1
|
Wang L, Liu Q, Li Y, Shi C, Zhang Y, Wang P, Zhang H, Wang R, Zhang W, Wen P. Revealing the impact of organic selenium-enriched Lactiplantibacillus plantarum NML21 on yogurt quality through volatile flavor compounds and untargeted metabolomics. Food Chem 2025; 474:143223. [PMID: 39938303 DOI: 10.1016/j.foodchem.2025.143223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/21/2025] [Accepted: 02/03/2025] [Indexed: 02/14/2025]
Abstract
Effective selenium supplementation strategies are essential for alleviating global selenium deficiency. This study utilized the high‑selenium-tolerant strain Lactiplantibacillus plantarum NML21 to produce selenium-enriched yogurt, successfully converting inorganic Se(IV) into organic selenium, with selenoproteins accounting for 69.52 % of the total selenium content (995.19 ± 68.60 μg/g). Selenium-enriched yogurt exhibited excellent physicochemical properties and antioxidant activity. Volatile flavor analysis identified 36 compounds, with NML21 and SeNML21 significantly enhancing ketone flavors in yogurt, particularly increasing the contents of 2-heptanone and 2,3-pentanedione. Untargeted metabolomics identified 215 non-volatile metabolites, with NML21 and SeNML21 significantly regulating key metabolic pathways, including the phosphotransferase system, ABC transporters, and amino acid biosynthesis, promoting the accumulation of beneficial metabolites. Selenium specifically influenced the biosynthesis pathways of ABC transporters, phenylalanine, tyrosine, and tryptophan. This study demonstrates that NML21 is a promising strain for producing selenium-enriched functional yogurt, offering innovative perspectives for dietary selenium supplementation and functional food development.
Collapse
Affiliation(s)
- Longlin Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Qinqin Liu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yiheng Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Chengrui Shi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yixuan Zhang
- Gansu Liaoyuan DAIRY CO., LTD, Gannan 747000, China
| | - Pengjie Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Hao Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Ruiyun Wang
- Gansu Qimu DAIRY CO., LTDG, Jiayuguan 735100, China
| | - Weibing Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China.
| | - Pengcheng Wen
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
2
|
Li M, Shi D, Cheng Y, Dang Q, Liu W, Wang Z, Yuan Y, Yue T. Green and rapid quantitative detection of selenium in selenium-enriched kefir grain based on Fourier transform infrared spectroscopy. Food Chem 2025; 465:142056. [PMID: 39549514 DOI: 10.1016/j.foodchem.2024.142056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/11/2024] [Accepted: 11/12/2024] [Indexed: 11/18/2024]
Abstract
Rapid monitoring of total and organic selenium content in kefir grain was essential for microbial screening and selenium-enriched food development. Firstly, spectral information of selenium-enriched kefir grain was obtained using an attenuated total reflection Fourier transform infrared spectrometer. Secondly, the performance of the quantitative prediction models established by the four-variable screening method with three machine learning algorithms, respectively, was compared. For the prediction of total selenium, the competitive adaptive reweighted sampling - least squares support vector machine model performed the best, with prediction set relative coefficient (RP) and relative prediction deviation (RPD) values of 0.97 and 4.36, respectively. For the prediction of organic selenium, the IRF-LSSVM model had a RP and RPD value of 0.95 and 6.44, respectively. The proposed method achieves scientific, rapid (within 1 min) and green detection of total selenium (237.72-2330.82 μg/g) and organic selenium (102.20-1483.59 μg/g) content in selenium-enriched Kefir grain.
Collapse
Affiliation(s)
- Menghui Li
- College of Food Science and Engineering, Northwest A&F University, YangLing 712100, Shaanxi, China
| | - Dan Shi
- College of Food Science and Engineering, Northwest A&F University, YangLing 712100, Shaanxi, China
| | - Yifan Cheng
- College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Qilei Dang
- Qinchuangyuan Fu Tea Culture Innovation Center, Xi'an 713700, China
| | - Wenhui Liu
- College of Fine Arts, Guangxi Normal University, Guiling 541001, China
| | - Zhouli Wang
- College of Food Science and Engineering, Northwest A&F University, YangLing 712100, Shaanxi, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A&F University, YangLing 712100, Shaanxi, China; College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, YangLing 712100, Shaanxi, China; College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| |
Collapse
|
3
|
Chen Y, Fan X, Zhu X, Xiao J, Mu Y, Wang W, Wang C, Peng M, Zhou M. Effects of luxS gene on biofilm formation and fermentation property in Lactobacillus plantarum R. Food Res Int 2025; 203:115862. [PMID: 40022384 DOI: 10.1016/j.foodres.2025.115862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 01/16/2025] [Accepted: 01/29/2025] [Indexed: 03/03/2025]
Abstract
The biofilm formation of Lactobacilli is regulated by the LuxS/AI-2 quorum sensing (QS) system, but the mechanism of QS regulating the formation of Lactobacilli biofilm is not clear. This study aimed to investigate the mechanism of producing biofilm in L. plantarum R and its effect on the quality of fermented pickles based on LuxS/AI-2 QS system. Compared with L. plantarum R, the AI-2 activity of L. plantarum RΔluxS was significantly reduced, but the biofilm, extracellular protein, and eDNA were significantly increased. Moreover, expression of oppA, livJ, livH and comD genes was up-regulated and luxS, peg.3090 and peg.3093 was down-regulated. Results showed that peg.3093 was most significantly down-regulated in L. plantarum RΔluxS, and extremely significant negatively correlated with biofilm. The biofilm, eDNA, and extracellular protein of L. plantarum RΔpeg.3093 was higher than those of L. plantarum R. Moreover, metabolomics showed that deletion of luxS gene could decrease AI-2 level, promote anthocyanin and flavonol biosynthesis, lead to improving the antioxidant properties and quality of pickles. Thus, luxS gene knockout may increase biofilm by down-regulating the expression of peg.3093 to increase extracellular protein and eDNA. This study provides a theoretical basis for the enhancement of Lactobacillus biofilm and its application.
Collapse
Affiliation(s)
- Yang Chen
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Xin Fan
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Xiaoqing Zhu
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Junfeng Xiao
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Yang Mu
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Wenyue Wang
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Chao Wang
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Mingye Peng
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Mengzhou Zhou
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China.
| |
Collapse
|
4
|
Gao J, Li Y, Luo T, Zhang Y, Shan Y, Wang A, Zhang X, Wang F, Tong LT. Deciphering the flavor constituents, microbiota and physicochemical properties of Yancaigao, a traditional sour rice paste from Southwest China. Food Res Int 2025; 199:115387. [PMID: 39658177 DOI: 10.1016/j.foodres.2024.115387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/16/2024] [Accepted: 11/14/2024] [Indexed: 12/12/2024]
Abstract
Yancaigao, a distinctive fermented condiment indigenous to Southwest China, imparts unique sour flavor profile to various culinary applications. This study investigated the organic acid profile, volatile flavor constitutes, and microbial community of two fermented and six blended Yancaigao samples. Organic acid analysis revealed that lactic acid (86.51-117.28 mg/g) was the predominant organic acid in fermented Yancaigao, accounting for 97.40-98.08 % of total organic acids. It was significantly higher than those observed in blended Yancaigao (1.92-13.91 mg/kg). Headspace-solid phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) analysis identified 88 volatile compounds, mainly encompassing acids (10), alcohols (23), aldehydes (19), ketones (13), esters (5), pyrazines (4), ethers (2), olefins (2), benzene (1), and sulfide (1). Lactic acid, 2,3-butanediol, dimethyl trisulfide, 1-octen-3-one, and dimethyl disulfide were determined to be key aroma compounds of the eight Yancaigao samples, based on odor activity value and Orthogonal partial least squares-discriminant analysis (OPLS-DA). Notably, trans-α,α-5-trimethyl-5-vinyltetrahydro-2-furanmethanol and 2,3-pentanedione were exclusively detected in fermented Yancaigao. Microbial community analysis revealed that Pseudomonas (43.37 %) and Methyloversatilis (14.03 %) were the dominant microorganisms, indicating potential microbial contamination. This study could provide valuable insights for quality evaluation and integrated development of traditional fermented Yancaigao.
Collapse
Affiliation(s)
- Jinxiao Gao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, No. 2, Yuan Ming Yuan West Road, Haidian District, Beijing 100193, PR China; Ruili Inspection and Testing Institute, No. 36 Renmin Road, Ruili City, Dehong Dai and Jingpo Autonomous Prefecture, Yunnan 678600, PR China
| | - Yang Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, No. 2, Yuan Ming Yuan West Road, Haidian District, Beijing 100193, PR China
| | - Tingting Luo
- Ruili Inspection and Testing Institute, No. 36 Renmin Road, Ruili City, Dehong Dai and Jingpo Autonomous Prefecture, Yunnan 678600, PR China
| | - Yue Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, No. 2, Yuan Ming Yuan West Road, Haidian District, Beijing 100193, PR China
| | - Yimeng Shan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, No. 2, Yuan Ming Yuan West Road, Haidian District, Beijing 100193, PR China
| | - Aixia Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, No. 2, Yuan Ming Yuan West Road, Haidian District, Beijing 100193, PR China
| | - Xiya Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, No. 2, Yuan Ming Yuan West Road, Haidian District, Beijing 100193, PR China
| | - Fengzhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, No. 2, Yuan Ming Yuan West Road, Haidian District, Beijing 100193, PR China.
| | - Li-Tao Tong
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, No. 2, Yuan Ming Yuan West Road, Haidian District, Beijing 100193, PR China; Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Xinxiang 453000, PR China.
| |
Collapse
|
5
|
Chen Y, Gong H, Wang J, Liu T, Zhao M, Zhao Q. Study on the Improvement of Quality Characteristics of Pickles During Fermentation and Storage. Foods 2024; 13:3989. [PMID: 39766932 PMCID: PMC11675974 DOI: 10.3390/foods13243989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/28/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
This study investigated the effect of fermentation-promoting peptides (FPPs) on the improvement of the quality of cowpea pickles during fermentation and storage. FPPs were introduced to evaluate their effects on key parameters such as pH, total acidity, nitrite levels, and salinity. FPP accelerated fermentation by stimulating lactic acid bacteria (LAB) activity, leading to a rapid reduction in pH and a stable increase in total acidity. Nitrite accumulation was peaking at 0.56 mg/kg on the 7th day, compared to 1.37 mg/kg in the control, thus enhancing product safety. FPP also improved antioxidant retention, reducing ascorbic acid degradation by 30% and increasing phenolic retention by 15.97% over the control, which is essential for antioxidant capacity and color stability. Texture analysis showed higher hardness preservation in the presence of FPP, in which hardness decreased from 209.70 g to 79.98 g in the FPP group after storage, compared to a decline from 158.56 g to 41.66 g in the control. Additionally, sensory evaluations demonstrated that the FPP group maintained superior flavor, texture, and appearance, with minimized browning due to improved pectin stability. This research presents FPPs as a promising additive for producing high-quality, shelf-stable pickles in line with clean label trends.
Collapse
Affiliation(s)
- Yangyang Chen
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (Y.C.); (H.G.); (J.W.); (T.L.); (M.Z.)
| | - Huiyu Gong
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (Y.C.); (H.G.); (J.W.); (T.L.); (M.Z.)
| | - Junwei Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (Y.C.); (H.G.); (J.W.); (T.L.); (M.Z.)
| | - Tongxun Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (Y.C.); (H.G.); (J.W.); (T.L.); (M.Z.)
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (Y.C.); (H.G.); (J.W.); (T.L.); (M.Z.)
- Guangdong Food Green Processing and Nutrition Regulation Technology Research Center, Guangzhou 510640, China
| | - Qiangzhong Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (Y.C.); (H.G.); (J.W.); (T.L.); (M.Z.)
- Guangdong Food Green Processing and Nutrition Regulation Technology Research Center, Guangzhou 510640, China
| |
Collapse
|
6
|
D’Almeida AP, Neta AAI, de Andrade-Lima M, de Albuquerque TL. Plant-based probiotic foods: current state and future trends. Food Sci Biotechnol 2024; 33:3401-3422. [PMID: 39493382 PMCID: PMC11525375 DOI: 10.1007/s10068-024-01674-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/23/2024] [Accepted: 07/11/2024] [Indexed: 11/05/2024] Open
Abstract
Abstract Plant-based probiotic foods (PBPFs) have recently become a notable choice for many consumers. While less recognized than dairy products, these foods offer efficient alternatives for individuals with lactose intolerance, vegans, or those aiming for more sustainable dietary practices. Traditional fermented PBPFs, such as kimchi, sauerkraut, and kombucha, are part of cultures from different countries and have gained more significant popularity in recent years globally due to their peculiar flavors and health benefits. However, new plant-based probiotic products have also been studied and made available to consumers of the growing demand in this sector. Therefore, this review discusses trends in plant-based probiotic production, known benefits, and characteristics. Challenges currently faced in manufacturing, distribution, marketing, consumer acceptance, and legislation are also discussed. Graphical abstract
Collapse
Affiliation(s)
- Alan Portal D’Almeida
- Department of Chemical Engineering, Technology Center, Federal University of Ceará, Fortaleza, CE 60455-760 Brazil
| | - Aida Aguilera Infante Neta
- Department of Food Engineering, Center for Agricultural Sciences, Federal University of Ceará, Fortaleza, CE 60020-181 Brazil
| | - Micael de Andrade-Lima
- Natural Resources Institute (NRI), University of Greenwich, Medway Campus, Chatham, ME4 4TB UK
| | - Tiago Lima de Albuquerque
- Department of Food Engineering, Center for Agricultural Sciences, Federal University of Ceará, Fortaleza, CE 60020-181 Brazil
| |
Collapse
|
7
|
Tan H, Huang D, Zhang Y, Luo Y, Liu D, Chen X, Suo H. Chitosan and inulin synergized with Lactiplantibacillus plantarum LPP95 to improve the quality characteristics of low-salt pickled tuber mustard. Int J Biol Macromol 2024; 278:134335. [PMID: 39111506 DOI: 10.1016/j.ijbiomac.2024.134335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/21/2024] [Accepted: 07/29/2024] [Indexed: 08/16/2024]
Abstract
Low-salt pickled vegetables are in line with a healthier diet, yet ensuring consistent quality of such products is challenging. In this study, low-salt tuber mustard pickles fermented with Lactiplantibacillus plantarum LPP95 in the presence of chitosan and inulin were analyzed over a 30-day period, and quality changes were evaluated. Total acid productions along with high bacterial counts (106 CFU/mL) were observed in the initial 20 days during indoor storage temperature, in which the reduced fiber aperture was found significantly lead to an increase in crispness (16.94 ± 1.87 N) and the maintenance of a low nitrate content (1.23 ± 0.01 mg/kg). Moreover, the combined pickling treatment resulted in higher malic acid content, lower tartaric acid content, and a decrease in the content of bitter amino acids (e.g., isoleucine and leucine), thus leading to an increase in the proportion of sweet amino acids. Additionally, combined pickling led to the production of unique volatile flavor compounds, especially the distinct spicy flavor compounds isothiocyanates. Moreover, the combined pickling treatment resulted in an increase in the abundance of Lactiplantibacillus and promoted microbial diversity within the fermentation system. Thus, the synergistic effect among chitosan, inulin, and L. plantarum LPP95 significantly enhanced the quality of pickles. The study offers a promising strategy to standardize the quality of low-salt fermented vegetables.
Collapse
Affiliation(s)
- Han Tan
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Dandan Huang
- National Key Laboratory of Market Supervision (Condiment Supervision Technology), Chongqing Institute for Food and Drug Control, Chongqing 401121, China
| | - Yu Zhang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yuanli Luo
- Southeast Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Dejun Liu
- Chongqing Fuling Zhacai Group Co., Ltd., Chongqing, China
| | - Xiaoyong Chen
- College of Food Science, Southwest University, Chongqing 400715, China.
| | - Huayi Suo
- College of Food Science, Southwest University, Chongqing 400715, China.
| |
Collapse
|
8
|
Xian S, Zhao F, Huang X, Liu X, Zhang Z, Zhou M, Shen G, Li M, Chen A. Effects of Pre-Dehydration Treatments on Physicochemical Properties, Non-Volatile Flavor Characteristics, and Microbial Communities during Paocai Fermentation. Foods 2024; 13:2852. [PMID: 39272618 PMCID: PMC11395261 DOI: 10.3390/foods13172852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 08/30/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024] Open
Abstract
The paocai industry faces challenges related to the production of large volumes of high-salinity and acidic brine by-products. Maintaining paocai quality while reducing brine production is crucial. This study utilized high-throughput sequencing technology to analyze microbial changes throughout the fermentation process, along with the non-volatile flavor compounds and physicochemical properties, to assess the impact of hot-air and salt-pressing pre-dehydration treatments on paocai quality. The findings indicate that pre-dehydration of raw material slowed the fermentation process but enhanced the concentration of non-volatile flavor substances, including free amino acids and organic acids. Hot-air pre-dehydration effectively reduced initial salinity to levels comparable to those in high-salinity fermentation of fresh vegetables. Furthermore, pre-dehydration altered microbial community structures and simplified inter-microbial relationships during fermentation. However, the key microorganisms such as Lactobacillus, Weissella, Enterobacter, Wallemia, Aspergillus, and Kazachstania remained consistent across all groups. Additionally, this study found that biomarkers influenced non-volatile flavor formation differently depending on the treatment, but these substances had minimal impact on the biomarkers and showed no clear correlation with high-abundance microorganisms. Overall, fermenting pre-dehydrated raw materials presents an environmentally friendly alternative to traditional paocai production.
Collapse
Affiliation(s)
- Shuang Xian
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Feng Zhao
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Xinyan Huang
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Xingyan Liu
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Zhiqing Zhang
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Man Zhou
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Guanghui Shen
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Meiliang Li
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Anjun Chen
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| |
Collapse
|
9
|
Guo W, Cheng M, Dong X, Liu C, Miao Y, Du P, Chu H, Li C, Liu L. Analysis of flavor substances changes during fermentation of Chinese spicy cabbage based on GC-IMS and PCA. Food Res Int 2024; 192:114751. [PMID: 39147485 DOI: 10.1016/j.foodres.2024.114751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 08/17/2024]
Abstract
This study employed a combination of principal component analysis (PCA) and gas chromatography-ion mobility spectrometry (GC-IMS) to examine the distinctive taste mixtures produced by Chinese spicy cabbage (CSC) fermented at varying temperatures. As the fermentation progressed, the pH gradually decreased and stabilized after the 11 days of fermentation, and the total content of organic acids and short-chain fatty acids increased. A total of 49 volatile mixtures were detected during CSC fermentation and storage for 21 days. These included 7 aldehydes, 6 alcohols, 7 esters, 6 ketones, 5 pyrazines, 4 sulfides, 4 phenols, 2 ethers, 2 olefins, and 1 acid. With time, the content of most volatile flavor substances decreased. PCA of the signal intensities of the volatile chemicals in the samples showed significant differences in the flavor of CSC fermented at different temperatures; consequently, the samples fermented at different temperatures were effectively separated in relatively independent regions of CSC. Therefore, low-temperature fermentation and storage at 4 °C were more suitable for CSC. Based on the identified volatile chemicals, HS-GC-IMS and PCA could effectively construct the flavour fingerprints of CSC samples. This study provided a theoretical basis for improving the fermentation quality of CSC.
Collapse
Affiliation(s)
- Wenkui Guo
- Key Laboratory of Dairy Sciences, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Meiru Cheng
- Key Laboratory of Dairy Sciences, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xuemei Dong
- Key Laboratory of Dairy Sciences, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Chuan Liu
- Key Laboratory of Dairy Sciences, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yu Miao
- Key Laboratory of Dairy Sciences, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Peng Du
- Key Laboratory of Dairy Sciences, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Hong Chu
- Northeast Agricultural University, Harbin 150030, China
| | - Chun Li
- Key Laboratory of Dairy Sciences, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Academy of Green Food Science, Harbin, Heilongjiang 150030, China.
| | - Libo Liu
- Key Laboratory of Dairy Sciences, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
10
|
Zhu J, Liu X, Liu N, Zhao R, Wang S. Lactobacillus plantarum alleviates high-fat diet-induced obesity by altering the structure of mice intestinal microbial communities and serum metabolic profiles. Front Microbiol 2024; 15:1425764. [PMID: 39282560 PMCID: PMC11392860 DOI: 10.3389/fmicb.2024.1425764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
Obesity, which is always accompanied by disorders of lipid metabolism and dysbiosis of the gut microbiota, has become a global epidemic recognised by the World Health Organisation, necessitating innovative strategies and a globally accepted agreement on treating obesity and its related complications. Probiotics, as major active ingredients in many foods, offer potential as biological treatments for obesity prevention and management. Lactobacillus plantarum (L. plantarum) possesses a wide range of biological activities and is widely used to alleviate and ameliorate various diseases. This research demonstrated that Lactobacillus plantarum reduces the weight increase and fat build-up caused by a high-fat diet (HFD) in mice, while also improving glucose tolerance and insulin sensitivity in obese mice. Results indicated that L. plantarum effectively controlled the intestinal microbial community's structure, counteracted disruptions in gut flora caused by HFD, normalized the Firmicutes to Bacteroidota ratio (F/B), and decreased the prevalence of detrimental bacteria Desulfovibrio and Clostridia. Serum metabolomics findings indicate notable alterations in serum metabolites across various groups, notably the increased levels of Isoprothiolane and Inosine, key regulators of lipid metabolism disorders and enhancers of fat burning. These differential metabolites were mainly enriched in unsaturated fatty acid biosynthesis, sulfur metabolism, fatty acid biosynthesis, and purine metabolism. Consequently, we propose that L. plantarum has the potential to alter the gut microbial community's composition, positioning it as a promising option for obesity therapy.
Collapse
Affiliation(s)
- Junwen Zhu
- Department of Cardiology, The First People's Hospital of Wenling, Wenling Hospital of Wenzhou Medical University, Wenling, China
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Xueying Liu
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Naiyuan Liu
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Ruochi Zhao
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Affiliated First Hospital of Ningbo University, Ningbo, China
| | - Shuangshuang Wang
- Department of Cardiology, The First People's Hospital of Wenling, Wenling Hospital of Wenzhou Medical University, Wenling, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Affiliated First Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
11
|
Jin R, Song J, Liu C, Lin R, Liang D, Aweya JJ, Weng W, Zhu L, Shang J, Yang S. Synthetic microbial communities: Novel strategies to enhance the quality of traditional fermented foods. Compr Rev Food Sci Food Saf 2024; 23:e13388. [PMID: 38865218 DOI: 10.1111/1541-4337.13388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/27/2024] [Accepted: 05/19/2024] [Indexed: 06/14/2024]
Abstract
Consumers are attracted to traditional fermented foods due to their unique flavor and nutritional value. However, the traditional fermentation technique can no longer accommodate the requirements of the food industry. Traditional fermented foods produce hazardous compounds, off-odor, and anti-nutritional factors, reducing product stability. The microbial system complexity of traditional fermented foods resulting from the open fermentation process has made it challenging to regulate these problems by modifying microbial behaviors. Synthetic microbial communities (SynComs) have been shown to simplify complex microbial communities and allow for the targeted design of microbial communities, which has been applied in processing traditional fermented foods. Herein, we describe the theoretical information of SynComs, particularly microbial physiological processes and their interactions. This paper discusses current approaches to creating SynComs, including designing, building, testing, and learning, with typical applications and fundamental techniques. Based on various traditional fermented food innovation demands, the potential and application of SynComs in enhancing the quality of traditional fermented foods are highlighted. SynComs showed superior performance in regulating the quality of traditional fermented foods using the interaction of core microorganisms to reduce the hazardous compounds of traditional fermented foods and improve flavor. Additionally, we presented the current status and future perspectives of SynComs for improving the quality of traditional fermented foods.
Collapse
Affiliation(s)
- Ritian Jin
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, China
| | - Jing Song
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, China
| | - Chang Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, China
| | - Rong Lin
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, China
| | - Duo Liang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, China
| | - Jude Juventus Aweya
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, China
| | - Wuyin Weng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
| | - Longji Zhu
- Institute of Urban Environment, Chinese Academy of Science, Xiamen, China
| | - Jiaqi Shang
- Key Laboratory of Bionic Engineering, College of Biological and Agricultural Engineering, Jilin University, Changchun, China
| | - Shen Yang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, China
| |
Collapse
|
12
|
Hassan A, Luqman A, Zhang K, Ullah M, Din AU, Xiaoling L, Wang G. Impact of Probiotic Lactiplantibacillus plantarum ATCC 14917 on atherosclerotic plaque and its mechanism. World J Microbiol Biotechnol 2024; 40:198. [PMID: 38727952 DOI: 10.1007/s11274-024-04010-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/29/2024] [Indexed: 06/22/2024]
Abstract
Atherosclerosis is viewed as not just as a problem of lipid build-up in blood vessels, but also as a chronic inflammatory disease involving both innate and acquired immunity. In atherosclerosis, the inflammation of the arterial walls is the key characteristic that significantly contributes to both the instability of plaque and the occlusion of arteries by blood clots. These events ultimately lead to stroke and acute coronary syndrome. Probiotics are living microorganisms that, when consumed in the right quantities, offer advantages for one's health. The primary objective of this study was to investigate the influence of Lactiplantibacillus plantarum ATCC 14917 (ATCC 14917) on the development of atherosclerotic plaques and its underlying mechanism in Apo lipoprotein E-knockout (Apoe-/- mice). In this study, Apoe-/- mice at approximately 8 weeks of age were randomly assigned to three groups: a Normal group that received a normal chow diet, a high fat diet group that received a gavage of PBS, and a Lactiplantibacillus plantarum ATCC 14917 group that received a high fat diet and a gavage of 0.2 ml ATCC 14917 (2 × 109 CFU/mL) per day for a duration of 12 weeks. Our strain effectively reduced the size of plaques in Apoe-/- mice by regulating the expression of inflammatory markers, immune cell markers, chemokines/chemokine receptors, and tight junction proteins (TJPs). Specifically, it decreased the levels of inflammatory markers (ICAM-1, CD-60 MCP-1, F4/80, ICAM-1, and VCAM-1) in the thoracic aorta, (Ccr7, cd11c, cd4, cd80, IL-1β, TNF-α) in the colon, and increased the activity of ROS-scavenging enzymes (SOD-1 and SOD-2). It also influenced the expression of TJPs (occludin, ZO-1, claudin-3, and MUC-3). In addition, the treatment of ATCC 14917 significantly reduced the level of lipopolysaccharide in the mesenteric adipose tissue. The findings of our study demonstrated that our strain effectively decreased the size of atherosclerotic plaques by modulating inflammation, oxidative stress, intestinal integrity, and intestinal immunity.
Collapse
Affiliation(s)
- Adil Hassan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing University of Science and Technology, Chongqing, China
| | - Ameer Luqman
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Kun Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Mehtab Ullah
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Ahmad Ud Din
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Kannapolis, NC, USA
| | - Liao Xiaoling
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing University of Science and Technology, Chongqing, China.
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China.
- JinFeng Laboratory, Chongqing, 401329, China.
| |
Collapse
|
13
|
Li Q, Xiao K, Yi C, Yu F, Wang W, Rao J, Liu M, Zhang L, Mu Y, Wang C, Wu Q, Li D, Zhou M. Inhibition and Mechanism of Protein Nonenzymatic Glycation by Lactobacillus fermentum. Foods 2024; 13:1183. [PMID: 38672858 PMCID: PMC11049071 DOI: 10.3390/foods13081183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/29/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Lactobacillus fermentum (L. fermentum) was first evaluated as a potential advanced glycation end-product (AGE) formation inhibitor by establishing a bovine serum albumin (BSA) + glucose (glu) glycation model in the present study. The results showed that the highest inhibition rates of pentosidine and total fluorescent AGEs by L. fermentum were approximately 51.67% and 77.22%, respectively, which were higher than that of aminoguanidine (AG). Mechanistic analysis showed that L. fermentum could capture methylglyoxal and glyoxal, inhibit carbonyl and sulfhydryl oxidation, reduce the binding of glucose and amino groups, increase total phenolic content and antioxidant activity, and release intracellular substances to scavenge free radicals; these abilities were the basis of the antiglycation mechanism of L. fermentum. In addition, L. fermentum significantly prevented conformational changes in proteins during glycation, reduced protein cross-linking by 35.67%, and protected the intrinsic fluorophore. Therefore, the inhibition of L. fermentum on glycation mainly occurs through antioxidation, the capture of dicarbonyl compounds, and the protection of the BSA structure. These findings collectively suggest that Lactobacillus is an inhibitor of protein glycation and AGE formation and has the potential for nutraceutical applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Mengzhou Zhou
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratoy of Industrial Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan 430068, China; (Q.L.); (K.X.); (C.Y.); (F.Y.); (W.W.); (J.R.); (M.L.); (L.Z.); (Y.M.); (C.W.); (Q.W.); (D.L.)
| |
Collapse
|
14
|
Cardinali F, Botta C, Harasym J, Reale A, Ferrocino I, Boscaino F, Orkusz A, Milanović V, Garofalo C, Rampanti G, Aquilanti L, Osimani A. Tasting of traditional Polish fermented cucumbers: Microbiology, morpho-textural features, and volatilome. Food Res Int 2024; 177:113851. [PMID: 38225126 DOI: 10.1016/j.foodres.2023.113851] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/04/2023] [Accepted: 12/14/2023] [Indexed: 01/17/2024]
Abstract
In the present study, naturally fermented and unpasteurized cucumbers (Cucumis sativus L.) collected from 4 producers located in different regions of Poland were studied. The fermented cucumbers were characterized by significant nutritional features in terms of polyphenols content and antioxidant activity. Microbiological analyses revealed active bacterial populations of lactococci, thermophilic cocci, lactobacilli, and coagulase-negative cocci. The microbiological characterization of cucumber and brine samples through metataxonomic analysis allowed the dominant species to be detected, being Lactococcus and Streptococcus in cucumbers, and Lactiplantibacillus, Leuconostoc, Pediococcus, Secundilactobacillus, and Lentilactobacillus in brine. The isolation activity offered a clear picture of the main active lactic acid bacteria at the end of fermentation, being Pediococcus parvulus and Lactiplantibacillus plantarum group. All the studied isolates showed a good attitude in fermenting a cucumber-based broth, thus suggesting their potential application as starter or adjunct cultures for guided cucumber fermentation. Moreover, for the same isolates, strong aminopeptidase activity (due to leucine arylamidase and valine arylamidase) was observed, with potential effect on the definition of the final sensory traits of the product. Only a few isolates showed the ability to produce exopolysaccharides in synthetic medium. Of note, the presence of the hdcA gene in some Pediococcus ethanolidurans isolates also confirmed the need for a thorough characterization of starter candidates to avoid undesired adverse effects on consumer's health. No isolate showed the production of bacteriocins against Listeria innocua used as surrogate for Listeria monocytogenes. Based on the results of Headspace Solid-Phase Microextraction-Gas Chromatography/Mass Spectrometry analysis, a rich and complex volatilome, composed by more than 80 VOCs, was recognized and characterized. In more detail, the detected compounds belonged to 9 main classes, being oxygenated terpenes, alcohols, terpenes, ketones, acids, aldehydes, esters, sulfur, and sesquiterpenes.
Collapse
Affiliation(s)
- Federica Cardinali
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, Ancona, Italy
| | - Cristian Botta
- Department of Agricultural, Forest, and Food Science, University of Turin, Largo Paolo Braccini 2, Grugliasco, Torino, Italy
| | - Joanna Harasym
- Department of Biotechnology and Food Analysis, Wroclaw University of Economics and Business, Komandorska 118/120, 53-345 Wrocław, Poland
| | - Anna Reale
- Istituto di Scienze dell'Alimentazione, Consiglio Nazionale delle Ricerche, Via Roma 64, 83100 Avellino, Italy
| | - Ilario Ferrocino
- Department of Agricultural, Forest, and Food Science, University of Turin, Largo Paolo Braccini 2, Grugliasco, Torino, Italy
| | - Floriana Boscaino
- Istituto di Scienze dell'Alimentazione, Consiglio Nazionale delle Ricerche, Via Roma 64, 83100 Avellino, Italy
| | - Agnieszka Orkusz
- Department of Biotechnology and Food Analysis, Wroclaw University of Economics and Business, Komandorska 118/120, 53-345 Wrocław, Poland
| | - Vesna Milanović
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, Ancona, Italy
| | - Cristiana Garofalo
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, Ancona, Italy
| | - Giorgia Rampanti
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, Ancona, Italy
| | - Lucia Aquilanti
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, Ancona, Italy
| | - Andrea Osimani
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, Ancona, Italy; Istituto di Scienze dell'Alimentazione, Consiglio Nazionale delle Ricerche, Via Roma 64, 83100 Avellino, Italy.
| |
Collapse
|
15
|
Li S, Han X, Liu N, Chang J, Liu G, Hu S. Lactobacillus plantarum attenuates glucocorticoid-induced osteoporosis by altering the composition of rat gut microbiota and serum metabolic profile. Front Immunol 2024; 14:1285442. [PMID: 38264658 PMCID: PMC10803555 DOI: 10.3389/fimmu.2023.1285442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/20/2023] [Indexed: 01/25/2024] Open
Abstract
Introduction Osteoporosis, one of the most common non-communicable human diseases worldwide, is one of the most prevalent disease of the adult skeleton. Glucocorticoid-induced osteoporosis(GIOP) is the foremost form of secondary osteoporosis, extensively researched due to its prevalence.Probiotics constitute a primary bioactive component within numerous foods, offering promise as a potential biological intervention for preventing and treating osteoporosis. This study aimed to evaluate the beneficial effects of the probiotic Lactobacillus plantarum on bone health and its underlying mechanisms in a rat model of glucocorticoid dexamethasone-induced osteoporosis, using the osteoporosis treatment drug alendronate as a reference. Methods We examined the bone microstructure (Micro-CT and HE staining) and analyzed the gut microbiome and serum metabolome in rats. Results and discussion The results revealed that L. plantarum treatment significantly restored parameters of bone microstructure, with elevated bone density, increased number and thickness of trabeculae, and decreased Tb.Sp. Gut microbiota sequencing results showed that probiotic treatment increased gut microbial diversity and the ratio of Firmicutes to Bacteroidota decreased. Beneficial bacteria abundance was significantly increased (Lachnospiraceae_NK4A136_group, Ruminococcus, UCG_005, Romboutsia, and Christensenellaceae_R_7_group), and harmful bacteria abundance was significantly decreased (Desulfovibrionaceae). According to the results of serum metabolomics, significant changes in serum metabolites occurred in different groups. These differential metabolites were predominantly enriched within the pathways of Pentose and Glucuronate Interconversions, as well as Propanoate Metabolism. Furthermore, treatment of L. plantarum significantly increased serum levels of Pyrazine and gamma-Glutamylcysteine, which were associated with inhibition of osteoclast formation and promoting osteoblast formation. Lactobacillus plantarum can protect rats from DEX-induced GIOP by mediating the "gut microbial-bone axis" promoting the production of beneficial bacteria and metabolites. Therefore L. plantarum is a potential candidate for the treatment of GIOP.
Collapse
Affiliation(s)
- Siying Li
- The Orthopaedic Center, The First People’s Hospital of Wenling, Wenling Hospital of Wenzhou Medical University, Wenling, Zhejiang, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Xuebing Han
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Naiyuan Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Jiang Chang
- The Orthopaedic Center, The First People’s Hospital of Wenling, Wenling Hospital of Wenzhou Medical University, Wenling, Zhejiang, China
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Siwang Hu
- The Orthopaedic Center, The First People’s Hospital of Wenling, Wenling Hospital of Wenzhou Medical University, Wenling, Zhejiang, China
| |
Collapse
|
16
|
Muradova M, Proskura A, Canon F, Aleksandrova I, Schwartz M, Heydel JM, Baranenko D, Nadtochii L, Neiers F. Unlocking Flavor Potential Using Microbial β-Glucosidases in Food Processing. Foods 2023; 12:4484. [PMID: 38137288 PMCID: PMC10742834 DOI: 10.3390/foods12244484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Aroma is among of the most important criteria that indicate the quality of food and beverage products. Aroma compounds can be found as free molecules or glycosides. Notably, a significant portion of aroma precursors accumulates in numerous food products as nonvolatile and flavorless glycoconjugates, termed glycosidic aroma precursors. When subjected to enzymatic hydrolysis, these seemingly inert, nonvolatile glycosides undergo transformation into fragrant volatiles or volatiles that can generate odor-active compounds during food processing. In this context, microbial β-glucosidases play a pivotal role in enhancing or compromising the development of flavors during food and beverage processing. β-glucosidases derived from bacteria and yeast can be utilized to modulate the concentration of particular aroma and taste compounds, such as bitterness, which can be decreased through hydrolysis by glycosidases. Furthermore, oral microbiota can influence flavor perception by releasing volatile compounds that can enhance or alter the perception of food products. In this review, considering the glycosidic flavor precursors present in diverse food and beverage products, we underscore the significance of glycosidases with various origins. Subsequently, we delve into emerging insights regarding the release of aroma within the human oral cavity due to the activity of oral microbial glycosidases.
Collapse
Affiliation(s)
- Mariam Muradova
- Molecular Mechanisms of Flavor Perception, Center for Taste and Feeding Behavior, INRAE, CNRS, University of Burgundy Franche-Comté, 21000 Dijon, France; (A.P.); (F.C.); (M.S.); (J.-M.H.)
- International Research Center “Biotechnologies of the Third Millennium”, Faculty of Biotechnologies (BioTech), ITMO University, 191002 Saint-Petersburg, Russia; (I.A.); (L.N.)
| | - Alena Proskura
- Molecular Mechanisms of Flavor Perception, Center for Taste and Feeding Behavior, INRAE, CNRS, University of Burgundy Franche-Comté, 21000 Dijon, France; (A.P.); (F.C.); (M.S.); (J.-M.H.)
- International Research Center “Biotechnologies of the Third Millennium”, Faculty of Biotechnologies (BioTech), ITMO University, 191002 Saint-Petersburg, Russia; (I.A.); (L.N.)
| | - Francis Canon
- Molecular Mechanisms of Flavor Perception, Center for Taste and Feeding Behavior, INRAE, CNRS, University of Burgundy Franche-Comté, 21000 Dijon, France; (A.P.); (F.C.); (M.S.); (J.-M.H.)
| | - Irina Aleksandrova
- International Research Center “Biotechnologies of the Third Millennium”, Faculty of Biotechnologies (BioTech), ITMO University, 191002 Saint-Petersburg, Russia; (I.A.); (L.N.)
| | - Mathieu Schwartz
- Molecular Mechanisms of Flavor Perception, Center for Taste and Feeding Behavior, INRAE, CNRS, University of Burgundy Franche-Comté, 21000 Dijon, France; (A.P.); (F.C.); (M.S.); (J.-M.H.)
| | - Jean-Marie Heydel
- Molecular Mechanisms of Flavor Perception, Center for Taste and Feeding Behavior, INRAE, CNRS, University of Burgundy Franche-Comté, 21000 Dijon, France; (A.P.); (F.C.); (M.S.); (J.-M.H.)
| | - Denis Baranenko
- International Research Center “Biotechnologies of the Third Millennium”, Faculty of Biotechnologies (BioTech), ITMO University, 191002 Saint-Petersburg, Russia; (I.A.); (L.N.)
| | - Liudmila Nadtochii
- International Research Center “Biotechnologies of the Third Millennium”, Faculty of Biotechnologies (BioTech), ITMO University, 191002 Saint-Petersburg, Russia; (I.A.); (L.N.)
| | - Fabrice Neiers
- Molecular Mechanisms of Flavor Perception, Center for Taste and Feeding Behavior, INRAE, CNRS, University of Burgundy Franche-Comté, 21000 Dijon, France; (A.P.); (F.C.); (M.S.); (J.-M.H.)
| |
Collapse
|
17
|
Kieliszek M, Serrano Sandoval SN. The importance of selenium in food enrichment processes. A comprehensive review. J Trace Elem Med Biol 2023; 79:127260. [PMID: 37421809 DOI: 10.1016/j.jtemb.2023.127260] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 07/10/2023]
Abstract
Selenium is an essential element that determines the proper life functions of human and animal organisms. The content of selenium in food varies depending on the region and soil conditions. Therefore, the main source is a properly selected diet. However, in many countries, there are shortages of this element in the soil and local food. Too low an amount of this element in food can lead to many adverse changes in the body. The consequence of this may also be the occurrence of numerous potentially life-threatening diseases. Therefore, it is very important to properly introduce methods that condition the supplementation of the appropriate chemical form of this element, especially in areas with deficient selenium content. This review aims to summarize the published literature on the characterization of different types of selenium-enriched foods. At the same time, legal regulations and prospects for the future related to the production of food enriched with this element are presented. It should be noted that there are limitations and concerns with the production of such food due to the narrow safety range between the necessary and the toxic dose of this element. Therefore, selenium has been treated with special care for a very long time. For this reason, the presented mechanisms of production processes related to increasing the scale of selenium supplementation should be constantly monitored. Appropriate monitoring and development of the technological process for the production of selenium-enriched food is very important. Such food should ensure consumer safety and repeatability of the obtained product. Understanding the mechanisms and possibilities of selenium accumulation by plants and animals is one of the most important directions in the development of modern bromatology and the science of supplementation. This is particularly important in the case of rational nutrition and supplementing the human diet with an essential element such as selenium. Food technology is facing these challenges today.
Collapse
Affiliation(s)
- Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159C, 02-776 Warsaw, Poland.
| | - Sayra N Serrano Sandoval
- Tecnologico de Monterrey, Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849 Monterrey, NL, Mexico; Tecnologico de Monterrey, The Institute for Obesity Research, Monterrey, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849 Monterrey, NL, Mexico
| |
Collapse
|
18
|
Lin X, Bakyrbay S, Liu L, Tang X, Liu Y. Microbiota Succession and Chemical Composition Involved in Lactic Acid Bacteria-Fermented Pickles. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9040330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Pickles are a type of traditional fermented vegetables in China. To ascertain the effect of different lactic acid bacteria on pickles, the chemical composition characteristics, flavor substances, and bacterial diversity of the pickles fermented by natural bacteria, Lactobacillus plantarum R5, Lactobacillus pentosus R8, and L. plantarum R5 plus L. pentosus R8 were investigated in this study. The results showed that Lactobacillus enhanced the decrease in pH, increase in total acid content, degradation of nitrite, and production of organic acid (lactic acid and malic acid) of fermented pickles. A total of 80 flavors were detected in the pickles fermented for 14 days, and esters in pickles fermented by Lactobacillus were more plentiful. Firmicutes emerged as the predominant microbial phyla. Amongst these, the commonly encountered microorganisms were Lactobacillus, unclassified Enterobacteriaceae, Pantoea, and Weissella. The multivariate statistical analysis further showed that Lactobacillus had a strong negative correlation with pH and a strong positive correlation with malic acid and lactic acid, and the microorganisms in pickles could acclimate to the changing fermentation environment. The insights gained from this study may be of assistance to us in obtaining new insights into the microbiota succession and chemical compounds involved in the pickles fermented by Lactobacillus.
Collapse
|
19
|
Regulation of the nitrite, biogenic amine and flavor quality of Cantonese pickle by selected lactic acid bacteria. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
20
|
Xing Y, Yi R, Yue T, Bi X, Wu L, Pan H, Liu X, Che Z. Effect of dense phase carbon dioxide treatment on the flavor, texture, and quality changes in new-paocai. Food Res Int 2023; 165:112431. [PMID: 36869467 DOI: 10.1016/j.foodres.2022.112431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/09/2023]
Abstract
This study investigated the effect of dense phase carbon dioxide (DPCD) treatment on the organoleptic properties of new-paocai. Optimal DPCD treatment (25 MPa/40 °C/40 min) was determined by conducting single-factor and orthogonal experiments with the sensory, bactericidal, and electronic eye evaluations. DPCD treatment (25 MPa/40 °C/40 min) did not significantly affect the nitrite, pH, total acid, and organic acid of the new-paocai brine, and the texture of the radish slices did not display substantial changes. Gas chromatography-mass spectrometry (GC-MS) was employed to characterize the new-paocai brine flavor, revealing 63 and 60 respective flavor compounds with and without DPCD treatment. In addition, DPCD treatment significantly reduced the total organic volatile compound content in the paocai from 48.182 μg/mL to 35.952 μg/mL, DPCD has a great influence on volatile flavor substances. The electronic nose (E-nose) effectively distinguished the flavor differences in the new-paocai brine with and without DPCD treatment. This study combined new food processing technology with traditional food production, could provide a new idea for pickle production technology.
Collapse
Affiliation(s)
- Yage Xing
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food and Bioengineering, Xihua University, Chengdu 610039, China; Key Laboratory of Food Non-Thermal Technology, Engineering Technology Research Center of Food Non-Thermal Processing, Yibin Xihua University Research Institute, Yibin 644004, China
| | - Rumeng Yi
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food and Bioengineering, Xihua University, Chengdu 610039, China; Key Laboratory of Food Non-Thermal Technology, Engineering Technology Research Center of Food Non-Thermal Processing, Yibin Xihua University Research Institute, Yibin 644004, China
| | - Tianyi Yue
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food and Bioengineering, Xihua University, Chengdu 610039, China; Key Laboratory of Food Non-Thermal Technology, Engineering Technology Research Center of Food Non-Thermal Processing, Yibin Xihua University Research Institute, Yibin 644004, China
| | - Xiufang Bi
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food and Bioengineering, Xihua University, Chengdu 610039, China; Key Laboratory of Food Non-Thermal Technology, Engineering Technology Research Center of Food Non-Thermal Processing, Yibin Xihua University Research Institute, Yibin 644004, China
| | - Lin Wu
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food and Bioengineering, Xihua University, Chengdu 610039, China; Key Laboratory of Food Non-Thermal Technology, Engineering Technology Research Center of Food Non-Thermal Processing, Yibin Xihua University Research Institute, Yibin 644004, China
| | - Hongjie Pan
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food and Bioengineering, Xihua University, Chengdu 610039, China; Key Laboratory of Food Non-Thermal Technology, Engineering Technology Research Center of Food Non-Thermal Processing, Yibin Xihua University Research Institute, Yibin 644004, China
| | - Xiaocui Liu
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food and Bioengineering, Xihua University, Chengdu 610039, China; Key Laboratory of Food Non-Thermal Technology, Engineering Technology Research Center of Food Non-Thermal Processing, Yibin Xihua University Research Institute, Yibin 644004, China
| | - Zhenming Che
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food and Bioengineering, Xihua University, Chengdu 610039, China; Key Laboratory of Food Non-Thermal Technology, Engineering Technology Research Center of Food Non-Thermal Processing, Yibin Xihua University Research Institute, Yibin 644004, China
| |
Collapse
|
21
|
Peng F, Huang H, Lin JX, Yang T, Xie M, Xiong T, Peng Z. Development of yacon syrup fermented by Lactiplantibacillus plantarum NCU001043: Metabolite profiling, antioxidant and glycosidase inhibition activity. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
22
|
Zou Y, Zhong Y, Zhou Q, Jia Z, Chen Q, Xu W, Wu Y, Wei S, Zhong K, Gao H. Effects of solid-state fermentation with Bacillus subtilis Y4 on the quality of Yibin Yacai. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
Lu Y, Xing S, He L, Li C, Wang X, Zeng X, Dai Y. Characterization, High-Density Fermentation, and the Production of a Directed Vat Set Starter of Lactobacilli Used in the Food Industry: A Review. Foods 2022; 11:3063. [PMID: 36230139 PMCID: PMC9563398 DOI: 10.3390/foods11193063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/15/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
Lactobacilli have been widely concerned for decades. Bacteria of the genus Lactobacillus have been commonly employed in fermented food to improve the appearance, smell, and taste of food or prolong its shelf-life. They comprise 261 species (by March 2020) that are highly diverse at the phenotypic, ecological, and genotypic levels. Some Lactobacilli strains have been documented to be essential probiotics, which are defined as a group of living microorganisms that are beneficial to the health of the host when ingested in sufficiency. However, the characterization, high-density fermentation, and the production of a directed vat set (DVS) starter of Lactobacilli strains used in the food industry have not been systematically reported. This paper mainly focuses on reviewing Lactobacilli as functional starter cultures in the food industry, including different molecular techniques for identification at the species and strain levels, methods for evaluating Lactobacilli properties, enhancing their performance and improving the cell density of Lactobacilli, and the production techniques of DVS starter of Lactobacilli strains. Moreover, this review further discussed the existing problems and future development prospects of Lactobacilli in the food industry. The viability and stability of Lactobacilli in the food industry and gastrointestinal environment are critical challenges at the industrial scale. The new production equipment and technology of DVS starter of Lactobacilli strains will have the potential for large-scale application, for example, developing low-temperature spray drying, freezing granulation drying, and spray freeze-drying.
Collapse
Affiliation(s)
- Yun Lu
- Key Laboratory of Agricultural and Animal Products Storage & Processing of Guizhou Province, Guizhou University, Guiyang 550025, China
- Department of Brewing Engineering, Moutai University, Renhuai 564507, China
| | - Shuqi Xing
- Key Laboratory of Agricultural and Animal Products Storage & Processing of Guizhou Province, Guizhou University, Guiyang 550025, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Laping He
- Key Laboratory of Agricultural and Animal Products Storage & Processing of Guizhou Province, Guizhou University, Guiyang 550025, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Cuiqin Li
- Key Laboratory of Agricultural and Animal Products Storage & Processing of Guizhou Province, Guizhou University, Guiyang 550025, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Xiao Wang
- Key Laboratory of Agricultural and Animal Products Storage & Processing of Guizhou Province, Guizhou University, Guiyang 550025, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Xuefeng Zeng
- Key Laboratory of Agricultural and Animal Products Storage & Processing of Guizhou Province, Guizhou University, Guiyang 550025, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Yifeng Dai
- Key Laboratory of Agricultural and Animal Products Storage & Processing of Guizhou Province, Guizhou University, Guiyang 550025, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| |
Collapse
|
24
|
Qiu L, Zhang M, Chang L. Effects of lactic acid bacteria fermentation on the phytochemicals content, taste and aroma of blended edible rose and shiitake beverage. Food Chem 2022; 405:134722. [DOI: 10.1016/j.foodchem.2022.134722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 11/26/2022]
|
25
|
Effects of Selenium Supplementation on Rumen Microbiota, Rumen Fermentation, and Apparent Nutrient Digestibility of Ruminant Animals: A Review. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation8010004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Enzymes excreted by rumen microbiome facilitate the conversion of ingested plant materials into major nutrients (e.g., volatile fatty acids (VFA) and microbial proteins) required for animal growth. Diet, animal age, and health affect the structure of the rumen microbial community. Pathogenic organisms in the rumen negatively affect fermentation processes in favor of energy loss and animal deprivation of nutrients in ingested feed. Drawing from the ban on antibiotic use during the last decade, the livestock industry has been focused on increasing rumen microbial nutrient supply to ruminants through the use of natural supplements that are capable of promoting the activity of beneficial rumen microflora. Selenium (Se) is a trace mineral commonly used as a supplement to regulate animal metabolism. However, a clear understanding of its effects on rumen microbial composition and rumen fermentation is not available. This review summarized the available literature for the effects of Se on specific rumen microorganisms along with consequences for rumen fermentation and digestibility. Some positive effects on total VFA, the molar proportion of propionate, acetate to propionate ratio, ruminal NH3-N, pH, enzymatic activity, ruminal microbiome composition, and digestibility were recorded. Because Se nanoparticles (SeNPs) were more effective than other forms of Se, more studies are needed to compare the effectiveness of synthetic SeNPs and lactic acid bacteria enriched with sodium selenite as a biological source of SeNPs and probiotics. Future studies also need to evaluate the effect of dietary Se on methane emissions.
Collapse
|
26
|
Peng MY, Zhang XJ, Huang T, Zhong XZ, Chai LJ, Lu ZM, Shi JS, Xu ZH. Komagataeibacter europaeus improves community stability and function in solid-state cereal vinegar fermentation ecosystem: Non-abundant species plays important role. Food Res Int 2021; 150:110815. [PMID: 34863491 DOI: 10.1016/j.foodres.2021.110815] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/14/2021] [Accepted: 11/13/2021] [Indexed: 01/03/2023]
Abstract
Solid-state fermentation of Chinese traditional cereal vinegar is a complex and retractable ecosystem with multi-species involved, including few abundant and many non-abundant species. However, the roles of non-abundant species in vinegar fermentation remain unknown. Here, we studied the assembly and co-occurrence patterns for abundant and non-abundant bacterial sub-communities using Zhenjiang aromatic vinegar fermentation as a model system. Our results showed that the change of reducing sugar and total titratable acid were the main driving forces for the assembly of abundant and non-abundant sub-communities, respectively. The non-abundant sub-community was more sensitive to the environmental variation of acetic acid fermentation (AAF) process. Integrated co-occurrence network revealed that non-abundant sub-communities occupied most of the nodes in the network, which play fundamental roles in network stability. Importantly, non-abundant species-Komagataeibacter europaeus, showed the highest value of degree in the co-occurrence network, implying its importance for the metabolic function and resilience of the microbial community. Bioaugmentation of K. europaeus JNP1 verified that it can effectively modulate bacterial composition and improve the robustness of co-occurrence network in situ, accompanied by (i) increased acetic acid content (14.78%) and decreased reducing sugar content (40.38%); and (ii) increased the gene numbers of phosphogluconate dehydratase (212.24%) and aldehyde dehydrogenase (192.31%). Overall, the results showed that non-abundant bacteria could be used to regulate the desired metabolic function of the community, and might play an important ecological significance in traditional fermented foods.
Collapse
Affiliation(s)
- Ming-Ye Peng
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, PR China
| | - Xiao-Juan Zhang
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center of Solid-State Brewing, Luzhou 646000, PR China.
| | - Ting Huang
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, PR China
| | - Xiao-Zhong Zhong
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, PR China
| | - Li-Juan Chai
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, PR China; Jiangsu Engineering Research Center for Bioactive Products Processing Technology, Jiangnan University, Wuxi 214122, PR China
| | - Zhen-Ming Lu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center of Solid-State Brewing, Luzhou 646000, PR China
| | - Jin-Song Shi
- School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, PR China; Jiangsu Engineering Research Center for Bioactive Products Processing Technology, Jiangnan University, Wuxi 214122, PR China
| | - Zheng-Hong Xu
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center of Solid-State Brewing, Luzhou 646000, PR China.
| |
Collapse
|