1
|
Zhang C, Wang C, Wang H, Ablimit A, Sun Q, Dong H, Zhang B, Hu W, Liu C, Wang C. Identification of characteristic volatiles and metabolomic pathways during the fermentation of red grapefruit by Monascus purpureus using HS-SPME-GC-MS and metabolomics. Food Chem 2025; 464:141786. [PMID: 39504903 DOI: 10.1016/j.foodchem.2024.141786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/11/2024] [Accepted: 10/24/2024] [Indexed: 11/08/2024]
Abstract
Fermentation of red grapefruit by Monascus purpureus (M. purpureus) results in complex changes in flavor compounds and metabolic profiles, but the specifics of these alterations are not well understood. This study aimed to investigate the changes in flavor compounds and metabolomic traits during this fermentation process. Using Headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) with non-targeted metabolomics, we analyzed flavor compounds and measured physicochemical indices throughout the fermentation period. We identified 23 volatile flavor metabolites before and after fermentation, focusing on acids, alcohols, and aldehydes, of these, 9 showed an upward effect and 14 showed a downward effect. Key metabolic pathways involved included butyric acid, taurine, and hypotaurine, with notable downregulation of acetone and 1-butanol in the butyric acid pathway. The study reveals that butyric acid-related metabolism influences other pathways such as glycolysis, fatty acid metabolism, and the tricarboxylic acid cycle in M. purpureus. These findings provide insights into the generation of flavor compounds during fermentation and offer a theoretical basis for the industrial production of fermented citrus fruits.
Collapse
Affiliation(s)
- Chan Zhang
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Congcong Wang
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Haijiao Wang
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Arzugul Ablimit
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Qing Sun
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Huijun Dong
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Bobo Zhang
- School of Science, Shantou University, Shantou, Guangdong 515063, China
| | - Wenlin Hu
- Guangdong Tianyi Biotechnology Co.,Ltd., Zhanjiang, Guangdong 524000, China
| | - Chengjian Liu
- Shandong Fanhui Pharmaceutical Co., Ltd., Jinan, Shandong 271100, China
| | - Chengtao Wang
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| |
Collapse
|
2
|
Deng M, Ye J, Zhang R, Zhang S, Dong L, Huang F, Jia X, Su D, Ma Q, Zhao D, Zhang M. Shatianyu dietary fiber (Citrus grandis L. Osbeck) promotes the production of active metabolites from its flavonoids during in vitro colonic fermentation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3139-3146. [PMID: 38072776 DOI: 10.1002/jsfa.13204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/24/2023] [Accepted: 12/11/2023] [Indexed: 01/04/2024]
Abstract
BACKGROUND Recent studies reveal that dietary fiber (DF) might play a critical role in the metabolism and bioactivity of flavonoids by regulating gut microbiota. We previously found that Shatianyu (Citrus grandis L. Osbeck) pulp was rich in flavonoids and DF, and Shatianyu pulp flavonoid extracts (SPFEs) were dominated by melitidin, obviously different from other citrus flavonoids dominated by naringin. The effects of Shatianyu pulp DF (SPDF) on the microbial metabolism and bioactivity of SPFEs is unknown. RESULTS An in vitro colonic fermentation model was used to explore the effects of SPDF on the microbial metabolism and antioxidant activity of SPFEs in the present study. At the beginning of fermentation, SPDF promoted the microbial degradation of SPFEs. After 24 h-fermentation, the supplemented SPFEs were almost all degraded in SPFEs group, and the main metabolites detected were the dehydrogenation, hydroxylation and acetylation products of naringenin, the aglycone of the major SPFEs components. However, when SPFEs fermented with SPDF for 24 h, 60.7% of flavonoid compounds were retained, and SPFEs were mainly transformed to the ring fission metabolites, such as 3-(4-hydroxyphenyl) propionic acid, 3-phenylpropionic acid and 3-(3-hydroxy-phenyl) propionic acid. The fermentation metabolites of SPFEs showed stronger antioxidant activity than the original ones, with a further increase in SPDF supplemented group. Furthermore, SPFEs enriched microbiota participating in the deglycosylation and dehydrogenation of flavonoids, while co-supplementation of SPDF and SPFEs witnessed the bloom of Lactobacillaceae and Lactobacillus, contributing to the deglycosylation and ring fission of flavonoids. CONCLUSION SDPF promote SPFEs to transform to active metabolites probably by regulating gut microbiota. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mei Deng
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key laboratory of Functional Foods, Ministry of Agriculture//Guangdong Key laboratory of Agricultural Products Processing, Guangzhou, China
| | - Jiamin Ye
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key laboratory of Functional Foods, Ministry of Agriculture//Guangdong Key laboratory of Agricultural Products Processing, Guangzhou, China
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Ruifen Zhang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key laboratory of Functional Foods, Ministry of Agriculture//Guangdong Key laboratory of Agricultural Products Processing, Guangzhou, China
| | - Shuai Zhang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key laboratory of Functional Foods, Ministry of Agriculture//Guangdong Key laboratory of Agricultural Products Processing, Guangzhou, China
| | - Lihong Dong
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key laboratory of Functional Foods, Ministry of Agriculture//Guangdong Key laboratory of Agricultural Products Processing, Guangzhou, China
| | - Fei Huang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key laboratory of Functional Foods, Ministry of Agriculture//Guangdong Key laboratory of Agricultural Products Processing, Guangzhou, China
| | - Xuchao Jia
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key laboratory of Functional Foods, Ministry of Agriculture//Guangdong Key laboratory of Agricultural Products Processing, Guangzhou, China
| | - Dongxiao Su
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, China
| | - Qin Ma
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key laboratory of Functional Foods, Ministry of Agriculture//Guangdong Key laboratory of Agricultural Products Processing, Guangzhou, China
| | - Dong Zhao
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key laboratory of Functional Foods, Ministry of Agriculture//Guangdong Key laboratory of Agricultural Products Processing, Guangzhou, China
| | - Mingwei Zhang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key laboratory of Functional Foods, Ministry of Agriculture//Guangdong Key laboratory of Agricultural Products Processing, Guangzhou, China
- Food Laboratory of Zhongyuan, Luohe, China
| |
Collapse
|
3
|
Li Z, Du Y, Ding C, Yang P, Wang L, Zhao Y. An Interpretable Screening Approach Derived Through XGBoost Regression for the Discovery of Hypolipidemic Contributors in Chinese Hawthorn Leaf and its Counterfeit Malus Doumeri Leaf. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 79:209-218. [PMID: 38340238 DOI: 10.1007/s11130-024-01148-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/23/2024] [Indexed: 02/12/2024]
Abstract
The active ingredient group is a prominent feature reflecting the inherent characteristics of plant-based functional foods. Chinese hawthorn leaf (CHL), a tea substitute possessing intrinsic nutritional properties in anti-hyperlipidemia, was first found to be adulterated with Malus doumeri leaf (MDL) owing to similar commercial labels. In this context, the above-mentioned two contrasting species were explored through phytochemical profiling and activity assessment. The amelioration effect of CHL on free fatty acids-elicited lipid deposition in HepG2 cells was significantly better than that of MDL. Molecular networking-based metabolic profiles identified 68 and 67 components in CHL and MDL, with 33 shared components. Extreme gradient boosting (XGBoost) algorithm with outstanding performance was selected to screen candidate components contributing to hypolipidemic activity, and the output was later interpreted by Shapley additive explanations (SHAP) method. Twelve and eight components were separately screened as hyperlipidemic inhibitors in CHL and MDL, while only four constituents were shared. The bioactivity evaluation of selected ingredients and combinations further confirmed their anti-hyperlipidemia capacity. These findings emphasized the feasibility of filtering bioactivity-related compounds using interpretable machine learning approaches and illustrated that related species may contain different hypolipidemic contributors, even if shared constituents existed.
Collapse
Affiliation(s)
- Zhen Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Ministry of Education, Yantai University, Yantai, 264005, PR China
| | - Yuan Du
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Ministry of Education, Yantai University, Yantai, 264005, PR China
| | - Chen Ding
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Ministry of Education, Yantai University, Yantai, 264005, PR China
| | - Pufan Yang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Ministry of Education, Yantai University, Yantai, 264005, PR China
| | - Lin Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Ministry of Education, Yantai University, Yantai, 264005, PR China.
| | - Yan Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Ministry of Education, Yantai University, Yantai, 264005, PR China.
| |
Collapse
|
4
|
Job JT, Visakh NU, Pathrose B, Alfarhan A, Rajagopal R, Thayyullathil J, Thejass P, Ramesh V, Narayanankutty A. Chemical Composition and Biological Activities of the Essential Oil from Citrus reticulata Blanco Peels Collected from Agrowastes. Chem Biodivers 2024; 21:e202301223. [PMID: 38108562 DOI: 10.1002/cbdv.202301223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/17/2023] [Accepted: 12/18/2023] [Indexed: 12/19/2023]
Abstract
Citrus fruits have a thick outer coat which is often discarded due to its low economic value and usually contributes to the waste. So this work focused on exploring the potential pharmacological properties of the discarded citrus peels. In the present study, we extracted the essential oil from peel wastes of Citrus reticulata Blanco (CREO) from the local market. The antioxidant, antibacterial, and anticancer properties of essential oil were evaluated. The CREO exhibited a strong antioxidant property with DPPH radical scavenging, ABTS radical scavenging, H2 O2 radical scavenging, Ferric reducing antioxidant power and for Lipid peroxidation inhibition respectively. Antibacterial properties of CREO was indicated against different pathogenic microbial strains like E. coli, P. aeruginosa, S. aureus, and S. enterica in terms of disc diffusion method and minimum inhibitory concentration (MIC). Further, anticancer properties studied on breast cancer cell lines MCF7 and MDA-MB-231 showed dose-dependent cytotoxicity with IC50 of 56.67±3.12 μg/mL and 76.44±2.53 μg/mL respectively. The GC-MS analysis of CREO revealed the presence of major compounds like S-limonene, α-pinene, α-myrcene, and cis-terpinene which might have played a significant role in strong antioxidant, antibacterial and anticancer properties. The study thus identified the potential health benefits of Citrus reticulata peel waste.
Collapse
Affiliation(s)
- Joice Tom Job
- Division of Cell and Molecular Biology, PG & Research Department of Zoology, St. Joseph's College (Autonomous), Devagiri, 673008, Calicut, Kerala, India
- PG & Research Department of Zoology, Government College Madappally, 673102, Vadakara, Kerala, India
| | - Naduvilthara U Visakh
- Department of Agricultural Entomology, College of Agriculture, Kerala Agricultural University, 680656, Thrissur, Kerala, India
| | - Berin Pathrose
- Department of Agricultural Entomology, College of Agriculture, Kerala Agricultural University, 680656, Thrissur, Kerala, India
| | - Ahmed Alfarhan
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Rajakrishnan Rajagopal
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Jobiraj Thayyullathil
- PG Department of Zoology, Government College Kodenchery, Kodenchery, 673580 Calicut, Kerala, India
- PG & Research Department of Zoology, Government College Madappally, 673102, Vadakara, Kerala, India
| | - P Thejass
- PG & Research Department of Zoology, Government College Madappally, 673102, Vadakara, Kerala, India
| | - Varsha Ramesh
- Department of Biotechnology, Deakin University, 3217, Geelong, VIC, Australia
| | - Arunaksharan Narayanankutty
- Division of Cell and Molecular Biology, PG & Research Department of Zoology, St. Joseph's College (Autonomous), Devagiri, 673008, Calicut, Kerala, India
| |
Collapse
|
5
|
Ghosh S, Das B, Haldar PK, Kar A, Chaudhary SK, Singh KO, Bhardwaj PK, Sharma N, Mukherjee PK. 6-Gingerol contents of several ginger varieties of Northeast India and correlation of their antioxidant activity in respect to phenolics and flavonoids contents. PHYTOCHEMICAL ANALYSIS : PCA 2023; 34:259-268. [PMID: 36594354 DOI: 10.1002/pca.3201] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/02/2022] [Accepted: 11/02/2022] [Indexed: 06/17/2023]
Abstract
INTRODUCTION Ginger constitutes the rhizome part of the plant Zingiber officinale from the Zingiberaceae family. A large number of ginger varieties with high sensorial and functional quality are found in Northeast India. Hence, phytopharmacological screening of different ginger varieties is essential that will serve as a guideline in applied research to develop high-end products and improve economical margins. OBJECTIVE To determine the variation in total phenolics content (TPC), total flavonoids content (TFC), and antioxidant activities and correlate that with 6-gingerol contents of different ginger varieties collected from Northeast India using Pearson's correlation analysis. MATERIALS AND METHODS The TPC and TFC values were determined using standard methods. Antioxidant activities were measured using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and hydroxyl radical scavenging assays, while reversed-phase high-performance liquid chromatography (RP-HPLC) analysis was utilised for quantitative determination of 6-gingerol content. RESULTS The result revealed that ginger variety 6 (GV6) contains the highest 6-gingerol content and TPC value showing maximum antioxidant activity, followed by GV5, GV4, GV9, GV3, GV2, GV8, GV1, and GV7. The findings also suggested that the antioxidant activity has much better correlations with TPC as compared with TFC values. Pearson's correlation analysis showed a significant correlation between 6-gingerol contents and TPC values. CONCLUSION This work underlines the importance of ginger varieties from Northeast India as a source of natural antioxidants with health benefits.
Collapse
Affiliation(s)
- Suparna Ghosh
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Bhaskar Das
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
- Institute of Bioresources and Sustainable Development, Imphal, India
| | - Pallab Kanti Haldar
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Amit Kar
- Institute of Bioresources and Sustainable Development, Imphal, India
| | | | | | | | - Nanaocha Sharma
- Institute of Bioresources and Sustainable Development, Imphal, India
| | - Pulok K Mukherjee
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
- Institute of Bioresources and Sustainable Development, Imphal, India
| |
Collapse
|
6
|
Wang R, Fu Y, Ma R, Jin H, Zhao W. Total Synthesis of Lineaflavones A, C, D, and Analogues. Molecules 2023; 28:molecules28052373. [PMID: 36903616 PMCID: PMC10005778 DOI: 10.3390/molecules28052373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
The first total synthesis of lineaflavones A, C, D, and their analogues has been accomplished. The key synthetic steps include aldol/oxa-Michael/dehydration sequence reactions to assemble the tricyclic core, Claisen rearrangement and Schenck ene reaction to construct the key intermediate, and selective substitution or elimination of tertiary allylic alcohol to obtain natural compounds. In addition, we also explored five new routes to synthesize fifty-three natural product analogues, which can contribute to a systematic structure-activity relationship during biological evaluation.
Collapse
Affiliation(s)
- Rui Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Molecular Drug Research and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| | - Yu Fu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Molecular Drug Research and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
- Tianjin International Joint Academy of Biomedicine, Tianjin 300457, China
| | - Ran Ma
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Molecular Drug Research and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
- Tianjin International Joint Academy of Biomedicine, Tianjin 300457, China
| | - Hongzhen Jin
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Molecular Drug Research and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
- Correspondence: (H.J.); (W.Z.)
| | - Wei Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Molecular Drug Research and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
- Correspondence: (H.J.); (W.Z.)
| |
Collapse
|
7
|
Ebirim CG, Esan O, Adetona MO, Oyagbemi AA, Omobowale TO, Oladele OA, Adedapo AA, Oguntibeju OO, Yakubu MA. Naringin administration mitigates oxidative stress, anemia, and hypertension in lead acetate-induced cardio-renal dysfunction in cockerel chicks. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:34890-34903. [PMID: 36520287 DOI: 10.1007/s11356-022-24656-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Lead is one of the major pollutants that is harmful to both animals and humans. It is found in every aspect of the environment such as the air, water, and soil. This pollutant affects both wild and domestic birds. Naringin has an active principle called flavonoid that has been found to have medicinal properties, mostly because of its antioxidant and metal chelating properties. This study was carried out to investigate the protective effect of naringin as an antioxidant against lead-induced anemia, cardio and nephrotoxicity, and hypertension. This study also aimed at elucidating the use of naringin as a heavy metal binder in poultry feed. Thirty-six cockerel chicks were used for this study, and randomly grouped into six groups per group; group A served as the control, group B received Pb-only (300 ppm), group C (Pb and naringin; 80 mg/kg), group D (Pb and naringin; 160 mg/kg), group E (naringin 80 mg/kg), and group F (naringin 160 mg/kg), respectively, for 8 weeks. Lead (Pb) was administered via drinking water, while naringin was administered via oral gavage. Lead acetate intoxication precipitated anemia as indicated by significant reductions in the values of PCV, RBC, and Hb concentration in lead-treated chicks when compared with the controls. Also, lead administration induced hypertension together with increased oxidative stress, depletion of the antioxidant defense system, reduced nitric oxide production, and an increase in high blood pressure. Immunohistochemistry indicated high expressions of cardiac troponin, renal angiotensin-converting enzymes, and renal neutrophil gelatinase-associated lipocalin. Treatment with naringin corrected anemia, reduced oxidative stress, improved antioxidant system, reduced high blood pressure, and offered protection against lead acetate-induced cardio-renal dysfunction in cockerel chicks. We recommend that naringin should be incorporated poultry feeds as a metal binder.
Collapse
Affiliation(s)
- Chinomso Gift Ebirim
- Institute of Earth and Life Sciences Institute, Pan African University, Lagos, Nigeria
| | - Oluwaseun Esan
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Moses Olusola Adetona
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Ademola Adetokunbo Oyagbemi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Temidayo Olutayo Omobowale
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Omolade Abodunrin Oladele
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adeolu Alex Adedapo
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Oluwafemi Omoniyi Oguntibeju
- Phytomedicine and Phytochemistry Group, Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville, 7535, South Africa
| | - Momoh Audu Yakubu
- Department of Environmental & Interdisciplinary Sciences, College of Science, Engineering & Technology, COPHS, Texas Southern University, Houston, TX, USA
| |
Collapse
|
8
|
Su GZ, Wang SY, Yang XY, Stevanović ZD, Li N, Tanić N, Arsenijević N, Yu SS, Li Y. Dihydroflavonoid glycosides from Viscum album and their inhibitory effects on hepatic lipid accumulation and target identification. PHYTOCHEMISTRY 2022; 204:113458. [PMID: 36181860 DOI: 10.1016/j.phytochem.2022.113458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Five undescribed dihydroflavonoid glycoside derivatives, namely albvisosides A‒E, together with two known compounds were isolated from the roots and stem leaves of Viscum album L. var. album. (European mistletoe). Their structures were determined by HRESIMS, 1D and 2D NMR, and ECD analysis. Albvisoside B exhibits significant inhibitory effect on hepatic lipid accumulation in HepG2 cells at very low concentrations (EC50: 0.7 nM). Using proteome integral solubility alteration assay, the direct targets or downstream effectors of albvisoside B were elucidated. As a result, 97 proteins were identified based on ligand-induced alterations in the protein thermal stability. Bioinformatics analysis indicated that albvisoside B primarily ameliorated oleic acid-induced lipid accumulation by regulating the selenoamino acids metabolism signaling pathway. RPL3, ADAM17, and RPL14 were likely to be involved in mediating the lipid-lowering effect of albvisoside B.
Collapse
Affiliation(s)
- Guo-Zhu Su
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Shang-Yi Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Xiu-Ying Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | | | - Na Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Nikola Tanić
- Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Belgrade, 11060, Serbia
| | - Nebojsa Arsenijević
- Faculty of Medical Sciences, University of Kragujevac, Kragujevac, 34000, Serbia
| | - Shi-Shan Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| | - Yong Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
9
|
Narayanankutty A, Visakh NU, Sasidharan A, Pathrose B, Olatunji OJ, Al-Ansari A, Alfarhan A, Ramesh V. Chemical Composition, Antioxidant, Anti-Bacterial, and Anti-Cancer Activities of Essential Oils Extracted from Citrus limetta Risso Peel Waste Remains after Commercial Use. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238329. [PMID: 36500421 PMCID: PMC9735939 DOI: 10.3390/molecules27238329] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022]
Abstract
Citrus plants are widely utilized for edible purposes and medicinal utility throughout the world. However, because of the higher abundance of the antimicrobial compound D-Limonene, the peel waste cannot be disposed of by biogas production. Therefore, after the extraction of D-Limonene from the peel wastes, it can be easily disposed of. The D-Limonene rich essential oil from the Citrus limetta risso (CLEO) was extracted and evaluated its radical quenching, bactericidal, and cytotoxic properties. The radical quenching properties were DPPH radical scavenging (11.35 ± 0.51 µg/mL) and ABTS scavenging (10.36 ± 0.55 µg/mL). There, we observed a dose-dependent antibacterial potential for the essential oil against pathogenic bacteria. Apart from that, the essential oil also inhibited the biofilm-forming properties of E. coli, P. aeruginosa, S. enterica, and S. aureus. Further, cytotoxicity was also exhibited against estrogen receptor-positive (MCF7) cells (IC50: 47.31 ± 3.11 µg/mL) and a triple-negative (MDA-MB-237) cell (IC50: 55.11 ± 4.62 µg/mL). Upon evaluation of the mechanism of action, the toxicity was mediated through an increased level of reactive radicals of oxygen and the subsequent release of cytochrome C, indicative of mitotoxicity. Hence, the D-Limonene rich essential oil of C. limetta is useful as a strong antibacterial and cytotoxic agent; the antioxidant properties exhibited also increase its utility value.
Collapse
Affiliation(s)
- Arunaksharan Narayanankutty
- Division of Cell and Molecular Biology, PG & Research Department of Zoology, St. Joseph’s College (Autonomous), Calicut 673008, India
- Correspondence: (A.N.); (B.P.); (O.J.O.)
| | - Naduvilthara U. Visakh
- Department of Agricultural Entomology, College of Agriculture, Kerala Agricultural University, Thrissur 680656, India
| | - Anju Sasidharan
- Division of Cell and Molecular Biology, PG & Research Department of Zoology, St. Joseph’s College (Autonomous), Calicut 673008, India
| | - Berin Pathrose
- Department of Agricultural Entomology, College of Agriculture, Kerala Agricultural University, Thrissur 680656, India
- Correspondence: (A.N.); (B.P.); (O.J.O.)
| | - Opeyemi Joshua Olatunji
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir 43150, Morocco
- Traditional Thai Medical Research and Innovation Center, Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat Yai 90110, Thailand
- Correspondence: (A.N.); (B.P.); (O.J.O.)
| | - Abdullah Al-Ansari
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ahmed Alfarhan
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Varsha Ramesh
- Department of Biotechnology, Deakin University, Geelong, VIC 3217, Australia
| |
Collapse
|
10
|
Deng M, Zhang S, Dong L, Huang F, Jia X, Su D, Chi J, Muhammad Z, Ma Q, Zhao D, Zhang M, Zhang R. Shatianyu ( Citrus grandis L. Osbeck) Flavonoids and Dietary Fiber in Combination Are More Effective Than Individually in Alleviating High-Fat-Diet-Induced Hyperlipidemia in Mice by Altering Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14654-14664. [PMID: 36322531 DOI: 10.1021/acs.jafc.2c03797] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
This study was aimed at exploring the separate and combined anti-hyperlipidemic effect of Shatianyu (Citrus grandis L. Osbeck) flavonoids (SPFEs) and DF (SPDF) on HFD-fed mice after 14-week administration in diet, together with the possible microbiota-mediated mechanisms. SPFEs and SPDF were more effective together than separately in improving serum lipid profiles, decreasing hepatic lipid accumulation, and upregulating the expression of hepatic CPT1a, CYP7A1, ABCG5, and ABCG8. Butyrate has been previously proved to have an anti-hyperlipidemic effect. The fecal butyrate contents were negatively correlative with serum/liver lipid but positively correlated with fecal total bile acids levels, and SPDF + SPFEs had the most fecal butyrate in this study. SPDF or SPFEs enriched microbiota related to acetic and propionic acids production, while SPDF + SPFEs also bloomed norank_f_Muribaculaceae, Dubosiella, Lachnoclostridium, and norank_f_Eubacterium_coprostanoligenes_group, which were positively correlated to fecal butyrate contents. Thus, SPFEs and SPDF might alleviate hyperlipidemia synergistically by regulating microbiota to produce butyrate, thereby regulating lipid metabolism.
Collapse
Affiliation(s)
- Mei Deng
- Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong, Key Laboratory of Agricultural Products Processing, Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural, Guangzhou510610, P. R. China
| | - Shuai Zhang
- Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong, Key Laboratory of Agricultural Products Processing, Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural, Guangzhou510610, P. R. China
- Department of Food Science and Technology, Huazhong Agricultural University, Wuhan430070, P. R. China
| | - Lihong Dong
- Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong, Key Laboratory of Agricultural Products Processing, Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural, Guangzhou510610, P. R. China
| | - Fei Huang
- Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong, Key Laboratory of Agricultural Products Processing, Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural, Guangzhou510610, P. R. China
| | - Xuchao Jia
- Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong, Key Laboratory of Agricultural Products Processing, Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural, Guangzhou510610, P. R. China
| | - Dongxiao Su
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou510006, P. R. China
| | - Jianwei Chi
- Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong, Key Laboratory of Agricultural Products Processing, Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural, Guangzhou510610, P. R. China
| | - Zafarullah Muhammad
- Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong, Key Laboratory of Agricultural Products Processing, Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural, Guangzhou510610, P. R. China
| | - Qin Ma
- Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong, Key Laboratory of Agricultural Products Processing, Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural, Guangzhou510610, P. R. China
| | - Dong Zhao
- Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong, Key Laboratory of Agricultural Products Processing, Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural, Guangzhou510610, P. R. China
| | - Mingwei Zhang
- Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong, Key Laboratory of Agricultural Products Processing, Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural, Guangzhou510610, P. R. China
| | - Ruifen Zhang
- Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong, Key Laboratory of Agricultural Products Processing, Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural, Guangzhou510610, P. R. China
| |
Collapse
|
11
|
Patel K, Patel DK. The Potential Therapeutic Properties of Prunetin against Human Health Complications: A Review of Medicinal Importance and Pharmacological Activities. DRUG METABOLISM AND BIOANALYSIS LETTERS 2022; 15:166-177. [PMID: 36098409 DOI: 10.2174/2949681015666220912104743] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/28/2022] [Accepted: 06/03/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Flavonoids are polyphenolic compounds found to be present in nature and abundant in flowers and fruits. Flavonoidal class phytochemicals have gained interest in the scientific field because of their important pharmacological activities. Several scientific studies have revealed anti-bacterial, anti-oxidant, anti-fungal, analgesic, anti-viral, anti-inflammatory, anti-tumor, anti-parasitic and anti-allergic activities of flavonoidal class phytochemicals. Prunetin is an O-methylated isoflavone that belongs to the phytochemical phytoestrogen class, found to be present in licorice, red cherry, soybean and legumes. METHODS Biological potential and pharmacological activities of prunetin have been investigated in the present work through scientific data analysis of numerous scientific research works. Numerous literature databases have been searched in order to collect the scientific information on prunetin in the present work. Pharmacological activities of prunetin have been investigated in the present work through literature data analysis of different scientific research works. Scientific data have been collected from Google Scholar, Google, PubMed, Science Direct and Scopus. Analytical data on prunetin has been collected from literature sources and analyzed in the present work. RESULTS Scientific data analysis revealed the biological importance of prunetin in medicine. Prunetin was found to be present in the pea, peach, Oregon cherry, skimmed cheese, cheese, cow kefir and goat kefir. Prunetin is also present in the Prunus avium, Andira surinamensis, Butea superba, Dalbergia sympathetica, Ficus nervosa, Pterospartum tridentatum and Pycnanthus angolensis. Pharmacological data analysis revealed the biological importance of prunetin on bone disorders, cancers, especially hepatocellular carcinoma, urinary bladder cancer, gastric cancer, ovarian cancer, human airway, gut health and enzymes. Scientific data analysis revealed biological effectiveness of prunetin for their angiogenic effects, anti-inflammatory, anti-oxidant, antimicrobial, estrogenic and vasorelaxant potential. Analytical data revealed the importance of modern analytical techniques for qualitative and quantitative analysis of prunetin in the scientific fields. CONCLUSION Scientific data analysis in the present investigation revealed the biological importance and pharmacological activities of prunetin in medicine.
Collapse
Affiliation(s)
- Kanika Patel
- Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, Uttar Pardesh, India
| | - Dinesh Kumar Patel
- Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, Uttar Pardesh, India
| |
Collapse
|
12
|
Deng M, Dong L, Jia X, Huang F, Chi J, Muhammad Z, Ma Q, Zhao D, Zhang M, Zhang R. The flavonoid profiles in the pulp of different pomelo (Citrus grandis L. Osbeck) and grapefruit (Citrus paradisi Mcfad) cultivars and their in vitro bioactivity. Food Chem X 2022; 15:100368. [PMID: 36211772 PMCID: PMC9532706 DOI: 10.1016/j.fochx.2022.100368] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/23/2022] [Accepted: 06/12/2022] [Indexed: 12/05/2022] Open
Abstract
Fourteen flavonoid compounds were detected in pomelo and grapefruit pulp. The flavonoid profiles in pomelo and grapefruit pulp had varietal difference. Flavonoids of pomelo and grapefruit showed strong cellular antioxidant activity. Flavonoids of pomelo and grapefruit are good inhibitors of pancreatic lipase.
Previous results indicated that the flavonoid profiles might have varietal differences in pomelo, but detailed information is unknown. We previously isolated 4 new flavonoids, cigranoside C, D, E, F, in Citrus grandis Shatianyu pulp. However, their distribution in different pomelo cultivars remains to be explored. Therefore, the flavonoid profiles and in vitro bioactivity of the pulp from 5 pomelo and 1 grapefruit cultivars commonly consumed in China were investigated. Fourteen flavonoids were identified, cigranoside C, D, E were detected in these pomelo and grapefruit. Naringin and cigranoside C were the major flavonoids in grapefruit, Guanximiyu-W, Guanximiyu-R and Liangpingyu, while melitidin and rhoifolin was the predominant flavonoid in Shatianyu and Yuhuanyu, respectively. Pomelo and grapefruit showed strong antioxidant activity, and were potent inhibitors of pancreatic lipase with IC50 values of 11.4–72.6 mg fruit/mL except Shatianyu. Thus, pomelo and grapefruit are natural antioxidants and possess anti-obesity potential.
Collapse
|
13
|
Online Extraction–DPPH–HPLC-DAD-QTOF-MS System for Efficient Screening and Identification of Antioxidants from Citrus aurantium L. Var. amara (Rutaceae): Integrating Sample Preparation and Antioxidants Profiling. Antioxidants (Basel) 2022; 11:antiox11051014. [PMID: 35624877 PMCID: PMC9137816 DOI: 10.3390/antiox11051014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 02/05/2023] Open
Abstract
The lack of a direct connection between solid edible or medical natural products and bioactive compound profiling is a bottleneck in natural product research and quality control. Here, a novel integrated system, online extraction (OLE)–2,2′-diphenyl-1-picrylhydrazyl (DPPH)–HPLC−DAD−QTOF-MS, was fabricated to extract, screen, and identify antioxidants from the whole fruit of Citrus aurantium L. var. amara (CAVA, Rutaceae) simply, rapidly, and efficiently. The system consumes less sample (1.0 mg of CAVA powder) and requires a shorter analytical time (45 min for sample extraction, antioxidants screening, separation, and identification). Eight antioxidant flavonoids were screened and identified, and six available flavanones were sensitively, precisely, and accurately quantified. Two major flavanone glycosides, naringin (50.37 ± 0.43 mg/g) and neohesperidin (38.20 ± 0.27 mg/g), exhibit potent DPPH scavenging activities with IC50 values of 111.9 ± 10.06 and 178.55 ± 11.28 μg/mL. A minor flavanone aglycone, hesperitin (0.73 ± 0.06 mg/g), presents stronger DPPH scavenging activity (IC50, 39.07 ± 2.51 μg/mL). Furthermore, density functional theory calculations demonstrated their electron transport ability and chemical reactivity, which confirmed the screened results. The results indicate that the developed OLE–DPPH–HPLC−DAD−QTOF-MS system provides new perspectives for analysis of antioxidants from complex natural products, which also contribute to the quality evaluation of CAVA.
Collapse
|
14
|
Utilization of Pomelo (Citrus maxima) Peel Waste into Bioactive Essential Oils: Chemical Composition and Insecticidal Properties. INSECTS 2022; 13:insects13050480. [PMID: 35621814 PMCID: PMC9146202 DOI: 10.3390/insects13050480] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/10/2022] [Accepted: 05/10/2022] [Indexed: 12/24/2022]
Abstract
Simple Summary The disposal of agricultural waste products is an emerging concern and an alternative to this is the development of value-added products from these wastes. Here we extracted the essential oil from Citrus maxima (CMEO) and examined its larvicidal and pest control potentials. Results pointed out that CMEO can be effective biopesticides against two major insect pests of stored grains. Furthermore, CMEO had a significant larvicidal action against different mosquito species. This study provided useful information on the compositional aspects and insecticidal properties of CMEO. Abstract The wastes generated during the post-harvest handling of various agricultural commodities is rather under-utlilized. The peels of citrus fruits are often discarded as waste. Citrus peels are rich in essential oils and exhibit toxicity towards various insect species. The essential oils are also an eco-friendly option for insect pest management. The Citrus maxima peel essential oil (CMEO), a waste product, characterized it, and evaluated its potential for insect pest management. The major terpenoids present in CMEO are Limonene and α-Pinene. The CMEO displayed potentials in controlling the insect pests via contact and fumigant toxicity. Moreover, CMEO showed significant larvicidal activities against Culex tritaeniorhynchus and Aedes aegypti species of mosquitoes; however, Armigeres subalbatus was more resistant. The biological safety of the essential oil was also tested against the stored seeds, where no significant inhibition of seed germination was noticed compared to the control. Utilizing a waste product such as citrus peel for pest management can achieve the dual objective of waste utilization and eco-friendly pest management. Overall, the CMEO is therefore found to be a bioactive essential oil extracted from the wastes of pomelo (C. maxima).
Collapse
|
15
|
Sun Y, Liu M, Tao W, Ye X, Sun P. Effects of edible whole citrus fruits on endogenous antioxidant enzymes of HepG2 cells. FOOD QUALITY AND SAFETY 2022. [DOI: 10.1093/fqsafe/fyac029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
The effects of eating fresh citrus fruits including two varieties of mandarins, one of sweet oranges, one of grapefruit, two of pomelo, and one of kumquat cultivated in China on endogenous antioxidant enzymes were investigated by in vitro digestion and HepG2 cells. The correlations between enzyme activity and cell uptake of phytochemicals, and cellular antioxidant capacities were analyzed. The results showed that most of fresh citrus fruits increased the endogenous antioxidant activity. Bairoumiyou, Hongroumiyou, Ponkan, and Jinju after digestion significantly increased the activity of catalase (CAT) (P < 0.05). Hongroumiyou, Bairoumiyou, Ponkan navel orange, and Jinju after digestion significantly increased glutathione peroxidases (GPxs) activity (P < 0.05), while Huyou and Satsuma could not increase the activity of GPxs after digestion. Thioredoxin oxidoreductase (TrxR) activity was improved significantly by most of the digested whole citrus fruits except Ponkan (P < 0.05) and the one added whole citrus fruits had higher increase than added citrus fruits extracts. The results indicated that edible whole citrus fruits had similar effects as extracts on enzymes.
Collapse
|
16
|
Bioactive Compounds of Citrus Fruits: A Review of Composition and Health Benefits of Carotenoids, Flavonoids, Limonoids, and Terpenes. Antioxidants (Basel) 2022; 11:antiox11020239. [PMID: 35204122 PMCID: PMC8868476 DOI: 10.3390/antiox11020239] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 02/07/2023] Open
Abstract
The increased consumption of fruits, vegetables, and whole grains contributes to the reduced risk of many diseases related to metabolic syndrome, including neurodegenerative diseases, cardiovascular disease (CVD), diabetes, and cancer. Citrus, the genus Citrus L., is one of the most important fruit crops, rich in carotenoids, flavonoids, terpenes, limonoids, and many other bioactive compounds of nutritional and nutraceutical value. Moreover, polymethoxylated flavones (PMFs), a unique class of bioactive flavonoids, abundantly occur in citrus fruits. In addition, citrus essential oil, rich in limonoids and terpenes, is an economically important product due to its potent antioxidant, antimicrobial, and flavoring properties. Mechanistic, observational, and intervention studies have demonstrated the health benefits of citrus bioactives in minimizing the risk of metabolic syndrome. This review provides a comprehensive view of the composition of carotenoids, flavonoids, terpenes, and limonoids of citrus fruits and their associated health benefits.
Collapse
|