1
|
Su C, Huang Y, Chen J, Li H, Zhang D, Tang Y. Effect of ultrasound-assisted phosphates treatment on solubilization and stable dispersion of rabbit Myofibrillar proteins at low ionic strength. Food Chem 2025; 472:142898. [PMID: 39862610 DOI: 10.1016/j.foodchem.2025.142898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/03/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025]
Abstract
The effects of high-intensity ultrasound (HIU) on the dispersibility of myofibrillar proteins (MPs) in low-salt medium were investigated. HIU-assisted STPP or TSPP could sharply improve the solubility and dispersibility of MPs (from 38.12 % to 94.08 % and 37.80 % to 89.91 %, respectively), whereas the use of NaCl or SHMP had negligible effects. MPs in STPP and TSPP medium had higher surface charge and stronger hydrophilic ability than those in NaCl and SHMP medium. The results of CLSM and SDS-PAGE showed MP depolymerization in STPP and TSPP medium. MPs in STPP and TSPP displayed a flexible α-helix conformation. HIU could induce the rearrangement of myosin and actin in STPP and TSPP medium and generated soluble oligomers by disulfide bonds. By contrast, MPs in SHMP and NaCl exhibited a stable β-sheet conformation, hindering the modification effect of HIU. Medium could affect the modification effect of HIU on MPs by changing surface charge and hydrophilicity.
Collapse
Affiliation(s)
- Chang Su
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu 610039, China; School of Future Food Modern Industry, Xihua University, Chengdu 610039, China
| | - Yuxin Huang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu 610039, China; School of Future Food Modern Industry, Xihua University, Chengdu 610039, China
| | - Jiaxin Chen
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu 610039, China
| | - Hongjun Li
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Dong Zhang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu 610039, China; School of Future Food Modern Industry, Xihua University, Chengdu 610039, China
| | - Yong Tang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu 610039, China; School of Future Food Modern Industry, Xihua University, Chengdu 610039, China.
| |
Collapse
|
2
|
Wang S, Hu G, Xie Y, Wang J, Qin R, Chen G, Geng F. Molecular mechanism of protein-lipid interactions in steamed egg gelation and deterioration: A quantitative proteomic study. Int J Biol Macromol 2025; 301:140132. [PMID: 39863207 DOI: 10.1016/j.ijbiomac.2025.140132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/16/2025] [Accepted: 01/19/2025] [Indexed: 01/27/2025]
Abstract
Steamed egg (SE), a traditional egg dish, exhibits steaming time-dependent textural properties. This study investigated the molecular mechanisms underlying SE gel formation and deterioration using quantitative proteomics combined with physicochemical characterization. Results showed optimal gel formation at 11 min steaming, while prolonged steaming (23 min) led to gel cracking and sensory deterioration. Textural analysis showed the hardness of SE increased continuously with the increase of steaming time, but the water-holding capacity decreased significantly. Quantitative proteomic analyses revealed that lysozyme and ovomucin may play a key role in SE formation by influencing protein aggregation through their chargeability and high glycosylation. In addition, the extension of the steaming time disrupted the structure of apolipoproteins, especially low-density lipoprotein (LDL), under the influence of NaCl. The protein parts of LDL were partially involved in the gel structure while the lipid parts were partially free, which might be the main reasons for the creation of voids in the egg custard gels and the decrease of the water-holding capacity. Our findings provide molecular insights into SE gel formation and deterioration, offering theoretical guidance for improving the texture of commercial SE products.
Collapse
Affiliation(s)
- Shiwen Wang
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China
| | - Gan Hu
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China; Institute for Advanced Study, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China
| | - Yunxiao Xie
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China
| | - Jinqiu Wang
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China
| | - Renyi Qin
- Sichuan Zhongrun Food Co., Ltd, 590 Xincheng Road, Shouan Town, Pujiang County, Chengdu 610106, China
| | - Guo Chen
- Sichuan Zhongrun Food Co., Ltd, 590 Xincheng Road, Shouan Town, Pujiang County, Chengdu 610106, China
| | - Fang Geng
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China.
| |
Collapse
|
3
|
Rao SQ, Jia CC, Du L, Zhou WB, Hu WX, Jiang Y, Wang ZR, Yang ZQ. Contribution of phosphorylation modification by sodium tripolyphosphate to the functional properties of hollow zein nanoparticles. Food Res Int 2025; 203:115845. [PMID: 40022368 DOI: 10.1016/j.foodres.2025.115845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 01/17/2025] [Accepted: 01/23/2025] [Indexed: 03/03/2025]
Abstract
In this study, hollow zein nanoparticles (HZn) have been prepared by Na2CO3 as a sacrificial template, and phosphorylated hollow zein nanoparticles (PHZn) have been further prepared with sodium tripolyphosphate (STP) incorporation. The results indicated that HZn exhibited a smaller particle size in comparison to solid zein nanoparticles (SZn), which consequently led to a higher degree of phosphorylation for HZn when equivalent amounts of STP were incorporated. As phosphorylation increased, the zeta potential, free amino content, and free sulfhydryl content of HZn decreased, attaining the lowest values of -53.2 mV, 0.134 mmol/g, and 14.36 µmol/g, respectively. Scanning electron microscopy, fourier transform infrared spectroscopy, circular dichroism spectroscopy, and intrinsic fluorescence spectroscopy measurements showed that PHZn was more denatured than SZn. This series of changes contributed to the improvement of the functional indicators. Thus, compared to SZn, the functional characteristics of PHZn at the highest phosphorylation level exhibit significant improvements in several aspects: solubility increased from 21.88 % to 43.45 %; excellent storage stability for at least 3 weeks at room temperature; enhancements in emulsification activity and emulsification stability by 118.63 m2/g and 59.54 %, respectively; increases in foaming capacity and foaming stability by 2.73 and 1.22 times, respectively; and improvements in puerarin encapsulation efficiency and loading capacity by 17.10 % and 3.42 %, individually. These findings indicate that the implementation of hollow preparation techniques and the incorporation of STP can enhance the functional properties and broaden the potential applications of zein nanoparticles.
Collapse
Affiliation(s)
- Sheng-Qi Rao
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Cao-Chen Jia
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Lin Du
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Wei-Biao Zhou
- Department of Food Science and Technology, National University of Singapore, Singapore 117543, Singapore; National University of Singapore (Suzhou) Research Institute, Jiangsu 215123, China
| | - Wen-Xuan Hu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Yi Jiang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Zhi-Rong Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Zhen-Quan Yang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
4
|
Teng Z, He X, Wang L, Xu L, Jiao C, Chen J. Effect of Liquid Nitrogen Freezing on Maintaining the Quality of Crayfish During Freeze-Thaw Cycles: Muscle Structure and Myofibrillar Proteins Properties. Foods 2025; 14:279. [PMID: 39856945 PMCID: PMC11765249 DOI: 10.3390/foods14020279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/14/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
The quality of frozen crayfish (Procambarus clarkii) is challenged by freeze-thaw (FT) cycles during storage. The effect of freezing methods on the quality of crayfish during FT cycles was investigated by comparing physicochemical properties, microstructure, and myofibrillar protein (MPs) properties. Three methods were used for crayfish freezing, including air convective freezing (AF) at -20 °C and -50 °C, as well as liquid nitrogen freezing (LNF) at -80 °C. The frozen crayfish were thawed at 4 °C after 45 d of frozen storage as 1 FT cycle. After 5 FT cycles, the water holding capacity of LNF crayfish (70.8%) was significantly (p < 0.05) higher than that of -20 °C AF crayfish (60.6%) and -50 °C AF crayfish (63.5%). The drip loss of LNF crayfish (7.83%) was significantly lower than that of AF crayfish. Moreover, LNF maintained the gel strength and the thermal stability of MPs from crayfish with higher gel storage modulus and enthalpy. These results demonstrated that LNF minimized the formation of large ice crystals, preserving the structural integrity of muscle and the properties of MPs, thereby maintaining crayfish quality. This study investigated the effect of LNF in preserving crayfish quality during FT cycles, providing valuable insights for reducing the quality degradation of aquatic products during storage and transportation.
Collapse
Affiliation(s)
- Zongna Teng
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Z.T.); (X.H.); (L.X.)
| | - Xiaoyue He
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Z.T.); (X.H.); (L.X.)
| | - Liuqing Wang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Z.T.); (X.H.); (L.X.)
| | - Limin Xu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Z.T.); (X.H.); (L.X.)
| | - Chuyi Jiao
- Hubei He Yuan Gas Co., Ltd., Yichang 443000, China
| | - Jiwang Chen
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
5
|
Liu Y, Zhang Q, Zhao L, Hua L, Xu K, Shi Y, Chen S, Zhao H, Zhu H, Wang S. Unraveling the contribution of melamine tableware for human internal exposure to melamine and its derivatives: Insights from crossover and biomonitoring studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176971. [PMID: 39419215 DOI: 10.1016/j.scitotenv.2024.176971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
Melamine tableware can release melamine in daily-use; however, currently there is insufficient evidence to support whether the amount released could pose human exposure risk. We therefore conducted two studies, one is 8-day randomized crossover trial involving 27 volunteers who used melamine and stainless-steel tableware in turn (n = 648) and the other is cross-sectional study including 113 college students and 200 residents (n = 313) to further provide population-based evidence. The crossover study results showed that using melamine tableware could promote urinary concentrations of melamine, cyanuric acid (CYA), and ammelide by 42.1 %, 66.9 %, and 36.2 %, respectively. In the biomonitoring survey, students who are more accessible to melamine tableware in the canteen had 1.47-fold higher median urinary concentrations of melamine-related compounds than that of common residents (393 vs 267 nmol/L, p < 0.01). Additionally, positive associations between exposure to melamine and an oxidative stress indicator, 8-oxo-7,8-dihydroguanine (β = 1.13, 95 % CI: 0.32, 1.94), and CYA and 8-hydroxy-2'-deoxyguanosine (β = 0.87, 95 % CI: 0.22, 1.53) were observed in students (p < 0.01), indicating long-term chronic exposure to these chemicals may induce molecular damage to nucleic acids. Our findings provide compelling evidence that frequent use of melamine tableware continues to be a potential threat to human health.
Collapse
Affiliation(s)
- Yarui Liu
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qiuyue Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Leicheng Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Liting Hua
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ke Xu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yumeng Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shucong Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongzhi Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongkai Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300350, China.
| |
Collapse
|
6
|
Wang K, Li C, Zhu M, Zhang W, Yuan J, Liu X, Ma J, Wang Z, Zhou Y, Zhu Q, Jin Y, Liu Y. Redistribution and fusion of protein-lipid assemblies within the egg yolk sphere under slight non-destructive deformation causing a change in thermal gel properties. Food Chem 2024; 460:140577. [PMID: 39094341 DOI: 10.1016/j.foodchem.2024.140577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/21/2024] [Accepted: 07/21/2024] [Indexed: 08/04/2024]
Abstract
Egg yolk production processed after separating egg white is a common method to shorten cycle, but its taste quality will change even the vitelline membrane is intact. This might be related to the slight non-destructive deformation causing redistribution and fusion of protein-lipid assemblies within the egg yolk spheres. We investigated the mechanism of the change in thermal gel properties under slight deformation. The results of microscopic structural morphology revealed that the whole boiled egg yolk (WEY) underwent a transition in protein-lipid assembly morphology within yolk spheres, which changed from local aggregation to disordered fusion in shaken boiled egg yolks (SEYs). The spectroscopic and physicochemical properties analysis demonstrated that the redistribution of protein-lipid assemblies gave rise to marked changes in water migration, texture properties, molecular interactions, and oral sensation simulation of egg yolk thermal gels. This is benefit to guide the regulation of the taste quality egg yolk products in industry.
Collapse
Affiliation(s)
- Keshan Wang
- Guizhou Province Key Laboratory of Agricultural and Animal Products Storage and Processing, College of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Chan Li
- Guizhou Province Key Laboratory of Agricultural and Animal Products Storage and Processing, College of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Min Zhu
- Guizhou Province Key Laboratory of Agricultural and Animal Products Storage and Processing, College of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Wenxin Zhang
- Guizhou Province Key Laboratory of Agricultural and Animal Products Storage and Processing, College of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Jing Yuan
- Guizhou Province Key Laboratory of Agricultural and Animal Products Storage and Processing, College of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Xiaoli Liu
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Jiaxuan Ma
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Zhengcong Wang
- College of Economics and Management, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Ying Zhou
- Guizhou Province Key Laboratory of Agricultural and Animal Products Storage and Processing, College of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Qiujin Zhu
- Guizhou Province Key Laboratory of Agricultural and Animal Products Storage and Processing, College of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Yongguo Jin
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China.
| | - Yuanyuan Liu
- Guizhou Province Key Laboratory of Agricultural and Animal Products Storage and Processing, College of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou, 550025, China.
| |
Collapse
|
7
|
Zhang M, Han Y, Liu H, Chen B, Li Q, Li C. Microstructure and digestive behaviors of inner, middle, and outer layers of pork during heating. Food Chem 2024; 458:140263. [PMID: 38981396 DOI: 10.1016/j.foodchem.2024.140263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/02/2024] [Accepted: 06/26/2024] [Indexed: 07/11/2024]
Abstract
To investigate the effects of heat treatment on the microstructure and digestive behaviors of pork, meat samples were subjected to a 100 °C water bath for 26 min. The inner, medium, and outer layers were assigned and analyzed according to the temperature gradient. Compared to the raw samples, significant changes were observed in the microscopic structure of pork. As the temperature increased, the myofibrillar structure of pork underwent increasingly severe damage and the moisture content decreased significantly (P < 0.05). Moreover, differential peptides were identified in digested products of the inner, middle, and outer layers of cooked pork, which are mainly derived from the structural proteins of pork. The outcomes of molecular docking indicated that a greater number of hydrogen bonds were formed between myosin and the digestive enzyme in the inner layer, rather than other parts, contributing to the transformation of digestive behaviors.
Collapse
Affiliation(s)
- Miao Zhang
- National Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST, Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Han
- National Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST, Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Shanghai Institute for Food and Drug Control, Nanjing 200233, China
| | - Hui Liu
- National Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST, Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Bo Chen
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Qian Li
- National Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST, Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunbao Li
- National Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST, Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
8
|
Rachman AB, Ogawa M, Akazawa T, Febrisiantosa A, Wahyuningsih R, Wahyono T, Ujilestari T, Jambang N, Hakim L, Firmansyah AM. Improved Physical Properties of Frozen Chicken Egg Gels with Olive Leaf Extract Fortification. Food Sci Anim Resour 2024; 44:1327-1344. [PMID: 39554819 PMCID: PMC11564134 DOI: 10.5851/kosfa.2024.e49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/06/2024] [Accepted: 06/16/2024] [Indexed: 11/19/2024] Open
Abstract
The research focused on evaluating the impact of olive leaf water extract (OEx4) on the microbiological and physical properties of egg gels, as well as its ability to protect the rheological properties of gel throughout freeze-thaw cycles. Egg gels with added OEx4 at concentrations of 0.03% and 0.1% (w/w) a to minced whole egg and egg white were frozen at -20°C for five days, undergoing three freeze-thaw cycles. The weight of the OEx4-egg gels was constant throughout the cycles, in contrast to the control egg gels without OEx4, which displayed accelerated thawing weight loss. The OEx4-egg gels maintained their water-holding capacity, breaking strength, elasticity, and viscosity, but the control egg gels saw a decrease. Using scanning electron microscopy, it was discovered that the OEx4-egg gels even after freezing retained a structure similar to their non-frozen condition, in contrast to the control egg gels. These findings suggest that OEx4 imparts freeze-resistance to egg gels. Additionally, OEx4 application improved the interaction between non-polar groups and water molecules, in egg gels leading to a rise in pH. Then, OEx4 has been found to effectively hinder the proliferation of bacteria while also minimizing the occurrence of gel contamination in eggs subjected to the freeze-thaw process. Therefore, OEx4 proves to be beneficial in enhancing the physical, chemical and microbiological properties of frozen processed poultry products.
Collapse
Affiliation(s)
- Agus Bahar Rachman
- Research Center for Food Technology and
Processing, National Research and Innovation Agency,
Yogyakarta 55861, Indonesia
- Department of Food Technology, Faculty of
Agriculture, State University of Gorontalo, Gorontalo 96128,
Indonesia
| | - Masahiro Ogawa
- Department of Applied Biological Science,
Faculty of Agriculture, Kagawa University, Kagawa 7610795,
Japan
| | - Takashi Akazawa
- Graduate School of Science and Technology,
Niigata University, Niigata 9502181, Japan
| | - Andi Febrisiantosa
- Research Center for Food Technology and
Processing, National Research and Innovation Agency,
Yogyakarta 55861, Indonesia
| | - Rina Wahyuningsih
- Research Center for Food Technology and
Processing, National Research and Innovation Agency,
Yogyakarta 55861, Indonesia
| | - Teguh Wahyono
- Research Center for Food Technology and
Processing, National Research and Innovation Agency,
Yogyakarta 55861, Indonesia
| | - Tri Ujilestari
- Research Center for Food Technology and
Processing, National Research and Innovation Agency,
Yogyakarta 55861, Indonesia
| | - Nicolays Jambang
- Research Center for Food Technology and
Processing, National Research and Innovation Agency,
Yogyakarta 55861, Indonesia
| | - Lukman Hakim
- Research Center for Food Technology and
Processing, National Research and Innovation Agency,
Yogyakarta 55861, Indonesia
| | - Angga Maulana Firmansyah
- Research Center for Food Technology and
Processing, National Research and Innovation Agency,
Yogyakarta 55861, Indonesia
| |
Collapse
|
9
|
Yuan L, Liu C, Li B, Wang S, Zhang H, Sun J, Mao X. A green extraction method for agar with improved thermal stability and water holding capacity. Int J Biol Macromol 2024; 278:134663. [PMID: 39134202 DOI: 10.1016/j.ijbiomac.2024.134663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/23/2024] [Accepted: 08/09/2024] [Indexed: 08/24/2024]
Abstract
The conventional agar extraction method has drawbacks such as high energy consumption, low yield, poor quality, and possible residual harmful factors, which greatly limit its application in high-end fields such as biomedicine and high-end materials. This work explored a new freezing-thawing-high-temperature coupling technique for agar extraction. It increased the yield and the strength of agar by 10.6 % and 13.7 %, respectively, as compared to direct high-temperature extraction of agar (HA). The greater molecular weight and lower sulfate content of agar obtained from freeze-thaw cycles combined with high temperature extraction (FA) may be attributed to the desulfurization effect caused by freeze-thaw cycles and the preservation of the molecular chain structure. The reduction in sulfate content decreases the steric hindrance resistance of the polysaccharide chains, enhances their interactions, and promotes the regularity and density of the agar structure, while also improving its water retention and thermal stability. In conclusion, this research can offer a theoretical basis and guidance for the eco-friendly extraction of agar with improved agar characteristics and expended its applications.
Collapse
Affiliation(s)
- Long Yuan
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Chunhui Liu
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Bolun Li
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Sai Wang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Haiyang Zhang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Jianan Sun
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China.
| | - Xiangzhao Mao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China.
| |
Collapse
|
10
|
Xia X, Zhang B, Huang Y, Zhu Y, Qu M, Liu L, Sun B, Zhu X. Soy Protein Isolate Gel Subjected to Freezing Treatment: Influence of Methylcellulose and Sodium Hexametaphosphate on Gel Stability, Texture and Structure. Foods 2024; 13:2117. [PMID: 38998623 PMCID: PMC11241562 DOI: 10.3390/foods13132117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024] Open
Abstract
Freezing affects texture and induces the loss of gel quality. This study investigated the effects of methylcellulose (MC) (0.2%, 0.4%, 0.6%) and sodium hexametaphosphate (SHMP) (0.15%, 0.3%) on the gel textural and structural properties of SPI gels before and after freezing, and explores the synergistic enhancement of gel texture and the underlying mechanisms resulting from the simultaneous addition of SHMP and MC to SPI gels. It was revealed that MC improved the strength of SPI gels through its thickening properties, but it could not inhibit the reduction of SPI gels after freezing. The 0.4% MC-SPI gel exhibited the best gel strength (193.2 ± 2.4 g). SHMP inhibited gel reduction during freezing through hydrogen bonding and ionic interactions; it enhanced the freezing stability of SPI gels. The addition of 0.15% SHMP made the water-holding capacity in SPI gels reach the highest score after freezing (58.2 ± 0.32%). The synergistic effect of MC and SHMP could improve the strength and the freezing stability of SPI gels. MC facilitated the release of ionizable groups within SPI, causing negatively charged SHMP groups to aggregate on the SPI and inhibit the freezing aggregation of proteins. These results provide a strong basis for the improvement of cryogenic soy protein gel performance by SHMP and MC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xiuqing Zhu
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China; (X.X.); (B.Z.); (Y.H.); (Y.Z.); (M.Q.); (L.L.); (B.S.)
| |
Collapse
|
11
|
Li J, Wang X, Chang C, Gu L, Su Y, Yang Y, Agyei D, Han Q. Chicken Egg White Gels: Fabrication, Modification, and Applications in Foods and Oral Nutraceutical Delivery. Foods 2024; 13:1834. [PMID: 38928777 PMCID: PMC11202995 DOI: 10.3390/foods13121834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Chicken egg white (EW) proteins possess various useful techno-functionalities, including foaming, gelling or coagulating, and emulsifying. The gelling property is one of the most important functionalities of EW proteins, affecting their versatile applications in the food and pharmaceutical industries. However, it is challenging to develop high-quality gelled foods and innovative nutraceutical supplements using native EW and its proteins. This review describes the gelling properties of EW proteins. It discusses the development and action mechanism of the physical, chemical, and biological methods and exogenous substances used in the modification of EW gels. Two main applications of EW gels, i.e., gelling agents in foods and gel-type carriers for nutraceutical delivery, are systematically summarized and discussed. In addition, the research and technological gaps between modified EW gels and their applications are highlighted. By reviewing the new modification strategies and application trends of EW gels, this paper provides insights into the development of EW gel-derived products with new and functional features.
Collapse
Affiliation(s)
- Junhua Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Xuechun Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Cuihua Chang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Luping Gu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yujie Su
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yanjun Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Dominic Agyei
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand
| | - Qi Han
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| |
Collapse
|
12
|
Zhao D, Sun L, Wang Y, Liu S, Cao J, Li H, Liu X. Salt ions improve soybean protein isolate/curdlan complex fat substitutes: Effect of molecular interactions on freeze-thaw stability. Int J Biol Macromol 2024; 272:132774. [PMID: 38823735 DOI: 10.1016/j.ijbiomac.2024.132774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/03/2024]
Abstract
Although emulsion gels show significant potential as fat substitutes, they are vulnerable to degreasing, delamination, and other undesirable processes during freezing, storage, and thawing, leading to commercial value loss in terms of juiciness, flavor, and texture. This study investigated the gel strength and freeze-thaw stability of soybean protein isolate (SPI)/curdlan (CL) composite emulsion gels after adding sodium chloride (NaCl). Analysis revealed that adding low salt ion concentrations promoted the hardness and water-holding capacity (WHC) of fat substitutes, while high levels displayed an inhibitory effect. With 40 mM NaCl as the optimum concentration, the hardness increased from 259.33 g (0 mM) to 418.67 g, the WHC increased from 90.59 % to 93.18 %, exhibiting good freeze-thaw stability. Confocal laser scanning microscopy (CLSM) and particle size distribution were used to examine the impact of salt ion concentrations on protein particle aggregation and the damaging effect of freezing and thawing on the proteoglycan complex network structure. Fourier-transform infrared spectroscopy (FTIR) and protein solubility evaluation indicated that the composite gel network structure consisted of covalent contacts between the proteoglycan molecules and hydrogen bonds, playing a predominant role in non-covalent interaction. This study showed that the salt ion concentration in the emulsion gel affected its molecular interactions.
Collapse
Affiliation(s)
- Di Zhao
- National Soybean Processing Industry Technology Innovation Center, Key Laboratory of Geriatric Nutrition and Health Ministry of Education, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Luyao Sun
- National Soybean Processing Industry Technology Innovation Center, Key Laboratory of Geriatric Nutrition and Health Ministry of Education, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Yong Wang
- School of Chemical Engineering, UNSW Sydney, NSW 2052, Australia.
| | - Shuqi Liu
- National Soybean Processing Industry Technology Innovation Center, Key Laboratory of Geriatric Nutrition and Health Ministry of Education, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Jinnuo Cao
- Puluting (Hebei) Protein Biotechnology Research Limited Company, Handan, China
| | - He Li
- National Soybean Processing Industry Technology Innovation Center, Key Laboratory of Geriatric Nutrition and Health Ministry of Education, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| | - Xinqi Liu
- National Soybean Processing Industry Technology Innovation Center, Key Laboratory of Geriatric Nutrition and Health Ministry of Education, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| |
Collapse
|
13
|
Guo J, Gao X, Chi Y, Chi Y. Potassium Chloride as an Effective Alternative to Sodium Chloride in Delaying the Thermal Aggregation of Liquid Whole Egg. Foods 2024; 13:1107. [PMID: 38611411 PMCID: PMC11011459 DOI: 10.3390/foods13071107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/01/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
The potential of potassium chloride (KCl) to be used as a substitute for sodium chloride (NaCl) was studied by monitoring the effects of salt treatment on thermal behavior, aggregation kinetics, rheological properties, and protein conformational changes. The results show that the addition of KCl can improve solubility, reduce turbidity and particle size, and positively influence rheological parameters such as apparent viscosity, consistency coefficient (K value), and fluidity index (n). These changes indicate delayed thermal denaturation. In addition, KCl decreased the content of β-sheet and random coil structures and increased the content of α-helix and β-turn structures. The optimal results were obtained with 2% KCl addition, leading to an increase in Tp up to 85.09 °C. The correlation results showed that Tp was positively correlated with solubility, α-helix and β-turn but negatively correlated with ΔH, turbidity, β-sheet and random coil. Overall, compared to NaCl, 2% KCl is more effective in delaying the thermal aggregation of LWE, and these findings lay a solid theoretical foundation for the study of sodium substitutes in heat-resistant liquid egg products.
Collapse
Affiliation(s)
- Jiayu Guo
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (J.G.); (X.G.)
| | - Xin Gao
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (J.G.); (X.G.)
| | - Yujie Chi
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (J.G.); (X.G.)
| | - Yuan Chi
- College of Engineering, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
14
|
Zhang T, Yuan Y, Wu X, Yu P, Ji J, Chai J, Kumar Saini R, Liu J, Shang X. The level of sulfate substitution of polysaccharide regulates thermal-induced egg white protein gel properties: The characterization of gel structure and intermolecular forces. Food Res Int 2023; 173:113349. [PMID: 37803654 DOI: 10.1016/j.foodres.2023.113349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/28/2023] [Accepted: 08/03/2023] [Indexed: 10/08/2023]
Abstract
Sulfated polysaccharides exhibit great potential for regulating protein-protein interactions. In the present study, three sulfated microcrystalline cellulose (MCS) with different degrees of sulfate substitution (DSS: 0.33, 0.51, 0.61) were synthesized and the effects of DSS on the regulation of egg white protein (EWP) aggregation and gelation properties were investigated. The results found that the improvement of protein mechanical properties by MCS is closely related to the level of sulfate substitution. The higher the DSS, the more ordered protein aggregates and compact gel network formed during heating as compared to that of pure EWP. Lower DSS (0.33) shows little effect on the mechanical properties of EWP. Furthermore, all the MCSs could significantly destroy the tertiary structure of protein molecules during heating, while for the secondary structure, MCS with higher DSS (0.51 and 0.61) could effectively control the decreasing tendency of α-helix and increasing tendency of β-sheet. Hydrophobic interactions were recognized as the major intermolecular force in the compact mixed gels (EWP/MCS2 and EWP/MCS3 gels, DSS was 0.51 and 0.61, respectively). These findings provide a vital understanding of the gelling mechanism of the protein-polysaccharide system and the application of sulfated polysaccharides in protein-based food products.
Collapse
Affiliation(s)
- Ting Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun 130062, PR China; College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| | - Yixin Yuan
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun 130062, PR China; College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| | - Xinling Wu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun 130062, PR China; College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| | - Peixin Yu
- College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| | - Jinghong Ji
- College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| | - Jiale Chai
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun 130062, PR China; College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| | - Ramesh Kumar Saini
- Department of Crop Science, Konkuk University, Seoul 143-701, Republic of Korea
| | - Jingbo Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun 130062, PR China; College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| | - Xiaomin Shang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun 130062, PR China; College of Food Science and Engineering, Jilin University, Changchun 130062, PR China.
| |
Collapse
|
15
|
Thermal gelation and digestion properties of hen egg white: Study on the effect of neutral and alkaline salts addition. Food Chem 2023; 409:135263. [PMID: 36592599 DOI: 10.1016/j.foodchem.2022.135263] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/21/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
In this study, the thermal gelation and digestion properties of hen egg white (hen EW) proteins with different salts were investigated. Results show that the addition of neutral salt - sodium chloride (NaCl) decreased the gel hardness/resilience, increased gel lightness, aggregated particle size and digestibility of hen EW proteins significantly. In contrast, alkaline salts - phosphate and carbonate addition increased the gel resilience and strain tolerance as well as reduced the aggregated particle size and gel lightness of hen EW proteins due to the increase of solution pH and negative charge. Correlation analysis shows that the digestibility of hen EW gels was affected by gel viscoelasticity, molecule forces and texture. In conclusion, thermal gelation properties of hen EW proteins could be modulated by salts with different pH/ionic strength, and thus affected the protein digestion and peptide released.
Collapse
|
16
|
Zhang L, Xiao Q, Xiao Z, Zhang Y, Weng H, Chen F, Xiao A. Hydrophobic modified agar: Structural characterization and application in encapsulation and release of curcumin. Carbohydr Polym 2023; 308:120644. [PMID: 36813337 DOI: 10.1016/j.carbpol.2023.120644] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/26/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023]
Abstract
In this study, three kinds of anhydrides with different structures were introduced into agar molecules to study the effects of varying degrees of substitution (DS) and anhydride structures on the physicochemical properties and curcumin (CUR) loading capacity. Increasing the carbon chain length and saturation of the anhydride affects the hydrophobic interaction and hydrogen bonding of the esterified agar, thereby changing the stable structure of the agar. Although the gel performance declined, the hydrophilic carboxyl group and the loose porous structure provide more binding sites for the adsorption of water molecules, hence providing excellent water retention (1700 %). Next, CUR was used as a hydrophobic active ingredient to study agar microspheres' drug encapsulation and in vitro release ability. Results showed that the excellent swelling and hydrophobic structure of esterified agar could promote the encapsulation of CUR (70.3 %). The release process is controlled by pH, and the release of CUR under weak alkaline conditions is significant, which can be explained by the pore structure, swelling characteristics, and carboxyl binding of agar. Therefore, this study shows the application potential of hydrogel microspheres in loading hydrophobic active ingredients and sustained release and provides the possibility for the application of agar in drug delivery systems.
Collapse
Affiliation(s)
- Luyao Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China
| | - Qiong Xiao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China
| | - Zhechen Xiao
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yonghui Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China
| | - Huifen Weng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China
| | - Fuquan Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China.
| | - Anfeng Xiao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China.
| |
Collapse
|
17
|
Zhang L, Ye S, Chen F, Xiao Q, Weng H, Xiao A. Super absorbent glutaric anhydride-modified agar: Structure, properties, and application in biomaterial delivery. Int J Biol Macromol 2023; 231:123524. [PMID: 36736981 DOI: 10.1016/j.ijbiomac.2023.123524] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 01/07/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
Agar was modified with glutaric anhydride (GA) in this study to expand its application in food and medicine. Glutaric anhydride-modified agar (GAR) can maintain high gel strength (1247.4 g/cm2) and improved transparency (82.7 %). The esterified agar formed by GA further formed a cross-linking molecule structure by increasing the reaction temperature. Notably, excellent freeze-thaw stability (24.1 %) and swelling property (3116.6 %) of GAR indicated that the carboxyl-terminal of modified agar improves its affinity with water. Therefore, satisfactory water permeability and expansive stone enable agar films to achieve high water absorption. Furthermore, GAR films exhibit a specific absorption capacity of tetracycline hydrochloride in weak acid solution, thereby suggesting its potential application as a sustainable drug delivery carrier. Finally, the structure of the modified agar was analyzed to explain the mechanism of binding water. Cryo-scanning electron microscopy (SEM) depicted the porous structure of the agar gel responsible for swelling, drug loading, and release. Low-field NMR results showed that GA improves agar gel's binding and free water content. According to our research results, these GAR hydrogel membranes with excellent properties have the potential to be used as effective drug delivery materials.
Collapse
Affiliation(s)
- Luyao Zhang
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, PR China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, PR China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, PR China
| | - Siying Ye
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, PR China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, PR China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, PR China
| | - Fuquan Chen
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, PR China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, PR China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, PR China
| | - Qiong Xiao
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, PR China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, PR China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, PR China
| | - Huifen Weng
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, PR China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, PR China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, PR China
| | - Anfeng Xiao
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, PR China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, PR China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, PR China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, PR China.
| |
Collapse
|
18
|
Characterization of four thermogelled egg yolk varieties based on moisture and protein content. Poult Sci 2023; 102:102499. [PMID: 36805146 PMCID: PMC9984682 DOI: 10.1016/j.psj.2023.102499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/28/2022] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
There are obvious differences between egg yolks of different varieties. Additionally, boiled eggs, which are widely liked and consumed globally, are nutrient rich. However, they absorb water in the esophagus during swallowing, and this result in an uncomfortable sensation. Here, we determined the moisture content and distribution as well as the protein contents and properties of 4 varieties of thermogelled egg yolks. Among the varieties, Green Shelled thermogelled egg yolk showed the highest protein content and solubility. Additionally, the ionic, hydrogen, and disulfide bonds corresponding to Rhode Island Red thermogelled egg yolk samples were the weakest, while the hydrophobic interaction force corresponding to the Hetian Dahei (HD) egg yolk samples was the weakest. Further, the distribution of the moisture contents of the 4 varieties was significantly different (P < 0.05). HD egg yolk showed the highest moisture content, and its bound and immobile moisture contents were significantly higher than those of the other 3 varieties. Egg yolk moisture content also affected free amino acid content, which was the highest for HD egg yolk. Therefore, owing to its high moisture content, HD egg yolk was conducive for chewing and swallowing and given its high free amino acid content, it also had a more suitable taste and flavor. The results of this study provide a theoretical basis for the application of egg yolks in food processing.
Collapse
|
19
|
Hu Y, Du L, Sun Y, Zhou C, Pan D. Recent developments in phosphorylation modification on food proteins: Structure characterization, site identification and function. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Wang Z, Zeng L, Fu L, Chen Q, He Z, Zeng M, Qin F, Chen J. Effect of Ionic Strength on Heat-Induced Gelation Behavior of Soy Protein Isolates with Ultrasound Treatment. Molecules 2022; 27:molecules27238221. [PMID: 36500320 PMCID: PMC9739732 DOI: 10.3390/molecules27238221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
This study investigated the effect of ultrasound on gel properties of soy protein isolates (SPIs) at different salt concentrations. The results showed that ultrasound could significantly improve the gel hardness and the water holding capacity (WHC) of the salt-containing gel (p < 0.05). The gel presents a uniform and compact three-dimensional network structure. The combination of 200 mM NaCl with 20 min of ultrasound could significantly increase the gel hardness (four times) and the WHC (p < 0.05) compared with the SPI gel without treatment. With the increase in NaCl concentration, the ζ potential and surface hydrophobicity increased, and the solubility decreased. Ultrasound could improve the protein solubility, compensate for the loss of solubility caused by the addition of NaCl, and further increase the surface hydrophobicity. Ultrasound combined with NaCl allowed proteins to form aggregates of different sizes. In addition, the combined treatment increased the hydrophobic interactions and disulfide bond interactions in the gel. Overall, ultrasound could improve the thermal gel properties of SPI gels with salt addition.
Collapse
Affiliation(s)
- Zhaojun Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Lin Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Liwei Fu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qiuming Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhiyong He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Fang Qin
- Analysis Centre, Jiangnan University, Wuxi 214122, China
| | - Jie Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Correspondence: ; Tel.: +86-(51)-08-592-9032
| |
Collapse
|
21
|
Chen J, Wang J, Xu L, Lv Y, Tang T, Zhang M, Li J, Su Y, Gu L, Yang Y, Chang C. Study on gel properties of lysozyme-free egg white before and after Lactiplantibacillus plantarum fermentation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5618-5627. [PMID: 35340026 DOI: 10.1002/jsfa.11897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/22/2022] [Accepted: 03/27/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Isolation of lysozyme from egg white (EW) using ion exchange resin adsorption method generates large quantities of lysozyme-free egg white (LFEW) with poor gelling property. To maximize the applications of LFEW, the effect of Lactiplantibacillus plantarum fermentation on the gel properties of LFEW was investigated in this study. RESULTS The fermentation efficiency of LFEW with lysozyme removed was significantly improved, and the sugar removal rate (2 g kg-1 Lactiplantibacillus plantarum, 37 °C, 7 h) was more than 90%. Removal of lysozyme resulted in increased stability and surface hydrophobicity of EW. After Lactiplantibacillus plantarum fermentation, the stability of EW decreased, and the average particle size and surface hydrophobicity increased. In addition, by comparing the gel properties of EW and LFEW before and after fermentation at different pH, it was found that the hardness, elasticity, and water holding capacity (WHC) of EW gel increased significantly. The removal of lysozyme effectively improved the WHC and springiness of the EW gel and promoted the formation of a denser network structure with smaller pores. After Lactiplantibacillus plantarum fermentation treatment, LFEW gel hardness decreased, with loose and porous network structure, no browning occurred after autoclaving. CONCLUSION This study provided the direction and theoretical basis for producing a fermented LFEW gel with pleasing texture and appearance. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jie Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, P. R. China
| | - Jing Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, P. R. China
| | - Lilan Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, P. R. China
| | - Yuanqi Lv
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, P. R. China
| | - Tingting Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, P. R. China
| | - Ming Zhang
- Guangzhou Beile Food Co., Ltd., Guangzhou, P. R. China
| | - Junhua Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, P. R. China
| | - Yujie Su
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, P. R. China
| | - Luping Gu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, P. R. China
| | - Yanjun Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, P. R. China
| | - Cuihua Chang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, P. R. China
| |
Collapse
|
22
|
Li S, Fan M, Deng S, Tao N. Characterization and Application in Packaging Grease of Gelatin-Sodium Alginate Edible Films Cross-Linked by Pullulan. Polymers (Basel) 2022; 14:3199. [PMID: 35956713 PMCID: PMC9371049 DOI: 10.3390/polym14153199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/21/2022] Open
Abstract
Gelatin-sodium alginate-based edible films cross-linked with pullulan were prepared using the solution casting method. FTIR spectroscopy demonstrated the existence of hydrogen bonding interactions between the components, and scanning electron microscopy observed the component of the films, revealing electrostatic interactions and thus explaining the differences in the properties of the blend films. The best mechanical properties and oxygen barrier occurred at a 1:1 percentage of pullulan to gelatin (GP11) with sodium alginate dosing for modification. Furthermore, GP11 demonstrated the best thermodynamic properties by DSC analysis, the highest UV barrier (94.13%) and the best oxidation resistance in DPPH tests. The results of storage experiments using modified edible films encapsulated in fresh fish liver oil showed that GP11 retarded grease oxidation by inhibiting the rise in peroxide and anisidine values, while inappropriate amounts of pullulan had a pro-oxidative effect on grease. The correlation between oil oxidation and material properties was investigated, and water solubility and apparent color characteristics were also assessed.
Collapse
Affiliation(s)
- Shuo Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Min Fan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
| | - Shanggui Deng
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316000, China
| | - Ningping Tao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
| |
Collapse
|
23
|
Zhang T, Yuan Y, Chai J, Wu X, Saini RK, Liu J, Shang X. How does dextran sulfate promote the egg white protein to form transparent hydrogel?the gelation mechanism and molecular force changes. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
24
|
Lv X, Huang X, Ma B, Chen Y, Batool Z, Fu X, Jin Y. Modification methods and applications of egg protein gel properties: A review. Compr Rev Food Sci Food Saf 2022; 21:2233-2252. [PMID: 35293118 DOI: 10.1111/1541-4337.12907] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/24/2021] [Accepted: 12/22/2021] [Indexed: 01/11/2023]
Abstract
Egg protein (EP) has a variety of functional properties, such as gelling, foaming, and emulsifying. The gel characteristics provide a foundation for applications in the food industry and research on EP. The proteins denature and aggregate to form a dense three-dimensional gel network structure, with a process influenced by protein concentration, pH, ion type, and strength. In addition, the gelation properties of EP can be altered to varying degrees by applying different treatment conditions to EP. Currently, modification methods for proteins include physical modification (heat-induced denaturation, freeze-thaw modification, high-pressure modification, and ultrasonic modification), chemical modification (glycosylation modification, phosphorylation modification, acylation modification, ethanol modification, polyphenol modification), and biological modification (enzyme modification). Pidan, salted eggs, egg tofu, and other egg products have unique sensory properties, due to the gel properties of EP. In accessions, EP has also been used as a new ingredient in food packaging and biopharmaceuticals due to its gel properties. This review will further promote EP gel research and provide guidance for its full application in many fields.
Collapse
Affiliation(s)
- Xiaohui Lv
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Xi Huang
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Bin Ma
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Yue Chen
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Zahra Batool
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Xing Fu
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Yongguo Jin
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| |
Collapse
|
25
|
Liu J, Jiang H, Zhang M, Gong P, Yang M, Zhang T, Liu X. Ions-regulated aggregation kinetics for egg white protein: A promising formulation with controlled gelation and rheological properties. Int J Biol Macromol 2022; 200:263-272. [PMID: 35007631 DOI: 10.1016/j.ijbiomac.2021.12.185] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/19/2021] [Accepted: 12/29/2021] [Indexed: 12/22/2022]
Abstract
This study aims to evaluate the structure of ions-regulated gelation of egg white protein (EWP) via aggregation kinetics model, which was built by monitoring turbidity. Results showed that compared with NaCl and KCl, the addition of Na2SO4 increased free sulfhydryl content, surface hydrophobicity and particle size of EWP significantly, while weakened the order of secondary structure. Hence, strengthened gel network structure was observed with higher porosity, which improved the texture profiles and rheological properties of EWP gels. Based on these phenomena above, the relationship between aggregation behavior and gelling properties with ions was further investigated by aggregation kinetics model and principal component analysis. Because of the enhancement of protein interactions, the aggregation growth rate with Na2SO4 was much faster than the samples with NaCl, which reflected over-aggregation due to the accelerated nucleation process and resulted in firmed gel network structure.
Collapse
Affiliation(s)
- Jingbo Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Hongyu Jiang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Min Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Ping Gong
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Meng Yang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Ting Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Xuanting Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
26
|
Hu F, Zou PR, Zhang F, Thakur K, Khan MR, Busquets R, Zhang JG, Wei ZJ. Wheat gluten proteins phosphorylated with sodium tripolyphosphate: Changes in structure to improve functional properties for expanding applications. Curr Res Food Sci 2022; 5:1342-1351. [PMID: 36082141 PMCID: PMC9445281 DOI: 10.1016/j.crfs.2022.08.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/13/2022] [Accepted: 08/22/2022] [Indexed: 11/24/2022] Open
Abstract
Poor solubility of wheat gluten proteins (WG) has negative impact on functional attributes such as gelation and emulsification, which limits it use in the food industry. In this study, WG underwent different degrees of phosphorylation using sodium tripolyphosphate (STP). Phosphoric acid groups were successfully incorporated in the WG via covalent bonding (C–N–P and C–O–P) involving hydroxyl and primary amino groups from WG. The introduction of phosphoric acid groups increased the negative charge of phosphorylation-WG, which caused the enhancement of electrostatic repulsion between proteins and reduced the droplet size in emulsions, thereby allowing proteins to be more efficiently dispersed in the solution system. The change of structure induced with phosphorylation improved hydration of protein, making the WG with higher solubility, thereby resulting in the improvement of its emulsification, foaming, thermal stability, and rheological properties. Therefore, WG can be modified by phosphorylation which caused an overall improvement of functional properties, thus facilitating the expansion of WG applications. Functional properties of WG were enhanced with phosphorylation (PP). The P2p at 133.1 eV and the bonds of C–O–P and C–N–P were found in PP-WG. Greater ζ-potential, solubility, viscosity, foaming in PP- WG. Phosphorylation increased WG thermal stability and gel properties.
Collapse
|