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, Hannes Alfvéns väg 12, 114 19 Stockholm, Sweden
| | - Santosh Kumar
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar, Assam 783370, India
| |
Collapse
|
11
|
Liu F, Kuai L, Lin C, Chen M, Chen X, Zhong F, Wang T. Respiration-Triggered Release of Cinnamaldehyde from a Biomolecular Schiff Base Composite for Preservation of Perishable Food. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306056. [PMID: 38126663 PMCID: PMC10916653 DOI: 10.1002/advs.202306056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/09/2023] [Indexed: 12/23/2023]
Abstract
One-third of the food produced worldwide is wasted annually and never consumed, of which ≈ 40-50% are perishable vegetables and fruits (VFs). Although various methods are proposed to reduce this loss, high manufacturing costs and food safety concerns pose significant challenges for the preservation of VFs. Herein, a respiration-triggered, self-saving strategy for the preservation of perishable products based on a biomolecular Schiff base composite fabricated by imidization of chitosan and cinnamaldehyde (CS-Cin) is reported. Ripening of VFs produces acid moisture and triggers a Schiff base reaction in CS-Cin, permitting the release of volatile Cin into the storage space. This enables versatile preservation by placing CS-Cin on the side without the need to touch the food, like the desiccant packet in a food packaging bag, while the rotting of VFs is retarded in a self-saving manner. As a result, the lifetimes of broccoli and strawberries are extended from 2 to 8 days. Furthermore, CS-Cin with restored preservative properties can be repeatedly recycled from used CS via imidization with Cin. Compared with conventional techniques, the preservatives are easy to use, versatile, and cost-effective, and the respiration-responsive release of Cin empowers a self-saving approach toward the smart preservation of perishable food.
Collapse
Affiliation(s)
- Fei Liu
- School of Food Science and TechnologyJiangnan UniversityWuxi214122China
- National Engineering Research Center for Cereal Fermentation and Food BiomanufacturingJiangnan UniversityWuxi214122China
- International Joint Laboratory on Food SafetyJiangnan UniversityWuxi214122China
- Jiaxing Institute of Future FoodJiaxing314050China
- Science Center for Future FoodsJiangnan UniversityWuxi214122China
| | - Lingyun Kuai
- School of Food Science and TechnologyJiangnan UniversityWuxi214122China
- National Engineering Research Center for Cereal Fermentation and Food BiomanufacturingJiangnan UniversityWuxi214122China
- International Joint Laboratory on Food SafetyJiangnan UniversityWuxi214122China
| | - Chen Lin
- School of Food Science and TechnologyJiangnan UniversityWuxi214122China
- National Engineering Research Center for Cereal Fermentation and Food BiomanufacturingJiangnan UniversityWuxi214122China
| | - Maoshen Chen
- School of Food Science and TechnologyJiangnan UniversityWuxi214122China
- National Engineering Research Center for Cereal Fermentation and Food BiomanufacturingJiangnan UniversityWuxi214122China
- International Joint Laboratory on Food SafetyJiangnan UniversityWuxi214122China
| | - Xing Chen
- School of Food Science and TechnologyJiangnan UniversityWuxi214122China
| | - Fang Zhong
- School of Food Science and TechnologyJiangnan UniversityWuxi214122China
- International Joint Laboratory on Food SafetyJiangnan UniversityWuxi214122China
- Jiaxing Institute of Future FoodJiaxing314050China
- Science Center for Future FoodsJiangnan UniversityWuxi214122China
| | - Tao Wang
- School of Food Science and TechnologyJiangnan UniversityWuxi214122China
- National Engineering Research Center for Cereal Fermentation and Food BiomanufacturingJiangnan UniversityWuxi214122China
| |
Collapse
|
12
|
Martins VFR, Pintado ME, Morais RMSC, Morais AMMB. Recent Highlights in Sustainable Bio-Based Edible Films and Coatings for Fruit and Vegetable Applications. Foods 2024; 13:318. [PMID: 38275685 PMCID: PMC10814993 DOI: 10.3390/foods13020318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
The present review paper focuses on recent developments in edible films and coatings made of base compounds from biological sources, namely plants, animals, algae, and microorganisms. These sources include by-products, residues, and wastes from agro-food industries and sea products that contribute to sustainability concerns. Chitosan, derived from animal biological sources, such as crustacean exoskeletons, has been the most studied base compound over the past three years. Polysaccharides typically constitute no more than 3-5% of the film/coating base solution, with some exceptions, like Arabic gum. Proteins and lipids may be present in higher concentrations, such as zein and beeswax. This review also discusses the enrichment of these bio-based films and coatings with various functional and/or bioactive compounds to confer or enhance their functionalities, such as antimicrobial, antioxidant, and anti-enzymatic properties, as well as physical properties. Whenever possible, a comparative analysis among different formulations was performed. The results of the applications of these edible films and coatings to fruit and vegetable products are also described, including shelf life extension, inhibition of microbial growth, and prevention of oxidation. This review also explores novel types of packaging, such as active and intelligent packaging. The potential health benefits of edible films and coatings, as well as the biodegradability of films, are also discussed. Finally, this review addresses recent innovations in the edible films and coatings industry, including the use of nanotechnologies, aerogels, and probiotics, and provides future perspectives and the challenges that the sector is facing.
Collapse
Affiliation(s)
| | | | | | - Alcina M. M. B. Morais
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal; (V.F.R.M.); (M.E.P.); (R.M.S.C.M.)
| |
Collapse
|
13
|
Zeng YF, Chen YY, Deng YY, Zheng C, Hong CZ, Li QM, Yang XF, Pan LH, Luo JP, Li XY, Zha XQ. Preparation and characterization of lotus root starch based bioactive edible film containing quercetin-encapsulated nanoparticle and its effect on grape preservation. Carbohydr Polym 2024; 323:121389. [PMID: 37940283 DOI: 10.1016/j.carbpol.2023.121389] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 11/10/2023]
Abstract
The present work aimed to develop a novel bioactive edible film prepared by adding quercetin-encapsulated carboxymethyl lotus root starch nanoparticles (QNPs),gellan gum and lotus root starch. The physicochemical characteristics, preservation effect and mechanism on grapes of the prepared film were investigated. SEM results showed that QNPs (5 %) were dispersed uniformly within lotus root starch matrix, indicating the formation of a stable composite nanoparticle film. In addition, the incorporation of QNPs (5 %) effectively improved the mechanical strength, thermal stability, barrier property and antioxidant activity of QNPs/starch film. Moreover, compared with the control, the QNPs/starch (5 %) film showed effective preservation effect on grapes during 21 days of storage at room temperature, based on the characterization by grape appearance, weight loss, firmness, and titratable acidity. Further studies found that QNPs/starch (5 %) film could exhibit enhanced antioxidant activity and potent anti-fungal ability against Botrytis cinerea, thus extending grape shelf life. In conclusion, the obtained QNPs/starch (5 %) film presented a promising application as an edible packing material for fruit preservation by antioxidant and preventing Botrytis cinerea contamination.
Collapse
Affiliation(s)
- Ya-Fan Zeng
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Ying-Ying Chen
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Yuan-Yuan Deng
- Sericultural and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, People's Republic of China
| | - Chao Zheng
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Cheng-Zhi Hong
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Qiang-Ming Li
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Xue-Fei Yang
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Li-Hua Pan
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Jian-Ping Luo
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Xue-Ying Li
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China.
| | - Xue-Qiang Zha
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China.
| |
Collapse
|
14
|
Ali S, Ishtiaq S, Nawaz A, Naz S, Ejaz S, Haider MW, Shah AA, Ali MM, Javad S. Layer by layer application of chitosan and carboxymethyl cellulose coatings delays ripening of mango fruit by suppressing cell wall polysaccharides disassembly. Int J Biol Macromol 2024; 256:128429. [PMID: 38008137 DOI: 10.1016/j.ijbiomac.2023.128429] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/30/2023] [Accepted: 11/23/2023] [Indexed: 11/28/2023]
Abstract
Mango is a climacteric fruit that ripens quickly after harvest due to its climacteric nature. Edible coatings have been reported to delay the ripening of various harvested fruit. The efficacy of the applied edible coatings could be improved by using in combination as a layer-by-layer (LBL) approach. So, the influence of LBL application of chitosan (CH) and carboxymethyl cellulose (CMC) was studied on mangoes during postharvest storage at 15 °C for 20 days. Mangoes were coated with monolayers of CH (1 % w/v) and CMC (1 % w/v) as well as LBL application of CH and CMC and were compared with control. The treatment of mangoes with CH and CMC-based LBL treatment resulted in lower decay percentage and weight loss along with higher total chlorophyll pigments and suppressed total carotenoid accumulation. The LBL application of CH and CMC showed lower activity of chlorophyll degrading such as chlorophyllase (CPS), pheophytinase (Phe), Mg-dechalatase (MGD) and chlorophyll degrading peroxidase (Chl-POD) enzymes as well as reduced changes in b*, a* and L* along with a suppressed increase in ethylene (EP) and CO2 production (CPR) rates having higher antioxidant such as catalase (CAT), ascorbate peroxidase (APX), peroxidase (POD) and superoxide dismutase (SOD) enzymes activity. In addition, mangoes coated with LBL treatment of CH and CMC exhibited lower water-soluble pectin (WSP) and higher protopectin (PP) having higher concentrations of chelate soluble (CSP) and sodium carbonate-soluble pectin (SCP). Similarly, LBL-coated mangoes showed significantly higher hemicellulose (HCLS) and cellulose (CLS) contents in contrast with control. It was observed that mangoes coated with CH and CMC-based LBL coating exhibited higher flesh firmness and showed suppressed cellulase (CS), pectin methylesterase (PME), polygalacturonase (PG) and β-galactosidase (β-Gal) enzymes activity. The concentrations of total soluble solids and ripening index were markedly lower and titratable acidity was higher in the LBL-based coating treatment in comparison with control. In conclusion, LBL treatment based on CH and CMC coatings could be used for the delay of ripening and softening of harvested mangoes.
Collapse
Affiliation(s)
- Sajid Ali
- Department of Horticulture, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan 60800, Punjab, Pakistan.
| | - Sana Ishtiaq
- Department of Horticulture, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan 60800, Punjab, Pakistan
| | - Aamir Nawaz
- Department of Horticulture, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan 60800, Punjab, Pakistan
| | - Safina Naz
- Department of Horticulture, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan 60800, Punjab, Pakistan
| | - Shaghef Ejaz
- Department of Horticulture, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan 60800, Punjab, Pakistan
| | - Muhammad Wasim Haider
- Department of Horticultural Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Anis Ali Shah
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Punjab, Pakistan
| | - Muhammad Moaaz Ali
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Sumera Javad
- Department of Botany, Lahore College for Women University, Lahore, Punjab, Pakistan
| |
Collapse
|
15
|
Ali Alharbi A, Alghamdi AM, Talal Al-Goul S, Allohibi A, Baty RS, Qahl SH, Beyari EA. Valorizing pomegranate wastes by producing functional silver nanoparticles with antioxidant, anticancer, antiviral, and antimicrobial activities and its potential in food preservation. Saudi J Biol Sci 2024; 31:103880. [PMID: 38161386 PMCID: PMC10757039 DOI: 10.1016/j.sjbs.2023.103880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/08/2023] [Accepted: 11/24/2023] [Indexed: 01/03/2024] Open
Abstract
The food sector generates massive amounts of waste, which are rich in active compounds, especially polyphenols; therefore, valorizing these wastes is a global trend. In this study, we produce silver nanoparticles from pomegranate wastes, characterized by enhanced antioxidant, anticancer, antiviral, and antimicrobial properties and investigated their potential to maintain the fruit quality for sixty days in market. The pomegranate waste-mediated silver nanoparticles (PPAgNPs) were spherical shape (measured by TEM), 20 nm (Zeta sizer), negatively charged -25.98 mV (Zeta potential), and surrounded by active groups (FTIR). The PPAgNPs scavenged 94 % of DPPH radicals and inhibited the growth of pathogens, i.e., Staphylococcus aureus, Listeria monocytogenes, Campylobacter jejuni, Salmonella typhi and Candida with inhibition zones diameters (16-45 mm). They impeded the development of breast and colon cancer cell lines by 80 and 78 %, increased the activity of apoptosis marker caspase 3, and inhibited 82 % of COVID-19. The PPAgNPs were added to the rat diet at 80, 160, and 320 µg/kg levels. PPAgNPs administered at a concentration of 160 µg/kg in the rat diet resulted in the best growth performance, normal liver and kidney parameters (p = 0.029-0.038), lowered lipid profile, malondialdhyde (MDA), and raised glutathion reduced (GSH), total protein (TP). Also, the reduced gene expression of Interleukin 6 (IL-6) and Tumor necrosis factor alpha (TNF-α) in albino rats' serum indicates the anti-inflammatory effect of PPAgNPs. PPAgNPs developed a functional coating to preserve mandarin fruit for 60 days by dipping technique. The active coat containing PPAgNPs can effectively preserve the fruit for 60 days.
Collapse
Affiliation(s)
- Asmaa Ali Alharbi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Amira M. Alghamdi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Soha Talal Al-Goul
- Department of Chemistry, College of Sciences & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Aminah Allohibi
- Biological Sciences Department, College of Science & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Roua S. Baty
- Department of Biotechnology, College of Science, Taif University, PO Box 11099, Taif 21944, Saudi Arabia
| | - Safa H. Qahl
- Department of Biological Science, College of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia
| | - Eman A. Beyari
- Department of Biological Sciences, Microbiology, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
16
|
Li M, Shi Z, He S, Hu Q, Cai P, Gan L, Huang J, Zhang Y. Gas barrier coating based on cellulose nanocrystals and its preservation effects on mango. Carbohydr Polym 2023; 321:121317. [PMID: 37739541 DOI: 10.1016/j.carbpol.2023.121317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 09/24/2023]
Abstract
Mango is the "king of tropical fruits" because of its attractive appearance, delicious taste, rich aroma, and high nutritional value. However, mango keeps fast metabolizing after harvest, leading to water loss, starch conversion into sugar, texture softening, and decay. Here, a gas barrier coating based on cellulose nanocrystals (CNCs) is proposed to control the post-harvest metabolism of mango. The results of gas barrier permeability show that CNCs enhance the barrier ability of the chitosan (CS) membrane on mango by 202 % and 63 % for oxygen and water vapor, respectively. The gas-barrier coating reduces the climb in pH and the decrease in firmness by 84.9 % and 45.8 %, respectively, decelerating the conversion process from starch to sugar. Besides, introducing clove essential oil (CEO), the CEO mainly adsorbs and crystalizes on the hydrophobic facets of CNCs, presenting high compatibility, increases the antibacterial rate to nearly 100 %. As a consequence, the preservation period of the mango coated by the CNC-based membrane is at least 7-day longer than the control group. Such a gas-barrier coating based on eco-friendly composites must have excellent potential in the preservation of mango, and even for other tropical fruits.
Collapse
Affiliation(s)
- Mingxia Li
- College of Plant Protection, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715, China
| | - Zhenxu Shi
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715, China
| | - Shulin He
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Qiang Hu
- Beibu Gulf Institute of Marine Advanced Materials, Beihai 536000, China
| | - Ping Cai
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Lin Gan
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715, China.
| | - Jin Huang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715, China.
| | - Yongqiang Zhang
- College of Plant Protection, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing 400715, China.
| |
Collapse
|
17
|
Yang J, Fei T, Zhang W, Cong X. Tannic Acid and Ca 2+ Double-Crosslinked Alginate Films for Passion Fruit Preservation. Foods 2023; 12:3936. [PMID: 37959055 PMCID: PMC10650026 DOI: 10.3390/foods12213936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
In this study, the interaction of different concentrations of tannic acid (TA) (10%, 20%, and 30% w/w) and Ca2+ with alginate (SA) was utilized to create double-crosslinked SA films. The resulting films were evaluated for their optical, mechanical, water resistance, and barrier properties, and their microstructure and intermolecular interactions were also characterized. The SA films containing 20% TA showed the best mechanical properties, with an observed increase in tensile strength of 22.54%. In terms of water vapor permeability, the SA film containing 30% TA exhibited the highest barrier property, which was 25.36% higher than that of the pure SA film. Moreover, TA demonstrated a strong UV absorption ability, resulting in a nearly 0% UV transmittance of the SA film at 280 nm. It can be seen that SA films containing 20% TA have excellent barrier and mechanical properties, and the development of such films will be applied to the storage and packaging of fresh food. It is worth noting that this work also investigated the effect of SA coatings containing different concentrations of TA on the preservation of passion fruits for 7 days. The results revealed that passion fruits treated with SA coatings containing a 30% TA concentration maintained a better appearance on the 7th day and had the lowest weight loss and crumpling indices of approximately 8.98% and 2.17, respectively, compared to the other treatment groups. Therefore, based on the overall results, the addition of 30% TA to SA coatings proved to be more effective and can be considered a promising approach for delaying fruit senescence and decay.
Collapse
Affiliation(s)
- Jun Yang
- School of Life Sciences, Hainan University, Haikou 570228, China;
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (T.F.); (W.Z.)
| | - Tao Fei
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (T.F.); (W.Z.)
| | - Wanli Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (T.F.); (W.Z.)
| | - Xinli Cong
- School of Life Sciences, Hainan University, Haikou 570228, China;
| |
Collapse
|
18
|
Akhlaq M, Chuan Z, Haofang Y, Shaowei L, Ni Y, Zhou J, Xue R, Li J, Hussain Z, Iqbal S. Exploring adequate CO 2 elevation for optimum tomato growth and yield under protected cultivation. JOURNAL OF PLANT PHYSIOLOGY 2023; 289:154093. [PMID: 37742534 DOI: 10.1016/j.jplph.2023.154093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/26/2023]
Abstract
The adequate elevation of CO2 concentrations (e [CO2]) could not be assessed by constrained analysis of comparative experimental study for optimum plant growth and yield with improved fruit quality owing to the lack of conjunctive investigation of plant parametric responses. Instead, the principal component analysis (PCA) and technique for order preference by similarity to ideal solution (TOPSIS) assessed and quantified the parametric plant responses to identify the adequate level of e [CO2] for optimum plant growth and yield. In this study, tomato plants were grown under an ambient CO2 (a [CO2], 500 μmol mol-1) and three e [CO2] (700, 850 and 1000 μmol mol-1): named EC700, EC850 and EC1000, respectively, in autumn-winter (AW) 2020 and spring summer (SS) 2021 growing seasons to investigate and evaluate the plant parametric responses under e [CO2]. The tomato plant's response with maximum transportability of biomass to fruits was observed under 700 μmol mol-1. The plant height, stem diameter and LAI were enhanced compared to a [CO2] at the optimum level under 1000 μmol mol-1 (by 50.53, 20.98 and 44.44%) and 700 μmol mol-1 (by 22.41, 12.09 and 26.88%) in Aw 2020; Ss 2021, respectively. The optimum yield was increased under 700 μmol mol-1 by 73.95% and 55.58% in Aw 2020; Ss 2021, respectively. EC700 was ranked as a priority by TOPSIS with 0.632 and 0.694 plant response performance index in Aw 2020; Ss 2021, respectively, to get optimum tomato growth, yield, water use efficiency and fruit quality. The results of this study are beneficial for commercial greenhouse crop production by fumigating the adequate level of e [CO2], to reduce the cost of CO2 fertigation, enhance the yield and save the water quantity.
Collapse
Affiliation(s)
- Muhammad Akhlaq
- School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, China; Faculty of Agricultural Engineering and Technology, PMAS-Arid Agriculture University, Rawalpindi, 46300, Pakistan
| | - Zhang Chuan
- School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Yan Haofang
- Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang, 212013, China; State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing, 210029, China
| | - Liang Shaowei
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing, 210029, China
| | - Yuxin Ni
- School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Junan Zhou
- School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Run Xue
- School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Jun Li
- School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Zawar Hussain
- Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang, 212013, China; Department of Agricultural Engineering, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Shahzad Iqbal
- Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang, 212013, China
| |
Collapse
|
19
|
Yao J, Zhi H, Shi Q, Zhang Y, Feng J, Liu J, Huang H, Xie X. Tannic Acid Interfacial Modification of Prochloraz Ethyl Cellulose Nanoparticles for Enhancing the Antimicrobial Effect and Biosafety of Fungicides. ACS APPLIED MATERIALS & INTERFACES 2023; 15:41324-41336. [PMID: 37602737 DOI: 10.1021/acsami.3c07761] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
With the poorly soluble and intrinsically unstable feature, prochloraz (Pro) was confronted with lower bioavailability in the crop defense against fungal erosion. Therefore, it was a challenging project to explore the innovative antifungal compound delivery system for improving bioavailability. The superior adhesive fungicide formulation was supposed to be an efficient pathway to enhance transmembrane permeability and biological activity. According to abundant phenolic hydroxyl groups, tannic acid (TA) was an ideal modified adhesive biomaterial to improve interfacial interactions. The fundamental purpose of this research was focused on the synergistic mechanism of TA-interfacial-modified Pro-ethyl cellulose (EC) nanoparticles for improving bioavailability and biosafety. In the stability test, TA-modified Pro-EC nanoparticles had the capacity to reduce Pro initial release burst, extending a persistent validity and improving anti-photodegradation property. The toxicity index of Pro-EC and Pro-EC-TA was approximately 2.93-fold and 4.96-fold that of Pro technical against Fusarium graminearum (F. graminearum), respectively. Compared with nonmodified EC nanoparticles, TA-modified EC nanoparticles obtained eminent transmembrane permeability and superior adherence ability to F. graminearum, for hydroxyl and carboxyl groups of TA to enhance interaction with target cell membranes. The contents of cellular reactive oxygen species induced by Pro-EC and Pro-EC-TA nanoparticles were about 2.31 times and 3.00 times that of the control check (CK), respectively. Compared to the CK group, the membrane potential and ergosterol values of F. graminearum treated with Pro-EC-TA nanoparticles were drastically reduced by 74.91 and 56.20%, respectively. In the biosafety assay, the maximum half-lethal concentration value of the TA-modified Pro-EC nanoparticles indicated that the acute toxicity of the Pro-EC-TA nanoparticles to adult zebrafish was approximately 8.34-fold reduced compared to that of the Pro technical. These findings demonstrated that the successful interfacial modification of Pro-EC nanoparticles with TA was a highly efficient, environmentally safe, and promising alternative for sustainable agricultural application, thus making the fungicide formulation process more simplified, easier fabrication, and lower cost.
Collapse
Affiliation(s)
- Junwei Yao
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, People's Republic of China
| | - Heng Zhi
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Qingshan Shi
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, People's Republic of China
| | - Yu Zhang
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, People's Republic of China
| | - Jin Feng
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, People's Republic of China
| | - Jingxia Liu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, People's Republic of China
| | - Hui Huang
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, People's Republic of China
| | - Xiaobao Xie
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, People's Republic of China
| |
Collapse
|
20
|
Meng X, Lv Z, Jiang T, Tan Y, Sun S, Feng J. Preparation and Characterization of a Novel Artemisia Oil Packaging Film and Its Application in Mango Preservation. Foods 2023; 12:2969. [PMID: 37569238 PMCID: PMC10418662 DOI: 10.3390/foods12152969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/13/2023] Open
Abstract
In this work, a new food packaging film was synthesized via blending Artemisia oil (AO) into soybean protein isolate (SPI) and gelatin (Gel) for the postharvest storage of mango. The morphological architecture and mechanical properties of the films were characterized using scanning electron microscopy (SEM), atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR), X-ray diffractometer (XRD), and other technologies. The results show that the prepared films had relatively flat surfaces with good mechanical properties. AO enhanced the light-blocking ability of the film, increased the hydrophobicity, and affected the moisture content and water solubility of the film to a certain extent. Furthermore, the antioxidant performance and antifungal (Colletotrichum gloeosporioides) capacity of the films increased with higher AO concentration due to the presence of the active components contained in AO. During mango storage applications, the films showed good freshness retention properties. The above results indicate that SPI-Gel films containing AO have excellent physicochemical and application properties and have great potential in the field of food packaging.
Collapse
Affiliation(s)
| | | | | | | | | | - Jianguo Feng
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
21
|
Ni JB, Zielinska M, Wang J, Fang XM, Prakash Sutar P, Li SB, Li XX, Wang H, Xiao HW. Post-harvest ripening affects drying behavior, antioxidant capacity and flavor release of peach via alteration of cell wall polysaccharides content and nanostructures, water distribution and status. Food Res Int 2023; 170:113037. [PMID: 37316090 DOI: 10.1016/j.foodres.2023.113037] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/17/2023] [Accepted: 05/22/2023] [Indexed: 06/16/2023]
Abstract
Effect of post-harvest ripening on cell wall polysaccharides nanostructures, water status, physiochemical properties of peaches and drying behavior under hot air-infrared drying was evaluated. Results showed that the content of water soluble pectins (WSP) increased by 94 %, while the contents of chelate-soluble pectins (CSP), Na2CO3-soluble pectins (NSP) and hemicelluloses (HE) decreased during post-harvest ripening by 60 %, 43 %, and 61 %, respectively. The drying time increased from 3.5 to 5.5 h when the post-harvest time increased from 0 to 6 days. Atomic force microscope analysis showed that depolymerization of hemicelluloses and pectin occurred during post-harvest ripening. Time Domain -NMR observations indicated that reorganization of cell wall polysaccharides nanostructure changed water spatial distribution and cell internal structure, facilitated moisture migration, and affected antioxidant capacity of peaches during drying. This leads to the redistribution of flavor substances (heptanal, n-nonanal dimer and n-nonanal monomer). The current work elucidates the effect of post-harvest ripening on the physiochemical properties and drying behavior of peaches.
Collapse
Affiliation(s)
- Jia-Bao Ni
- College of Engineering, China Agricultural University, P.O. Box 194 17 Qinghua Donglu, Beijing 100083, China
| | - Magdalena Zielinska
- Department of Systems Engineering, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Jun Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, 100093, China.
| | - Xiao-Ming Fang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, 1 Xiangshan Beigou, Beijing, China
| | - Parag Prakash Sutar
- Department of Food Process Engineering, National Institute of Technology Rourkela, Odisha, 769008, India
| | - Suo-Bin Li
- Love Nest Biotechnology (Changzhou) Co., LTD, Changzhou 213017, Jiangsu, China
| | - Xiang-Xin Li
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, 1 Xiangshan Beigou, Beijing, China
| | - Hui Wang
- College of Engineering, China Agricultural University, P.O. Box 194 17 Qinghua Donglu, Beijing 100083, China
| | - Hong-Wei Xiao
- College of Engineering, China Agricultural University, P.O. Box 194 17 Qinghua Donglu, Beijing 100083, China
| |
Collapse
|
22
|
Xie H, Meng L, Guo Y, Xiao H, Jiang L, Zhang Z, Song H, Shi X. Effects of Volatile Flavour Compound Variations on the Varying Aroma of Mangoes ' Tainong' and ' Hongyu' during Storage. Molecules 2023; 28:molecules28093693. [PMID: 37175103 PMCID: PMC10179933 DOI: 10.3390/molecules28093693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/29/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
The aroma, taste, and flavour profiles of mango cultivars vary, directly influencing their marketability and consumer acceptance. In this study, we explored the effects of volatile organic compounds (VOCs) on the distinct aromas of two mango cultivars during storage using GC-IMS and HS-SPME-GC-MS combined with OPLS-DA analysis. Our findings revealed that the terpene and aldehyde contents were higher in the 'Tainong' mango cultivar, compared to the 'Hongyu' mango, while the ester content was lower. The aroma was attributed to the presence of terpinolene, 2-nonenal, delta-carene, and alpha-phellandrene in the early stages of storage, and later-between 5 and 11 days-to ethyl acetate, ethyl butyrate, and ethyl propanoate. Further analysis of characteristic VOCs using OPLS-DA demonstrated and explained the strong grassy aroma of the 'Tainong' mango, and the strong fruity and sweet aromas of the 'Hongyu' mango. Additionally, esters mainly accumulated during the later periods of storage, especially propyl butyrate, which was produced and accumulated when fruit quality deteriorated in the later storage period. Our study provides a theoretical basis for detecting mango VOCs during storage to determine the appropriate marketing time for the two mango cultivars and enables informed consumer choice.
Collapse
Affiliation(s)
- Huiwen Xie
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Lanhuan Meng
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Ying Guo
- Department Food Science and Human Nutrition, Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Hongmei Xiao
- Sanya Institute of Nanjing Agricultural University, Sanya 572024, China
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Libo Jiang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China
| | - Zhengke Zhang
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Haichao Song
- School of Life Sciences, Hainan University, Haikou 570228, China
| | - Xuequn Shi
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| |
Collapse
|
23
|
Yu W, Wang Y, Liu Y, Wu Y, Ouyang J. Browning inhibition and shelf life of packaged air‐dried chestnut kernels. J FOOD PROCESS ENG 2023. [DOI: 10.1111/jfpe.14283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Wenjie Yu
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety Beijing Forestry University Beijing China
| | - Yi Wang
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety Beijing Forestry University Beijing China
| | - Yongguo Liu
- Beijing Key Laboratory of Flavor Chemistry Beijing Technology and Business University (BTBU) Beijing China
| | - Yanwen Wu
- Institute of Analysis and Testing Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis) Beijing China
| | - Jie Ouyang
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety Beijing Forestry University Beijing China
| |
Collapse
|
24
|
Recent advances in tannin-containing food biopackaging. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
25
|
Liu B, Xin Q, Zhang M, Chen J, Lu Q, Zhou X, Li X, Zhang W, Feng W, Pei H, Sun J. Research Progress on Mango Post-Harvest Ripening Physiology and the Regulatory Technologies. Foods 2022; 12:foods12010173. [PMID: 36613389 PMCID: PMC9818659 DOI: 10.3390/foods12010173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Mango (Mangifera indica L.) is an important tropical fruit with a delicate taste, pleasant aroma, and high nutritional value. In recent years, with the promotion of the rural revitalization strategy and the development of the poverty alleviation industry, China has gradually become an important mango producer. However, the short shelf life of mango fruit, the difficulty in regulating the postharvest quality, and the lack of preservation technology are the main problems that need to be solved in China's mango industry. In this paper, the physiological changes and mechanisms of mango during postharvest ripening were summarized, including sugar and acid changes, pigment synthesis and accumulation, and aroma formation and accumulation. The physical, chemical, and biological technologies (such as endogenous phytohormones, temperature, light, chemical preservatives, and edible coatings) commonly used in the regulation of mango postharvest ripening and their action principles were emphatically expounded. The shortcomings of the existing mango postharvest ripening regulation technology and physiological mechanism research were analyzed in order to provide a reference for the industrial application and development of mango postharvest.
Collapse
Affiliation(s)
- Bangdi Liu
- Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- Key Laboratory of Agro-Products Primary Processing, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Qi Xin
- Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- Key Laboratory of Agro-Products Primary Processing, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Min Zhang
- Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- Key Laboratory of Agro-Products Primary Processing, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Jianhu Chen
- Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- Key Laboratory of Agro-Products Primary Processing, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Qingchen Lu
- Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- Key Laboratory of Agro-Products Primary Processing, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Xinqun Zhou
- Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- Key Laboratory of Agro-Products Primary Processing, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Xiangxin Li
- Key Laboratory of Agro-Products Primary Processing, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Wanli Zhang
- Key Laboratory of Agro-Products Primary Processing, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Wei Feng
- Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- Key Laboratory of Agro-Products Primary Processing, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Haisheng Pei
- Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- Key Laboratory of Agro-Products Primary Processing, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Jing Sun
- Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- Key Laboratory of Agro-Products Primary Processing, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- Correspondence:
| |
Collapse
|
26
|
Encapsulation of Bioactive Compounds for Food and Agricultural Applications. Polymers (Basel) 2022; 14:polym14194194. [PMID: 36236142 PMCID: PMC9571964 DOI: 10.3390/polym14194194] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/21/2022] [Accepted: 09/29/2022] [Indexed: 02/06/2023] Open
Abstract
This review presents an updated scenario of findings and evolutions of encapsulation of bioactive compounds for food and agricultural applications. Many polymers have been reported as encapsulated agents, such as sodium alginate, gum Arabic, chitosan, cellulose and carboxymethylcellulose, pectin, Shellac, xanthan gum, zein, pullulan, maltodextrin, whey protein, galactomannan, modified starch, polycaprolactone, and sodium caseinate. The main encapsulation methods investigated in the study include both physical and chemical ones, such as freeze-drying, spray-drying, extrusion, coacervation, complexation, and supercritical anti-solvent drying. Consequently, in the food area, bioactive peptides, vitamins, essential oils, caffeine, plant extracts, fatty acids, flavonoids, carotenoids, and terpenes are the main compounds encapsulated. In the agricultural area, essential oils, lipids, phytotoxins, medicines, vaccines, hemoglobin, and microbial metabolites are the main compounds encapsulated. Most scientific investigations have one or more objectives, such as to improve the stability of formulated systems, increase the release time, retain and protect active properties, reduce lipid oxidation, maintain organoleptic properties, and present bioactivities even in extreme thermal, radiation, and pH conditions. Considering the increasing worldwide interest for biomolecules in modern and sustainable agriculture, encapsulation can be efficient for the formulation of biofungicides, biopesticides, bioherbicides, and biofertilizers. With this review, it is inferred that the current scenario indicates evolutions in the production methods by increasing the scales and the techno-economic feasibilities. The Technology Readiness Level (TRL) for most of the encapsulation methods is going beyond TRL 6, in which the knowledge gathered allows for having a functional prototype or a representative model of the encapsulation technologies presented in this review.
Collapse
|
27
|
Zhou C, Zhang J, Wu Y, Cheng H, Pang Q, Xiao Y, Li D, Pan C. Metabolomic Analysis on the Mechanism of Nanoselenium Biofortification Improving the Siraitia grosvenorii Nutritional and Health Value. Foods 2022; 11:foods11193019. [PMID: 36230095 PMCID: PMC9564208 DOI: 10.3390/foods11193019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/22/2022] [Accepted: 09/24/2022] [Indexed: 11/16/2022] Open
Abstract
Nanoselenium (nano-Se) foliar application is crucial for enhancing plant health. However, the mechanism by which nano-Se biofortification promotes the nutritional components of Siraitia grosvenorii remains unclear. In this study, nano-Se foliar application increased the carbohydrate and amino acid contents, including glucose (23.6%), fructose (39.7%), sucrose (60.6%), tryptophan (104.5%), glycine (85.9%), tyrosine (78.4%), phenylalanine (60.1%), glutamic acid (63.4%), and proline (52.5%). Nano-Se application enhanced apigenin (3.8 times), syringic acid (0.7 times), and 4-hydroxy-3,5-dimethoxycinnamic acid (1.4 times) of the phenylpropane biosynthesis pathways. Importantly, the SgCDS (31.1%), CYP-P450 (39.1%), and UGT (24.6%) were induced by nano-Se, which enhanced the mogroside V content (16.2%). Compared to the control, nano-Se treatment dramatically enhanced aromatic substances, including 2-butanone (51.9%), methylpropanal (146.3%), n-nonanal dimer (141.7%), pentanal (52.5%), and 2-pentanone (46.0%). In summary, nano-Se improves S. grosvenorii quality by increasing nutrients and volatile organic compounds and adjusting the phenylpropane pathway.
Collapse
Affiliation(s)
- Chunran Zhou
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, China Yuanmingyuan West Road 2, Beijing 100193, China
| | - Jingbang Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, China Yuanmingyuan West Road 2, Beijing 100193, China
| | - Yangliu Wu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, China Yuanmingyuan West Road 2, Beijing 100193, China
| | - Haiyan Cheng
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, China Yuanmingyuan West Road 2, Beijing 100193, China
| | - Qiuling Pang
- Guangxi Academy of Specialty Crops, Putuo Road 40, Guilin 541004, China
| | - Yuanhui Xiao
- Guangxi Academy of Specialty Crops, Putuo Road 40, Guilin 541004, China
| | - Dong Li
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou 570228, China
- Correspondence: (D.L.); (C.P.)
| | - Canping Pan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, China Yuanmingyuan West Road 2, Beijing 100193, China
- Correspondence: (D.L.); (C.P.)
| |
Collapse
|
28
|
Active edible coating based on guar gum with mint extract and antibrowning agents for ber (Ziziphus mauritiana) fruits preservation. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01609-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
29
|
Li K, Tang B, Zhang W, Tu X, Ma J, Xing S, Shao Y, Zhu J, Lei F, Zhang H. A novel approach for authentication of shellac resin in the shellac-based edible coatings: Contain shellac or not in the fruit wax preservative coating. Food Chem X 2022; 14:100349. [PMID: 35663597 PMCID: PMC9156870 DOI: 10.1016/j.fochx.2022.100349] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/23/2022] [Accepted: 05/23/2022] [Indexed: 12/18/2022] Open
Abstract
A novel approach based on targeted metabolomics for the authentication of shellac resin in shellac-based coating solution was established for the first time. The authentication of shellac resin was skillfully transformed by means of taking monomer compounds constituting shellac resin (fatty acids and terpenic acids) as targeted metabolites. The feasibility of the authenticated approach of shellac resin in commercial coating solution products for fruit preservation was verified by taking common metabolites as the biomarkers.
As an edible coating substrate, the detection of shellac resin has always been an intractable problem. In this paper, an authentication method of shellac resin in shellac-based edible coatings was established. Results showed that the authentication of shellac resin could be skillfully transformed as the identification of 13 targeted metabolites which were monomer compounds of shellac resin. The 13 targeted metabolites were further divided into 6 differential metabolites and 7 common metabolites with the metabonomic method and difference analysis of targeted metabolite contents. Then, four commercial soi-disant shellac-based coating solutions were selected to verify the feasibility of this method, and 7 common metabolites were detected in only one commercial sample, highly consistent with the results of shellac resin. All the above results indicated that the targeted metabolomics approach established in this study could provide a scientific basis for the qualitative authentication of shellac resin in the preservation coating.
Collapse
Affiliation(s)
- Kun Li
- Xinyang Agriculture and Forestry University, Xinyang 464000, China
| | - Baoshan Tang
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, Yunnan 650233, China
| | - Wenwen Zhang
- Xinyang Agriculture and Forestry University, Xinyang 464000, China
| | - Xinghao Tu
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, Yunnan 650233, China
| | - Jinju Ma
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, Yunnan 650233, China
| | - Shujie Xing
- Xinyang Agriculture and Forestry University, Xinyang 464000, China
| | - Ying Shao
- Xinyang Agriculture and Forestry University, Xinyang 464000, China
| | - Jing Zhu
- Xinyang Agriculture and Forestry University, Xinyang 464000, China
| | - Fuhou Lei
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning 530006, China
| | - Hong Zhang
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, Yunnan 650233, China
| |
Collapse
|
30
|
Chávez‐Zaragoza K, Morales‐Guerrero A, Colín‐Chávez C, Tovar‐Díaz L, Ornelas‐Paz JDJ, Osuna‐Castro JA, Vargas‐Arispuro I, Martínez‐Téllez MA, Virgen‐Ortiz JJ. Improving the nutraceutical value of mango during ripening by postharvest irradiation with blue LEDs via enhancing of antioxidant enzyme activities. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Karen Chávez‐Zaragoza
- Centro de Innovación y Desarrollo Agroalimentario de Michoacán (CIDAM) Antigua Carretera a Pátzcuaro km 8 Morelia Michoacán C.P. 58341 México
- Instituto Tecnológico Superior de Uruapan Carretera Uruapan‐Carapan No. 5555 Col. La Basilia Uruapan Michoacán C.P. 60015 México
| | - Alejandro Morales‐Guerrero
- Instituto Tecnológico Superior de Uruapan Carretera Uruapan‐Carapan No. 5555 Col. La Basilia Uruapan Michoacán C.P. 60015 México
| | - Citlali Colín‐Chávez
- Centro de Innovación y Desarrollo Agroalimentario de Michoacán (CIDAM) Antigua Carretera a Pátzcuaro km 8 Morelia Michoacán C.P. 58341 México
| | - Luis Tovar‐Díaz
- Centro de Innovación y Desarrollo Agroalimentario de Michoacán (CIDAM) Antigua Carretera a Pátzcuaro km 8 Morelia Michoacán C.P. 58341 México
| | - José de Jesús Ornelas‐Paz
- Centro de Investigación en Alimentación y Desarrollo A.C. ‐ Unidad Cuauhtémoc Av. Río Conchos S/N, Parque Industrial Cd. Cuauhtémoc Chihuahua C.P. 31570 México
| | - Juan A. Osuna‐Castro
- Facultad de Ciencias Biológicas y Agropecuarias Universidad de Colima Carretera Colima‐Manzanillo km 40 Tecomán, Colima C.P. 28100 México
| | - Irasema Vargas‐Arispuro
- Centro de Investigación en Alimentación y Desarrollo A.C. Carretera la Victoria km 0.6 Hermosillo Sonora C.P. 83304 México
| | - Miguel A. Martínez‐Téllez
- Centro de Investigación en Alimentación y Desarrollo A.C. Carretera la Victoria km 0.6 Hermosillo Sonora C.P. 83304 México
| | - Jose J. Virgen‐Ortiz
- CONACYT ‐ Centro de Investigación en Alimentación y Desarrollo A. C. ‐ CIDAM. Antigua Carretera a Pátzcuaro km 8 Morelia Michoacán C.P. 58341 México
| |
Collapse
|
31
|
Ghosh M, Singh AK. Potential of engineered nanostructured biopolymer based coatings for perishable fruits with Coronavirus safety perspectives. PROGRESS IN ORGANIC COATINGS 2022; 163:106632. [PMID: 34931104 PMCID: PMC8674086 DOI: 10.1016/j.porgcoat.2021.106632] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/08/2021] [Accepted: 11/17/2021] [Indexed: 05/25/2023]
Abstract
Fresh fruits are prioritized needs in order to fulfill the required health benefits for human beings. However, some essential fruits are highly perishable with very short shelf-life during storage because of microbial growth and infections. Thus improvement of fruits shelf-life is a serious concern for their proper utlization without generation of huge amount of fruit-waste. Among various methods employed in extension of fruits shelf-life, design and fabrication of edible nanocoatings with antimicrobial activities have attracted considerable interest because of their enormous potential, novel functions, eco-friendly nature and good durability. In recent years, scientific communities have payed increased attention in the development of advanced antimicrobial edible coatings to prolong the postharvest shelf-life of fruits using hydrocolloids. In this review, we attempted to highlight the technical breakthrough and recent advancements in development of edible fruit coating by the application of various types of agro-industrial residues and different active nanomaterials incorporated into the coatings and their effects on shelf-life of perishable fruits. Improvements in highly desired functions such as antioxidant/antimicrobial activities and mechanical properties of edible coating to significantly control the gases (O2/CO2) permeation by the incorporation of nanoscale natural materials as well as metal nanoparticles are reviewed and discussed. In addition, by compiling recent knowledge, advantages of coatings on fruits for nutritional security during COVID-19 pandemic are also summarized along with the scientific challenges and insights for future developments in fabrication of engineered nanocoatings.
Collapse
Affiliation(s)
- Moushumi Ghosh
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab 147004, India
| | - Arun Kumar Singh
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab 147004, India
| |
Collapse
|
32
|
Zhang L, Yu X, Yagoub AEA, Xia G, Zhou C. Effect of vacuum impregnation assisted probiotics fermentation suspension on shelf life quality of freshly cut lotus root. Food Chem 2022; 381:132281. [PMID: 35121314 DOI: 10.1016/j.foodchem.2022.132281] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/28/2021] [Accepted: 01/26/2022] [Indexed: 11/18/2022]
Abstract
Probiotic fermentation suspension was used to extend the shelf life of freshly cut lotus root for the first time, which played a dual role of biological protection and quality maintenance. Fermentation suspension contained lactic acid bacteria (8-9 log CFU/mL) was prepared from juice of lotus root and used to immerse samples under atmospheric pressure and vacuum. Probiotic fermentation suspension inhibited microorganism and the activity of polyphenol oxidase (PPO), peroxidase (POD) and phenylalanine ammonia lyase (PAL), which slowed down the physiological reaction and was beneficial to maintain the color and hardness of tissues. Lactic acid bacteria antagonized other microorganisms, and metabolic acid production played a continuous role in preservation during storage. The vacuum was helpful for the fermentation suspension to be fully impregnated into samples. The probiotic fermentation suspension had a significant inhibitory effect on E.coli O157:H7, and extended lotus root shelf life from 3 to 9 days.
Collapse
Affiliation(s)
- Long Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Nanjing Shennongyuan Food Industry Co. LTD, Pingan Xi Road, Lishui, Nanjing, 211219, China
| | - Xiaojie Yu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Abu ElGasim A Yagoub
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Guohua Xia
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
33
|
Cloete L, Picot-Allain C, Ramasawmy B, Neetoo H, Ramful-Baboolall D, Emmambux MN. Drivers and Barriers for Commercial Uptake of Edible Coatings for Fresh Fruits and Vegetables Industry- A Review. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2021.2012795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Liza Cloete
- Agricultural and Food Science Department, Faculty of Agriculture, University of Mauritius, Reduit, Mauritius
| | - Carene Picot-Allain
- Agricultural Production and Systems Department, Faculty of Agriculture, University of Mauritius, Reduit, Mauritius
| | - Brinda Ramasawmy
- Agricultural Production and Systems Department, Faculty of Agriculture, University of Mauritius, Reduit, Mauritius
| | - Hudaa Neetoo
- Agricultural and Food Science Department, Faculty of Agriculture, University of Mauritius, Reduit, Mauritius
| | - Deena Ramful-Baboolall
- Agricultural and Food Science Department, Faculty of Agriculture, University of Mauritius, Reduit, Mauritius
| | | |
Collapse
|
34
|
Prawatborisut M, Janprasit J, Seidi F, Wongnate T, Flood A, Yiamsawas D, Crespy D. Preparation of nanoparticles of shellac and shellac-oligomer conjugates. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2022. [DOI: 10.1080/10601325.2021.2022983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Mongkhol Prawatborisut
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Jindaporn Janprasit
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Farzad Seidi
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Thanyaporn Wongnate
- Department of Biomolecular Science and Engineering, School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Adrian Flood
- Department of Chemical and Biomolecular Engineering, School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Doungporn Yiamsawas
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
| | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| |
Collapse
|
35
|
Zhang D, Zhang B, Zhu L. A new method for shellac binder detection in ancient building mortars. NEW J CHEM 2022. [DOI: 10.1039/d2nj00016d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Shellac, also known as lac, is composed mainly of aleuritic acid.
Collapse
Affiliation(s)
- Di Zhang
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Bingjian Zhang
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
- Department of Cultural Heritage and Museology, Zhejiang University, Hangzhou, 310028, China
| | - Longguan Zhu
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
36
|
Zheng M, Chen J, Tan KB, Chen M, Zhu Y. Development of hydroxypropyl methylcellulose film with xanthan gum and its application as an excellent food packaging bio-material in enhancing the shelf life of banana. Food Chem 2021; 374:131794. [PMID: 34906803 DOI: 10.1016/j.foodchem.2021.131794] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 11/24/2022]
Abstract
A novel film composed of xanthan gum (XG) and hydroxypropyl methylcellulose (HPMC) was prepared (XH). The films were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The light transmittance, mechanical properties and water vapor transmission rate (WVTR) indicated the good compatibility between XG and HPMC with hydrogen-bond interaction and XG had a significant effect on the chemical structure, crystalline texture and microstructure of the XH composite film. The best XH sample with optimum XG concentration of 2 g/L was used as food packaging via coating onto banana, whereby the weight loss rate on banana was able to decreased from 25 ± 3% (without XH coating) to 16 ± 4% (with XH coating). Consequently, the release of flavor substances was also decreased. Banana shelf life has qualitatively improved with XH composite film for food preservation and affirmed the uses in food packaging applications.
Collapse
Affiliation(s)
- Meixia Zheng
- Agricultural Bio-Resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350003, PR China
| | - Jianfu Chen
- College of Food Engineering, Zhangzhou Institute of Technology, Zhangzhou 363000, PR China
| | - Kok Bing Tan
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China.
| | - Meichun Chen
- Agricultural Bio-Resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350003, PR China
| | - Yujing Zhu
- Agricultural Bio-Resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350003, PR China.
| |
Collapse
|
37
|
Effect of Chitosan Coatings with Cinnamon Essential Oil on Postharvest Quality of Mangoes. Foods 2021; 10:foods10123003. [PMID: 34945553 PMCID: PMC8700884 DOI: 10.3390/foods10123003] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/23/2021] [Accepted: 11/30/2021] [Indexed: 11/17/2022] Open
Abstract
Mango (Mangifera indica Linn.) is a famous climacteric fruit containing abundant flavor and nutrients in the tropics, but it is prone to decay without suitable postharvest preservation measures. In this study, the chitosan (CH)-cinnamon essential oil (CEO) Pickering emulsion (CH-PE) coating was prepared, with cellulose nanocrystals as the emulsifier, and applied to harvested mangoes at the green stage of maturity. It was compared with a pure CH coating and a CH-CEO emulsion (CH-E) coating, prepared with the emulsifier Tween 80. Results showed that the CH-PE coating had a lower water solubility and water vapor permeability than the other coatings, which was mainly due to electrostatic interactions, and had a better sustained-release performance for CEO than the CH-E coating. During mango storage, the CH-PE coating effectively improved the appearance of mangoes at 25 °C for 12 d by reducing yellowing and dark spots, and delayed water loss. Hardness was maintained and membrane lipid peroxidation was reduced by regulating the activities of pectin methyl esterase, polygalacturonase, and peroxidase. In addition, the nutrient quality was improved by the CH-PE coating, with higher contents of total soluble solid, titratable acid, and ascorbic acid. Therefore, the CH-PE coating is promising to comprehensively maintain the postharvest quality of mangoes, due to its enhanced physical and sustained-release properties.
Collapse
|
38
|
Coating Process Optimization and Self-Healing Performance Evaluation of Shellac Microcapsules Coated with Melamine/Rice Husk Powder. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11188373] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
To explore the implication of the coating process on the comprehensive properties of water-based coating containing shellac microcapsules coated with melamine/rice husk powder on the Tilia cordata surface, the optical properties, mechanical properties, liquid resistance, aging resistance, chemical composition, and microstructure of the coating were analyzed comprehensively. After the best coating process was determined, compared with the coating without microcapsules, the self-repairing performance of the water-based coating containing shellac microcapsules coated with melamine/rice husk powder was explored via aging resistance test and scratch test. The results showed that the best comprehensive performance of the coating was obtained by three times primer, two times finish, and 6.0% shellac microcapsules coated with melamine/rice husk powder added in the primer. The coating with shellac microcapsules had significant stability, aging resistance, and self-healing performance, which can repair cracks in a certain period of time and inhibit the formation of cracks. At the core wall ratio of 0.75, the shellac which plays a role of the repair agent as the core material can effectively fill the microcracks in the coating to repair by flowing from the broken microcapsule because it can be physically cured at room temperature. The modification of waterborne coatings with shellac microcapsules coated with melamine/rice husk powder contributes the improved self-repairing properties of surface coatings containing heterogeneous natural polymer composites.
Collapse
|
39
|
Ma J, Zhou Z, Li K, Tu X, Li K, Liu L, Xu J, Zhang W, Du L, Li C, Zhang H. A Gas-Permeation Controllable Packaging Membrane with Porous Microspheres as Gas "Switches" for Efficient Preservation of Litchi. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10281-10291. [PMID: 34432462 DOI: 10.1021/acs.jafc.1c02293] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Food wastage represented by the deterioration of perishable food like fruits and vegetables is a serious global problem with tremendous ethical, financial, and environmental costs. The atmosphere (CO2 and O2) has a crucial role in food storage and can regulate physiological food metabolism and microbial growth. Modified atmosphere packaging (MAP) is a promising method used to extend shelf life and preserve the quality of perishable food; yet, its use depends on the specific gas permeability and selectivity of polymer membranes to generate an atmosphere desirable for storage. In this study, we established and validated a new plant leaf-mimetic shellac-based MAP membrane embedded with chitosan porous microspheres loaded with antimicrobial tannic acid (TA-CPM) as gas "switches" for regulating O2 and CO2 permeability and CO2/O2 selectivity. The effects of different amounts of TA-CPM added into the hybrid membranes were examined for litchi preservation at room temperature. Our results showed that this hybrid TA-CPM/shellac packaging membrane could regulate the internal CO2 and O2 concentrations and the CO2/O2 ratio within the packages containing litchis by adjusting the addition amount of TA-CPM. The 0.05% TA-CPM/shellac and 0.10% TA-CPM/shellac packages, especially 0.05% TA-CPM/shellac, generated a more desirable CO2 and O2 atmosphere for litchi preservation compared with controls, which was reflected by the delaying of browning and rotting, maintaining of the natural color of the litchi pericarp, preservation of pulp quality, inhibition of polyphenol oxidase and guaiacol peroxidase activities, and reduction of oxidative cell damage in litchis. The results suggested that 0.05% TA-CPM/shellac and 0.10% TA-CPM/shellac packaging membranes, especially 0.05% TA-CPM/shellac, could generate an ideal atmosphere for litchi storage at room temperature, demonstrating that this permeation-controlled hybrid membrane has great potential in food preservation and other applications requiring a modified atmosphere.
Collapse
Affiliation(s)
- Jinju Ma
- Research Institute of Resources Insects, Chinese Academy of Forestry, Kunming 650224, China
| | - Zhiqiang Zhou
- Research Institute of Resources Insects, Chinese Academy of Forestry, Kunming 650224, China
| | - Kai Li
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Xinghao Tu
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524000, China
| | - Kun Li
- College of Food, Xinyang Agriculture and Forestry University, Xinyang 464007, China
| | - Lanxiang Liu
- Research Institute of Resources Insects, Chinese Academy of Forestry, Kunming 650224, China
| | - Juan Xu
- Research Institute of Resources Insects, Chinese Academy of Forestry, Kunming 650224, China
| | - Wenwen Zhang
- Research Institute of Resources Insects, Chinese Academy of Forestry, Kunming 650224, China
| | - Liqing Du
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524000, China
| | - Chunyin Li
- Research Institute of Resources Insects, Chinese Academy of Forestry, Kunming 650224, China
| | - Hong Zhang
- Research Institute of Resources Insects, Chinese Academy of Forestry, Kunming 650224, China
| |
Collapse
|
40
|
Wang D, Ding C, Feng Z, Ji S, Cui D. Recent advances in portable devices for fruit firmness assessment. Crit Rev Food Sci Nutr 2021; 63:1143-1154. [PMID: 34351808 DOI: 10.1080/10408398.2021.1960477] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Fruit firmness is of vital importance in various links of the fruit supply chain, such as determining harvest time, choosing packaging and transportation methods, regulating storage conditions and predicting shelf life. Portable devices are useful tools to perform on-site measurements of fruit firmness to guide production, optimize processing procedures, improve handling practices and formulate supply strategies. This paper reviews the recent advances in the design and development of portable devices to evaluate fruit firmness based on sensing mechanical, sonic, vibrational and optical properties of fruits. The principle, structure, composition, application and performance of different portable devices are presented. Since each sensor has its merits and limitations, the integration of multiple microsensors to develop a miniaturized, low-cost and facile-operation device may achieve higher sensing performance in determining fruit firmness.
Collapse
Affiliation(s)
- Dachen Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, P. R. China.,Key Laboratory of On Site Processing Equipment for Agricultural Products, Ministry of Agriculture, Hangzhou, P. R. China
| | - Chengqiao Ding
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, P. R. China.,Key Laboratory of On Site Processing Equipment for Agricultural Products, Ministry of Agriculture, Hangzhou, P. R. China
| | - Zhe Feng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, P. R. China.,Key Laboratory of On Site Processing Equipment for Agricultural Products, Ministry of Agriculture, Hangzhou, P. R. China
| | - Shuyu Ji
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, P. R. China.,Key Laboratory of On Site Processing Equipment for Agricultural Products, Ministry of Agriculture, Hangzhou, P. R. China
| | - Di Cui
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, P. R. China.,Key Laboratory of On Site Processing Equipment for Agricultural Products, Ministry of Agriculture, Hangzhou, P. R. China
| |
Collapse
|