1
|
Xie Y, Ma J, Chen M, Tian F, Zhou X, Yang C, Xiao H, Dong X, Yang Y, Chen D, Deng T, Dai X, Niu S. Identification and characterization of two hydrolase genes involved in the hydrolysis of galloylated catechin in the tea plant Camellia sinensis. Int J Biol Macromol 2025; 308:142620. [PMID: 40185441 DOI: 10.1016/j.ijbiomac.2025.142620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/07/2025]
Abstract
Galloylated catechins are major catechins in tea, resulting in a bitter and astringent taste. In this study, to identify the key genes involved in the hydrolysis of astringency-associated galloylated catechins in Camellia sinensis, multiomics association analysis, including enzyme activity assays, transcriptomics, and metabolomics, was performed. Subsequently, seven candidate genes involved in the hydrolysis of galloylated catechin were screened from tea genomes using correlation analysis. Phylogenetic analysis revealed that these genes were clustered into caffeoyl shikimate esterase, acetate esterase, and tannase groups. In vitro, the purified recombinant enzymes rCSS0031888 and rCSS0049322 catalyzed the hydrolysis of galloylated catechins into nongalloylated catechins. This study provides an efficient method for mining functional genes and identifying key genes involved in the hydrolysis of galloylated catechins in vitro, thereby reducing the bitterness and astringency of tea and offering a molecular basis for cultivating high-quality tea varieties.
Collapse
Affiliation(s)
- Youshudi Xie
- College of Tea Science, Guizhou University, Guiyang 550025, Guizhou, China
| | - Jie Ma
- College of Tea Science, Guizhou University, Guiyang 550025, Guizhou, China
| | - Mei Chen
- College of Tea Science, Guizhou University, Guiyang 550025, Guizhou, China
| | - Fengyun Tian
- College of Tea Science, Guizhou University, Guiyang 550025, Guizhou, China
| | - Xingrong Zhou
- College of Tea Science, Guizhou University, Guiyang 550025, Guizhou, China
| | - Changli Yang
- College of Tea Science, Guizhou University, Guiyang 550025, Guizhou, China
| | - Houhong Xiao
- College of Tea Science, Guizhou University, Guiyang 550025, Guizhou, China
| | - Xue Dong
- College of Tea Science, Guizhou University, Guiyang 550025, Guizhou, China
| | - Yanfen Yang
- College of Tea Science, Guizhou University, Guiyang 550025, Guizhou, China
| | - Dingli Chen
- College of Tea Science, Guizhou University, Guiyang 550025, Guizhou, China
| | - Tian Deng
- College of Tea Science, Guizhou University, Guiyang 550025, Guizhou, China
| | - Xinlong Dai
- College of Tea Science, Guizhou University, Guiyang 550025, Guizhou, China.
| | - Suzhen Niu
- Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China; The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in the Mountainous Region (Ministry of Education), Xueshi Road, Guiyang, Guizhou, China.
| |
Collapse
|
2
|
Hao J, Wang Y, Xiao Y, He S, Chen M, Mao X, Huang Q, Su Z, Lu Q, Guo H. Proanthocyanidin polymers (condensed tannins) from lychee seeds exhibit antioxidant, anticancer, anti-α-amylase, and anti-tyrosinase activities. Int J Biol Macromol 2025; 308:142641. [PMID: 40169045 DOI: 10.1016/j.ijbiomac.2025.142641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/18/2025] [Accepted: 03/27/2025] [Indexed: 04/03/2025]
Abstract
Lychee (Litchi chinensis) is a subtropical fruit known for its potential health benefits. In this study, proanthocyanidins (condensed tannins) from lychee seeds (LSPAs) were isolated using a bioactivity-guided approach. Their structural characteristics, as well as antioxidant, anticancer, anti-α-amylase, and anti-tyrosinase activities, were comprehensively analyzed. Structural analysis using mass spectrometry revealed that LSPAs are polymeric compounds predominantly composed of procyanidins (PCs), with a number-average molecular weight (Mn) of 5803 Da as determined by gel permeation chromatography (GPC). LSPAs exhibited significant antioxidant activity in DPPH, ABTS, and hydroxyl radical scavenging assays, with IC50 values of 28.8 ± 1.3, 24.29 ± 1.93, and 119.67 ± 32.85 μg/mL, respectively. The FRAP assay showed antioxidant activity of 0.45 ± 0.01 μM Fe(II) equivalent/g DW. The CCK-8 assay demonstrated potent anti-breast cancer efficacy of LSPAs (IC50 = 25.78 ± 0.37 μg/mL). Notably, LSPAs suppressed mammosphere formation and downregulated Sox2 and NICD1 expression in breast cancer stem cells (BCSCs). Molecular docking and dynamics simulations confirmed stable interactions between LSPAs and Sox2, primarily mediated by van der Waals forces. Enzyme kinetics and fluorescence spectroscopy further revealed that LSPAs effectively inhibited both α-amylase (IC50 = 0.12 ± 0.004 μg/mL) and tyrosinase (IC50 = 66.34 ± 0.37 μg/mL) activities by inducing conformational alterations and modifying the amino acid microenvironment of these enzymes. These findings establish LSPAs as promising multifunctional inhibitors with potential applications in food, cosmetics, and pharmaceuticals.
Collapse
Affiliation(s)
- Jie Hao
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, College of Pharmacy, Guangxi Medical University, Nanning 530021, China; Key Laboratory of Longevity and Aging-related Diseases of Ministry of Education, Center for Translational Medicine, Guangxi Medical University, Nanning 530021, China
| | - Yuanshuo Wang
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, College of Pharmacy, Guangxi Medical University, Nanning 530021, China; Key Laboratory of Longevity and Aging-related Diseases of Ministry of Education, Center for Translational Medicine, Guangxi Medical University, Nanning 530021, China
| | - Yang Xiao
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, College of Pharmacy, Guangxi Medical University, Nanning 530021, China; Key Laboratory of Longevity and Aging-related Diseases of Ministry of Education, Center for Translational Medicine, Guangxi Medical University, Nanning 530021, China
| | - Songhua He
- Guangxi Institute for Food and Drug Control, Nanning 530021, China
| | - Mingqi Chen
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, College of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Xin Mao
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, College of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Qiuju Huang
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, College of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Zhiheng Su
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, College of Pharmacy, Guangxi Medical University, Nanning 530021, China.
| | - Qinpei Lu
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, College of Pharmacy, Guangxi Medical University, Nanning 530021, China.
| | - Hongwei Guo
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, College of Pharmacy, Guangxi Medical University, Nanning 530021, China; Key Laboratory of Longevity and Aging-related Diseases of Ministry of Education, Center for Translational Medicine, Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|
3
|
Seidi F, Liu Y, Huang Y, Xiao H, Crespy D. Chemistry of lignin and condensed tannins as aromatic biopolymers. Chem Soc Rev 2025; 54:3140-3232. [PMID: 39976198 DOI: 10.1039/d4cs00440j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Aromatic biopolymers are the second largest group of biopolymers after polysaccharides. Depolymerization of aromatic biopolymers, as cheap and renewable substitutes for fossil-based resources, has been used in the preparation of biofuels, and a range of aromatic and aliphatic small molecules. Additionally, these polymers exhibit a robust UV-shielding function due to the high content of aromatic groups. Meanwhile, the abundance of phenolic groups in their structures gives these compounds outstanding antioxidant capabilities, making them well-suited for a diverse array of anti-UV and medical applications. Nevertheless, these biopolymers possess inherent drawbacks in their pristine states, such as rigid structure, low solubility, and lack of desired functionalities, which hinder their complete exploitation across diverse sectors. Thus, the modification and functionalization of aromatic biopolymers are essential to provide them with specific functionalities and features needed for particular applications. Aromatic biopolymers include lignins, tannins, melanins, and humic acids. The objective of this review is to offer a thorough reference for assessing the chemistry and functionalization of lignins and condensed tannins. Lignins represent the largest and most prominent category of aromatic biopolymers, typically distinguishable as either softwood-derived or hardwood-derived lignins. Besides, condensed tannins are the most investigated group of the tannin family. The electron-rich aromatic rings, aliphatic hydroxyl groups, and phenolic groups are the main functional groups in the structure of lignins and condensed tannins. Methoxy groups are also abundant in lignins. Each group displays varying chemical reactivity within these biopolymers. Therefore, the selective and specific functionalization of lignins and condensed tannins can be achieved by understanding the chemistry behavior of these functional groups. Targeted applications include biomedicine, monomers and surface active agents for sustainable plastics.
Collapse
Affiliation(s)
- Farzad Seidi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand.
| | - Yuqian Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Yang Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada
| | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand.
| |
Collapse
|
4
|
Yu A, Sun L, Chen L, Wang D, Li Z, Wang Y, Wang Z, Lin S. The biological functions of proanthocyanidin and its application in pig production. Front Vet Sci 2025; 12:1565501. [PMID: 40144517 PMCID: PMC11938249 DOI: 10.3389/fvets.2025.1565501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 02/28/2025] [Indexed: 03/28/2025] Open
Abstract
Proanthocyanidins (PACs) are natural polyphenolic compounds widely distributed in various plants, which are mixtures of oligomers and polymers formed by the polymerization of different numbers of catechins and epicatechins. PACs exhibit a range of biological activities, including antioxidant, anti-inflammatory, anti-cancer, anti-atherosclerotic, hypoglycemic, and antihypertensive effects, as well as the ability to regulate intestinal flora and promote fat metabolism. These properties render PACs highly promising for applications in the food, pharmaceutical, and cosmetic industries, garnering substantial interest from researchers globally. Additionally, PACs demonstrate significant nutritional benefits in animal husbandry. Dietary PACs can enhance animal growth, mitigate oxidative stress, decrease feeding expenses, and offer an environmentally friendly, antibiotic-free alternative. Therefore, PACs have great application potential in the field of pig production. This article reviews the basic properties, biological functions, and research status and application in pig production of PACs, aiming to provide theoretical guidance for the development of substitute antibiotic feed additives.
Collapse
Affiliation(s)
- Aiying Yu
- Key Laboratory of Urban Agriculture in South China, Sericultural and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Lingli Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou, China
| | - Lian Chen
- Key Laboratory of Urban Agriculture in South China, Sericultural and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Dan Wang
- Key Laboratory of Urban Agriculture in South China, Sericultural and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Zhiyi Li
- Key Laboratory of Urban Agriculture in South China, Sericultural and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yuan Wang
- Key Laboratory of Urban Agriculture in South China, Sericultural and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Zhenjiang Wang
- Key Laboratory of Urban Agriculture in South China, Sericultural and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Sen Lin
- Key Laboratory of Urban Agriculture in South China, Sericultural and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
5
|
Salazar-Bermeo J, Moreno-Chamba B, Hernández-García M, Saura D, Valero M, Martí N, Martínez-Madrid MC. Optimization of hypobaric and ultrasonic processing of persimmon rhamnogalacturonan-I to enhance drug-digestion interactions. Int J Biol Macromol 2025; 295:139453. [PMID: 39755300 DOI: 10.1016/j.ijbiomac.2025.139453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/24/2024] [Accepted: 01/01/2025] [Indexed: 01/06/2025]
Abstract
The biological activity of polysaccharides used for nutraceuticals/drug excipients has been a neglected area of study. This work deals with the preparation, optimization, characterization, and evaluation of persimmon (Diospyros kaki Thunb.) fruit by-products and the study of the resultant dietary fiber (DF) interaction with other compounds, using acetaminophen as a model. Processing conditions for persimmon by-products were optimized to enhance antioxidant activity, with hypobaric, ultrasonic, and drying conditions tested at three levels of time and pH. The optimized DF was evaluated through in-vitro and ex-vivo release and permeation studies. Optimal conditions included three cycles of vacuum instantaneous expansion coupled with ultrasound waves (USEX), 42 min of ultrasound assisted extraction (UAE), and a pH of 1.5. After treatments, the antioxidant capacity (AC) increased six-fold, and zeta potential (ζ) analysis indicated polysaccharide aggregation at the optimized pH. The optimized polysaccharides, mainly formed by rhamnogalacturonan-I, displayed nuclear factor erythroid 2-related factor 2 (Nrf2)-dependent activity. In-vitro drug-DF interaction studies showed higher acetaminophen release during digestion. Permeation kinetics adhered to the Korsmeyer-Peppas model in both ex-vivo and in-vitro models, suggesting complex permeation mechanisms. Results suggest that the optimized DF enhances the bioavailability and controlled release of acetaminophen, indicating its potential for use in drug delivery systems and nutraceutical applications.
Collapse
Affiliation(s)
- Julio Salazar-Bermeo
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, 03202 Elche, Alicante, Spain; Instituto Universitario de Ingeniería de Alimentos-FoodUPV, Universitat Politècnica de València, Avenida Fausto Elio s/n, Edificio 8E, Acceso F Planta 0, 46022 Valencia, Spain.
| | - Bryan Moreno-Chamba
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, 03202 Elche, Alicante, Spain; Instituto Universitario de Ingeniería de Alimentos-FoodUPV, Universitat Politècnica de València, Avenida Fausto Elio s/n, Edificio 8E, Acceso F Planta 0, 46022 Valencia, Spain.
| | - Marta Hernández-García
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, 03202 Elche, Alicante, Spain.
| | - Domingo Saura
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, 03202 Elche, Alicante, Spain.
| | - Manuel Valero
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, 03202 Elche, Alicante, Spain.
| | - Nuria Martí
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, 03202 Elche, Alicante, Spain.
| | - María Concepción Martínez-Madrid
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, 03202 Elche, Alicante, Spain.
| |
Collapse
|
6
|
Liu H, Zhang Z, Li X, Zhang L, Zhao A, Zheng Z, Gao H, You S, Zhang J, Sun J. Depolymerized peanut skin-derived proanthocyanidins alleviate cognitive dysfunction by inhibiting Aβ42 aggregation in Alzheimer's disease. Food Res Int 2025; 203:115747. [PMID: 40022313 DOI: 10.1016/j.foodres.2025.115747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/10/2025] [Accepted: 01/10/2025] [Indexed: 03/03/2025]
Abstract
Peanut skin proanthocyanidins (PSP) are natural polyphenols with antioxidant properties that mitigate Alzheimer's disease (AD), a complex progressive neurodegenerative disorder whose underlying biological mechanisms includes the aggregation of insoluble amyloid plaques. However, the high degree of polymerization of PSP, extracted using conventional methods, limits its bioavailability. This study established the optimal processes for ultrasound-assisted alkaline depolymerization to produce oligomeric proanthocyanidins (OPSP) from PSP content (2.7 mg/mL), depolymerization temperature (54.8 °C), ultrasonic power (480 W, 28 Hz), ultrasonic duration (28.7 min), and pH (12.1). Under these conditions, the degree of polymerization of the proanthocyanidins decreased from 6.74 to 2.87. Physicochemical characteristics of PSP and OPSP were analyzed. Both PSP and OPSP exhibited shared structural bonding and a repeating 288 Da unit, with Proanthocyanidin A identified as the predominant type. Furthermore, compared with PSP, OPSP demonstrated enhanced stability and antioxidant activity. Using in vitro detection of amyloid-beta (Aβ42) inhibition, this study demonstrated that OPSP exhibited greater inhibition of Aβ42 fibrillogenicity than underpolymerized PSP, and OPSP significantly inhibited Aβ42-induced cytotoxicity. In addition, the effect of OPSP was investigated in a rat model of Alzheimer's disease. The results indicated that OPSP improved the memory performance of AD rats in the water maze and decreased the levels of inflammatory factors IL-6, IL-1β, and TNF-α. Moreover, OPSP ameliorated histopathological changes and reduced Aβ42 plaque deposition in the brains of AD rats. These findings regarding OPSP are anticipated to facilitate high-value utilization of peanut by-products, expand their applications, and provide guidance for the use of OPSP in the development of natural healthcare pharmaceuticals and mitigation and treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- He Liu
- College of Life Sciences, Qingdao University, Qingdao 266071 China
| | - ZiYan Zhang
- College of Life Sciences, Qingdao University, Qingdao 266071 China
| | - XiaoQing Li
- College of Life Sciences, Qingdao University, Qingdao 266071 China
| | - LianYing Zhang
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071 China
| | - AiYun Zhao
- College of Life Sciences, Qingdao University, Qingdao 266071 China
| | - Zheng Zheng
- School of Basic Medicine, Qingdao University, Qingdao 266071 China
| | - Hui Gao
- College of Life Sciences, Qingdao University, Qingdao 266071 China
| | - Shengbo You
- Shandong Academy of Agricultural Sciences, Jinan 250100 China
| | - Jialei Zhang
- Shandong Academy of Agricultural Sciences, Jinan 250100 China
| | - Jie Sun
- College of Life Sciences, Qingdao University, Qingdao 266071 China.
| |
Collapse
|
7
|
Pérez-Piñero S, Muñoz-Carrillo JC, Echepare-Taberna J, Herrera-Fernández C, Muñoz-Cámara M, Ávila-Gandía V, López-Román FJ. Efficacy of a Dietary Supplement Extracted from Persimmon ( Diospyros kaki L.f.) in Overweight Healthy Adults: A Randomized, Double-Blind, Controlled Clinical Trial. Foods 2024; 13:4072. [PMID: 39767014 PMCID: PMC11675947 DOI: 10.3390/foods13244072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/28/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
A single-center, randomized, double-blind, and placebo-controlled clinical trial assessed the efficacy in improving body composition and in weight management of a dietary supplement consisting of 400 mg of a standardized extract of the persimmon fruit (Diospyros kaki L.f.) in adult subjects with a BMI between 25 and 34.99 kg/m2 administered for 120 consecutive days. In total, 36 participants were assigned to the placebo group and 35 to the experimental group (registered at ClinicalTrials.gov (NCT05750342)). Primary analysis focused on overweight subjects (placebo, n = 26; experimental, n = 23). In this group, fat mass expressed in kg and percentage evaluated by both dual-energy X-ray absorptiometry (DEXA) and bioelectrical impedance analysis (BIA) decreased significantly (between-group differences p < 0.001) in those receiving the persimmon extract as compared with the placebo. No significant reduction in lean mass was observed, suggesting that the muscle mass was maintained during fat loss. The use of the investigational product improved classic anthropometric parameters to a statistically significantly greater extent than the placebo, including body weight, BMI, and waist and abdominal circumference (p < 0.001), in the overweight group. In the overall population, similar improvements were observed, with significant between-group differences (p < 0.001) in fat mass reduction and improvements in body composition. Changes in the biochemical lipidic, glycemic, and anti-inflammatory profile were not found, except for between-group significant differences (p < 0.001) in decreases in tumor necrosis factor-alpha (TNFα) and increases in total antioxidant capacity (TAC) in favor of the experimental condition. There was a significant increase in fecal fat excretion in the experimental group at the end of the study in subjects with low fecal fat (9%) at baseline. Consumption of the investigational product vs. placebo improved the quality of life, with significantly greater scores in the total score and the mental health component of the SF-12 questionnaire. The persimmon extract was safe and well tolerated.
Collapse
Affiliation(s)
- Silvia Pérez-Piñero
- Faculty of Medicine, UCAM Universidad Católica San Antonio de Murcia, Carretera de Guadalupe s/n, 30107 Murcia, Spain; (S.P.-P.); (J.C.M.-C.); (C.H.-F.); (M.M.-C.); (V.Á.-G.); (F.J.L.-R.)
| | - Juan Carlos Muñoz-Carrillo
- Faculty of Medicine, UCAM Universidad Católica San Antonio de Murcia, Carretera de Guadalupe s/n, 30107 Murcia, Spain; (S.P.-P.); (J.C.M.-C.); (C.H.-F.); (M.M.-C.); (V.Á.-G.); (F.J.L.-R.)
| | - Jon Echepare-Taberna
- Faculty of Medicine, UCAM Universidad Católica San Antonio de Murcia, Carretera de Guadalupe s/n, 30107 Murcia, Spain; (S.P.-P.); (J.C.M.-C.); (C.H.-F.); (M.M.-C.); (V.Á.-G.); (F.J.L.-R.)
| | - Cristina Herrera-Fernández
- Faculty of Medicine, UCAM Universidad Católica San Antonio de Murcia, Carretera de Guadalupe s/n, 30107 Murcia, Spain; (S.P.-P.); (J.C.M.-C.); (C.H.-F.); (M.M.-C.); (V.Á.-G.); (F.J.L.-R.)
| | - Macarena Muñoz-Cámara
- Faculty of Medicine, UCAM Universidad Católica San Antonio de Murcia, Carretera de Guadalupe s/n, 30107 Murcia, Spain; (S.P.-P.); (J.C.M.-C.); (C.H.-F.); (M.M.-C.); (V.Á.-G.); (F.J.L.-R.)
| | - Vicente Ávila-Gandía
- Faculty of Medicine, UCAM Universidad Católica San Antonio de Murcia, Carretera de Guadalupe s/n, 30107 Murcia, Spain; (S.P.-P.); (J.C.M.-C.); (C.H.-F.); (M.M.-C.); (V.Á.-G.); (F.J.L.-R.)
| | - Francisco Javier López-Román
- Faculty of Medicine, UCAM Universidad Católica San Antonio de Murcia, Carretera de Guadalupe s/n, 30107 Murcia, Spain; (S.P.-P.); (J.C.M.-C.); (C.H.-F.); (M.M.-C.); (V.Á.-G.); (F.J.L.-R.)
- Primary Care Research Group, Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain
| |
Collapse
|
8
|
Wang Y, Zhang L, Xiao H, Ye X, Pan H, Chen S. Revisiting dietary proanthocyanidins on blood glucose homeostasis from a multi-scale structural perspective. Curr Res Food Sci 2024; 9:100926. [PMID: 39654810 PMCID: PMC11626065 DOI: 10.1016/j.crfs.2024.100926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 12/12/2024] Open
Abstract
Multi-dimensional studies have consistently indicated the benefits of dietary proanthocyanidins on blood glucose homeostasis through consumption of them from fruits, cereals and nuts. Proanthocyanidins from various sources possess different structures, but even the minor variations in structures influence their regulation on blood glucose, including the degree of polymerization, galloacylation at C3, number of hydroxyl groups in B ring and linkage type. Therefore, this Review details the role of three types of proanthocyanidins (procyanidins, prodelphinidins and propelargonidins) in blood glucose control and their underlying mechanisms, and various structural features contribute to. Due to the extremely low bioavailability, proanthocyanidins mainly ameliorate high blood glucose by luminal effects: inhibit enzyme activities, improve the structure of gut microbiota, and protect the intestinal barrier function. A few absorbed proanthocyanidins exert insulin-like effects on targeted organs. Prodelphinidin gallates exhibit greater hypoglycemic activities than others, due to their galloacylation at C3 and high amounts of hydroxyl groups in B ring. Because of different action pathways, comprehensive consideration on the degree of polymerization, linkage type and density of hydroxyl groups was required. Further understanding of these relationships can concrete diet therapeutic opportunities for proanthocyanidins.
Collapse
Affiliation(s)
- Yi Wang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, 310058, PR China
| | - Laiming Zhang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, 310058, PR China
| | - Hang Xiao
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, 310058, PR China
- Department of Food Science, University of Massachusetts, Amherst, 01003, USA
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, 310058, PR China
- Zhejiang University Zhongyuan Institute, Zhengzhou, 450000, PR China
| | - Haibo Pan
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, 310058, PR China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314102, PR China
| | - Shiguo Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, 310058, PR China
- Zhejiang University Zhongyuan Institute, Zhengzhou, 450000, PR China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314102, PR China
| |
Collapse
|
9
|
Lv M, Wan X, Wang Y, Jiang H, Qin X, Wang Z, Yang C, Shuai J, Lu Q, Xu F, Liu Y. Combined gut microbiome and metabolomics to reveal the mechanism of proanthocyanidins from the roots of Ephedra sinica Stapf on the treatment of ulcerative colitis. J Pharm Biomed Anal 2024; 249:116351. [PMID: 39018720 DOI: 10.1016/j.jpba.2024.116351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/19/2024]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease (IBD) that primarily affects mucosa and submucosa of colon and rectum. Although the exact etiology of UC remains elusive, increasing evidence has demonstrated that the gut microbiome and its interaction with host metabolism plays an important role in UC development. The objective of this study was to investigate the therapeutic potential and mechanism of dimeric proanthocyanidins (PAC) enriched from ethyl acetate extract of Ephedra roots on UC from the perspective of gut microbiota and metabolic regulation. In this study, a bio-guided strategy integrating LC-MS analysis, DMAC assay, antioxidant screening, and antiinflammation activity screening was used to enrich dimeric PAC from Ephedra roots, then untargeted metabolomics combined with gut microbiota analysis was performed to investigate the therapeutic mechanism of PRE on UC. This is the first study that combines a bio-guided strategy to enrich dimeric PAC from Ephedra roots and a comprehensive analysis of their effects on gut microbiota and host metabolism. Oral administration of PRE was found to significantly relieve dextran sodium sulfate (DSS)-induced ulcerative colitis symptoms in mice, characterized by the reduced disease activity index (DAI), increased colon length and improved colon pathological damage, together with the down-regulation of colonic inflammatory and oxidative stress levels. In addition, 16 S rRNA sequencing combined with untargeted metabolomics was conducted to reveal the effects of PRE on gut microbiota composition and serum metabolites. PRE improved gut microbiota dysbiosis through increasing the relative abundance of beneficial bacteria Lachnospiraceae_NK4A136_group and decreasing the level of potentially pathogenic bacteria such as Escherichia-Shigella. Serum metabolomics showed that the disturbed tryptophan and glycerophospholipid metabolism in UC mice was restored after PRE treatment. Collectively, PRE was proved to be a promising anti-UC candidate, which deserves further investigation in future research.
Collapse
Affiliation(s)
- Mengying Lv
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou 225001, China.
| | - Xiayun Wan
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou 225001, China
| | - Yang Wang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou 225001, China
| | - Houli Jiang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Xiaogang Qin
- Department of Gastroenterology, Traditional Chinese Medicine Hospital of Tongzhou District, Nantong, Jiangsu 226300, China
| | - Zheng Wang
- Department of Pathology, Affiliated Hospital of Yangzhou University, Yangzhou 225001, China
| | - Changshui Yang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Jinhao Shuai
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou 225001, China
| | - Qianwen Lu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou 225001, China
| | - Fengguo Xu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, China.
| | - Yanqin Liu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou 225001, China.
| |
Collapse
|
10
|
Forouzanfar F, Mirdoosti M, Akaberi M, Rezaee R, Esmaeili S, Saburi E, Mahaki H. Diospyros kaki fruit extract produces antiarthritic and antinociceptive effects in rats with complete Freund's adjuvant-induced arthritis. Food Sci Nutr 2024; 12:8084-8092. [PMID: 39479654 PMCID: PMC11521739 DOI: 10.1002/fsn3.4418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/01/2024] [Accepted: 08/05/2024] [Indexed: 11/02/2024] Open
Abstract
Current treatments for rheumatoid arthritis produce untoward effects; thus, considerable effort has been made to recognize effective herbal medicines against the condition. In the present study, the therapeutic effect of Diospyros kaki fruit hydroalcoholic extract (DFHE) on complete Freund's adjuvant (CFA)-induced arthritis in rats was investigated. The extract was characterized using liquid chromatography-electrospray mass spectrometry (LC-ESIMS). Male Wistar rats were grouped as follows (eight rats in each): control, CFA, CFA + indomethacin (5 mg/kg), CFA + DFHE (50 mg/kg), and CFA + DFHE (100 mg/kg). Paw volume, mechanical allodynia, thermal hyperalgesia, and arthritis score were evaluated. Serum levels of malondialdehyde (MDA), thiol groups, tumor necrosis factor-alpha (TNF-α), as well as glutathione peroxidase (GPx) and superoxide dismutase (SOD) activities were evaluated. Carotenoids were found to be the major components of DFHE. Administration of DFHE (100 mg/kg) significantly decreased arthritis score, paw volume, and thermal hyperalgesia, and improved mechanical allodynia. MDA and TNF-α levels were decreased while thiol levels and SOD and GPx activities were increased in DFHE-treated groups compared to the CFA group. These results suggest that D. kaki extract caused an improvement in clinical signs of rheumatoid arthritis symptoms possibly through suppression of oxidative stress and inflammation.
Collapse
Affiliation(s)
- Fatemeh Forouzanfar
- Medical Toxicology Research Center, School of MedicineMashhad University of Medical SciencesMashhadIran
| | - Motahareh Mirdoosti
- Medical Toxicology Research Center, School of MedicineMashhad University of Medical SciencesMashhadIran
| | - Maryam Akaberi
- Department of Pharmacognosy, School of PharmacyMashhad University of Medical SciencesMashhadIran
| | - Ramin Rezaee
- Applied Biomedical Research CenterMashhad University of Medical SciencesMashhadIran
| | | | - Ehsan Saburi
- Medical Genetics and Molecular Medicine Department, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Hanie Mahaki
- Vascular and Endovascular Surgery Research CenterMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
11
|
Wang J, Yang H, Luo L, Ye H, Xu H, Sun Y, Gong L, Yang H. Persimmon leaf polyphenols as potential ingredients for modulating starch digestibility: Effect of starch-polyphenol interaction. Int J Biol Macromol 2024; 270:132524. [PMID: 38777017 DOI: 10.1016/j.ijbiomac.2024.132524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 04/07/2024] [Accepted: 05/18/2024] [Indexed: 05/25/2024]
Abstract
The interaction mode between persimmon leaf polyphenols (PLP) and corn starch with different amylose content and its effect on starch digestibility was studied. Results of iodine binding test, TGA, and DSC revealed that PLP interacted with starch and reduced the iodine binding capacity and thermal stability of starch. High amylopectin corn starch (HAPS) interacted with PLP mainly via hydrogen bonds, since the FT-IR of HAPS-PLP complex showed higher intensity at 3400 cm-1 and an obvious shift of 21 cm-1 to shorter wavelength, and the chemical shifts of protons in 1H NMR and the shift of C-6 peak in 13C NMR of HAPS moved to low field with the addition of PLP. Results of 1H NMR also showed the preferential formation of hydrogen bonds between PLP and OH-3 of HAPS. Different from HAPS, PLP formed V-type inclusion complex with high amylose corn starch (HAS) because XRD of HAS-PLP complex showed characteristic feature peaks of V-type inclusion complex and C-1 signal in 13C NMR of PLP-complexed HAS shifted to low field. Interaction with PLP reduced starch digestibility and HAS-PLP complex resulted in more resistant starch production than HAPS-PLP complex. To complex PLP with starch might be a potential way to prepare functional starch with slower digestion.
Collapse
Affiliation(s)
- Jiao Wang
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Huidi Yang
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Lin Luo
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China.
| | - Huanfeng Ye
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.
| | - Huan Xu
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Yuanxin Sun
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Lingxiao Gong
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, 100005 Beijing, People's Republic of China.
| | - Haihua Yang
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China.
| |
Collapse
|
12
|
Zeng Y, Zhao L, Wang K, Renard CMGC, Le Bourvellec C, Hu Z, Liu X. A-type proanthocyanidins: Sources, structure, bioactivity, processing, nutrition, and potential applications. Compr Rev Food Sci Food Saf 2024; 23:e13352. [PMID: 38634188 DOI: 10.1111/1541-4337.13352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/19/2024]
Abstract
A-type proanthocyanidins (PAs) are a subgroup of PAs that differ from B-type PAs by the presence of an ether bond between two consecutive constitutive units. This additional C-O-C bond gives them a more stable and hydrophobic character. They are of increasing interest due to their potential multiple nutritional effects with low toxicity in food processing and supplement development. They have been identified in several plants. However, the role of A-type PAs, especially their complex polymeric form (degree of polymerization and linkage), has not been specifically discussed and explored. Therefore, recent advances in the physicochemical and structural changes of A-type PAs and their functional properties during extraction, processing, and storing are evaluated. In addition, discussions on the sources, structures, bioactivities, potential applications in the food industry, and future research trends of their derivatives are highlighted. Litchis, cranberries, avocados, and persimmons are all favorable plant sources. Α-type PAs contribute directly or indirectly to human nutrition via the regulation of different degrees of polymerization and bonding types. Thermal processing could have a negative impact on the amount and structure of A-type PAs in the food matrix. More attention should be focused on nonthermal technologies that could better preserve their architecture and structure. The diversity and complexity of these compounds, as well as the difficulty in isolating and purifying natural A-type PAs, remain obstacles to their further applications. A-type PAs have received widespread acceptance and attention in the food industry but have not yet achieved their maximum potential for the future of food. Further research and development are therefore needed.
Collapse
Affiliation(s)
- Yu Zeng
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Lei Zhao
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Kai Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | | | | | - Zhuoyan Hu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Xuwei Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
- Research Institute for Future Food, Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| |
Collapse
|
13
|
Chen H, Li J, Li S, Wang X, Xu G, Li M, Li G. Research progress of procyanidins in repairing cartilage injury after anterior cruciate ligament tear. Heliyon 2024; 10:e26070. [PMID: 38420419 PMCID: PMC10900419 DOI: 10.1016/j.heliyon.2024.e26070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 03/02/2024] Open
Abstract
Anterior cruciate ligament (ACL) tear is a common sports-related injury, and cartilage injury always emerges as a serious complication following ACL tear, significantly impacting the physical and psychological well-being of affected individuals. Over the years, efforts have been directed toward finding strategies to repair cartilage injury after ACL tear. In recent times, procyanidins, known for their anti-inflammatory and antioxidant properties, have emerged as potential key players in addressing this concern. This article focuses on summarizing the research progress of procyanidins in repairing cartilage injury after ACL tear. It covers the roles, mechanisms, and clinical significance of procyanidins in repairing cartilage injury following ACL tear and explores the future prospects of procyanidins in this domain. This review provides novel insights and hope for the repair of cartilage injury following ACL tear.
Collapse
Affiliation(s)
- Hanlin Chen
- The First Hospital of Lanzhou University, Lanzhou, China
- Major in Clinical Medicine, First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Jingrui Li
- The First Hospital of Lanzhou University, Lanzhou, China
- Major in Clinical Medicine, First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Shaofei Li
- The First Hospital of Lanzhou University, Lanzhou, China
- Major in Clinical Medicine, First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Xiaoqi Wang
- Major in Clinical Medicine, Second Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Ge Xu
- The First Hospital of Lanzhou University, Lanzhou, China
- Major in Clinical Medicine, First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Molan Li
- The First Hospital of Lanzhou University, Lanzhou, China
- Major in Clinical Medicine, First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Guangjie Li
- The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
14
|
Cui Y, Wang R, Cao S, Ismael M, Wang X, Lü X. A galacturonic acid-rich polysaccharide from Diospyros kaki peel: Isolation, characterization, rheological properties and antioxidant activities in vitro. Food Chem 2023; 416:135781. [PMID: 36871504 DOI: 10.1016/j.foodchem.2023.135781] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023]
Abstract
This research elucidated the structural characteristics and antioxidant activity of a galacturonic acid-rich polysaccharide (PPP-2) isolated from Diospyros kaki peel. PPP-2 was extracted by subcritical water and subsequently purified by DEAE-Sepharose FF column. PPP-2 (12.28 kDa) mainly contained galacturonic acid, arabinose, and galactose with the molar ratios of 87.15: 5.86: 4.31. The structural characteristics of PPP-2 were revealed through FT-IR, UV, XRD, AFM, SEM, Congo red, methylation, GC/MS assay and NMR spectrum. PPP-2 owned the triple helical structure and degradation temperature of 251.09 ℃. The backbone of PPP-2 was formed by →4)-α-d-GalpA-6-OMe-(1→ and →4)-α-d-GalpA-(1→ with the side chains of →5)-α-l-Araf-(1→, →3)-α-l-Araf-(1→, →3,6)-β-d-Galp-(1→ and α-l-Araf-(1→. Moreover, the inhibitory concentration (IC50) of PPP-2 to ABTS•+, DPPH•, superoxide radical and hydroxyl radical were 1.96, 0.91, 3.63, and 4.08 mg/mL, respectively. Our results suggested that PPP-2 might be a novel candidate of natural antioxidant in pharmaceuticals or functional food.
Collapse
Affiliation(s)
- Yanlong Cui
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi Province 712100, China; Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi Province 712100, China
| | - Ruiling Wang
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi Province 712100, China; Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi Province 712100, China
| | - Siyue Cao
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi Province 712100, China
| | - Mohamedelfatieh Ismael
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi Province 712100, China; Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi Province 712100, China
| | - Xin Wang
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi Province 712100, China; Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi Province 712100, China
| | - Xin Lü
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi Province 712100, China; Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi Province 712100, China.
| |
Collapse
|
15
|
Wang R, Shi X, Li K, Bunker A, Li C. Activity and potential mechanisms of action of persimmon tannins according to their structures: A review. Int J Biol Macromol 2023; 242:125120. [PMID: 37263329 DOI: 10.1016/j.ijbiomac.2023.125120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/03/2023]
Abstract
One distinguishing feature of the persimmon, that differentiates it from other fruits, is its high proanthocyanidins content, known as persimmon tannin (PT). Despite the poor absorption of PT in the small intestine, results from animal studies demonstrate that PT has many health benefits. Our goal in this review is to summarize the literature that elucidates the relationship between PT structure and activity. In addition, we also summarize the potential mechanisms underlying the health benefits that result from PT consumption; this includes the hypolipidemic, hypoglycemic, antioxidant, anti-inflammatory, antiradiation, antibacterial and antiviral, detoxification effects on snake venom, and the absorption of heavy metals and dyes. Studies show that PT is a structurally distinct proanthocyanidins that exhibits a high degree of polymerization. It is galloylation-rich and possesses unique A-type interflavan linkages in addition to the more common B-type interflavan bonds. Thus, PT is converted into oligomeric proanthocyanidins by depolymerization strategies, including the nucleophilic substitution reaction, acid hydrolysis, and hydrogenolysis. In addition, multiple health benefits exerted by PT mainly involve the inactivation of lipogenic and intracellular inflammatory signaling pathways, activation of the fatty acid oxidation signaling pathway, regulation of gut microbiota, and highly absorptive properties.
Collapse
Affiliation(s)
- Ruifeng Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xin Shi
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Kaikai Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Alex Bunker
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
| | - Chunmei Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Environment Correlative Food Science, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
16
|
Salazar-Bermeo J, Moreno-Chamba B, Heredia-Hortigüela R, Lizama V, Martínez-Madrid MC, Saura D, Valero M, Neacsu M, Martí N. Green Technologies for Persimmon By-Products Revalorisation as Sustainable Sources of Dietary Fibre and Antioxidants for Functional Beverages Development. Antioxidants (Basel) 2023; 12:antiox12051085. [PMID: 37237951 DOI: 10.3390/antiox12051085] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/03/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
The use of green technologies such as ultrasound and natural deep eutectic solvents (NADES) for revalorisation of food and agricultural by-products represents a sustainable way to tackle waste and promote a healthier environment while delivering much-needed functional food ingredients for an increasingly unhealthy population. The processing of persimmon (Diospyros kaki Thunb.) generates large amounts of by-products rich in fibre-bound bioactive phytochemicals. This paper assessed the extractability of bioactive compounds through NADES and the functional properties of the persimmon polysaccharide-rich by-products to evaluate their suitability to be used as functional ingredients in commercial beverages. Although higher amounts of carotenoids and polyphenols were extracted after eutectic treatment vs. conventional extraction (p < 0.05), the fibre-bound bioactives remained abundant (p < 0.001) in the resulting persimmon pulp by-product (PPBP) and persimmon pulp dietary fibre (PPDF), showing also a strong antioxidant activity (DPPH•, ABTS•+ assays) and an improved digestibility and fibre fermentability. The main structural components of PPBP and PPDF are cellulose, hemicellulose and pectin. PPDF-added dairy-based drink showed more than 50% of preference over the control among panellists and similar acceptability scores to the commercial ones. Persimmon pulp by-products represent sustainable source of dietary fibre and bioactives and are suitable candidates to develop functional ingredients for food industry applications.
Collapse
Affiliation(s)
- Julio Salazar-Bermeo
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, 03202 Alicante, Spain
- Instituto de Ingeniería de Alimentos para el Desarrollo, Universitat Politècnica de València, Avenida Fausto Elio s/n, Edificio 8E, Acceso F Planta 0, 46022 Valencia, Spain
| | - Bryan Moreno-Chamba
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, 03202 Alicante, Spain
- Instituto de Ingeniería de Alimentos para el Desarrollo, Universitat Politècnica de València, Avenida Fausto Elio s/n, Edificio 8E, Acceso F Planta 0, 46022 Valencia, Spain
| | - Rosa Heredia-Hortigüela
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, 03202 Alicante, Spain
| | - Victoria Lizama
- Instituto de Ingeniería de Alimentos para el Desarrollo, Universitat Politècnica de València, Avenida Fausto Elio s/n, Edificio 8E, Acceso F Planta 0, 46022 Valencia, Spain
| | - María Concepción Martínez-Madrid
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, 03202 Alicante, Spain
| | - Domingo Saura
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, 03202 Alicante, Spain
| | - Manuel Valero
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, 03202 Alicante, Spain
| | - Madalina Neacsu
- The Rowett Institute, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Nuria Martí
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, 03202 Alicante, Spain
| |
Collapse
|
17
|
Purification, structural characterization and antioxidant activities of two neutral polysaccharides from persimmon peel. Int J Biol Macromol 2023; 225:241-254. [PMID: 36332822 DOI: 10.1016/j.ijbiomac.2022.10.257] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/23/2022] [Accepted: 10/28/2022] [Indexed: 11/08/2022]
Abstract
Two neutral polysaccharides (PPP1-1 and PPP1-2) were purified from persimmon peel. PPP1-1 (21.84 kDa) was mainly composed of arabinose (22.92 %), galactose (21.09 %), glucose (35.13 %), and xylose (19.09 %), while PPP1-2 (10.42 kDa) mainly contained arabinose (32.98 %), galactose (20.81 %), glucose (26.86 %), xylose (10.46 %), and mannose (7.63 %). Methylation and NMR spectra analysis demonstrated that the backbone of PPP1-1 appeared to be →6)-α-D-Glcp-(1→, →2,6)-α-D-Glcp-(1→, →5)-α-L-Araf-(1→, and →3,5)-α-L-Araf-(1 → residues with branches consisting of →3)-α-L-Araf-(1→, →4)-α-D-Glcp-(1→, →3)-β-D-Galp-(1→, →4)-β-D-Galp-(1→, →4)-β-D-Xylp-(1→, →6)-β-D-Galp-(1→, →4)-β-D-Manp-(1→, and α-L-Araf-(1 → residues. The main chain of PPP1-2 was composed of →6)-α-D-Glcp-(1→, →5)-α-L-Araf-(1→, and →3,5)-α-L-Araf-(1 → residues with branches consisting of →3)-α-L-Araf-(1→, →1,2)-α-D-Glcp-(6→, →4)-α-D-Glcp-(1→, →3)-β-D-Galp-(1→, →4)-β-D-Galp-(1→, →6)-β-D-Galp-(1→, →4)-β-D-Xylp-(1→, →4,6)-α-D-Glcp-(1→, and →4)-β-D-Manp-(1 → residues and terminal of α-L-Araf-(1 → residue. PPP1-2 exhibited stronger antioxidant activities and better thermal stability than PPP1-1. Our results provided the foundation for further investigating the structure and biological activities of persimmon peel polysaccharides and highlighted their potential to become potential antioxidants in functional food.
Collapse
|
18
|
Zineb OY, Rashwan AK, Karim N, Lu Y, Tangpong J, Chen W. Recent Developments in Procyanidins on Metabolic Diseases, Their Possible Sources, Pharmacokinetic Profile, and Clinical Outcomes. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2062770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ould Yahia Zineb
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Ahmed K. Rashwan
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Department of Food and Dairy Sciences, Faculty of Agriculture, South Valley University, Qena 83523, Egypt
| | - Naymul Karim
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yang Lu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jitbanjong Tangpong
- Biomedical Sciences, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80161, Thailand
| | - Wei Chen
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Biomedical Sciences, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80161, Thailand
| |
Collapse
|