1
|
Wen J, Sui Y, Shi J, Xiong T, Cai F, Mei X. Nanoemulsions base on the Rice bran albumin-sweet potato leaf polyphenol-dextran complexes: Interaction mechanisms, stability and Astaxanthin release behaviour. Food Chem 2025; 475:143276. [PMID: 39938263 DOI: 10.1016/j.foodchem.2025.143276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 02/14/2025]
Abstract
In this study, rice bran albumin (RBA), sweet potato leaf polyphenols (SPLPs) and dextran were conjugated through covalent or non-covalent interactions to improve the stability and bioaccessibility of astaxanthin (AST) in emulsion systems. It was shown that the RBA-SPLPs-Dex ternary covalent complex demonstrated higher polysaccharide grafting, looser secondary structure, and exposed hydrophobic groups indicating that they were favourable for emulsion stabilisation. In long-term storage tests, RBA-SPLPs emulsifier modified by 50 mg/mL dextran (Dextran50) showed smaller particle size and cream index, respectively. Besides, the retention of loaded astaxanthin was improved by 59.43 % compared to the unmodified model, along with a strengthened inhibition of lipid oxidation in the storage experiment. Besides, Dextran50 also improved the environmental stress stability of the emulsion and demonstrated more efficient AST release behaviour during intestinal digestion. In conclusion, these emulsion systems stabilised with ternary complexes have great potential for the delivery of lipid-soluble bioactive ingredients.
Collapse
Affiliation(s)
- Junren Wen
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yong Sui
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| | - Jianbin Shi
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Tian Xiong
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Fang Cai
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Xin Mei
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| |
Collapse
|
2
|
Bera S, Mitra R, Singh J. Recent advancement in protected delivery methods for carotenoid: a smart choice in modern nutraceutical formulation concept. Biotechnol Genet Eng Rev 2024; 40:4532-4588. [PMID: 37198919 DOI: 10.1080/02648725.2023.2213988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/10/2023] [Indexed: 05/19/2023]
Abstract
Carotenoids are fat-soluble bio pigments often responsible for red, orange, pink and yellow coloration of fruits and vegetables. They are commonly referred as nutraceutical which is an alternative to pharmaceutical drugs claiming to have numerous physiological benefits. However their activity often get disoriented by photonic exposure, temperature and aeration rate thus leading to low bioavailability and bio accessibility. Most of the market value for carotenoids revolves around food and cosmetic industries as supplement where they have been continuously exposed to rigorous physico-chemical treatment. Though several encapsulation techniques are now in practice to improve stability of carotenoids, the factors like shelf life during storage and controlled release from the delivery vehicle always appeared to be a bottleneck in this field. In this situation, different technologies in nanoscale is showing promising result for carotenoid encapsulation and delivery as they provide greater mass per surface area and protects most of their bioactivities. However, safety concerns related to carrier material and process must be evaluated crucially. Thus, the aim of this review was to collect and correlate technical information concerning the parameters playing pivotal role in characterization and stabilization of designed vehicles for carotenoids delivery. This comprehensive study predominantly focused on experiments carried out in past decade explaining how researchers have fabricated bioprocess engineering in amalgamation with nano techniques to improve the bioavailability for carotenoids. Furthermore, it will help the readers to understand the cognisance of carotenoids in nutraceutical market for their trendy application in food, feed and cosmeceutical industries in contemporary era.
Collapse
Affiliation(s)
- Surojit Bera
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Ruchira Mitra
- International College, University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Joginder Singh
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
3
|
Wei Y, Shao J, Wei K, Peng L, Wei X. Influence of Qingzhuan Tea Polysaccharides on F - Adsorption: Molecular Structure, Binding Behavior, and In Vitro and In Vivo Digestion and Metabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:26384-26403. [PMID: 39545705 DOI: 10.1021/acs.jafc.4c05734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
The high level of fluoride in Qingzhuan tea (QZT) poses a potential health risk to consumers. This study aims to explore the binding behavior of purified Qingzhuan tea polysaccharides (pTPS) and fluoride ions (F-), as well as their regulatory role in the digestion and metabolism of fluoride. The sugar content of pTPS was 94.64 ± 3.01%, with a molecular weight of 7.373 × 104 Da and high homogeneity. The effects of different proportions and environmental conditions on the adsorption of F- by pTPS were investigated. The influence of the complexation of pTPS and F- on the digestion and metabolism of fluoride was explored using an in vitro gastrointestinal digestion model and C57BL/6 mice. The structural alterations of pTPS were observed during simulated gastrointestinal digestion. Furthermore, pTPS were found to reduce serum fluoride levels and inhibit accumulation in major organs and tissues, especially the heart, liver, kidneys, muscles, and femur. This study investigated the binding pattern between fluorine and pTPS and its influence on the digestion and absorption of fluorine, providing a promising potential for pTPS as a bioadsorbent of fluorine to alleviate the toxicity of fluorine in QZT, which laid a theoretical foundation for the safety of consumption of QZT.
Collapse
Affiliation(s)
- Yang Wei
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Jie Shao
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Kang Wei
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Lanlan Peng
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Xinlin Wei
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| |
Collapse
|
4
|
Zhang W, Chen W, Pan H, Sanaeifar A, Hu Y, Shi W, Guo J, Ding L, Zhou J, Li X, He Y. Rapid identification of the aging time of Liupao tea using AI-multimodal fusion sensing technology combined with analysis of tea polysaccharide conjugates. Int J Biol Macromol 2024; 278:134569. [PMID: 39122062 DOI: 10.1016/j.ijbiomac.2024.134569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/27/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Identifying the aging time of Liupao Tea (LPT) presents a persistent challenge. We utilized an AI-Multimodal fusion method combining FTIR, E-nose, and E-tongue to discern LPT's aging years. Compared to single-source and two-source fusion methods, the three-source fusion significantly enhanced identifying accuracy across all four machine learning algorithms (Decision tree, Random forest, K-nearest neighbor, and Partial least squares Discriminant Analysis), achieving optimal accuracy of 98-100 %. Physicochemical analysis revealed monotonic variations in tea polysaccharide (TPS) conjugates with aging, observed through SEM imaging as a transition from lamellar to granular TPS conjugate structures. These quality changes were reflected in FTIR spectral characteristics. Two-dimensional correlation spectroscopy (2D-COS) identified sensitive wavelength regions of FTIR from LPT and TPS conjugates, indicating a high similarity in spectral changes between TPS conjugates and LPT with aging years, highlighting the significant role of TPS conjugates variation in LPT quality. Additionally, we established an index for evaluating quality of aging, which is sum of three fingerprint peaks (1029 cm-1, 1635 cm-1, 2920 cm-1) intensities. The index could effectively signify the changes in aging years on macro-scale (R2 = 0.94) and micro-scale (R2 = 0.88). These findings demonstrate FTIR's effectiveness in identifying aging time, providing robust evidence for quality assessment.
Collapse
Affiliation(s)
- Wenkai Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Wei Chen
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Hongjing Pan
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Alireza Sanaeifar
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, MN 55108, United States
| | - Yan Hu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Wanghong Shi
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Jie Guo
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Lejia Ding
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Jihong Zhou
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China.
| | - Xiaoli Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Yong He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
5
|
Zhang K, Xiang Y, Zhong L, He Y, Chen K, Liu Y, Fang Z, Zeng Z, Li S, Chen H. Enhancing the emulsion properties and bioavailability of loaded astaxanthin by selecting the reaction sequence of ternary conjugate emulsifiers in nanoemulsions. Food Chem 2024; 449:139310. [PMID: 38608612 DOI: 10.1016/j.foodchem.2024.139310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/01/2024] [Accepted: 04/07/2024] [Indexed: 04/14/2024]
Abstract
This study investigated the effects of the conjugate reaction sequences of whey protein concentrate (WPC), epigallocatechin gallate (EGCG) and dextran (DEX) on the structure and emulsion properties of conjugates and the bioaccessibility of astaxanthin (AST). Two types of ternary covalent complexes were synthesised using WPC, EGCG and DEX, which were regarded as emulsifiers of AST nanoemulsions. Results indicated that the WPC-DEX-EGCG conjugate (referred to as 'con') exhibits a darker SDS-PAGE dispersion band and higher contents of α-helix (6%), β-angle (24%) and random coil (32%), resulting in a greater degree of unfolding structure and fluorescence quenching. These findings suggested WPC-DEX-EGCG con had the potential to exhibit better emulsification properties than WPC-EGCG-DEX con. AST encapsulation efficiency (76.22%) and bioavailability (31.89%) also demonstrated the superior performance of the WPC-DEX-EGCG con emulsifier in nanoemulsion delivery systems. These findings indicate that altering reaction sequences changes protein conformation, enhancing the emulsification properties and bioavailability of AST.
Collapse
Affiliation(s)
- Kaixi Zhang
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Yuanyuan Xiang
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Lingyun Zhong
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Yuyang He
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Keling Chen
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Yuntao Liu
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Zhengfeng Fang
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Zhen Zeng
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Shanshan Li
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan 625014, China..
| | - Hong Chen
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan 625014, China..
| |
Collapse
|
6
|
Wang Y, He S, Huang J, Guo W, Gao X, Li G. Physicochemical stability of corn protein hydrolysate/tannic acid complex-based β-carotene nanoemulsion delivery system. Food Sci Nutr 2024; 12:5111-5120. [PMID: 39055182 PMCID: PMC11266910 DOI: 10.1002/fsn3.4160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/25/2024] [Accepted: 03/30/2024] [Indexed: 07/27/2024] Open
Abstract
Moderate non-covalent interaction of protein and polyphenols can improve the emulsifying property of protein itself. The corn protein hydrolysate (CPH) and tannic acid (TA) complex was successfully used to construct nanoemulsion for algal oil delivery. There has been no study on the feasibility of this nanoemulsion delivery system for other food functional components, for example, β-carotene (β-CE). CPH/TA complex-based nanoemulsion system for β-CE delivery was studied, focusing on the effect of β-CE content on the physicochemical stability of the nanoemulsions. The nanoemulsion delivery systems (dia. 150 nm) with low viscosity and good liquidity were easily fabricated by two-step emulsification. The nanoemulsions with high β-CE content (>71.5 μg/mL) significantly increased (p < .05) the emulsion droplet size. However, there was no significant (p > .05) effect of β-CE content on polydispersity index (PDI) and zeta potential of the nanoemulsions. The storage (30 days) experiment results demonstrated that the droplet size of the nanoemulsions with varying β-CE content increased slightly during storage. However, the PDI values showed a slightly decreasing trend. Zeta potentials of the nanoemulsions showed no noticeable change during storage. Moreover, after storage of 30 days, the retention ratios of β-CE were found to be up to 90%, which suggests an excellent protective effect for β-CE by the nanoemulsion systems. The CPH/TA complex stabilized nanoemulsions could aggregate in gastric condition, but the β-CE content did not have obvious effect on the digestive stability of the nanoemulsions. The CPH/TA complex could be employed as an emulsifier to construct a physicochemical stable nanoemulsion delivery system for lipophilic active components.
Collapse
Affiliation(s)
- Yong‐Hui Wang
- Food and Pharmacy CollegeXuchang UniversityXuchangPeople's Republic of China
- Collaborative Innovation Center of Functional Food Green ManufacturingXuchangPeople's Republic of China
| | - Sheng‐Hua He
- Food and Pharmacy CollegeXuchang UniversityXuchangPeople's Republic of China
- Collaborative Innovation Center of Functional Food Green ManufacturingXuchangPeople's Republic of China
| | - Ji‐Hong Huang
- Food and Pharmacy CollegeXuchang UniversityXuchangPeople's Republic of China
- Collaborative Innovation Center of Functional Food Green ManufacturingXuchangPeople's Republic of China
| | - Wei‐Yun Guo
- Food and Pharmacy CollegeXuchang UniversityXuchangPeople's Republic of China
- Collaborative Innovation Center of Functional Food Green ManufacturingXuchangPeople's Republic of China
| | - Xue‐Li Gao
- Food and Pharmacy CollegeXuchang UniversityXuchangPeople's Republic of China
- Collaborative Innovation Center of Functional Food Green ManufacturingXuchangPeople's Republic of China
| | - Guang‐Hui Li
- Food and Pharmacy CollegeXuchang UniversityXuchangPeople's Republic of China
- Collaborative Innovation Center of Functional Food Green ManufacturingXuchangPeople's Republic of China
| |
Collapse
|
7
|
Huang Z, Zong MH, Wang J, Peng SY, Yu M, Lou WY. Structural and interfacial properties of acetylated Millettia speciosa Champ polysaccharide and stability evaluation of the resultant O/W emulsion containing β-carotene. Int J Biol Macromol 2024; 264:130556. [PMID: 38431014 DOI: 10.1016/j.ijbiomac.2024.130556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 01/24/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
The aim of this study was to investigate the effects of acetylation modification on the structural, interfacial and emulsifying properties of Millettia speciosa Champ polysaccharide (MSCP). Besides, the influence of acetylation modification on the encapsulation properties of polysaccharide-based emulsion was also explored. Results indicated that modification resulted in a prominent reduction in molecular weight of MSCP and the interfacial layer thickness formed by acetylated MSCP (AC-MSCP) was also decreased, but the adsorption rate and ability of AC-MSCP to reduce interfacial tension were improved. AC-MSCP formulated emulsion possessed smaller droplet size (6.8 μm) and exhibited better physical stability under stressful conditions. The chemical stability of β-carotene was also profoundly enhanced by AC-MSCP fabricated emulsion. Moreover, AC-MSCP improved lipids digestion extent, thus facilitating the formation of micelle and increasing bioaccessibility of β-carotene. This study provided insights for rational modification of polysaccharide-based emulsifier and designing delivery system for chemically labile hydrophobic bioactive components.
Collapse
Affiliation(s)
- Zhi Huang
- College of Light Industry and Food Engineering, Guangxi University, No. 100 Daxue East Road, Nanning 530004, China
| | - Min-Hua Zong
- School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou 510640, China
| | - Juan Wang
- School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou 510640, China
| | - Shao-Yan Peng
- Hin Sang Health and Medical (Guangdong) Co., Ltd, Yunfu 527300, China
| | - Ming Yu
- Guangdong Provincial Engineering and Technology Research Center of Food Low Temperature Processing, Yangjiang 529566, China.
| | - Wen-Yong Lou
- School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou 510640, China.
| |
Collapse
|
8
|
Han Y, Li L, Wei F, Zhang F, Pan Z, Wei Y, Wang L. Dandelion polysaccharides improve the emulsifying properties and antioxidant capacities of emulsions stabilized by whey protein isolate. Food Chem X 2024; 21:101218. [PMID: 38384685 PMCID: PMC10878858 DOI: 10.1016/j.fochx.2024.101218] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/31/2024] [Accepted: 02/08/2024] [Indexed: 02/23/2024] Open
Abstract
In this study, the effects of dandelion polysaccharide (DP) and its carboxymethylated derivative (CMDP) on the emulsifying characteristics and antioxidant capacities of emulsions stabilized by whey protein isolate (WPI) were determined. The addition of both DP and CMDP reduced the particle size and zeta potential of the emulsions. Using 1.0 % WPI and 1.0 % CMDP as emulsifier, the emulsifying activity index (EAI) and emulsifying stability index (ESI) were 32.61 ± 0.11 m2/g and 42.58 ± 0.13 min, respectively, which were higher than the corresponding values of 27.19 ± 0.18 m2/g and 36.17 ± 0.15 min with 1.0 % WPI and 1.0 % DP. Fourier-transform infrared spectroscopy (FT-IR), far-ultraviolet circular dichroism (Far-UV CD), and fluorescence (FS) spectra analyses confirmed that the α-helix and β-sheet structures in WPI-polysaccharide complexes were reduced compared with those in pure WPI, whereas the random-coil content was enhanced by the addition of polysaccharides. Moreover, DP and CMDP effectively improved the antioxidant capacity and inhibited oxidation of the emulsions during storage. Therefore, DP and its carboxymethylated derivative exhibit great potential to be applied in the emulsion-based delivery system.
Collapse
Affiliation(s)
- Yujun Han
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, China
| | - Lianyu Li
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Fangming Wei
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Fengjie Zhang
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Zhaoyang Pan
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Yanhui Wei
- College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin, China
| | - Libo Wang
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
9
|
Jiang Z, Luo H, Huangfu Y, Gao Y, Zhang M, Bao Y, Ma W. High internal phase emulsions stabilized by whey protein covalently modified with carboxymethyl cellulose: Enhanced environmental stability, storage stability and bioaccessibility. Food Chem 2024; 436:137634. [PMID: 37847963 DOI: 10.1016/j.foodchem.2023.137634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/20/2023] [Accepted: 09/28/2023] [Indexed: 10/19/2023]
Abstract
In this work, the effects of whey protein-carboxymethyl cellulose (WP-CMC) conjugates on the environmental stability, in vitro digestion stability, storage stability and bioaccessibility of high internal phase emulsions (HIPEs) were investigated. Compared to the HIPEs stabilized by the mixture of WP and CMC, the HIPEs stabilized by WP-CMC were less sensitive to environmental changes by particle size and zeta-potential, and showed better stability and bioavailability of pine nut oil as well as β-carotene during simulated gastrointestinal digestion. In addition, the inclusion function and pine nut oil oxidative stability of the HIPEs stabilized by WP-CMC were better during 16 days of storage than those of the pine nut oil and HIPEs stabilized by the mixture of WP and CMC, and also expressed higher storage stability of β-carotene. These results suggested that the conjugate-stabilized emulsions developed in this study have potential applications as protectors and carriers of liposoluble active ingredients.
Collapse
Affiliation(s)
- Zhehui Jiang
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Hao Luo
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Yunpeng Huangfu
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Yuan Gao
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Meiqi Zhang
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Yihong Bao
- College of Forestry, Northeast Forestry University, Harbin 150040, China; College of Life Science, Northeast Forestry University, Key Laboratory of Forest Food Resources Utilization of Heilongjiang Province, Harbin 150040, China.
| | - Wei Ma
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, China.
| |
Collapse
|
10
|
Chen X, Xiao Y, Wei Y, Cao W, Han Y, Gao Z, Huang Y. High-internal-phase emulsions stabilized by alkali-extracted green tea polysaccharide conjugates for curcumin delivery. Food Chem 2024; 435:137678. [PMID: 37806198 DOI: 10.1016/j.foodchem.2023.137678] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/10/2023]
Abstract
Exploring the emulsification capabilities of tea polysaccharide conjugates (TPCs) in high-internal-phase emulsions (HIPEs) would further expand the utilization value of TPCs. This study aimed to prepare 0.1-0.5 wt% alkali-extracted green tea polysaccharide conjugate (gTPC-A)-stabilized HIPEs containing 75-87 wt% medium chain triglycerides (MCTs) to investigate their stability, rheology, microstructure, and loading and protective effects on curcumin. The findings revealed that only 0.1 wt% of gTPC-A could stabilize HIPEs containing 85 wt% oil for 30 days. HIPEs had better storage stability in a weakly acidic environment at pH 5.0-6.0 and at temperatures less than 70 °C. HIPEs could load curcumin and protect it from ultraviolet (UV) radiation and in vitro digestion. The half-life of curcumin loaded in HIPEs was 65 h under UV radiation. The curcumin bioaccessibility of HIPEs (56.29 %) was higher than that in MCT (8.73 %). These results provided a theoretical basis for the extensive use of TPCs.
Collapse
Affiliation(s)
- Xiaoqiang Chen
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China.
| | - Yuan Xiao
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Yan'an Wei
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Wendan Cao
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Yu Han
- College of Life Sciences and Technology, Hubei Engineering University, Xiaogan 432000, Hubei, China
| | - Zhiling Gao
- Xinding Biotechnology Co. LTD, Yichang 443000, China
| | - Yi Huang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
11
|
Chen X, Li M, Shao R, Cheng S, Chen J, Xiao Y, Cheng J. Green tea polysaccharide conjugates and bovine serum albumin have a synergistic effect in improving the emulsification ability. Int J Biol Macromol 2024; 257:128692. [PMID: 38092120 DOI: 10.1016/j.ijbiomac.2023.128692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/29/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023]
Abstract
Our previous study revealed that green tea polysaccharide conjugate (gTPC) has emulsion effect, but its emulsifying ability is weak. In order to improve the emulsification ability of gTPC, gTPC and bovine serum albumin (BSA) were combined to form five different mass proportions of the TPC/BSA (TB) complex: TPC/BSA: 5:1, 5:2, 5:3, 5:4, and 5:5 w/w. We observed that the 5:5 w/w TB emulsion was more hydrophobic and surface-active. Furthermore, the emulsions prepared using 50.00 wt% medium-chain triglycerides exhibited the best stability. In addition, the TB emulsion exhibited stability in adverse environments of pH, salt, and heat; in particular, under salt conditions, no significant changes were observed in zeta potential. Subsequently, in vitro simulated digestion experiments were performed to investigate the use of TB emulsions for β-carotene encapsulation. We observed that the encapsulation efficiency for β-carotene was approximately 90.0 %; it was subsequently released in the intestine.
Collapse
Affiliation(s)
- Xiaoqiang Chen
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China; Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China.
| | - Mengyang Li
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Ruixiang Shao
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Shuiyuan Cheng
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jianxin Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Yuan Xiao
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Junhua Cheng
- Hubei Sanhua Ecological Agriculture Technology Development Co., LTD, Huangshi 435112, China
| |
Collapse
|
12
|
Wang Z, Wang L, Yu X, Wang X, Zheng Y, Hu X, Zhang P, Sun Q, Wang Q, Li N. Effect of polysaccharide addition on food physical properties: A review. Food Chem 2024; 431:137099. [PMID: 37572481 DOI: 10.1016/j.foodchem.2023.137099] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 07/18/2023] [Accepted: 08/02/2023] [Indexed: 08/14/2023]
Abstract
The texture, flavor, performance and nutrition of foods are affected by their physical properties during processing, cooking, storage, and shelf life. In addition to chemical, physical, and enzymatic modification methods, polysaccharide addition is also considered a safe, effective, and convenient food modification strategy. However, thus far, literature review on the effects of polysaccharides on the physical properties of foods is few. Therefore, the present work reviews the effects of polysaccharides on water retention capacity, rheological property, suspension ability, viscoelasticity, emulsifying property, gelling property, stability, and starch regeneration and digestion. Furthermore, the existing problems and future recommendations during food physical property modification by polysaccharides are presented. This work aims to provide some theoretical references for future research, development, and application of polysaccharides on food physical property modification.
Collapse
Affiliation(s)
- Zichao Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Lu Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xiaoxue Yu
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xueqin Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yi Zheng
- School of International Education, Henan University of Technology, Zhengzhou 450001, China
| | - Xilei Hu
- School of International Education, Henan University of Technology, Zhengzhou 450001, China
| | - Peiyao Zhang
- School of International Education, Henan University of Technology, Zhengzhou 450001, China
| | - Qi Sun
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China.
| | - Qi Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Na Li
- Henan Provincial Key Laboratory of Ultrasound Imaging and Artificial Intelligence, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou University, Zhengzhou 450001, China; Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
13
|
Wang Z, Fu S, Guo Y, Han Y, Ma C, Li R, Yang X. Classification and design strategies of polysaccharide-based nano-nutrient delivery systems for enhanced bioactivity and targeted delivery: A review. Int J Biol Macromol 2024; 256:128440. [PMID: 38016614 DOI: 10.1016/j.ijbiomac.2023.128440] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 11/30/2023]
Abstract
Since many nutrients are highly sensitive, they cannot be absorbed and utilized efficiently by the body. Using nano-delivery systems to encapsulate nutrients is an effective method of solving the problems associated with the application of nutrients at this stage. Polysaccharides, as natural biomaterials, have a unique chemical structure, ideal biocompatibility, biodegradability and low immunogenicity. This makes polysaccharides powerful carriers that can enhance the biological activity of nutrients. However, the true role of polysaccharide-based delivery systems requires an in-depth understanding of the structural and physicochemical characteristics of polysaccharide-based nanodelivery systems, as well as effective modulation of the intestinal delivery mechanism and the latest advances in nano-encapsulation. This review provides an overview of polysaccharide-based nano-delivery systems dependent on different carrier types, emphasizing recent advances in the application of polysaccharides, a biocomposite material designed for nutrient delivery systems. Strategies for polysaccharide-based nano-delivery systems to enhance the bioavailability of orally administered nutrients from the perspective of the intestinal absorption barrier are presented. Characterization methods for polysaccharide-based nano-delivery systems are presented as well as an explanation of the formation mechanisms behind nano-delivery systems from the perspective of molecular forces. Finally, we discussed the challenges currently facing polysaccharide-based nano-delivery systems as well as possible future directions for the future.
Collapse
Affiliation(s)
- Zhili Wang
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
| | - Shiyao Fu
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
| | - Yong Guo
- College of Sports and Human Sciences, Harbin Sport University, Harbin 150008, China
| | - Ying Han
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
| | - Chao Ma
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
| | - Ruiling Li
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
| | - Xin Yang
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China; Chongqing Research Institute, Harbin Institute of Technology, Chongqing 401135, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, China.
| |
Collapse
|
14
|
Meng Q, Xu M, Chen L, Xu S, Li J, Li Y, Fan L, Shi G, Ding Z. Emulsion for stabilizing β-carotene and curcumin prepared directly using a continuous phase of polysaccharide-rich Schizophyllum commune fermentation broth. Int J Biol Macromol 2024; 254:127730. [PMID: 38287588 DOI: 10.1016/j.ijbiomac.2023.127730] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/28/2023] [Accepted: 10/26/2023] [Indexed: 01/31/2024]
Abstract
In this study, we examined the effect of Schizophyllum commune fermentation broth (SCFB) rich in polysaccharides (SCFP) on the stability and bioaccessibility of β-carotene and curcumin. An SCFB-stabilized oil-in-water (o/w) emulsion (SCFBe) was prepared using SCFB as the continuous phase, and then evaluated for storage stability using an SCFP-based emulsion (SCFPe) as the control. The findings revealed that SCFBe is more stable at 60 °C than SCFPe, and stratification or droplet size varied at differing pH levels (3-9) and concentrations of Na+ (0.1-0.5 M) and Ca2+ (0.01-0.05 M). Since the absolute value of the zeta potential of SCFBe is much lower at 60 °C than that at 4 °C and 25 °C, a higher temperature (60 °C) may enhance the reactivity of polysaccharides and proteins in SCFB to improve the stability of SCFBe. Both the protective impact of SCFB on functional food molecules and their capacity to block lipid oxidation increased as polysaccharide content improved. The bioaccessibility of β-carotene after in vitro simulated gastrointestinal digestion is 11.18 %-12.28 %, whereas that of curcumin is 31.64 %-33.00 %. By fermenting edible and medicinal fungi in liquid, we created a unique and environmentally friendly approach for getting food-grade emulsifiers without extraction.
Collapse
Affiliation(s)
- Qi Meng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Mengmeng Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Lei Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Sha Xu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Jinwei Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Youran Li
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Liuping Fan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Guiyang Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Zhongyang Ding
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
15
|
Fu Y, Liu L, Zhang J, Wang L, Dong M, McClements DJ, Wan F, Shen P, Li Q. Reinforcing alginate matrixes by tea polysaccharide conjugates or their stabilized nanoemulsion for probiotics encapsulation: Characterization, survival after gastrointestinal digestion and ambient storage. Int J Biol Macromol 2023; 253:126828. [PMID: 37696375 DOI: 10.1016/j.ijbiomac.2023.126828] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/27/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
Tea polysaccharide conjugates (TPC) were used as fillers in the form of biopolymer or colloidal particles (TPC stabilized nanoemulsion, NE) for reinforcing alginate (ALG) beads to improve the probiotic viability. Results demonstrated that adding TPC or NE to ALG beads significantly enhanced the gastrointestinal viability of encapsulated probiotics when compared to free cells. Moreover, the survivability of free and ALG encapsulated probiotics markedly decreased to 2.03 ± 0.05 and 2.26 ± 0.24 log CFU/g, respectively, after 2 weeks ambient storage, indicating pure ALG encapsulation had no effective storage protective capability. However, adding TPC or NE could greatly enhance the ambient storage viability of probiotics, with ALG + NE beads possessing the best protection (8.93 ± 0.06 log CFU/g) due to their lower water activity and reduced porosity. These results suggest that TPC and NE reinforced ALG beads have the potential to encapsulate, protect and colonic delivery of probiotics.
Collapse
Affiliation(s)
- Yinxin Fu
- Wuhan Fourth Hospital, Wuhan, Hubei 430032, China.
| | - Lu Liu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Jiahan Zhang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Lan Wang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Mingyu Dong
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei 430068, China
| | | | - Fangyun Wan
- Powdery (Hubei) Health Industry Co., LTD, Jingmen, Hubei 431821, China
| | - Peiyi Shen
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA.
| | - Qian Li
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei 430068, China
| |
Collapse
|
16
|
Lin J, Lin Q, Zhu L, Xie X, Li Y, Li L. Structural properties of Phoenix oolong tea polysaccharide conjugates and the interfacial stability in nanoemulsions. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:5145-5155. [PMID: 36988338 DOI: 10.1002/jsfa.12583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/14/2023] [Accepted: 03/29/2023] [Indexed: 06/08/2023]
Abstract
BACKGROUND Tea polysaccharide conjugate (TPC) is a naturally occurring active substance that is extracted from tea. Owing to its benefits in enhancing human immunity and antioxidant effects, TPC is widely used in culinary products. The binding mode of polysaccharides and proteins in TPC, however, has not been well studied; it may be closely related to their functional properties, especially emulsification. RESULTS The molecular weights and monosaccharide compositions of TPC were determined by ion chromatography and high-performance gel permeation chromatography. Although the functional groups of polysaccharides and proteins were confirmed by infrared spectroscopy, the presence of proteins could not be detected by sodium dodecyl sulfate polyacrylamide gel electrophoresis and ultraviolet spectroscopy. It was hypothesized that the hydrophobic groups of the proteins in TPC were wrapped by polysaccharide chains, thus making the proteins undetectable. The rheology and interfacial protein adsorption results show that TPC forms a viscoelastic film at the oil-water interface to prevent the aggregation of oil droplets, thereby enhancing the stability of the emulsion. Based on these structural and emulsifying properties of TPC, the binding mode of polysaccharides and proteins along with their phase behavior at the oil-water interface of the emulsion was speculated. CONCLUSION In TPC, the hydrophilic groups of the proteins are linked to polysaccharides by covalent interactions, where the hydrophobic groups are wrapped with the polysaccharide chains with the help of hydrophobic forces to form a hydrophobic core. The unique binding of polysaccharides and proteins in TPC enhances its amphiphilic properties, which can be effectively distributed at the oil-water interface and form stable emulsions. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jiayi Lin
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Qiaoyi Lin
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Linjia Zhu
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Xinan Xie
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yan Li
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Lu Li
- College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
17
|
Zhou Y, Luo X, Wang Z, McClements DJ, Huang W, Fu H, Zhu K. Dual role of polyglycerol vitamin E succinate in emulsions: An efficient antioxidant emulsifier. Food Chem 2023; 416:135776. [PMID: 36889015 DOI: 10.1016/j.foodchem.2023.135776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/11/2023] [Accepted: 02/20/2023] [Indexed: 03/05/2023]
Abstract
α-Tocopherol, as an oil-soluble vitamin with strong antioxidant activity. It is the most naturally abundant and biologically active form of vitamin E in humans. In this study, a novel emulsifier (PG20-VES) was synthesized by attaching hydrophilic twenty-polyglycerol (PG20) to hydrophobic vitamin E succinate (VES). This emulsifier was shown to have a relatively low critical micelle concentration (CMC = 3.2 μg/mL). The antioxidant activities and emulsification properties of PG20-VES were compared with those of a widely used commercial emulsifier: D-α-Tocopherol polyethylene glycol 1000 succinate (TPGS). PG20-VES exhibited a lower interfacial tension, stronger emulsifying capacity and similar antioxidant property to TPGS. An in vitro digestion study showed that lipid droplets coated by PG20-VES were digested under simulated small intestine conditions. This study showed that PG20-VES is an efficient antioxidant emulsifier, which may have applications in the formulation of bioactive delivery systems in the food, supplement, and pharmaceutical industries.
Collapse
Affiliation(s)
- Yanyan Zhou
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang 312000, China
| | - Xiang Luo
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang 312000, China; Zhejiang Engineering Research Center of Fat-soluble Vitamin, School of Chemistry and Chemical Engineering, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang 312000, China
| | - Zhixin Wang
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang 312000, China
| | - David Julian McClements
- Biopolymers and Colloids Laboratory, Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Wenna Huang
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang 312000, China
| | - Hongliang Fu
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang 312000, China
| | - Kewu Zhu
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang 312000, China.
| |
Collapse
|
18
|
Lu Y, Hou R, Shao S, Li J, Yu N, Nie X, Meng X. In-depth potential mechanism of combined demulsification pretreatments (isopropanol ultrasonic pretreatments and Ca 2+ flow additions) during aqueous enzymatic extractions of Camellia oils. Food Chem 2023; 414:135681. [PMID: 36827778 DOI: 10.1016/j.foodchem.2023.135681] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023]
Abstract
Emulsification is the practical limitation of aqueous enzymatic extractions of Camellia oils. This study aimed to investigate the influence and demulsification mechanisms of isopropanol ultrasonic pretreatments and Ca2+ additions on aqueous enzymatic extractions of Camellia oils. Combining isopropanol ultrasonic pretreatments with Ca2+ flow additions obtained the highest free oil recovery (78.03 %) and lowest emulsion content (1.5 %). Results indicated that the superior demulsification performance originated from the decrease in emulsion stabilities and formations. First, demulsification pretreatments reduced the oil (14.69 %) and solid (13.21 %) fractions in emulsions to decrease the stability of as-formed emulsions. Meanwhile, isopropanol ultrasonic pretreatments extracted tea saponins (0.38 mg/mL) and polysaccharides (0.23 mg/mL), while Ca2+ combined with protein isolates (5.82 mg/mL), tea saponins (7.48 mg/mL) and polysaccharides (0.78 mg/mL) to form precipitates and reduce emulsion formation. This work could promote the practical application of aqueous enzymatic extractions of Camellia oils and enlighten the rise of advanced demulsification pretreatments.
Collapse
Affiliation(s)
- Yuanchao Lu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Rongrong Hou
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Shengxin Shao
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Jialing Li
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Ningxiang Yu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| | - Xiaohua Nie
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Xianghe Meng
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| |
Collapse
|
19
|
Luo X, Ao S, Wu H, McClements DJ, Fang L, Huang M, Zhou Y, Yin X, Xi M, Cai T, Zhu K. Hyaluronic Acid Poly(glyceryl) 10-Stearate Derivatives: Novel Emulsifiers for Improving the Gastrointestinal Stability and Bioaccessibility of Coenzyme Q10 Nanoemulsions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37436914 DOI: 10.1021/acs.jafc.3c02322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Fish oils are a rich source of polyunsaturated fatty acids, including eicosapentaenoic acid and docosahexaenoic acid, which are reported to exhibit therapeutic effects in a variety of human diseases. However, these oils are highly susceptible to degradation due to oxidation, leading to rancidity and the formation of potentially toxic reaction products. The aim of this study was to synthesize a novel emulsifier (HA-PG10-C18) by esterifying hyaluronic acid with poly(glyceryl)10-stearate (PG10-C18). This emulsifier was then used to formulate nanoemulsion-based delivery systems to co-deliver fish oil and coenzyme Q10 (Q10). Q10-loaded fish oil-in-water nanoemulsions were fabricated, and then their physicochemical properties, digestibility, and bioaccessibility were measured. The results indicated that the environmental stability and antioxidant activity of oil droplets coated with HA-PG10-C18 surpassed those coated with PG10-C18 due to the formation of a denser interfacial layer that blocked metal ions, oxygen, and lipase. Meanwhile, the lipid digestibility and Q10 bioaccessibility of nanoemulsions formulated with HA-PG10-C18 (94.9 and 69.2%) were higher than those formulated with PG10-C18 (86.2 and 57.8%), respectively. These results demonstrated that the novel emulsifier synthesized in this study could be used to protect chemically labile fat-soluble substances from oxidative damage, while still retaining their nutritional value.
Collapse
Affiliation(s)
- Xiang Luo
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang 312000, China
- Zhejiang Engineering Research Center of Fat-Soluble Vitamin, School of Chemistry and Chemical Engineering, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang 312000, China
| | - Sha Ao
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang 312000, China
- Zhejiang Engineering Research Center of Fat-Soluble Vitamin, School of Chemistry and Chemical Engineering, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang 312000, China
| | - Hongze Wu
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang 312000, China
| | - David Julian McClements
- Biopolymers and Colloids Laboratory, Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Likun Fang
- Zhejiang Engineering Research Center of Fat-Soluble Vitamin, School of Chemistry and Chemical Engineering, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang 312000, China
| | - Mengyu Huang
- Zhejiang Engineering Research Center of Fat-Soluble Vitamin, School of Chemistry and Chemical Engineering, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang 312000, China
| | - Yanyan Zhou
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang 312000, China
| | - Xuguang Yin
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang 312000, China
| | - Meiyang Xi
- Zhejiang Engineering Research Center of Fat-Soluble Vitamin, School of Chemistry and Chemical Engineering, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang 312000, China
| | - Tao Cai
- Zhejiang Engineering Research Center of Fat-Soluble Vitamin, School of Chemistry and Chemical Engineering, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang 312000, China
| | - Kewu Zhu
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang 312000, China
| |
Collapse
|
20
|
Wang C, Fu Y, Cao Y, Huang J, Lin H, Shen P, Julian McClements D, Han L, Zhao T, Yan X, Li Q. Enhancement of lycopene bioaccessibility in tomatoes using excipient emulsions: Effect of dark tea polysaccharides. Food Res Int 2023; 163:112123. [PMID: 36596089 DOI: 10.1016/j.foodres.2022.112123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/11/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
Abstract
This study fabricated a novel excipient emulsion by adding dark tea polysaccharides to improve the bioaccessibility of lycopene from tomatoes. Results indicated that addition of tea polysaccharides greatly increased the antioxidant activity of excipient emulsions. Additionally, tea polysaccharides markedly improved the physical stability of excipient emulsion when being mixed with tomato puree and passing through a simulated gastrointestinal tract, contributing to an increase in electrostatic and steric repulsion between the droplets. Besides, certain amount of tea polysaccharides (0.05 - 0.2 wt%) could increase the rate and extent of lipid digestion in tomato-emulsion mixtures. Finally, lycopene bioaccessibility was significantly increased (from 16.95 % to 26.21 %) when 0.1 wt% tea polysaccharides were included, which was mainly ascribed to the ability of tea polysaccharides to increase lipid digestion and reduce carotenoid oxidation within the gastrointestinal tract. These results suggest that well-designed excipient emulsions may increase carotenoids bioavailability in the complex food matrices.
Collapse
Affiliation(s)
- Chao Wang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Yinxin Fu
- Wuhan Fourth Hospital, Puai Hospital, Wuhan, Hubei 430032, China
| | - Yi Cao
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Jialu Huang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Hongyi Lin
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Peiyi Shen
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA.
| | | | - Lingyu Han
- Key Lab of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, Liaoning 116600, China
| | - Tiantian Zhao
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Xiaoxuan Yan
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Qian Li
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei 430068, China.
| |
Collapse
|
21
|
Jin Y, Shu B, Lou X, Wang K, Zhai Y, Qu Y, Song R, Liu F, Dong X, Xu H. Improvement of stability and in vitro bioaccessibility of nervonic acid by nonionic surfactant in protein-based nanoemulsions. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
Physicochemical Stability Enhancement of β-carotene-rich O/W Nanoemulsions using a New Natural Emulsifier Developed from Pistacia lentiscus Fruit Residue. FOOD BIOPHYS 2022. [DOI: 10.1007/s11483-022-09766-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
Han S, Cui F, McClements DJ, Xu X, Ma C, Wang Y, Liu X, Liu F. Structural Characterization and Evaluation of Interfacial Properties of Pea Protein Isolate-EGCG Molecular Complexes. Foods 2022; 11:foods11182895. [PMID: 36141023 PMCID: PMC9498586 DOI: 10.3390/foods11182895] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/06/2022] [Accepted: 09/11/2022] [Indexed: 11/18/2022] Open
Abstract
Highlights Pea protein isolate (PPI) and EGCG spontaneously formed complexes. Protein–polyphenol complexation was mainly driven by hydrogen bonding. The binding of EGCG influenced the structure and functionality of PPI. PPI-EGCG complexes had better emulsifier properties than PPI.
Abstract There is increasing interest in using plant-derived proteins in foods and beverages for environmental, health, and ethical reasons. However, the inherent physicochemical properties and functional performance of many plant proteins limit their widespread application. Here, we prepared pea protein isolate (PPI) dispersions using a combined pH-shift/heat treatment method, and then, prepared PPI-epigallocatechin-3-gallate (EGCG) complexes under neutral conditions. Spectroscopy, calorimetry, molecular docking, and light scattering analysis demonstrated that the molecular complexes formed spontaneously. This was primarily ascribed to hydrogen bonds and van der Waals forces. The complexation of EGCG caused changes in the secondary structure of PPI, including the reduction in the α-helix and increase in the β-sheet and disordered regions. These changes slightly decreased the thermal stability of the protein. With the accretion of EGCG, the hydrophilicity of the complexes increased significantly, which improved the functional attributes of the protein. Optimization of the PPI-to-EGCG ratio led to the complexes having better foaming and emulsifying properties than the protein alone. This study could broaden the utilization of pea proteins as functional ingredients in foods. Moreover, protein–polyphenol complexes can be used as multifunctional ingredients, such as antioxidants or nutraceutical emulsifiers.
Collapse
Affiliation(s)
- Shuang Han
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
| | - Fengzhan Cui
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
| | | | - Xingfeng Xu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Cuicui Ma
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
| | - Yutang Wang
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
| | - Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
- Correspondence:
| |
Collapse
|
24
|
Jie Y, Chen F. Progress in the Application of Food-Grade Emulsions. Foods 2022; 11:2883. [PMID: 36141011 PMCID: PMC9498284 DOI: 10.3390/foods11182883] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
The detailed investigation of food-grade emulsions, which possess considerable structural and functional advantages, remains ongoing to enhance our understanding of these dispersion systems and to expand their application scope. This work reviews the applications of food-grade emulsions on the dispersed phase, interface structure, and macroscopic scales; further, it discusses the corresponding factors of influence, the selection and design of food dispersion systems, and the expansion of their application scope. Specifically, applications on the dispersed-phase scale mainly include delivery by soft matter carriers and auxiliary extraction/separation, while applications on the scale of the interface structure involve biphasic systems for enzymatic catalysis and systems that can influence substance digestion/absorption, washing, and disinfection. Future research on these scales should therefore focus on surface-active substances, real interface structure compositions, and the design of interface layers with antioxidant properties. By contrast, applications on the macroscopic scale mainly include the design of soft materials for structured food, in addition to various material applications and other emerging uses. In this case, future research should focus on the interactions between emulsion systems and food ingredients, the effects of food process engineering, safety, nutrition, and metabolism. Considering the ongoing research in this field, we believe that this review will be useful for researchers aiming to explore the applications of food-grade emulsions.
Collapse
Affiliation(s)
| | - Fusheng Chen
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
25
|
Jalali-Jivan M, Rostamabadi H, Assadpour E, Tomas M, Capanoglu E, Alizadeh-Sani M, Kharazmi MS, Jafari SM. Recent progresses in the delivery of β-carotene: From nano/microencapsulation to bioaccessibility. Adv Colloid Interface Sci 2022; 307:102750. [PMID: 35987014 DOI: 10.1016/j.cis.2022.102750] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/09/2022] [Accepted: 08/09/2022] [Indexed: 11/18/2022]
Abstract
Beta-carotene (BC) as an efficient pro-vitamin is effective in improving vision, immune system and cognitive function as well as preventing coronary diseases and cancer. However, besides its poor chemical stability, the high lipophilic nature of BC reduces its dispersibility and consequently bioavailability which limits its application into food, pharmaceutical and nutraceuticals. Different carriers with vesicular or particulate structures have been studied and utilized for promoting BC solubility, dispersibility, and protection against diverse operational or environmental stresses and also controlling BC release and subsequent bioaccessibility. The current study, therefore reviews different micro/nanocarriers reported on BC encapsulation with special focusing on its bioavailability. Liposomal structures have been successfully used for enhancing BC stability and bioavailability. Besides, emulsion-based carriers including Pickering emulsions, nanoemulsions and microemulsions have been widely evaluated for BC encapsulation and protection. In addition, lipid-based nanoparticles and nanostructural carriers have also been applied successfully for this context. Moreover, gel structures including emulgels, hydrogels and oleogels are studied in some researches. Most of these delivery systems led to higher hydro-solubility and dispersibility of BC which consequently increased its bioavailability; thereupon could promote its application into food, cosmetic and nutraceutical products. However, for remarkable incorporation of BC and other bioactive compounds into edible products, the safety and toxicological aspects of these delivery system especially those designed in nano scale should be addressed in the further researches.
Collapse
Affiliation(s)
- Mehdi Jalali-Jivan
- Department of Food Science and Technology, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Hadis Rostamabadi
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Elham Assadpour
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department. Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain
| | - Merve Tomas
- Department of Food Engineering, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, 34303, Halkali, Istanbul, Turkey
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Mahmood Alizadeh-Sani
- Division of Food Safety and Hygiene, Department of Environmental Health, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E-32004 Ourense, Spain; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
26
|
Meng Y, Qiu C, Li X, McClements DJ, Sang S, Jiao A, Jin Z. Polysaccharide-based nano-delivery systems for encapsulation, delivery, and pH-responsive release of bioactive ingredients. Crit Rev Food Sci Nutr 2022; 64:187-201. [PMID: 35930011 DOI: 10.1080/10408398.2022.2105800] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Polysaccharides are natural polymers isolated from plants, microorganisms, algae, and some animals they are composed of aldoses or ketoses linked by glycosidic bonds. Due to the affordability, abundance, safety, and functionality, polysaccharides are widely used in the foods and medicines to construct oral delivery systems for sensitive bioactive ingredients. In this article, the characteristics and applications of nanoscale polysaccharide-based delivery carriers are reviewed, including their ability to encapsulate, protect, and deliver bioactive ingredients. This review discusses the sources, characteristics, and functional properties of common food polysaccharides, including starch, pectin, chitosan, xanthan gum, and alginate. It also highlights the potential advantages of using polysaccharides for the construction of nano-delivery systems, such as nanoparticles, nanogels, nanoemulsions, nanocapsules, and nanofibers. Moreover, the application of delivery systems assembled from polysaccharides is summarized, with a focus on pH-responsive delivery of bioactives. There are some key findings and conclusions: Nanoscale polysaccharide delivery systems provide several advantages, including improved water-dispersibility, flavor masking, stability enhancement, reduced volatility, and controlled release; Polysaccharide nanocarriers can be used to construct pH-responsive delivery vehicles to achieve intestinal-targeted delivery and controlled release of bioactive ingredients; Polysaccharides can be used in combination with other biopolymers to form composite delivery systems with enhanced functional attributes.
Collapse
Affiliation(s)
- Yaxu Meng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Chao Qiu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiaojing Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Jiangsu, China
| | - David Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, United States
| | - Shangyuan Sang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Aiquan Jiao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
27
|
Li Q, Lin H, Li J, Liu L, Huang J, Cao Y, Zhao T, McClements DJ, Chen J, Liu C, Liu J, Shen P, Zhou M. Improving probiotic (Lactobacillus casei) viability by encapsulation in alginate-based microgels: Impact of polymeric and colloidal fillers. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Huang Z, Zeng YJ, Wu XL, Li MF, Zong MH, Lou WY. Development of Millettia speciosa champ polysaccharide conjugate stabilized oil-in-water emulsion for oral delivery of β-carotene: Protection effect and in vitro digestion fate. Food Chem 2022; 397:133764. [PMID: 35905621 DOI: 10.1016/j.foodchem.2022.133764] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/13/2022] [Accepted: 07/20/2022] [Indexed: 11/25/2022]
Abstract
In this study, a natural antioxidant emulsifier, Millettia speciosa Champ polysaccharide conjugates (MSC-PC), was used for fabricating oil-in-water emulsion, and the influences of MSC-PC on β-carotene stability and bioaccessibility were studied. Results suggested that MSC-PC stabilized emulsion exhibited excellent resistance to a wide range of salt levels (0-500 mM of Na+), thermal treatments (50-90 °C) and pH values (3.0-11.0). MSC-PC also exhibited an outstanding inhibition capacity on lipid oxidation. Besides, MSC-PC stabilized emulsion had a better protective effect on β-carotene than other systems. Interestingly, in spite of similar lipolysis extent, β-carotene bioaccessibility in MSC-PC fabricated emulsion (14.75 %) was markedly higher than that in commercial Tween 80 fabricated emulsion (10.08 %), likely due to the steric-hindrance effect and antioxidant ability of MSC-PC, building interfacial layers that prevented β-carotene from degradation. This work supplied a deep insight into elucidating the mechanisms of emulsifying performance and β-carotene protection effect of MSC-PC fabricated emulsion.
Collapse
Affiliation(s)
- Zhi Huang
- School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou 510640, China
| | - Ying-Jie Zeng
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
| | - Xiao-Ling Wu
- School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou 510640, China
| | - Meng-Fan Li
- School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou 510640, China
| | - Min-Hua Zong
- School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou 510640, China
| | - Wen-Yong Lou
- School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou 510640, China.
| |
Collapse
|
29
|
Advances in the Utilization of Tea Polysaccharides: Preparation, Physicochemical Properties, and Health Benefits. Polymers (Basel) 2022; 14:polym14142775. [PMID: 35890551 PMCID: PMC9320580 DOI: 10.3390/polym14142775] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 02/06/2023] Open
Abstract
Tea polysaccharide (TPS) is the second most abundant ingredient in tea following tea polyphenols. As a complex polysaccharide, TPS has a complex chemical structure and a variety of bioactivities, such as anti-oxidation, hypoglycemia, hypolipidemic, immune regulation, and anti-tumor. Additionally, it shows excellent development and application prospects in food, cosmetics, and medical and health care products. However, numerous studies have shown that the bioactivity of TPS is closely related to its sources, processing methods, and extraction methods. Therefore, the authors of this paper reviewed the relevant recent research and conducted a comprehensive and systematic review of the extraction methods, physicochemical properties, and bioactivities of TPS to strengthen the understanding and exploration of the bioactivities of TPS. This review provides a reference for preparing and developing functional TPS products.
Collapse
|
30
|
Sani MA, Tavassoli M, Azizi-Lalabadi M, Mohammadi K, McClements DJ. Nano-enabled plant-based colloidal delivery systems for bioactive agents in foods: Design, formulation, and application. Adv Colloid Interface Sci 2022; 305:102709. [PMID: 35640316 DOI: 10.1016/j.cis.2022.102709] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 12/21/2022]
Abstract
Consumers are becoming increasingly aware of the impact of their dietary choices on the environment, animal welfare, and health, which is causing many of them to adopt more plant-based diets. For this reason, many sectors of the food industry are reformulating their products to contain more plant-based ingredients. This article describes recent research on the formation and application of nano-enabled colloidal delivery systems formulated from plant-based ingredients, such as polysaccharides, proteins, lipids, and phospholipids. These delivery systems include nanoemulsions, solid lipid nanoparticles, nanoliposomes, nanophytosomes, and biopolymer nanoparticles. The composition, size, structure, and charge of the particles in these delivery systems can be manipulated to create novel or improved functionalities, such as improved robustness, higher optical clarity, controlled release, and increased bioavailability. There have been major advances in the design, assembly, and application of plant-based edible nanoparticles within the food industry over the past decade or so. As a result, there are now a wide range of different options available for creating delivery systems for specific applications. In the future, it will be important to establish whether these formulations can be produced using economically viable methods and provide the desired functionality in real-life applications.
Collapse
Affiliation(s)
- Mahmood Alizadeh Sani
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Milad Tavassoli
- Student's Research Committee, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Azizi-Lalabadi
- Research Center for Environmental Determinants of Health (RCEDH), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Keyhan Mohammadi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
31
|
Guo R, Zhang J, Liu X, Li X, Sun X, Kou Y, Li D, Liu Y, Zhang H, Wu Y. Pectic polysaccharides from Biluochun Tea: A comparative study in macromolecular characteristics, fine structures and radical scavenging activities in vitro. Int J Biol Macromol 2022; 195:598-608. [PMID: 34896471 DOI: 10.1016/j.ijbiomac.2021.12.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 12/29/2022]
Abstract
In this study, two acidic Biluochun Tea polysaccharides (BTP-A11 and BTP-A12) were investigated comparatively, which mainly consisted of Rha, Ara, Gal and GalA, possibly suggesting their pectic nature. Structurally, their galacturonan backbones composed of →4)-α-D-GalpA-(1→ and →2)-α-L-Rhap-(1→ were revealed similar, while Ara- and Gal-based branches attached to the O-2 of →2)-α-L-Rhap-(1→ were in distinctive types, proportions, extensibilities and branching degrees. This could lead to their different macromolecular characteristics, where BTP-A11 with higher Mw presented a more hyper-branched chain conformation and relatively higher structural flexibility/compactness, thereby resulting in a lower exclusion effect and an insufficient hydrodynamic volume. Besides, better radical scavenging activities in vitro were also determined for Gal-enriched BTP-A11, where a larger surface area containing more H-donating groups were related to its higher Mw, more hyper-branched conformation, lower DM and higher DA. Therefore, the understanding of structure-property-activity relationships was improved to some degrees for acidic Biluochun Tea polysaccharides, which could be potentially required for more applications in food, medical and cosmetic fields.
Collapse
Affiliation(s)
- Rui Guo
- Shanghai Engineering Research Center of Food Safety, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jun'ai Zhang
- Shanghai Engineering Research Center of Food Safety, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xin Liu
- Shanghai Engineering Research Center of Food Safety, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xujiao Li
- Shanghai Engineering Research Center of Food Safety, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xianbao Sun
- Shanghai Engineering Research Center of Food Safety, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuxing Kou
- Shanghai Engineering Research Center of Food Safety, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Deshun Li
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, National R&D Center for Edible Fungi Processing, Shanghai 201403, China
| | - Yanfang Liu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, National R&D Center for Edible Fungi Processing, Shanghai 201403, China
| | - Hui Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yan Wu
- Shanghai Engineering Research Center of Food Safety, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
32
|
Zheng J, Xiao N, Li Y, Xie X, Li L. Free radical grafting of whey protein isolate with tea polyphenol: Synthesis and changes in structural and functional properties. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112438] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
33
|
Jiang T, Charcosset C. Encapsulation of curcumin within oil-in-water emulsions prepared by premix membrane emulsification: Impact of droplet size and carrier oil type on physicochemical stability and in vitro bioaccessibility. Food Chem 2021; 375:131825. [PMID: 34936971 DOI: 10.1016/j.foodchem.2021.131825] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/01/2021] [Accepted: 12/05/2021] [Indexed: 11/28/2022]
Abstract
Oil-in-water emulsions containing curcumin with different droplet size (small ≈ 0.5 µm, medium ≈ 0.8 µm, large ≈ 3.7 µm and premix ≈ 60 µm) were prepared through premix membrane emulsification using different carrier oils: tributyrin (short chain triglycerides, SCT), medium chain triglycerides (MCT) and corn oil (long chain triglycerides, LCT). An in vitro gastrointestinal model was used to evaluate the impact of oil and droplet size on lipid digestion and curcumin bioaccessibility. Lipid digestion and bioaccessibility decreased with the increase of droplet size for LCT-based emulsions, whereas there was no significant difference for small, medium and large emulsions in SCT and MCT-based emulsions. In addition, encapsulation efficiency played an important role in determining bioaccessibility. Bioaccessibility in MCT premix was significantly lower than that in other size MCT-based emulsions because of its low encapsulation efficiency. The bioaccessibility decreased in the order MCT > SCT > LCT in each size of emulsions..
Collapse
Affiliation(s)
- Tian Jiang
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, F-69100 Villeurbanne, France
| | - Catherine Charcosset
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, F-69100 Villeurbanne, France.
| |
Collapse
|
34
|
Li Q, Shi J, Li J, Liu L, Zhao T, McClements DJ, Fu Y, Wu Z, Duan M, Chen X. Influence of thermal treatment on the physicochemical and functional properties of tea polysaccharide conjugates. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111967] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
35
|
Influencing Factors on the Physicochemical Characteristics of Tea Polysaccharides. Molecules 2021; 26:molecules26113457. [PMID: 34200163 PMCID: PMC8201348 DOI: 10.3390/molecules26113457] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/02/2021] [Accepted: 06/05/2021] [Indexed: 11/18/2022] Open
Abstract
Tea polysaccharides (TPSs) are one of the main bioactive constituents of tea with various biological activities such as hypoglycemic effect, antioxidant, antitumor, and immunomodulatory. The bioactivities of TPSs are directly associated with their structures such as chemical composition, molecular weight, glycosidic linkages, and conformation among others. To study the relationship between the structures of TPSs and their bioactivities, it is essential to elucidate the structure of TPSs, particularly the fine structures. Due to the vast variation nature of monosaccharide units and their connections, the structure of TPSs is extremely complex, which is also affected by several major factors including tea species, processing technologies of tea and isolation methods of TPSs. As a result of the complexity, there are few studies on their fine structures and chain conformation. In the present review, we aim to provide a detailed summary of the multiple factors influencing the characteristics of TPS chemical structures such as variations of tea species, degree of fermentation, and preparation methods among others as well as their applications. The main aspects of understanding the structural difference of TPSs and influencing factors are to assist the study of the structure and bioactivity relationship and ultimately, to control the production of the targeted TPSs with the most desired biological activity.
Collapse
|