1
|
Batool Z, Singla RK, Kamal MA, Shen B. Demystifying furan formation in foods: Implications for human health, detection, and control measures: A review. Compr Rev Food Sci Food Saf 2025; 24:e70087. [PMID: 39731718 DOI: 10.1111/1541-4337.70087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 11/20/2024] [Accepted: 11/24/2024] [Indexed: 12/30/2024]
Abstract
Furan (C₄H₄O), an unintended hazardous compound, is formed in various thermally processed foods through multiple pathways, raising concerns due to its potential carcinogenicity in humans. The aim of this comprehensive review was to synthesize and evaluate the latest research on furan, from its formation by different precursors to its presence in diverse food matrices, as well as the emerging methods for its detection and mitigation. Emphasizing the toxicity of furan, it explored evidence from in vitro and in vivo studies, including reproductive toxicity, carcinogenic effects, and related biomarkers. Additionally, this review focused on human risk assessments of furan exposure and discussed innovative research approaches to better understand its health risks. By consolidating current knowledge, this review provided a comprehensive perspective on furan's impact on human health and suggested future research directions to further research on furan.
Collapse
Affiliation(s)
- Zahra Batool
- Center of High Altitude Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Rajeev K Singla
- Center of High Altitude Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Mohammad Amjad Kamal
- Center of High Altitude Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Enzymoics, Novel Global Community Educational Foundation, Sydney, New South Wales, Australia
| | - Bairong Shen
- Center of High Altitude Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Kalogiouri NP, Manousi N, Ferracane A, Zachariadis GA, Koundouras S, Samanidou VF, Tranchida PQ, Mondello L, Rosenberg E. A novel headspace solid-phase microextraction arrow method employing comprehensive two-dimensional gas chromatography-mass spectrometry combined with chemometric tools for the investigation of wine aging. Anal Chim Acta 2024; 1304:342555. [PMID: 38637039 DOI: 10.1016/j.aca.2024.342555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Omics is used as an analytical tool to investigate wine authenticity issues. Aging authentication ensures that the wine has undergone the necessary maturation and developed its desired organoleptic characteristics. Considering that aged wines constitute valuable commodities, the development of advanced omics techniques that guarantee aging authenticity and prevent fraud is essential. RESULTS Α solid phase microextraction Arrow method combined with comprehensive two-dimensional gas chromatography-mass spectrometry was developed to identify volatiles in red wines and investigate how aging affects their volatile fingerprint. The method was optimized by examining the critical parameters that affect the solid phase microextraction Arrow extraction (stirring rate, extraction time) process. Under optimized conditions, extraction took place within 45 min under stirring at 1000 rpm. In all, 24 monovarietal red wine samples belonging to the Xinomavro variety from Naoussa (Imathia regional unit of Macedonia, Greece) produced during four different vintage years (1998, 2005, 2008 and 2015) were analyzed. Overall, 237 volatile compounds were tentatively identified and were treated with chemometric tools. Four major groups, one for each vintage year were revealed using the Hierarchical Clustering Analysis. The first two Principal Components of Principal Component Analysis explained 86.1% of the total variance, showing appropriate grouping of the wine samples produced in the same crop year. A two-way orthogonal partial least square - discriminant analysis model was developed and successfully classified all the samples to the proper class according to the vintage age, establishing 17 volatile markers as the most important features responsible for the classification, with an explained total variance of 88.5%. The developed prediction model was validated and the analyzed samples were classified with 100% accuracy according to the vintage age, based on their volatile fingerprint. SIGNIFICANCE The developed methodology in combination with chemometric techniques allows to trace back and confirm the vintage year, and is proposed as a novel authenticity tool which opens completely new and hitherto unexplored possibilities for wine authenticity testing and confirmation.
Collapse
Affiliation(s)
- Natasa P Kalogiouri
- Laboratory of Analytical Chemistry, School of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece; Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/164, 1060, Vienna, Austria.
| | - Natalia Manousi
- Laboratory of Analytical Chemistry, School of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece; Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/164, 1060, Vienna, Austria
| | - Antonio Ferracane
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/164, 1060, Vienna, Austria; Messina Institute of Technology c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, former Veterinary School, University of Messina, Viale G. Palatucci snc 98168 - Messina, Italy.
| | - George A Zachariadis
- Laboratory of Analytical Chemistry, School of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Stefanos Koundouras
- Laboratory of Viticulture, School of Agriculture, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Victoria F Samanidou
- Laboratory of Analytical Chemistry, School of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Peter Q Tranchida
- Messina Institute of Technology c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, former Veterinary School, University of Messina, Viale G. Palatucci snc 98168 - Messina, Italy
| | - Luigi Mondello
- Messina Institute of Technology c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, former Veterinary School, University of Messina, Viale G. Palatucci snc 98168 - Messina, Italy; Chromaleont s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, former Veterinary School, University of Messina, Viale G. Palatucci snc 98168 - Messina, Italy
| | - Erwin Rosenberg
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/164, 1060, Vienna, Austria
| |
Collapse
|
3
|
Skok A, Bazel Y. Headspace Microextraction. A Comprehensive Review on Method Application to the Analysis of Real Samples (from 2018 till Present). Crit Rev Anal Chem 2023; 55:375-405. [PMID: 38079469 DOI: 10.1080/10408347.2023.2291695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
This work describes current trends in the development of headspace microextraction methods. The main trends in the selection of detection techniques used in combination with microextraction and preferences in the selection of headspace liquid-phase microextraction (HS-LPME) or headspace solid-phase microextraction (HS-SPME) methods, depending on the analytes and their quantity, are also briefly presented. In the main part of the work, on the basis of current journal literature, headspace microextraction analytical methods used for the determination of various inorganic and organic analytes are classified and compared over the last five years. The work also reflects the current modifications of techniques and approaches proposed for these microextraction methods.
Collapse
Affiliation(s)
- Arina Skok
- Department of Analytical Chemistry, Institute of Chemistry, Pavol Jozef Šafárik University in Košice, Košice, Slovak Republic
| | - Yaroslav Bazel
- Department of Analytical Chemistry, Institute of Chemistry, Pavol Jozef Šafárik University in Košice, Košice, Slovak Republic
| |
Collapse
|
4
|
Hong Y, Zheng Q, Cheng L, Liu P, Xu G, Zhang H, Cao P, Zhou H. Identification and characterization of TMV-induced volatile signals in Nicotiana benthamiana: evidence for JA/ET defense pathway priming in congeneric neighbors via airborne (E)-2-octenal. Funct Integr Genomics 2023; 23:272. [PMID: 37568053 PMCID: PMC10421810 DOI: 10.1007/s10142-023-01203-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023]
Abstract
Plants release a mixture of volatile compounds when subjects to environmental stress, allowing them to transmit information to neighboring plants. Here, we find that Nicotiana benthamiana plants infected with tobacco mosaic virus (TMV) induces defense responses in neighboring congeners. Analytical screening of volatiles from N. benthamiana at 7 days post inoculation (dpi) using an optimized SPME-GC-MS method showed that TMV triggers the release of several volatiles, such as (E)-2-octenal, 6-methyl-5-hepten-2-one, and geranylacetone. Exposure to (E)-2-octenal enhances the resistance of N. benthamiana plants to TMV and triggers the immune system with upregulation of pathogenesis-related genes, such as NbPR1a, NbPR1b, NbPR2, and NbNPR1, which are related to TMV resistance. Furthermore, (E)-2-octenal upregulates jasmonic acid (JA) that levels up to 400-fold in recipient N. benthamiana plants and significantly affects the expression pattern of key genes in the JA/ET signaling pathway, such as NbMYC2, NbERF1, and NbPDF1.2, while the salicylic acid (SA) level is not significantly affected. Our results show for the first time that the volatile (E)-2-octenal primes the JA/ET pathway and then activates immune responses, ultimately leading to enhanced TMV resistance in adjacent N. benthamiana plants. These findings provide new insights into the role of airborne compounds in virus-induced interplant interactions.
Collapse
Affiliation(s)
- Yi Hong
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Qingxia Zheng
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
- Beijing Life Science Academy, Beijing, 102200, China
| | - Lingtong Cheng
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Pingping Liu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
- Beijing Life Science Academy, Beijing, 102200, China
| | - Guoyun Xu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
- Beijing Life Science Academy, Beijing, 102200, China
| | - Hui Zhang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
- Beijing Life Science Academy, Beijing, 102200, China
| | - Peijian Cao
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China.
- Beijing Life Science Academy, Beijing, 102200, China.
| | - Huina Zhou
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China.
- Beijing Life Science Academy, Beijing, 102200, China.
| |
Collapse
|
5
|
Chemistry behind quality - The usability of herbs and spices essential oils analysis in light of sensory studies. Food Chem 2023; 411:135537. [PMID: 36701917 DOI: 10.1016/j.foodchem.2023.135537] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 01/09/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
The common protocols for the quality determination of medicinal and aromatic plants (MAPs), including herbs and spices (HSs), are the yield and composition of essential oils (EOs). Meanwhile, studies on the sensory quality of HSs showed that EOs composition does not translate to the profile of volatiles emitted from plants; therefore, they do not provide a background for sensory quality assessment. Thus, in this study, the differences in the composition of the EOs and the patterns of emission of unlimited (pure EOs) or limited (presence of a plant matrix) volatiles by headspace were measured for three chemotypes of mint, namely menthol, carvone, and linalool ones. The results have demonstrated that the presence of a plant matrix may change the contribution of main volatiles even up to 47 percentage points, what allows suggesting that EOs chemical analysis is not a reliable method for the determination of sensory quality of HSs.
Collapse
|
6
|
Zhang Y, Zhang Y. A comprehensive review of furan in foods: From dietary exposures and in vivo metabolism to mitigation measures. Compr Rev Food Sci Food Saf 2023; 22:809-841. [PMID: 36541202 DOI: 10.1111/1541-4337.13092] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022]
Abstract
Furan is a thermal food processing contaminant that is ubiquitous in various food products such as coffee, canned and jarred foods, and cereals. A comprehensive summary of research progress on furan is presented in this review, including discussion of (i) formation pathways, (ii) occurrence and dietary exposures, (iii) analytical techniques, (iv) toxicities, (v) metabolism and metabolites, (vi) risk assessment, (vii) potential biomarkers, and (viii) mitigation measures. Dietary exposure to furan varies among different countries and age groups. Furan acts through various toxicological pathways mediated by its primary metabolite, cis-2-butene-1,4-dial (BDA). BDA can readily react with glutathione, amino acids, biogenic amines, or nucleotides to form corresponding metabolites, some of which have been proposed as potential biomarkers of exposure to furan. Present risk assessment of furan mainly employed the margin of exposure approach. Given the widespread occurrence of furan in foods and its harmful health effects, mitigating furan levels in foods or exploring potential dietary supplements to protect against furan toxicity is necessary for the benefit of food safety and public health.
Collapse
Affiliation(s)
- Yiju Zhang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yu Zhang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
7
|
Huang M, Zeng Q, Liu Z, Chen X, Gao Y, Wang G, Yu G. Development of a fully automated analytical platform based on static headspace-gas chromatography-tandem mass spectrometry for the analysis of five N-nitrosamines in dried aquatic products of animal origin. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:7107-7114. [PMID: 35704020 DOI: 10.1002/jsfa.12072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/11/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The development of rapid and sensitive monitoring methods for trace N-nitrosamines (NAs) in foodstuffs is essential for mitigating the potential health risks to consumers. In the present study, an analytical platform based on one step fully automated static headspace sampling and gas chromatography-tandem mass spectrometry (GC-MS/MS) was developed and validated for the analysis of N-nitrosamines in dried aquatic products of animal origin. The samples and sodium chloride solution mixture were incubated in a heated headspace vial for analyte evaporation, coupled to automatic sampling and online GC-MS/MS analysis. The proposed method requires minimal sample preparation and organic solvent consumption. Five N-nitrosamines including N-nitroso dimethylamine, N-nitroso methyl ethylamine, N-nitroso pyrolidine, N-nitroso piperidine and N-nitroso diphenylamine were selected as model compounds to optimize the significant factors by a using Box-Behnken design. RESULTS The optimum conditions achieved limits of detections in the range 0.08-0.29 μg kg-1 , with correlation coefficient over 0.998. Relative recoveries in dried aquatic product sample were in the range 76.9-92.4%, with relative SDs of 1.9-7.2%. CONCLUSION These results confirm the reliability of the developed method for further application in trace level monitoring of the target analytes in foodstuffs. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Minxing Huang
- Testing and Analysis Center, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
- Research Center for Sugarcane Industry Engineering Technology of Light Industry of China, Guangzhou, China
| | - Qiuxia Zeng
- Testing and Analysis Center, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
- Research Center for Sugarcane Industry Engineering Technology of Light Industry of China, Guangzhou, China
| | - Zhipeng Liu
- Testing and Analysis Center, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
- Research Center for Sugarcane Industry Engineering Technology of Light Industry of China, Guangzhou, China
| | - Xiaochu Chen
- Testing and Analysis Center, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
- Research Center for Sugarcane Industry Engineering Technology of Light Industry of China, Guangzhou, China
| | - Yufeng Gao
- Testing and Analysis Center, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
- Research Center for Sugarcane Industry Engineering Technology of Light Industry of China, Guangzhou, China
| | - Guihua Wang
- Testing and Analysis Center, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
- Research Center for Sugarcane Industry Engineering Technology of Light Industry of China, Guangzhou, China
| | - Goubin Yu
- Testing and Analysis Center, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
- Research Center for Sugarcane Industry Engineering Technology of Light Industry of China, Guangzhou, China
| |
Collapse
|
8
|
Cao W, Shu N, Wen J, Yang Y, Jin Y, Lu W. Characterization of the Key Aroma Volatile Compounds in Nine Different Grape Varieties Wine by Headspace Gas Chromatography-Ion Mobility Spectrometry (HS-GC-IMS), Odor Activity Values (OAV) and Sensory Analysis. Foods 2022; 11:foods11182767. [PMID: 36140895 PMCID: PMC9497463 DOI: 10.3390/foods11182767] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/24/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
During this study, the physicochemical properties, color, and volatile aroma compounds of the original wines produced from the grape varieties ‘Hassan’, ‘Zuoshaner’, ‘Beibinghong’, ‘Zuoyouhong’, ‘Beta’, ‘Shuanghong’, ‘Zijingganlu’, ‘Cabernet Sauvignon’, and ‘Syrah’ were determined and sensory evaluation was performed. Results indicated that ‘Hassan’ contained the most solids, ‘Zuoshaner’ produced the most total acid, residual sugar, total anthocyanin, and total phenol, and ‘Shuanghong’ produced the most tannin. Calculation of the chroma and hue of the wines according to the CIEL*a*b* parameters revealed that the ‘Cabernet Sauvignon’ wines were the brightest of the nine varieties and that the ‘Zuoshaner’ wines had the greatest red hue and yellow hue and the greatest saturation’. A total of 52 volatile compounds were identified and quantified in nine wine samples by HS-GC-IMS analysis, with the most significant number of species detected being 20 esters, followed by 16 alcohols, 8 aldehydes, four ketones, one terpene, and one furan, with the highest total volatile compound content being ‘Beta’. A total of 14 volatile components with OAV (odor activity value) >1 were calculated using the odor activity value (OAV) of the threshold of the aromatic compound, and the OPLS-DA analysis was performed by orthogonal partial least squares discriminant analysis (OPLS-DA) using the OAV values of the compounds with OAV values >1 as the Y variable. The VIP (Variable Importance in Projection) values of six compounds, ethyl isobutyrate, ethyl hexanoate-D, 2-methylpropanal, ethyl octanoate, ethyl butanoate-D, and Isoamyl acetate-D, were calculated to be higher than one between groups, indicating that these six compounds may influence aroma differences. It is essential to recognize that the results of this study have implications for understanding the quality differences between different varieties of wines and for developing wines that have the characteristics of those varieties.
Collapse
|
9
|
Yang Y, Xie J, Chen J, Deng Y, Shen S, Hua J, Wang J, Zhu J, Yuan H, Jiang Y. Characterization of N,O-heterocycles in green tea during the drying process and unraveling the formation mechanism. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
10
|
Feng Y, Huang K, Liang M, Zhang J, Zhang Z, Feng D, Guo D, Ni H. Optimization of Determination Method of Cooling Agents in Cigarette Tipping Paper by Gas Chromatography. LCGC NORTH AMERICA 2022. [DOI: 10.56530/lcgc.na.dz7880w9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Monitoring the characteristic components in tipping paper is important to ensure the quality of cigarette products. This study establishes a method based on gas chromatography (GC) for determining cooling agents in tipping paper. The tipping paper was cut into pieces and extracted by ethanol under specific temperatures in a shaker. Then, the characteristic cooling agents of (-)-menthone, L-menthol, and (-)-menthyl lactate in extract were determined using GC coupled with a flame ionization detector (GC-FID). The limits of detection (LODs) and limits of quantification (LOQs) for the three cooling agents ranged from 0.15~0.32 μg/mL and 0.49~1.06 μg/mL, respectively. Results demonstrated a good linear relationship with high correlation coefficients for the three tested cooling agents. The extraction conditions of the cooling agents were optimized through a single-factor experiment as well as an orthogonal experiment. The standard addition recovery experiment showed that the average recoveries range from 81.23 to 100.62%, and the relative standard deviations (RSDs) of the measured values (n = 5) ranged from 0.34 to 1.64%.
Collapse
Affiliation(s)
| | - Ke Huang
- Zhengzhou University of Light Industry
| | | | | | - Zhen Zhang
- Yuxi Cigarette Factory of Hongta Group Co., Ltd
| | | | | | - Hepeng Ni
- Yuxi Cigarette Factory of Hongta Group Co., Ltd
| |
Collapse
|
11
|
Wei Q, Liu G, Zhang C, Sun J, Zhang Y. Identification of characteristic volatile compounds and prediction of fermentation degree of pomelo wine using partial least squares regression. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
12
|
Šikuten I, Štambuk P, Karoglan Kontić J, Maletić E, Tomaz I, Preiner D. Optimization of SPME-Arrow-GC/MS Method for Determination of Free and Bound Volatile Organic Compounds from Grape Skins. Molecules 2021; 26:molecules26237409. [PMID: 34885990 PMCID: PMC8659239 DOI: 10.3390/molecules26237409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 11/16/2022] Open
Abstract
(1) Background: Solid phase microextraction (SPME)-Arrow is a new extraction technology recently employed in the analysis of volatiles in food materials. Grape volatile organic compounds (VOC) have a crucial role in the winemaking industry due to their sensory characteristics of wine.; (2) Methods: Box–Behnken experimental design and response surface methodology were used to optimise SPME-Arrow conditions (extraction temperature, incubation time, exposure time, desorption time). Analyzed VOCs were free VOCs directly from grape skins and bound VOCs released from grape skins by acid hydrolysis.; (3) Results: The most significant factors were extraction temperature and exposure time for both free and bound VOCs. For both factors, an increase in their values positively affected the extraction efficiency for almost all classes of VOCs. For free VOCs, the optimum extraction conditions are: extraction temperature 60 °C, incubation time 20 min, exposure time 49 min, and desorption time 7 min, while for the bound VOCs are: extraction temperature 60 °C, incubation time 20 min, exposure time 60 min, desorption time 7 min.; (4) Conclusions: Application of the optimized method provides a powerful tool in the analysis of major classes of volatile organic compounds from grape skins, which can be applied to a large number of samples.
Collapse
Affiliation(s)
- Iva Šikuten
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, 10 000 Zagreb, Croatia; (P.Š.); (J.K.K.); (E.M.); (I.T.); (D.P.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Faculty of Agriculture, University of Zagreb, 10 000 Zagreb, Croatia
- Correspondence: ; Tel.: +385-01-4627977
| | - Petra Štambuk
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, 10 000 Zagreb, Croatia; (P.Š.); (J.K.K.); (E.M.); (I.T.); (D.P.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Faculty of Agriculture, University of Zagreb, 10 000 Zagreb, Croatia
| | - Jasminka Karoglan Kontić
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, 10 000 Zagreb, Croatia; (P.Š.); (J.K.K.); (E.M.); (I.T.); (D.P.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Faculty of Agriculture, University of Zagreb, 10 000 Zagreb, Croatia
| | - Edi Maletić
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, 10 000 Zagreb, Croatia; (P.Š.); (J.K.K.); (E.M.); (I.T.); (D.P.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Faculty of Agriculture, University of Zagreb, 10 000 Zagreb, Croatia
| | - Ivana Tomaz
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, 10 000 Zagreb, Croatia; (P.Š.); (J.K.K.); (E.M.); (I.T.); (D.P.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Faculty of Agriculture, University of Zagreb, 10 000 Zagreb, Croatia
| | - Darko Preiner
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, 10 000 Zagreb, Croatia; (P.Š.); (J.K.K.); (E.M.); (I.T.); (D.P.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Faculty of Agriculture, University of Zagreb, 10 000 Zagreb, Croatia
| |
Collapse
|
13
|
Gao Y, Hou L, Gao J, Li D, Tian Z, Fan B, Wang F, Li S. Metabolomics Approaches for the Comprehensive Evaluation of Fermented Foods: A Review. Foods 2021; 10:2294. [PMID: 34681343 PMCID: PMC8534989 DOI: 10.3390/foods10102294] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 09/22/2021] [Indexed: 12/15/2022] Open
Abstract
Fermentation is an important process that can provide new flavors and nutritional and functional foods, to deal with changing consumer preferences. Fermented foods have complex chemical components that can modulate unique qualitative properties. Consequently, monitoring the small molecular metabolites in fermented food is critical to clarify its qualitative properties and help deliver personalized nutrition. In recent years, the application of metabolomics to nutrition research of fermented foods has expanded. In this review, we examine the application of metabolomics technologies in food, with a primary focus on the different analytical approaches suitable for food metabolomics and discuss the advantages and disadvantages of these approaches. In addition, we summarize emerging studies applying metabolomics in the comprehensive analysis of the flavor, nutrition, function, and safety of fermented foods, as well as emphasize the applicability of metabolomics in characterizing the qualitative properties of fermented foods.
Collapse
Affiliation(s)
- Yaxin Gao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China; (Y.G.); (L.H.); (J.G.); (D.L.); (Z.T.); (B.F.)
| | - Lizhen Hou
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China; (Y.G.); (L.H.); (J.G.); (D.L.); (Z.T.); (B.F.)
| | - Jie Gao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China; (Y.G.); (L.H.); (J.G.); (D.L.); (Z.T.); (B.F.)
| | - Danfeng Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China; (Y.G.); (L.H.); (J.G.); (D.L.); (Z.T.); (B.F.)
| | - Zhiliang Tian
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China; (Y.G.); (L.H.); (J.G.); (D.L.); (Z.T.); (B.F.)
| | - Bei Fan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China; (Y.G.); (L.H.); (J.G.); (D.L.); (Z.T.); (B.F.)
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fengzhong Wang
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shuying Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China; (Y.G.); (L.H.); (J.G.); (D.L.); (Z.T.); (B.F.)
| |
Collapse
|