1
|
Das R, Kumar A, Singh C, Kayastha AM. Innovative synthesis approaches and health implications of organic-inorganic Nanohybrids for food industry applications. Food Chem 2025; 464:141905. [PMID: 39504907 DOI: 10.1016/j.foodchem.2024.141905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/22/2024] [Accepted: 10/31/2024] [Indexed: 11/08/2024]
Abstract
Recent advancements in nanomaterials have significantly impacted various sectors, including medicine, energy, and manufacturing. Among these, organic/inorganic nanohybrids have emerged as transformative tools in the food industry. This review focuses on the innovative applications of these nanohybrids in food packaging, enzyme immobilization, and contamination detection. By combining organic and inorganic components, nanohybrids enable the customization of properties such as barrier performance, mechanical strength, and antimicrobial activity. Organic-inorganic nanohybrids offer promising solutions for the food industry, enhancing safety, quality, and processing efficiency. Examples include gold nanoparticles (AuNPs) used in biosensors for rapid detection of foodborne pathogens, graphene oxide (GO) nanosheets in advanced filtration membranes, and nanocellulose as a fat replacer in low-fat yogurt to improve texture and taste. Quantum dots (QDs) also aid in food traceability by detecting product authenticity. While these technologies showcase transformative potential, challenges like scalability, regulatory compliance, environmental impact, and potential toxicity must be addressed to ensure safe and sustainable adoption. However, to fully harness their benefits, it is crucial to thoroughly assess their toxicological profiles to mitigate potential adverse health effects. This necessitates comprehensive studies on their interactions with biological systems, dose-response relationships, and long-term impacts. Establishing standardized safety protocols and regulatory guidelines is essential to ensure that the utilization of these nanomaterials does not compromise human health while maximizing their advantages.
Collapse
Affiliation(s)
- Ranjana Das
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Avinash Kumar
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Chandan Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Arvind M Kayastha
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
2
|
Dejene BK, Birilie AA, Yizengaw MA, Getahun SA. Thermoplastic starch-ZnO nanocomposites: A comprehensive review of their applications in functional food packaging. Int J Biol Macromol 2024; 282:137099. [PMID: 39486704 DOI: 10.1016/j.ijbiomac.2024.137099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
The increasing demand for environmentally friendly food packaging solutions has driven extensive research on biodegradable materials, particularly thermoplastic starch (TPS), which is an eco-friendly alternative to petroleum-based plastics. Despite its eco-friendliness, TPS exhibits limitations, including inadequate mechanical and thermal properties, high water sensitivity, and low antibacterial activity. Although strategies such as chemical modification, blending, and compatibilizers have been employed to enhance TPS for functional packaging applications, they often fail to address these fundamental issues. A promising approach involves incorporating zinc oxide (ZnO) nanoparticles, which significantly improve the mechanical strength, thermal stability, and antimicrobial properties of TPS. This review focuses on TPS-ZnO nanocomposites, a notable subcategory of bio-nanocomposites recognized for their enhanced functional properties in food packaging applications. It discusses the synthesis and properties of these nanocomposites, particularly their mechanical, thermal, antimicrobial, and antioxidant properties. Moreover, this review explores the various applications of TPS-ZnO nanocomposites in active, intelligent, and sustainable food packaging, emphasizing their potential to address the pressing challenges of food waste and environmental impact.
Collapse
Affiliation(s)
- Bekinew Kitaw Dejene
- Department of Textile Engineering, Institute of Technology, Hawassa University, Hawassa, Ethiopia.
| | - Alehegn Atalay Birilie
- Department of Leather Engineering, Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar, Ethiopia
| | - Megabi Adane Yizengaw
- Department of Leather Engineering, Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar, Ethiopia
| | - Shiferaw Asmammaw Getahun
- Department of Leather Engineering, Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar, Ethiopia
| |
Collapse
|
3
|
Venkatesan R, Dhilipkumar T, Kiruthika A, Ali N, Kim SC. Green composites for sustainable food packaging: Exploring the influence of lignin-TiO 2 nanoparticles on poly(butylene adipate-co-terephthalate). Int J Biol Macromol 2024; 277:134511. [PMID: 39111470 DOI: 10.1016/j.ijbiomac.2024.134511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/27/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024]
Abstract
Titanium dioxide (TiO2) is a common pigment used in food packaging to provide a transparent appearance to plastic packaging materials. In the present study, poly(butylene adipate-co-terephthalate) (PBAT) incorporated with lignin-TiO2 nanoparticles (L-TiO2) eco-friendly composite films was prepared by employing an inexpensive melting and hot-pressing technique. The P-L-TiO2 composite films have been studied using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscope (SEM), Thermogravimetric analysis (TGA), and Differential scanning calorimetry (DSC) analysis. The FTIR results and homogeneous, dense SEM images confirm the interaction of L-TiO2 with the PBAT matrix. It has also been found that the addition of L-TiO2 nanoparticles can increase the crystallinity, tensile strength, and thermal stability of PBAT. The addition of L-TiO2 increased the tensile strength and decreased the elongation at break of films. The maximum tensile strength of the film, achieved with 5 wt% L-TiO2, was 47.0 MPa, compared with 24.3 MPa for pure PBAT film. The composite film with 5 wt% L-TiO2 has outstanding oxygen and water vapor barrier properties. As the content of lignin-TiO2 increases, the antimicrobial activity of the composite films also increases; the percentage of growth of all the tested bacteria Staphylococcus aureus (S. aureus), and Escherichia coli (E. coli) is significantly reduced. Strawberries were packed to evaluate the suitability of produced composite films as packaging materials, as they effectively preserved pigments from accumulation and extended the shelf-life as compared to commercial polyethylene packaging film.
Collapse
Affiliation(s)
- Raja Venkatesan
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea; Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600077, India.
| | - Thulasidhas Dhilipkumar
- Department of Mechanical Engineering, Amrita Vishwa Vidyapeetham, Amritapuri, India; Centre for Flexible Electronics and Advanced Materials, Amrita Vishwa Vidyapeetham, Amritapuri, India
| | - Arumugam Kiruthika
- Department of Chemistry, Quaid-E-Millath Government College for Women, Chennai 600002, Tamil Nadu, India
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Seong-Cheol Kim
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
4
|
Zhai X, Han J, Chang L, Zhao F, Zhang R, Wang W, Hou H. Effects of starch filling on physicochemical properties, functional activities, and release characteristics of PBAT-based biodegradable active films loaded with tea polyphenols. Int J Biol Macromol 2024; 277:134505. [PMID: 39106933 DOI: 10.1016/j.ijbiomac.2024.134505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/30/2024] [Accepted: 08/03/2024] [Indexed: 08/09/2024]
Abstract
In this work, the modification of poly(butylene adipate-co-terephthalate) (PBAT) was combined with the development of active packaging films. PBAT, starch, plasticizer, and tea polyphenols (TP) were compounded and extrusion-blown into thermoplastic starch (TPS)/PBAT-TP active films. Effects of TPS contents on physicochemical properties, functional activities, biodegradability, and release kinetics of PBAT-based active films were explored. Starch interacted strongly with TP through hydrogen bonding and induced the formation of heterogeneous structures in the films. With the increase in TPS contents, surface hydrophilicity and water vapor permeability of the films increased, while mechanical properties decreased. Blending starch with PBAT greatly accelerated degradation behavior of the films, and the T30P70-TP film achieved complete degradation after 180 days. As TPS contents increased, swelling degree of the films increased and TP release were improved accordingly, resulting in significantly enhanced antioxidant and antimicrobial activities. This work demonstrated that filling starch into PBAT-based active films could achieve different antioxidant and antimicrobial activities of the films by regulating film swelling and release behavior.
Collapse
Affiliation(s)
- Xiaosong Zhai
- Shandong Facility Horticulture Bioengineering Research Center, Jia Sixie College of Agriculture, Weifang University of Science and Technology, Weifang 262700, China
| | - Jinhong Han
- Shandong Facility Horticulture Bioengineering Research Center, Jia Sixie College of Agriculture, Weifang University of Science and Technology, Weifang 262700, China
| | - Liang Chang
- Shandong Facility Horticulture Bioengineering Research Center, Jia Sixie College of Agriculture, Weifang University of Science and Technology, Weifang 262700, China
| | - Fei Zhao
- Shandong Facility Horticulture Bioengineering Research Center, Jia Sixie College of Agriculture, Weifang University of Science and Technology, Weifang 262700, China
| | - Rui Zhang
- Agricultural Science and Engineering School, Liaocheng University, Liaocheng 252000, China
| | - Wentao Wang
- College of Food Science and Engineering, Shandong Agricultural University, Engineering and Technology Center for Grain Processing of Shandong Province, Tai'an 271018, China.
| | - Hanxue Hou
- College of Food Science and Engineering, Shandong Agricultural University, Engineering and Technology Center for Grain Processing of Shandong Province, Tai'an 271018, China.
| |
Collapse
|
5
|
Wang S, Tang K, Zhang Z, Liu H, Yao Y, Liao X. PBAT/lignin-ZnO composite film for food packaging: Photo-stability, better barrier and antibacterial properties. Int J Biol Macromol 2024; 275:133651. [PMID: 38972656 DOI: 10.1016/j.ijbiomac.2024.133651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 06/14/2024] [Accepted: 07/01/2024] [Indexed: 07/09/2024]
Abstract
When PBAT used as film, stability deteriorates under sunlight exposure, the poor barrier and antibacterial properties are also limiting its application. In this work, lignin-ZnO nanoparticles were prepared by hydrothermal method, as additives to fill the PBAT matrix. In addition, PBAT-lignin-ZnO composite films were successfully prepared by melting and hot-pressing method. It is found that lignin could well dispersed the ZnO when its implantation into PBAT films, and lignin-ZnO not only maintaining tensile strength and thermal stability, but also could prompt PBAT's crystallinity. Especially, P-L-ZnO-2 composite films have good photostability. After 60 h aging, it can still maintain good molecular weight, chemical structure and mechanical properties. Besides, these composite films have improved hydrophobicity, barrier and antibacterial properties, could prevent mildew and significantly reduce the weight loss rate, color difference and hardness changes of strawberries during storage. This work provides a potential film material for outdoor applications and food packaging.
Collapse
Affiliation(s)
- Shaoze Wang
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, China
| | - Kui Tang
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, China
| | - Zhijie Zhang
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, China
| | - Haitang Liu
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, China; China Light Industry Key Laboratory of Papermaking and Biorefinery, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Yue Yao
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, China
| | - Xiaoyuan Liao
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, China.
| |
Collapse
|
6
|
Liu W, Yu W, Wang J, Gao J, Ding Y, Zhang S, Zheng Q. Enhanced mechanical and long-lasting antibacterial properties of starch/PBAT blown films via designing of reactive micro-crosslinked starch. Int J Biol Macromol 2024; 266:131366. [PMID: 38580020 DOI: 10.1016/j.ijbiomac.2024.131366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 03/20/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
A functional starch (TPS-E) was designed and constructed by incorporating epoxy soybean oil (ESO) and an antibacterial agent polyhexamethylene guanidine hydrochloride (PHMG), then the film was prepared by reaction extrusion and blow molding using TPS-E and poly(butylene adipate-co-terephthalate) (PBAT). The micro-crosslinking structure, forming through ring-opening reaction between the epoxy active site of TPS-E and the end group of PBAT, improved the compatibility of starch/PBAT blend and reduce the dispersed starch phase size, leading to significantly increase the tensile strength. Compared to starch/PBAT films, the tensile strength of TPS-E/PBAT in the longitudinal direction increase by 112% with the same starch content of 30%. Furthermore, these TPS-E/PBAT films demonstrated long-lasting antibacterial performance with a 98% inhibition ratio even after 10 cycles, without any observed leaching of the antibacterial agent, highlighting the high coupling efficiency of PHMG. TPS-E with the degradable ESO also promotes the degradation of PBAT. Thus, an important method of synergistic improving the mechanical, degradable and antibacterial properties of blown films through the design of reactive micro-crosslinked starch structures was established.
Collapse
Affiliation(s)
- Wenying Liu
- College of Materials Science & Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Wenwen Yu
- College of Materials Science & Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, China.
| | - Jiaqi Wang
- College of Materials Science & Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Jian Gao
- College of Materials Science & Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Yi Ding
- College of Materials Science & Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Sitong Zhang
- College of Materials Science & Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Qiang Zheng
- Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
7
|
Wongphan P, Promhuad K, Srisa A, Laorenza Y, Oushapjalaunchai C, Harnkarnsujarit N. Unveiling the Future of Meat Packaging: Functional Biodegradable Packaging Preserving Meat Quality and Safety. Polymers (Basel) 2024; 16:1232. [PMID: 38732702 PMCID: PMC11085279 DOI: 10.3390/polym16091232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/03/2024] [Accepted: 04/11/2024] [Indexed: 05/13/2024] Open
Abstract
Meat quality and shelf life are important parameters affecting consumer perception and safety. Several factors contribute to the deterioration and spoilage of meat products, including microbial growth, chemical reactions in the food's constituents, protein denaturation, lipid oxidation, and discoloration. This study reviewed the development of functional packaging biomaterials that interact with food and the environment to improve food's sensory properties and consumer safety. Bioactive packaging incorporates additive compounds such as essential oils, natural extracts, and chemical substances to produce composite polymers and polymer blends. The findings showed that the incorporation of additive compounds enhanced the packaging's functionality and improved the compatibility of the polymer-polymer matrices and that between the polymers and active compounds. Food preservatives are alternative substances for food packaging that prevent food spoilage and preserve quality. The safety of food contact materials, especially the flavor/odor contamination from the packaging to the food and the mass transfer from the food to the packaging, was also assessed. Flavor is a key factor in consumer purchasing decisions and also determines the quality and safety of meat products. Novel functional packaging can be used to preserve the quality and safety of packaged meat products.
Collapse
Affiliation(s)
- Phanwipa Wongphan
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand; (P.W.); (K.P.); (A.S.); (Y.L.); (C.O.)
| | - Khwanchat Promhuad
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand; (P.W.); (K.P.); (A.S.); (Y.L.); (C.O.)
| | - Atcharawan Srisa
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand; (P.W.); (K.P.); (A.S.); (Y.L.); (C.O.)
| | - Yeyen Laorenza
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand; (P.W.); (K.P.); (A.S.); (Y.L.); (C.O.)
| | - Chayut Oushapjalaunchai
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand; (P.W.); (K.P.); (A.S.); (Y.L.); (C.O.)
| | - Nathdanai Harnkarnsujarit
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand; (P.W.); (K.P.); (A.S.); (Y.L.); (C.O.)
- Center for Advanced Studies for Agriculture and Food, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| |
Collapse
|
8
|
Roy S, Ghosh T, Zhang W, Rhim JW. Recent progress in PBAT-based films and food packaging applications: A mini-review. Food Chem 2024; 437:137822. [PMID: 37897823 DOI: 10.1016/j.foodchem.2023.137822] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 09/18/2023] [Accepted: 10/18/2023] [Indexed: 10/30/2023]
Abstract
Bioplastics are a promising alternative to non-biodegradable plastics. One of these bioplastics, PBAT (polybutylene adipate co-terephthalate), is a polyester-based bioplastic commonly used to manufacture flexible packaging films. PBAT-based films have high flexibility but relatively low strength compared to other bioplastics. The strength of PBAT films can be improved by blending them with other fillers/polymers. Additionally, the functionality of PBAT films can be enhanced by incorporating bioactive functional fillers. The physical and functional properties of PBAT films produced by adding active ingredients provide functionality and are a good alternative to non-degradable petrochemical-based plastics. The PBAT-based functional films protect food and improve packaged foods' quality and life span. Thus, this review provides recent advances in PBAT-based films and their use in active food packaging applications. After briefly describing the different fabrication methods of PBAT films, various important physical and functional properties and biodegradability are comprehensively discussed. PBAT-based active packaging film in real-time food packaging is also briefly covered. Through this review, more attention is expected to be focused on research on PBAT-based biodegradable active food packaging.
Collapse
Affiliation(s)
- Swarup Roy
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab 144411, India.
| | - Tabli Ghosh
- Department of Food Engineering and Technology, Tezpur University, Tezpur, Assam 784028, India
| | - Wanli Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Jong-Whan Rhim
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| |
Collapse
|
9
|
Jiang X, Feng L, Han J, Li L, Wang J, Liu H, Kitazawa H, Wang X. Preparation of hydroxypropyl methylcellulose/pueraria-based modified atmosphere film and its influence on delaying the senescent process of postharvest Agaricus bisporus. Int J Biol Macromol 2024; 261:129611. [PMID: 38266840 DOI: 10.1016/j.ijbiomac.2024.129611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/22/2023] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
Based on the key factor of spontaneous modified atmosphere packaging (MAP)-gas permeability, a spontaneous MAP film was created for the preservation of Agaricus bisporus by delaying the senescence of white mushrooms. Compared with other mixed films, hydroxypropyl methylcellulose (HPMC)/pueraria (P)-2 showed better mechanical properties, barrier properties and thermal stability energy. Applying the HPMC/P-2 film for preserving white mushrooms can spontaneously adjust the internal gas environment. Moreover, the O2 concentration in the package remained stable at 1-2 %, and the CO2 concentration was between 8 % and 14 %. The film can effectively reduce the respiration rate of white mushrooms, inhibit enzymatic browning, maintain their good color and texture, and delay their aging. In conclusion, the HPMC/P-2 film can be used not only for fruit and vegetables preservation but also provide theoretical basis for sustainable food packaging.
Collapse
Affiliation(s)
- Xin Jiang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Lei Feng
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Jiali Han
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Ling Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China.
| | - Jia Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Haipeng Liu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Hiroaki Kitazawa
- Department of Food and Nutrition, Japan Women's University, Tokyo 112-8681, Japan
| | - Xiangyou Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| |
Collapse
|
10
|
Li H, Chen Z, Zhang S, Hu CY, Xu X. Extrusion-blown oxidized starch/poly(butylene adipate-co-terephthalate) biodegradable active films with adequate material properties and antimicrobial activities for chilled pork preservation. Int J Biol Macromol 2023; 253:127408. [PMID: 37832616 DOI: 10.1016/j.ijbiomac.2023.127408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
Food safety concerns from spoilage and non-degradable packaging risk human health. Progress made in biodegradable plastic films, but limited study on biomass composite films with favorable morphological, mechanical, and inherent antibacterial properties for fresh meat preservation. Herein, we present a versatile packaging film created through the extrusion blowing process, combining oxidized starch (OST) with poly(butylene adipate-co-terephthalate) (PBAT). SEM analysis revealed even distribution of spherical OST particles on film's surface. FTIR spectra revealed new intermolecular hydrogen bonds between OST and PBAT. While combining OST slightly reduced tensile properties, all composite films met the required strength of 16.5 ± 1.39 MPa. Notably, films with 40 % OST showed over 98 % antibacterial rate against Staphylococcus aureus within 2 h. pH wasn't the main cause of bacterial growth inhibition; OST hindered growth by interfering with nutrient absorption and metabolism due to its carboxyl groups. Additionally, OST disrupted bacterial membrane integrity and cytoplasmic membrane potential. Remarkably, the OST/PBAT film excellently preserved chilled fresh pork, maintaining TVB-N level at 12.6 mg/100 g on day 6, microbial count at 105 CFU/g within 6-10 days, and sensory properties for 8 days. It extended pork's shelf life by two days compared to polyethylene film, suggesting an alternative to a synthetic material.
Collapse
Affiliation(s)
- Huan Li
- Key Laboratory of Product Packaging and Logistics, Packaging Engineering Institute, College of Packaging Engineering, Jinan University, Qianshan Road 206, Zhuhai 519070, China
| | - Zhuo Chen
- Department of Food Science & Engineering, Jinan University, Huangpu West Avenue 601, Guangzhou City 510632, Guangdong, China
| | - Shuidong Zhang
- School of Mechanical and Automotive Engineering, South China University of Technology, No. 381 Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Chang-Ying Hu
- Key Laboratory of Product Packaging and Logistics, Packaging Engineering Institute, College of Packaging Engineering, Jinan University, Qianshan Road 206, Zhuhai 519070, China; Department of Food Science & Engineering, Jinan University, Huangpu West Avenue 601, Guangzhou City 510632, Guangdong, China.
| | - Xiaowen Xu
- Key Laboratory of Product Packaging and Logistics, Packaging Engineering Institute, College of Packaging Engineering, Jinan University, Qianshan Road 206, Zhuhai 519070, China.
| |
Collapse
|
11
|
de Jesus GAM, Berton SBR, Simões BM, Zola RS, Monteiro JP, Martins AF, Bonafé EG. κ-Carrageenan/poly(vinyl alcohol) functionalized films with gallic acid and stabilized with metallic ions. Int J Biol Macromol 2023; 253:127087. [PMID: 37769774 DOI: 10.1016/j.ijbiomac.2023.127087] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/19/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
Given the environmental issues caused by the extensive use of conventional petroleum-based packaging, this work proposes functional films based on commercial κ-carrageenan (κc), poly(vinyl alcohol) (PVA), and gallic acid (GA) prepared by the "casting" method. Metallic ions in the κc composition stabilized the films, supporting processability and suitable mechanical properties. However, the incorporated GA amount (6.25 and 10 wt%) in the films created from an aqueous κc solution at 3.0 % wt/v (κc3) prevented crystalline domains in the resulting materials. The κc3/GA6.25 and κc3/GA10 films had less tensile strength (8.50 ± 0.61 and 10.28 ± 0.65 MPa) and high elongation at break (2.36 ± 0.16 and 1.19 ± 0.17 %) compared to the other samples, respectively. Low κc contents (κc2.5/GA6.25 and κc2.5/GA10) promoted stiff films and less permeability to water vapor (5.36 ± 0.51 and 3.76 ± 0.02 [×10-12 g(Pa × m × s)-1], respectively. The κc/GA weight ratio also influenced the film wettability, indicating water contact angles (WCAs) between 55 and 74°. The surface wettability implies a low oil permeability and high water swelling capacity of up to 1600 %. The κc/GA also played an essential role in the film's antimicrobial action against Staphylococcus aureus and Escherichia coli. Thus, the κc3/GA10 film showed suitable physical, chemical, and biological properties, having the potential to be applied as food coatings.
Collapse
Affiliation(s)
- Guilherme A M de Jesus
- Laboratory of Materials, Macromolecules, and Composites (LaMMAC), Federal University of Technology - Parana (UTFPR), Apucarana, PR 86812-460, Brazil
| | - Sharise B R Berton
- Laboratory of Materials, Macromolecules, and Composites (LaMMAC), Federal University of Technology - Parana (UTFPR), Apucarana, PR 86812-460, Brazil
| | - Bruno M Simões
- Laboratory of Materials, Macromolecules, and Composites (LaMMAC), Federal University of Technology - Parana (UTFPR), Apucarana, PR 86812-460, Brazil
| | - Rafael S Zola
- Department of Physics, Federal University of Technology - Paraná (UTFPR), 86812-460 Apucarana, Paraná, Brazil
| | - Johny P Monteiro
- Laboratory of Materials, Macromolecules, and Composites (LaMMAC), Federal University of Technology - Parana (UTFPR), Apucarana, PR 86812-460, Brazil
| | - Alessandro F Martins
- Laboratory of Materials, Macromolecules, and Composites (LaMMAC), Federal University of Technology - Parana (UTFPR), Apucarana, PR 86812-460, Brazil; Group of Polymeric Materials and Composites (GMPC), Department of Chemistry, State University of Maringá (UEM), 87020-900 Maringá, PR, Brazil; Department of Chemistry & Biotechnology, University of Wisconsin-River Falls (UWRF), River Falls, WI 54022, USA.
| | - Elton G Bonafé
- Laboratory of Materials, Macromolecules, and Composites (LaMMAC), Federal University of Technology - Parana (UTFPR), Apucarana, PR 86812-460, Brazil; Analitycal Applied in Lipids, Sterols, and Antioxidants (APLE-A), State University of Maringá (UEM), Maringá, PR 87020-900, Brazil.
| |
Collapse
|
12
|
Qian YF, Lin T, Xie J, Yang SP. Effect of modified atmosphere packaging with different gas mixtures on the texture and muscle proteins of Pacific white shrimp ( Litopenaeus vannamei) during cold storage. FOOD SCI TECHNOL INT 2023; 29:809-817. [PMID: 35996328 DOI: 10.1177/10820132221121170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this study, the effect of modified atmosphere packaging with different gas mixtures on texture and muscle properties of Pacific white shrimp (Litopenaeus vannamei) during refrigerated storage was studied via texture profile, water holding capacity (WHC), protein properties (Ca2+-ATPase, TCA-soluble peptides, myofibrillar/sarcoplasmic protein content), and microbial counts. The results showed that the antibacterial effect of Modified atmosphere packaging (MAP) was correlated with the increase of CO2 with the presence of low level of O2. Though MAP without O2 had a higher whiteness value but also had higher bacterial counts and total volatile basic nitrogen (TVB-N) values compared with other MAP-groups. In general, a gas composition of 80% CO2 + 5%O2 + 15% N2 treatment had lowest microbial counts and reduced TVB-N values by 22.85% in comparison with the control on day 10. However, MAP was found to have a complicated impact on muscle protein and texture of shrimp. 60% CO2 + 5% O2 + 35% N2 and 40% CO2 + 5% O2 + 55% N2 had an advantage in maintaining springiness and the content of myofibrillar/sarcoplasmic proteins. The correlation analysis showed that WHC had stronger relationship with springiness, resilience, myofibrillar protein content. Therefore, regarding the texture and protein properties, the concentration of CO2 in MAP for Pacific white shrimp should not be higher than 60%.
Collapse
Affiliation(s)
- Yun-Fang Qian
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai Ocean University, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Ting Lin
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, China
| | - Jing Xie
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai Ocean University, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
| | - Sheng-Ping Yang
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai Ocean University, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
13
|
Siddiqui SA, Sundarsingh A, Bahmid NA, Nirmal N, Denayer JFM, Karimi K. A critical review on biodegradable food packaging for meat: Materials, sustainability, regulations, and perspectives in the EU. Compr Rev Food Sci Food Saf 2023; 22:4147-4185. [PMID: 37350102 DOI: 10.1111/1541-4337.13202] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 05/22/2023] [Accepted: 06/04/2023] [Indexed: 06/24/2023]
Abstract
The development of biodegradable packaging is a challenge, as conventional plastics have many advantages in terms of high flexibility, transparency, low cost, strong mechanical characteristics, and high resistance to heat compared with most biodegradable plastics. The quality of biodegradable materials and the research needed for their improvement for meat packaging were critically evaluated in this study. In terms of sustainability, biodegradable packagings are more sustainable than conventional plastics; however, most of them contain unsustainable chemical additives. Cellulose showed a high potential for meat preservation due to high moisture control. Polyhydroxyalkanoates and polylactic acid (PLA) are renewable materials that have been recently introduced to the market, but their application in meat products is still limited. To be classified as an edible film, the mechanical properties and acceptable control over gas and moisture exchange need to be improved. PLA and cellulose-based films possess the advantage of protection against oxygen and water permeation; however, the addition of functional substances plays an important role in their effects on the foods. Furthermore, the use of packaging materials is increasing due to consumer demand for natural high-quality food packaging that serves functions such as extended shelf-life and contamination protection. To support the importance moving toward biodegradable packaging for meat, this review presented novel perspectives regarding ecological impacts, commercial status, and consumer perspectives. Those aspects are then evaluated with the specific consideration of regulations and perspective in the European Union (EU) for employing renewable and ecological meat packaging materials. This review also helps to highlight the situation regarding biodegradable food packaging for meat in the EU specifically.
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Technical University of Munich, Department for Biotechnology and Sustainability, Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
| | | | - Nur Alim Bahmid
- Research Center for Food Technology and Processing, National Research and Innovation Agency (BRIN), Yogyakarta, Indonesia
| | - Nilesh Nirmal
- Institute of Nutrition, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | - Joeri F M Denayer
- Department of Chemical Engineering, Vrije Universiteit Brussel, Brussels, Belgium
| | - Keikhosro Karimi
- Department of Chemical Engineering, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
14
|
Tuntiworadet T, Yoksan R. Property improvement of a thermoplastic starch/poly(butylene adipate-co-terephthalate) blown film by the addition of sodium nitrite. Int J Biol Macromol 2023; 242:124991. [PMID: 37211073 DOI: 10.1016/j.ijbiomac.2023.124991] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/23/2023]
Abstract
Recently, global awareness of the adverse environmental impacts of single-use plastics has risen due to their nonbiodegradability and likelihood of ending up in the ocean. Thermoplastic starch (TPS) is an alternative material employed for manufacturing single-use products because of its high biodegradability, nontoxicity, and low cost. However, TPS is moisture sensitive and has poor mechanical properties and processability. Blending TPS with biodegradable polyesters, including poly(butylene adipate-co-terephthalate) (PBAT), can expand its practical applications. This research aims to improve the performance of TPS/PBAT blends by adding sodium nitrite, a food additive, and considering its effect on the morphological characteristics and properties of TPS/PBAT blends. TPS/PBAT/sodium nitrite (TPS/PBAT/N) blends with a TPS:PBAT weight ratio of 40:60 and sodium nitrite concentrations of 0.5, 1, 1.5, and 2 wt% were prepared by extrusion and then blown into films. The acids generated from the sodium nitrite during extrusion led to the molecular weight reduction of starch and PBAT polymers, causing the increased melt flow ability of the TPS/PBAT/N blends. The incorporation of sodium nitrite improved the blends' homogeneity and the compatibility between the TPS and PBAT phases, resulting in the increased tensile strength, extensibility, impact strength, and oxygen barrier properties of the TPS/PBAT blend film.
Collapse
Affiliation(s)
- Thanatcha Tuntiworadet
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand
| | - Rangrong Yoksan
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand; Center for Advanced Studies for Agriculture and Food (CASAF), Kasetsart University Institute for Advanced Studies, Kasetsart University, Bangkok 10900, Thailand.
| |
Collapse
|
15
|
Wang HH, Zhou SJ, Xiong SJ, Liu Q, Tian H, Yu S, Yuan TQ. High-performance thermoplastic starch/poly(butylene adipate-co-terephthalate) blends through synergistic plasticization of epoxidized soybean oil and glycerol. Int J Biol Macromol 2023; 242:124716. [PMID: 37150374 DOI: 10.1016/j.ijbiomac.2023.124716] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/23/2023] [Accepted: 04/29/2023] [Indexed: 05/09/2023]
Abstract
Utilizing starch, an abundant polysaccharide, as the renewable filler to blend with poly(butylene adipate-co-terephthalate) (PBAT) is a feasible tactic to construct cost-effective and high-performance biodegradable materials. It's worth noting that the thermal processing properties of starch can be manipulated by its plasticized behavior. Herein, epoxidized soybean oil (ESO) and glycerol were used as the plasticizer for native corn starch and the plasticized starch was integrated with PBAT to manufacture starch-based biodegradable blend films. ESO breaks the hydrogen bonds between starch chains through the fatty chains grafting reaction and increases the distance between starch molecular chains due to the large molecular weight of ESO. Meanwhile, glycerol molecules are incorporated into the starch molecular chains, and fatty chains grafted starch chains, effectively reducing the intermolecular forces of molecular chains. On account of the synergistic plasticization of ESO and glycerol which possess good compatibility with PBAT, the PSG20E10 blend film achieved a tensile strength, an elongation at break of 16.11 MPa and 612.09 %, and the balanced water and oxygen permeability properties.
Collapse
Affiliation(s)
- Hao-Hui Wang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Si-Jie Zhou
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Shao-Jun Xiong
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Qin Liu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Huafeng Tian
- School of Chemical and Material Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Shixin Yu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China.
| | - Tong-Qi Yuan
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
16
|
Yan X, Chen L, Tian H, Jia S, Wang X, Pan H, Han L, Bian J, Yang H, Wu G, Zhao Y, Zhang H. Enhancement of the compatibility, mechanical properties, and heat resistance of poly(butylene succinate-co-terephthalate)/poly(butylene succinate) blends by the addition of chain extender and nucleating agent. JOURNAL OF POLYMER RESEARCH 2023. [DOI: 10.1007/s10965-023-03486-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
17
|
Sun YL, Tu LJ, Tsou CH, Lin SM, Lin L, De Guzman MR, Zeng R, Xia Y. Thermal and mechanical properties of biodegradable nanocomposites prepared by poly(lactic acid)/acetyl tributyl citrate reinforced with attapulgite. JOURNAL OF POLYMER RESEARCH 2023. [DOI: 10.1007/s10965-023-03483-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
18
|
Jiang J, Zhang X, Gao S, Li M, Hou H. Effects of adding methods and modification types of cellulose on the physicochemical properties of starch/PBAT blown films. Int J Biol Macromol 2022; 223:1335-1343. [PMID: 36395948 DOI: 10.1016/j.ijbiomac.2022.11.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/31/2022] [Accepted: 11/12/2022] [Indexed: 11/16/2022]
Abstract
This study revealed the relationship between cellulose types/adding methods and film properties, in which sodium carboxymethyl cellulose (CMC), hydroxypropyl methyl cellulose (HPMC), and microcrystalline cellulose (MCC) were added into starch/PBAT blown films in powder, aqueous solution, and emulsion forms, respectively. Cellulose interacted with starch networks via hydrogen bonds, and those added in emulsion form made more homogeneous film morphologies. MCC emulsion enhanced the film strength (40%) and modulus (149%) to the greatest extent, while comprehensively, HPMC emulsion possessed better reinforcement effects on the films, which increased mechanical properties (31% ~ 100%), moisture barrier (20%), oxygen barrier (93%), surface hydrophobicity (20%), as well as water resistance (12% ~ 76%). Findings supported the application of cellulose in high-throughput biodegradable films, and the high-content starch/PBAT blown films reinforced by HPMC emulsion had great potential in commercial packaging fields.
Collapse
Affiliation(s)
- Junzhi Jiang
- College of Food Science and Engineering, Shandong Agricultural University, Engineering and Technology Center for Grain Processing of Shandong Province, Tai'an, Shandong Province 271018, China
| | - Xiaochi Zhang
- College of Food Science and Engineering, Shandong Agricultural University, Engineering and Technology Center for Grain Processing of Shandong Province, Tai'an, Shandong Province 271018, China
| | - Shan Gao
- College of Food Science and Engineering, Shandong Agricultural University, Engineering and Technology Center for Grain Processing of Shandong Province, Tai'an, Shandong Province 271018, China
| | - Min Li
- College of Food Science and Engineering, Shandong Agricultural University, Engineering and Technology Center for Grain Processing of Shandong Province, Tai'an, Shandong Province 271018, China
| | - Hanxue Hou
- College of Food Science and Engineering, Shandong Agricultural University, Engineering and Technology Center for Grain Processing of Shandong Province, Tai'an, Shandong Province 271018, China.
| |
Collapse
|
19
|
Influence of starch content on the physicochemical and antimicrobial properties of starch/PBAT/ε-polylysine hydrochloride blown films. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.101005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
20
|
Oxygen absorbing food packaging made by extrusion compounding of thermoplastic cassava starch with gallic acid. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109273] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
21
|
Luo J, Xia G, Liu L, Ji A, Luo Q. Fabrication of Chitosan/Hydroxyethyl Cellulose/TiO 2 Incorporated Mulberry Anthocyanin 3D-Printed Bilayer Films for Quality of Litchis. Foods 2022; 11:3286. [PMID: 37431032 PMCID: PMC9601993 DOI: 10.3390/foods11203286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/28/2022] [Accepted: 09/13/2022] [Indexed: 07/24/2023] Open
Abstract
In this study, a bilayer antibacterial chromogenic material was prepared using chitosan (CS) and hydroxyethyl cellulose (HEC) as inner substrate, mulberry anthocyanins (MA) as a natural tracer, and titanium dioxide nanoparticles (nano-TiO2)/CS:HEC as a bacteriostatic agent for the outer layer. By investigating their apparent viscosity and suitability for 3D printing links, the optimal ratio of the substrates was determined to be CS:HEC = 3:3. Viscosity of the CH was moderate. The printing process was consistent and exhibited no breakage or clogging. The printed image was highly stable and not susceptible to collapse and diffusion. Scanning electron microscopy and infrared spectroscopy indicated that intermolecular binding between the substances exhibited good compatibility. Titanium dioxide nanoparticles (nano-TiO2) were evenly distributed in the CH and no agglomeration was observed. The inner film fill rates affected the overall performance of the chromogenic material, with strong inhibitory effects against Escherichia coli and Staphylococcus aureus at different temperatures, as well as strong color stability. The experimental results indicated that the double-layer antibacterial chromogenic material can, to a certain extent, extend the shelf life of litchi fruit and determine the extent of its freshness. Therefore, from this study, we can infer that the research and development of active materials have a certain reference value.
Collapse
Affiliation(s)
- Jinjie Luo
- Correspondence: ; Tel.: +86-023-58105722
| | | | | | | | | |
Collapse
|
22
|
Nur Hanani Z, Reich F, Tolksdorf T, Siemen H, Bandick N. Monitoring the effect of active packaging films with silver-kaolinite using different packaging systems on the quality of beef meat. Heliyon 2022; 8:e11019. [PMID: 36267384 PMCID: PMC9576896 DOI: 10.1016/j.heliyon.2022.e11019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/24/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022] Open
Abstract
Active packaging films based on gelatin with silver-kaolinite (Ag-Kln) were developed and their effects on the quality and microbial growth of beef meat stored in different packaging systems (cling film, vacuum and modified atmosphere packaging) at 4 °C for 13 days were evaluated. The analysis revealed that Ag-Kln packaging films had no adverse effects on the pH and colour of the beef samples irrespective of the packaging system used. Beef meat in packaging with active films lost more weight (P < 0.05) than without active films for meat in the vacuum and modified systems on day 13. In general, these gelatin films with Ag-Kln showed the potential as antibacterial films and could enhance the shelf life of food products, however, further studies are required to establish the release rate of silver from packaging films, as well as test the efficiency of these materials under different storage conditions. In conclusion, this study revealed that gelatin film with silver-kaolinite is a promising antibacterial agent and preservation material for food shelf life extension.
Collapse
Affiliation(s)
- Z.A. Nur Hanani
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia,Corresponding author.
| | - F. Reich
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - T. Tolksdorf
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - H. Siemen
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - N. Bandick
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| |
Collapse
|
23
|
Cheng H, Chen L, McClements DJ, Xu H, Long J, Zhao J, Xu Z, Meng M, Jin Z. Recent advances in the application of nanotechnology to create antioxidant active food packaging materials. Crit Rev Food Sci Nutr 2022; 64:2890-2905. [PMID: 36178259 DOI: 10.1080/10408398.2022.2128035] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Nanotechnology is being used to create innovative food packaging systems that can inhibit the oxidation of foods, thereby improving their quality, safety, and shelf life. These nano-enabled antioxidant packaging materials may therefore increase the healthiness and sustainability of the food supply chain. Recent progress in the application of nanotechnology to create antioxidant packaging materials is reviewed in this paper. The utilization of nanoparticles, nanofibers, nanocrystals, and nanoemulsions to incorporate antioxidants into these packaging materials is highlighted. The application of nano-enabled antioxidant packaging materials to preserve meat, seafood, fruit, vegetable, and other foods is then discussed. Finally, future directions and challenges in the development of this kind of active packaging material are highlighted to stimulate new areas of future research. Nanotechnology has already been used to create antioxidant packaging materials that inhibit oxidative deterioration reactions in foods, thereby prolonging their shelf life and reducing food waste. However, the safety, cost, efficacy, and scale-up of this technology still needs to be established before it will be commercially viable for many applications.
Collapse
Affiliation(s)
- Hao Cheng
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Long Chen
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, South China Agricultural University, Guangzhou, China
- Guangdong Licheng Detection Technology Co, Ltd, Zhongshan, China
| | | | - Hao Xu
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jie Long
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jianwei Zhao
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Zhenlin Xu
- School of Food Science and Technology, South China Agricultural University, Guangzhou, China
| | - Man Meng
- Guangdong Licheng Detection Technology Co, Ltd, Zhongshan, China
| | - Zhengyu Jin
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
24
|
Recent Advances and Applications in Starch for Intelligent Active Food Packaging: A Review. Foods 2022; 11:foods11182879. [PMID: 36141005 PMCID: PMC9498516 DOI: 10.3390/foods11182879] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/10/2022] [Accepted: 09/11/2022] [Indexed: 12/22/2022] Open
Abstract
At present, the research and innovation of packaging materials are in a period of rapid development. Starch, a sustainable, low-cost, and abundant polymer, can develop environmentally friendly packaging alternatives, and it possesses outstanding degradability and reproducibility in terms of improving environmental issues and reducing oil resources. However, performance limitations, such as less mechanical strength and lower barrier properties, limit the application of starch in the packaging industry. The properties of starch-based films can be improved by modifying starch, adding reinforcing groups, or blending with other polymers. It is of significance to study starch as an active and intelligent packaging option for prolonging shelf life and monitoring the extent of food deterioration. This paper reviews the development of starch-based films, the current methods to enhance the mechanical and barrier properties of starch-based films, and the latest progress in starch-based activity, intelligent packaging, and food applications. The potential challenges and future development directions of starch-based films in the food industry are also discussed.
Collapse
|
25
|
Laorenza Y, Chonhenchob V, Bumbudsanpharoke N, Jittanit W, Sae-tan S, Rachtanapun C, Chanput WP, Charoensiddhi S, Srisa A, Promhuad K, Wongphan P, Harnkarnsujarit N. Polymeric Packaging Applications for Seafood Products: Packaging-Deterioration Relevance, Technology and Trends. Polymers (Basel) 2022; 14:polym14183706. [PMID: 36145850 PMCID: PMC9504574 DOI: 10.3390/polym14183706] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 12/17/2022] Open
Abstract
Seafood is a highly economical product worldwide. Primary modes of deterioration include autolysis, oxidation of protein and lipids, formation of biogenic amines and melanosis, and microbial deterioration. These post-harvest losses can be properly handled if the appropriate packaging technology has been applied. Therefore, it is necessary for packaging deterioration relevance to be clearly understood. This review demonstrates recent polymeric packaging technology for seafood products. Relationship between packaging and quality deterioration, including microbial growth and chemical and biochemical reactions, are discussed. Recent technology and trends in the development of seafood packaging are demonstrated by recent research articles and patents. Development of functional polymers for active packaging is the largest area for seafood applications. Intelligent packaging, modified atmosphere packaging, thermal insulator cartons, as well as the method of removing a fishy aroma have been widely developed and patented to solve the specific and comprehensive quality issues in seafood products. Many active antioxidant and antimicrobial compounds have been found and successfully incorporated with polymers to preserve the quality and monitor the fish freshness. A thermal insulator has also been developed for seafood packaging to preserve its freshness and avoid deterioration by microbial growth and enzymatic activity. Moreover, the enhanced biodegradable tray is also innovative as a single or bulk fish container for marketing and distribution. Accordingly, this review shows emerging polymeric packaging technology for seafood products and the relevance between packaging and seafood qualities.
Collapse
Affiliation(s)
- Yeyen Laorenza
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Vanee Chonhenchob
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Nattinee Bumbudsanpharoke
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Weerachet Jittanit
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Sudathip Sae-tan
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Chitsiri Rachtanapun
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Wasaporn Pretescille Chanput
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Suvimol Charoensiddhi
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Atcharawan Srisa
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Khwanchat Promhuad
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Phanwipa Wongphan
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Nathdanai Harnkarnsujarit
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
- Correspondence: ; Tel.: +66-2-562-5045
| |
Collapse
|
26
|
A Bioactive Chitosan-Based Film Enriched with Benzyl Isothiocyanate/α-Cyclodextrin Inclusion Complex and Its Application for Beef Preservation. Foods 2022; 11:foods11172687. [PMID: 36076872 PMCID: PMC9455720 DOI: 10.3390/foods11172687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 12/14/2022] Open
Abstract
A bioactive packaging material based on chitosan (CS) incorporated with benzyl isothiocyanate (BITC) and α−cyclodextrin (α−CD) was fabricated to evaluate its preservative effects on fresh beef stored at 4 °C for 12 d according to the quality analysis. The Fourier-transform infrared (FTIR) spectrum revealed that the major structural moiety of BITC was embedded in the cavity of α−CD, except for the thiocyanate group. FTIR and X-ray diffraction analysis further verified that intermolecular interactions were formed between the BITC−α−CD and CS film matrix. The addition of BITC−α−CD decreased the UV light transmittance of pure CS film to lower than 63% but still had enough transparency for observing packaged items. The CS−based composite film displayed a sustainable antibacterial capacity and an enhanced antioxidant activity. Moreover, the total viable counts, total volatile base nitrogen, pH, thiobarbituric acid–reactive substances, and sensory evaluation of the raw beef treated with the CS−based composite film were 6.31 log colony-forming unit (CFU)/g, 19.60 mg/100 g, 6.84, 0.26 mg/kg, and 6.5 at 12 days, respectively, indicating the favorable protective efficacy on beef. These results suggested that the fabricated CS−based composite film has the application potential to be developed as a bioactive food packaging material, especially for beef preservation.
Collapse
|
27
|
Phothisarattana D, Harnkarnsujarit N. Migration, aggregations and thermal degradation behaviors of TiO2 and ZnO incorporated PBAT/TPS nanocomposite blown films. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100901] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
28
|
Farrag Y, Barral L, Gualillo O, Moncada D, Montero B, Rico M, Bouza R. Effect of Different Plasticizers on Thermal, Crystalline, and Permeability Properties of Poly(3–hydroxybutyrate–co−3–hydroxyhexanoate) Films. Polymers (Basel) 2022; 14:polym14173503. [PMID: 36080578 PMCID: PMC9460745 DOI: 10.3390/polym14173503] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/21/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Poly(3−hydroxybutyrate−co−3−hydroxyhexanoate) (PHBH) films were prepared using a cast film technique. Dioxane was chosen over other polymer solvents as it resulted in homogenous films with better morphology. Several plasticizers with different molecular weights and concentrations were added to the biopolymer solution prior to casting. Thermal, crystalline, and permeability properties were analyzed by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), X−ray diffraction (XRD), and both water vapor and oxygen transmission rate analysis. In general, the addition of plasticizers decreased the glass transition temperature (Tg), cold crystallization temperatures (Tcc), melting temperatures, as well as crystallinity degrees and increased the crystallite sizes and water vapor and oxygen transmission rates. The use of isosorbide and low-molecular-weight poly(ethylene glycol) (PEG) lowered the Tg around 30 °C at the highest used concentration, also being the most effective in increasing the crystallite size. When considering isosorbide and low-molecular-weight poly(ethylene glycol) (PEG) as very good plasticizers for PHBH, the question of which plasticizer to use strongly relies on the desired PHBH application.
Collapse
Affiliation(s)
- Yousof Farrag
- NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), IDIS (Instituto de Investigación Sanitaria de Santiago de Compostela), Santiago University Clinical Hospital, Building C, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
| | - Luis Barral
- Grupo de Polímeros, Departamento de Física y Ciencias de la Tierra, Escuela Universitaria Politécnica, Serantes, Universidade da Coruña, Avda. 19 de Febrero s/n, 15471 Ferrol, Spain
| | - Oreste Gualillo
- NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), IDIS (Instituto de Investigación Sanitaria de Santiago de Compostela), Santiago University Clinical Hospital, Building C, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
| | - Danny Moncada
- Grupo de Polímeros, Departamento de Física y Ciencias de la Tierra, Escuela Universitaria Politécnica, Serantes, Universidade da Coruña, Avda. 19 de Febrero s/n, 15471 Ferrol, Spain
| | - Belén Montero
- Grupo de Polímeros, Departamento de Física y Ciencias de la Tierra, Escuela Universitaria Politécnica, Serantes, Universidade da Coruña, Avda. 19 de Febrero s/n, 15471 Ferrol, Spain
| | - Maite Rico
- Grupo de Polímeros, Departamento de Física y Ciencias de la Tierra, Escuela Universitaria Politécnica, Serantes, Universidade da Coruña, Avda. 19 de Febrero s/n, 15471 Ferrol, Spain
| | - Rebeca Bouza
- Grupo de Polímeros, Departamento de Física y Ciencias de la Tierra, Escuela Universitaria Politécnica, Serantes, Universidade da Coruña, Avda. 19 de Febrero s/n, 15471 Ferrol, Spain
- Correspondence:
| |
Collapse
|
29
|
Lee SH, Kim HY. Utilization of By-Products from Livestock: Study on the Mechanical and Thermal Properties of Biodegradable Containers Made with Pork Skin Gelatin Polymer. Foods 2022; 11:foods11162513. [PMID: 36010512 PMCID: PMC9407461 DOI: 10.3390/foods11162513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/24/2022] Open
Abstract
This study aimed to develop a biodegradable container made of pork gelatin. Gelatin was extracted from pork skin by hot water at 80 °C, and containers were prepared by adding eggshell powder (20%) as a pore agent, and walnut powder (0.08 wt%; PEW1, 0.14 wt%; PEW2) to improve hardness. The blends were molded for each experiment and dried at 30 °C for 24 h, at 40 °C for 16 h, and at 121 °C for 16 h. The containers were analyzed with respect to morphological (SEM; scanning electron microscope), mechanical (tensile strain and stress), and thermal (DSA; differential scanning calorimetry and TGA; thermogravimetric analysis) properties, as well as biodegradability. SEM investigation showed a smoother surface for PEW1 than for PEW2. The tensile stress of PEW2 (37.86 MPa) was significantly higher than that of PEW1 (28.40 MPa), and the melting enthalpies were 137.60 J/g (PEW1) and 309.60 J/g (PEW2). TGA showed similar properties, but PEW2 contained more lignin; therefore, its decomposition temperature was higher. The PEW1 and PEW2 containers were completely biodegraded after approximately 7 and 11 weeks, respectively. Walnut shell powder increased the hardness, but slowed the biodegradation process. The applications of this biodegradable container are short-lived products such as food packaging.
Collapse
|
30
|
Preparation and Performance Characterization of a Composite Film Based on Corn Starch, κ-Carrageenan, and Ethanol Extract of Onion Skin. Polymers (Basel) 2022; 14:polym14152986. [PMID: 35893950 PMCID: PMC9330010 DOI: 10.3390/polym14152986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 12/11/2022] Open
Abstract
Using corn starch (CS) and κ-carrageenan(κC) as the raw material and active composite, respectively, films containing different concentrations of ethanol extract of onion skin were prepared. The effects of different concentrations of ethanol extract of onion skin (EEOS) on the physicochemical properties, as well as the antioxidant and antibacterial properties, of CS/κC films were also discussed. The addition of ethanol extract of onion skin inhibited the recrystallization of starch molecules in the composite films. It affected the microstructure of the composite films. The color of the composite films was deepened, the brightness was reduced, and the opacity was increased. Water vapor permeability increased, tensile strength decreased, and elongation at the break increased. The glass-transition temperature decreased. The clearance of DPPH radicals and ABTS cation radicals increased. Moreover, when the concentration of EEOS was 3%, the antioxidant effect of the films on oil was greatly improved and could effectively inhibit Staphylococcus aureus and Escherichia coli. The above results showed that adding ethanol extract of onion skin improved the physicochemical properties and biological activities of the CS/κC composite films, so CS/κC/EEOS composite films can be used as an active packaging material to extend food shelf-life. These results can provide a theoretical basis for the production and application of corn starch/κ-carrageenan/ethanol extract of onion skin composite films.
Collapse
|
31
|
Characterizing Mechanical, Heat Seal, and Gas Barrier Performance of Biodegradable Films to Determine Food Packaging Applications. Polymers (Basel) 2022; 14:polym14132569. [PMID: 35808615 PMCID: PMC9268911 DOI: 10.3390/polym14132569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 12/02/2022] Open
Abstract
In an organic circular economy, biodegradable materials can be used as food packaging, and at end-of-life their carbon atoms can be recovered for soil enrichment after composting, so that new food or materials can be produced. Packaging functionality, such as mechanical, gas barrier, and heat-seal performance, of emerging biodegradable packaging, with a laminated, coated, monomaterial, and/or blended structure, is not yet well known in the food industry. This lack of knowledge, in addition to end-of-life concerns, high cost, and production limits is one of the main bottlenecks for broad implementation in the food industry. This study determines application areas of 10 films with a pragmatic approach based on an experimental broad characterization of packaging functionality. As a conclusion, the potential application of these materials is discussed with respect to industrial settings and food and consumer requirements, to support the implementation of commercially available, biodegradable, and, more specifically, compostable, materials for the identified food applications.
Collapse
|
32
|
Enhanced Silk Fibroin/Sericin Composite Film: Preparation, Mechanical Properties and Mineralization Activity. Polymers (Basel) 2022; 14:polym14122466. [PMID: 35746041 PMCID: PMC9227074 DOI: 10.3390/polym14122466] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/11/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023] Open
Abstract
The periosteum plays an important role in bone formation and reconstruction. One of the reasons for the high failure rate of bone transplantation is the absence of the periosteum. Silk fibroin (SF) and silk sericin (SS) have excellent biocompatibility and physicochemical properties, which have amazing application prospects in bone tissue engineering, but lacked mechanical properties. We developed a series of SF/SS composite films with improved mechanical properties using boiling water degumming, which caused little damage to SF molecular chains to retain larger molecules. The Fourier transform infrared spectroscopy and X-ray diffraction results showed that there were more β-sheets in SF/SS films than in Na2CO3 degummed SF film, resulting in significantly improved breaking strength and toughness of the composite films, which were increased by approximately 1.3 and 1.7 times, respectively. The mineralization results showed that the hydroxyapatite (HAp) deposition rate on SF/SS composite films was faster than that on SF film. The SF/SS composite films effectively regulated the nucleation, growth and aggregation of HAp-like minerals, and the presence of SS accelerated the early mineralization of SF-based materials. These composite films may be promising biomaterials in the repair and regeneration of periosteum.
Collapse
|
33
|
Wang R. Performance and Structure Evaluation of Gln-Lys Isopeptide Bond Crosslinked USYK-SPI Bioplastic Film Derived from Discarded Yak Hair. Polymers (Basel) 2022; 14:polym14122471. [PMID: 35746046 PMCID: PMC9229832 DOI: 10.3390/polym14122471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/10/2022] [Accepted: 06/15/2022] [Indexed: 01/28/2023] Open
Abstract
To reduce the waste from yak hair and introduce resource recycling into the yak-related industry, an eco-friendly yak keratin-based bioplastic film was developed. We employed yak keratin (USYK) from yak hair, soy protein isolate (SPI) from soybean meal as a film-forming agent, transglutaminase (EC 2.3.2.13, TGase) as a catalytic crosslinker, and glycerol as a plasticizer for USYK-SPI bioplastic film production. The structures of the USYK-SPI bioplastic film were characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and X-Ray diffraction (XRD). The mechanical properties, the thermal behavior, light transmittance performance, and water vapor permeability (WVP) were measured. The results revealed that the added SPI possibly acted as a reinforcement. The formation of Gln-Lys isopeptide bonds and hydrophobic interactions led to a stable crosslinking structure of USYK-SPI bioplastic film. The thermal and the mechanical behaviors of the USYK-SPI bioplastic film were improved. The enhanced dispersion and formation of co-continuous protein matrices possibly produced denser networks that limited the diffusion of water vapor and volatile compounds in the USYK-SPI bioplastic films. Moreover, the introduction of SPI prompted the relocation of hydrophobic groups on USYK molecules, which gave the USYK-SPI bioplastic film stronger surface hydrophobicity. The SPI and USYK molecules possess aromatic amino residuals (tyrosine, phenylalanine, tryptophan), which can absorb ultraviolet radiation. Thus, the USYK-SPI bioplastic films were shown to have an excellent UV barrier. The synergy effect between USYK and SPI is not only able to improve rigidity and the application performance of keratin-based composite film but can also reduce the cost of the keratin-based composite film through the low-cost of the SPI alternative which partially replaces the high-cost of keratin. The data obtained from this research can provide basic information for further research and practical applications of USYK-SPI bioplastic films. There is an increasing demand for the novel USYK-SPI bioplastic film in exploit packaging material, biomedical materials, eco-friendly wearable electronics, and humidity sensors.
Collapse
Affiliation(s)
- Ruirui Wang
- Department of Applied Chemistry, College of Chemistry and Chemical Engineering, Qinghai Normal University, 38 Wusi West Road, Xining 810008, China
| |
Collapse
|
34
|
Yan W, Sun H, Liu W, Chen H. Preparation and Properties of Blended Composite Film Manufactured Using Walnut-Peptide-Chitosan-Sodium Alginate. Foods 2022; 11:1758. [PMID: 35741956 PMCID: PMC9223285 DOI: 10.3390/foods11121758] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/11/2022] [Accepted: 06/11/2022] [Indexed: 02/01/2023] Open
Abstract
In this study, layer-by-layer assembly was performed to prepare sodium alginate (SA) layer and walnut-peptide-chitosan (CS) bilayer composite films. Genipin was adopted to crosslink CS and walnut peptide. The properties of walnut peptide-CS-SA composite film were determined, and the influence of material ratio on the performance of composite film was explored. According to the results, the mechanical tensile property, oil absorption property, and water vapor barrier property of the composite film were improved with the presence of genipin. Moreover, the proportion of CS and walnut peptide had significant effects on color, transmittance, mechanical properties, barrier properties, and antioxidant properties of the composite films. Among them, the composite film containing 1% (w/v) CS, 1% (w/v) walnut peptide, and 0.01% (w/v) genipin showed the best performance, with a tensile strength of 3.65 MPa, elongation at break of 30.82%, water vapor permeability of 0.60 g·mm·m-2·h-1·kPa-1, oil absorption of 0.85%, and the three-phase electrochemistry of 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging rate of 25.59%. Under this condition, the tensile property, barrier property, and oxidation resistance of the composite film are good, which can provide a good preservation effect for food, and has great application potential.
Collapse
Affiliation(s)
- Wenqi Yan
- Marine College, Shandong University (Weihai), No. 180 Wenhua West Road, Gao Strict, Weihai 264209, China; (W.Y.); (H.S.); (W.L.)
| | - Haochen Sun
- Marine College, Shandong University (Weihai), No. 180 Wenhua West Road, Gao Strict, Weihai 264209, China; (W.Y.); (H.S.); (W.L.)
| | - Wenxin Liu
- Marine College, Shandong University (Weihai), No. 180 Wenhua West Road, Gao Strict, Weihai 264209, China; (W.Y.); (H.S.); (W.L.)
| | - Hao Chen
- Marine College, Shandong University (Weihai), No. 180 Wenhua West Road, Gao Strict, Weihai 264209, China; (W.Y.); (H.S.); (W.L.)
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, No. 1800 Lihu Road, Wuxi 214122, China
| |
Collapse
|
35
|
Moeini A, Pedram P, Fattahi E, Cerruti P, Santagata G. Edible Polymers and Secondary Bioactive Compounds for Food Packaging Applications: Antimicrobial, Mechanical, and Gas Barrier Properties. Polymers (Basel) 2022; 14:2395. [PMID: 35745971 PMCID: PMC9229000 DOI: 10.3390/polym14122395] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 02/06/2023] Open
Abstract
Edible polymers such as polysaccharides, proteins, and lipids are biodegradable and biocompatible materials applied as a thin layer to the surface of food or inside the package. They enhance food quality by prolonging its shelf-life and avoiding the deterioration phenomena caused by oxidation, humidity, and microbial activity. In order to improve the biopolymer performance, antimicrobial agents and plasticizers are also included in the formulation of the main compounds utilized for edible coating packages. Secondary natural compounds (SC) are molecules not essential for growth produced by some plants, fungi, and microorganisms. SC derived from plants and fungi have attracted much attention in the food packaging industry because of their natural antimicrobial and antioxidant activities and their effect on the biofilm's mechanical properties. The antimicrobial and antioxidant activities inhibit pathogenic microorganism growth and protect food from oxidation. Furthermore, based on the biopolymer and SC used in the formulation, their specific mass ratio, the peculiar physical interaction occurring between their functional groups, and the experimental procedure adopted for edible coating preparation, the final properties as mechanical resistance and gas barrier properties can be opportunely modulated. This review summarizes the investigations on the antimicrobial, mechanical, and barrier properties of the secondary natural compounds employed in edible biopolymer-based systems used for food packaging materials.
Collapse
Affiliation(s)
- Arash Moeini
- School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany; (P.P.); (E.F.)
| | - Parisa Pedram
- School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany; (P.P.); (E.F.)
| | - Ehsan Fattahi
- School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany; (P.P.); (E.F.)
| | - Pierfrancesco Cerruti
- Institute for Polymers, Composites and Biomaterials (IPCB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (P.C.); (G.S.)
| | - Gabriella Santagata
- Institute for Polymers, Composites and Biomaterials (IPCB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (P.C.); (G.S.)
| |
Collapse
|
36
|
Salazar R, Salas-Gomez V, Alvarado AA, Baykara H. Preparation, Characterization and Evaluation of Antibacterial Properties of Polylactide-Polyethylene Glycol-Chitosan Active Composite Films. Polymers (Basel) 2022; 14:polym14112266. [PMID: 35683938 PMCID: PMC9183075 DOI: 10.3390/polym14112266] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 02/01/2023] Open
Abstract
Chitin is a natural biopolymer obtained from the exoskeleton of crustaceans. Chitosan is a derivative of chitin, which has antimicrobial properties and potential applications in several industries. Moreover, the composites of chitosan with other biodegradable polymers, such as polylactide (PLA) as packaging film, have shown promising results. In this study, chitosan was obtained and characterized from shrimp shells. Then, polylactide-chitosan composite films were prepared by a solvent casting technique using various amounts of chitosan (0.5–2% w/w) and polyethylene glycol as plasticizer (10% w/w). Thermal, mechanical properties, Fourier-transform infrared, scanning electron microscopy, as well as antibacterial properties of composite films were determined. It was found that adding chitosan (CH) into PLA films has a significant effect on tensile strength and no effect on thermal properties. The results showed a reduction on average of 1 log of colony-forming units against Staphylococcus aureus, while there is no antibacterial effect against Salmonella typhimurium. The study proved the antibacterial effect of CH in films of PLA against Gram-positive bacteria and appropriate mechanical properties. These films could be used for the development of biodegradable/eco-friendly food packaging prototypes, as a potential solution to replace conventional non-degradable packaging materials.
Collapse
Affiliation(s)
- Rómulo Salazar
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería en Mecánica y Ciencias de la Producción, Campus Gustavo Galindo, Km 30.5 Vía Perimetral, P.O. BOX 09-01-5863, Guayaquil 090902, Ecuador;
- Correspondence: (R.S.); (H.B.)
| | - Veronica Salas-Gomez
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería en Mecánica y Ciencias de la Producción, Campus Gustavo Galindo, Km 30.5 Vía Perimetral, P.O. BOX 09-01-5863, Guayaquil 090902, Ecuador;
| | - Adriana A. Alvarado
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ciencias Naturales y Matemáticas, Departamento de Química y Ciencias Ambientales, Campus Gustavo Galindo, Km 30.5 Vía Perimetral, Guayaquil 090902, Ecuador;
| | - Haci Baykara
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería en Mecánica y Ciencias de la Producción, Campus Gustavo Galindo, Km 30.5 Vía Perimetral, P.O. BOX 09-01-5863, Guayaquil 090902, Ecuador;
- Escuela Superior Politécnica del Litoral, ESPOL, Center of Nanotechnology Research and Development (CIDNA), Campus Gustavo Galindo, Km 30.5 Vía Perimetral, P.O. BOX 09-01-5863, Guayaquil 090902, Ecuador
- Correspondence: (R.S.); (H.B.)
| |
Collapse
|
37
|
Phothisarattana D, Wongphan P, Promhuad K, Promsorn J, Harnkarnsujarit N. Blown film extrusion of PBAT/TPS/ZnO nanocomposites for shelf-life extension of meat packaging. Colloids Surf B Biointerfaces 2022; 214:112472. [PMID: 35364455 DOI: 10.1016/j.colsurfb.2022.112472] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 12/26/2022]
Abstract
Biodegradable polymers typically have inferior barrier properties compared to petroleum-based nonbiodegradable plastic. The addition of zinc oxide nanoparticles may enhance the functional properties of biodegradable packaging and extends the shelf life of packaged foods. Polybutylene adipate-co-terephthalate (PBAT) and thermoplastic starch (TPS) blended ZnO (1-5%) nanocomposite films were developed via blown extrusion for functional active meat packaging. The nanocomposite film morphology showed agglomeration of the nanoparticles, causing poor mechanical properties. Nanovoids formed at the interface between the polymer and nanoparticles, increasing permeability. Dispersion of ZnO nanofillers modified CO and C-O ester bonding in PBAT and increased hydrogen bonding with TPS. The interaction between ZnO and polymers increased the dispersion and reduced the agglomeration of nanoparticles. The highest ZnO content at 5% resulted in a stronger interaction between ZnO and TPS due to increased amorphous starch content, which improved homogeneous dispersion within the matrices, reducing nanoparticle size. The ZnO nanocomposite films reduced lipid oxidation and delayed microbial growth, resulting in a lower total viable count, lactic acid bacteria and yeast and mold in packaged pork meat. Higher ZnO concentrations from 3% showed microbial inhibitory effects. The growth of microorganisms was controlled by residual oxygen, morphology of the films and nanoparticle characteristics. The nanocomposite films effectively extended the shelf life by more than 3 days under refrigerated conditions.
Collapse
Affiliation(s)
- Danaya Phothisarattana
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand.
| | - Phanwipa Wongphan
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand.
| | - Khwanchat Promhuad
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand.
| | - Juthathip Promsorn
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand.
| | - Nathdanai Harnkarnsujarit
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand; Center for Advanced Studies for Agriculture and Food, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand.
| |
Collapse
|
38
|
Guzman-Puyol S, Hierrezuelo J, Benítez JJ, Tedeschi G, Porras-Vázquez JM, Heredia A, Athanassiou A, Romero D, Heredia-Guerrero JA. Transparent, UV-blocking, and high barrier cellulose-based bioplastics with naringin as active food packaging materials. Int J Biol Macromol 2022; 209:1985-1994. [PMID: 35504412 DOI: 10.1016/j.ijbiomac.2022.04.177] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 01/28/2023]
Abstract
Free-standing, robust, and transparent bioplastics were obtained by blending cellulose and naringin at different proportions. Optical, thermal, mechanical, antioxidant, and antimicrobial properties were systematically investigated. In general, the incorporation of naringin produced important UV blocking and plasticizer effects and good antioxidant and antibacterial properties. Moreover, the barrier properties were characterized by determination of their water and oxygen transmission rates, finding that both parameters decreased by increasing the naringin content and reaching values similar to other petroleum-based plastics and cellulose derivatives used for food packaging applications. Finally, the biodegradability of these films was determined by measurement of the biological oxygen demand (BOD) in seawater, demonstrating an excellent decomposition in such conditions.
Collapse
Affiliation(s)
- Susana Guzman-Puyol
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM, UMA-CSIC), Bulevar Louis Pasteur 49, 29010, Malaga, Spain.
| | - Jesús Hierrezuelo
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM, UMA-CSIC), Departamento de Microbiología, Bulevar Louis Pasteur 49, 29010 Malaga, Spain
| | - José J Benítez
- Instituto de Ciencia de Materiales de Sevilla, Centro Mixto CSIC, Universidad de Sevilla, Calle Americo Vespucio 49, Isla de la Cartuja, Sevilla 41092, Spain
| | - Giacomo Tedeschi
- Smart Materials, Nanophysics, Istituto Italiano di Tecnologia, Via Morego, 30, Genova 16163, Italy
| | - José M Porras-Vázquez
- Departamento de Química Inorgánica, Cristalografía y Mineralogía, Universidad de Málaga, 29071 Málaga, Spain
| | - Antonio Heredia
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM, UMA-CSIC), Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, E-29071 Málaga, Spain
| | - Athanassia Athanassiou
- Smart Materials, Nanophysics, Istituto Italiano di Tecnologia, Via Morego, 30, Genova 16163, Italy
| | - Diego Romero
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM, UMA-CSIC), Departamento de Microbiología, Bulevar Louis Pasteur 49, 29010 Malaga, Spain
| | - José A Heredia-Guerrero
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM, UMA-CSIC), Bulevar Louis Pasteur 49, 29010, Malaga, Spain.
| |
Collapse
|
39
|
Effect on the Properties of Edible Starch-Based Films by the Incorporation of Additives: A Review. Polymers (Basel) 2022; 14:polym14101987. [PMID: 35631869 PMCID: PMC9147565 DOI: 10.3390/polym14101987] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 12/11/2022] Open
Abstract
At present, people more actively pursuing biodegradable-based food packaging to lower the environmental problems of plastic-based packaging. Starch could become a promising alternative to plastic because of its properties (easily available, nontoxic, tasteless, biodegradable, ecofriendly, and edible). This review article is focused mainly on the impact of the properties of starch-based biodegradable films, such as their thickness, morphology, and optical, water-barrier, mechanical, oxygen-barrier, antioxidant, and antimicrobial properties, after the incorporation of additives, and how such films fulfill the demands of the manufacturing of biodegradable and edible food-based film with preferable performance. The incorporation of additives in starch-based films is largely explained by its functioning as a filler, as shown via a reduction in water and oxygen permeability, increased thickness, and better mechanical properties. Additives also showed antimicrobial and antioxidant properties in the films/coatings, which would positively impact the shelf life of coated or wrapped food material.
Collapse
|
40
|
Green Composites from Partially Bio-Based Poly(butylene succinate-co-adipate)-PBSA and Short Hemp Fibers with Itaconic Acid-Derived Compatibilizers and Plasticizers. Polymers (Basel) 2022; 14:polym14101968. [PMID: 35631851 PMCID: PMC9145613 DOI: 10.3390/polym14101968] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/05/2022] [Accepted: 05/10/2022] [Indexed: 11/16/2022] Open
Abstract
In this work, green composites have been developed and characterized using a bio-based polymeric matrix such as BioPBSA and the introduction of 30 wt.% short hemp fibers as a natural reinforcement to obtain materials with maximum environmental efficiency. In order to increase the interfacial adhesion between the matrix and the fiber to obtain better properties in the composites, a reactive extrusion process has been carried out. On the one hand, different additives derived from bio-based itaconic acid have been added to the BioPBSA/HEMP composite, such as dibutyl itaconate (DBI) and a copolymer of PBSA grafted with itaconic acid (PBSA-g-IA). On the other hand, a different copolymer of PBSA grafted with maleic anhydride (PBSA-g-MA) was also tested. The resulting composites have been processed by injection-molding to obtain different samples which were evaluated in terms of mechanical, thermal, chemical, dynamic-mechanical, morphological and wettability and color properties. In relation to the mechanical properties, the incorporation of hemp fibers resulted in an increase in the stiffness of the base polymer. The tensile modulus of pure BioPBSA increased from 281 MPa to 3482 MPa with 30% fiber. The addition of DBI shows a remarkable improvement in the ductility of the composites, while copolymers with IA and MA, generate mechanically balanced composites. In terms of thermal properties, the incorporation of hemp fiber and compatibilizing agents led to a reduction in thermal stability. However, from the point of view of thermomechanical properties, a clear increase in rigidity is achieved throughout the temperature range studied. As far as the color of the samples is concerned, the incorporation of hemp generates a typical color, while the incorporation of the compatibilizing agents does not modify this color excessively. Finally, the introduction of lignocellulosic fibers greatly affects water absorption and contact angle, although the use of additives helped to mitigate this effect.
Collapse
|
41
|
Li Y, Chen Y, Wu Q, Huang J, Zhao Y, Li Q, Wang S. Improved Hydrophobic, UV Barrier and Antibacterial Properties of Multifunctional PVA Nanocomposite Films Reinforced with Modified Lignin Contained Cellulose Nanofibers. Polymers (Basel) 2022; 14:polym14091705. [PMID: 35566875 PMCID: PMC9102542 DOI: 10.3390/polym14091705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/16/2022] [Accepted: 04/17/2022] [Indexed: 12/04/2022] Open
Abstract
In this study, we reported PVA nanocomposite films enhanced by polyethyleneimine (PEI)-lignin contained cellulose nanofibers (LCNFs) via the solvent casting method. An easy and available method was preformed to prepare LCNFs using a supermasscolloider from unbleached bamboo waste after a mild alkaline pretreatment. The results demonstrate that LCNF–PEI can greatly improve mechanical, hydrophobic, anti-UV shielding and antibacterial properties of the composite films. The tensile strength of LPP1 film was improved to 54.56 MPa, which was higher than 39.37 MPa of PVA film. The water contact angle of films increased from 35° to 104° with an increase in LCNF content from 0 to 6 wt%. Meanwhile, the nanocomposite film demonstrated the effect of full shielding against ultraviolet light when the amount of LCNF–PEI reached 6 wt%. The addition of LCNF–PEI endowed excellent antibacterial activity (against S. aureus and E. coli), which indicated potential applications in the packaging field.
Collapse
Affiliation(s)
- Yujie Li
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China; (Y.L.); (Y.C.); (Q.W.); (J.H.)
| | - Yifan Chen
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China; (Y.L.); (Y.C.); (Q.W.); (J.H.)
| | - Qiang Wu
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China; (Y.L.); (Y.C.); (Q.W.); (J.H.)
| | - Jingda Huang
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China; (Y.L.); (Y.C.); (Q.W.); (J.H.)
| | - Yadong Zhao
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China;
| | - Qian Li
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China; (Y.L.); (Y.C.); (Q.W.); (J.H.)
- Correspondence: (Q.L.); (S.W.)
| | - Siqun Wang
- Center for Renewable Carbon, University of Tennessee, Knoxville, TN 37996, USA
- Correspondence: (Q.L.); (S.W.)
| |
Collapse
|
42
|
Starch/PBAT blown antimicrobial films based on the synergistic effects of two commercial antimicrobial peptides. Int J Biol Macromol 2022; 204:457-465. [DOI: 10.1016/j.ijbiomac.2022.01.183] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 01/24/2023]
|
43
|
Ravindran Maniam MM, Loong YH, Samsudin H. Understanding the Formation of β‐cyclodextrin Inclusion Complexes and their use in Active Packaging Systems. STARCH-STARKE 2022. [DOI: 10.1002/star.202100304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Ye Heng Loong
- Food Technology Division School of Industrial Technology Universiti Sains Malaysia 11800 USM Penang Malaysia
| | - Hayati Samsudin
- Food Technology Division School of Industrial Technology Universiti Sains Malaysia 11800 USM Penang Malaysia
| |
Collapse
|
44
|
Ramos da Silva L, Velasco JI, Fakhouri FM. Bioactive Films Based on Starch from White, Red, and Black Rice to Food Application. Polymers (Basel) 2022; 14:polym14040835. [PMID: 35215746 PMCID: PMC8963109 DOI: 10.3390/polym14040835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 01/27/2023] Open
Abstract
Packages from renewable sources have been the focus of many studies, due to the consumer needs for high-quality food, environmental concern related to the inadequate discard of packaging, low percentage of packaging recycling, and starch application by a viable method. Thus, this work aimed to develop bioactive packages based on white, red, and black rice starch and analyze the influence of macromolecule and plasticizer type, even its blends, on the characteristics of films. Films were characterized by color, opacity, thickness, water solubility, water vapor permeability, and bioactive properties. The use of rice starch in the development of edible and/or biodegradable films was feasible, with all the formulations tested presenting a homogeneous matrix and the films obtained varying in hue, to the naked eye, as a function of the starch used. Variation of the type of starch and plasticizer, as well as the concentrations of the same, resulted in films with differences in all studied properties. Films prepared with 5% of starch and 30% of sorbitol showed phenolic compounds and antioxidant capacity, using the DPPH and ABTS methods, indicating that these can be considered bioactive packages and also suitable for food application.
Collapse
Affiliation(s)
- Luan Ramos da Silva
- Faculty of Engineering, Federal University of Grande Dourados (FAEN/UFGD), Dourados 79804-970, Brazil;
- Faculty of Food Engineering, University of Campinas (FEA/UNICAMP), Campinas 13083-970, Brazil
| | - José Ignacio Velasco
- Poly2 Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC BarcelonaTech), Calle Colon, 11, 08221 Terrassa, Spain;
| | - Farayde Matta Fakhouri
- Faculty of Engineering, Federal University of Grande Dourados (FAEN/UFGD), Dourados 79804-970, Brazil;
- Poly2 Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC BarcelonaTech), Calle Colon, 11, 08221 Terrassa, Spain;
- Correspondence:
| |
Collapse
|
45
|
Recent Advancements in Smart Biogenic Packaging: Reshaping the Future of the Food Packaging Industry. Polymers (Basel) 2022; 14:polym14040829. [PMID: 35215741 PMCID: PMC8878437 DOI: 10.3390/polym14040829] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/26/2022] [Accepted: 02/17/2022] [Indexed: 12/11/2022] Open
Abstract
Due to their complete non-biodegradability, current food packages have resulted in major environmental issues. Today’s smart consumer is looking for alternatives that are environmentally friendly, durable, recyclable, and naturally rather than synthetically derived. It is a well-established fact that complete replacement with environmentally friendly packaging materials is unattainable, and bio-based plastics should be the future of the food packaging industry. Natural biopolymers and nanotechnological interventions allow the creation of new, high-performance, light-weight, and environmentally friendly composite materials, which can replace non-biodegradable plastic packaging materials. This review summarizes the recent advancements in smart biogenic packaging, focusing on the shift from conventional to natural packaging, properties of various biogenic packaging materials, and the amalgamation of technologies, such as nanotechnology and encapsulation; to develop active and intelligent biogenic systems, such as the use of biosensors in food packaging. Lastly, challenges and opportunities in biogenic packaging are described, for their application in sustainable food packing systems.
Collapse
|
46
|
Applications of Inorganic Nanoparticles in Food Packaging: A Comprehensive Review. Polymers (Basel) 2022; 14:polym14030521. [PMID: 35160510 PMCID: PMC8838940 DOI: 10.3390/polym14030521] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/18/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023] Open
Abstract
Nanoparticles (NPs) have acquired significance in technological breakthroughs due to their unique properties, such as size, shape, chemical composition, physiochemical stability, crystal structure, and larger surface area. There is a huge demand for packaging materials that can keep food fresher for extended periods of time. The incorporation of nanoscale fillers in the polymer matrix would assists in the alleviation of packaging material challenges while also improving functional qualities. Increased barrier properties, thermal properties like melting point and glass transition temperatures, and changed functionalities like surface wettability and hydrophobicity are all features of these polymers containing nanocomposites. Inorganic nanoparticles also have the potential to reduce the growth of bacteria within the packaging. By incorporating nano-sized components into biopolymer-based packaging materials, waste material generated during the packaging process may be reduced. The different inorganic nanoparticles such as titanium oxide, zinc oxide, copper oxide, silver, and gold are the most preferred inorganic nanoparticles used in food packaging. Food systems can benefit from using these packaging materials and improve physicochemical and functional properties. The compatibility of inorganic nanoparticles and their various forms with different polymers make them excellent components for package fortification. This review article describes the various aspects of developing and applying inorganic nanoparticles in food packaging. This study provides diverse uses of metals and metal oxides nanoparticles in food packaging films for the development of improved packaging films that can extend the shelf life of food products. These packaging solutions containing nanoparticles would effectively preserve, protect, and maintain the quality of the food material.
Collapse
|