1
|
Maphaisa TC, Akinmoladun OF, Adelusi OA, Mwanza M, Fon F, Tangni E, Njobeh PB. Advances in mycotoxin detection techniques and the crucial role of reference material in ensuring food safety. A review. Food Chem Toxicol 2025; 200:115387. [PMID: 40081789 DOI: 10.1016/j.fct.2025.115387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/09/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
Mycotoxins, toxic secondary metabolites produced by fungi, pose a significant threat to food safety and human health. The occurrence of mycotoxins in food commodities necessitates accurate and reliable detection methods. Advanced detection techniques, such as chromatographic techniques and immunochemical assays, have improved sensitivity and specificity. However, the lack of standardized reference material, particularly in less privileged countries, hinders method validation and proficiency testing, ultimately affecting mycotoxin testing and regulation. Moreover, these techniques are complex as they require specialized equipment, and well-trained personnel, thus limiting their practical applications. This comprehensive review provides an up-to-date overview of the occurrence of mycotoxins and recent advancements in detection methods. It examines the crucial role of mycotoxin standards as reference materials for ensuring reliable results in mycotoxins analysis in agriculture commodities. The review addresses emerging challenges, knowledge gaps, and future research directions in mycotoxin detection and reference material development. By synthesizing existing literature, this review aims to provide valuable resources for researchers, policymakers, and other stakeholders in food safety, highlighting the importance of integrated approaches to mitigate mycotoxin contamination and ensuring food safety.
Collapse
Affiliation(s)
- Tiisetso Colleen Maphaisa
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, P.O Box 17011, Doornfontein Campus, 2028, Gauteng, South Africa.
| | - Oluwakamisi Festus Akinmoladun
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, P.O Box 17011, Doornfontein Campus, 2028, Gauteng, South Africa
| | - Oluwasola Abayomi Adelusi
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, P.O Box 17011, Doornfontein Campus, 2028, Gauteng, South Africa
| | - Mulanda Mwanza
- Department of Animal Health, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
| | - Fabian Fon
- Department of Agriculture University of Zululand, Private Bag X3886, KwaDlangezwa, South Africa
| | - Emmanuel Tangni
- Sciensano, Chemical and Physical Health Risks Organic Contaminants and Additives, Toxins Unit, Leuvensesteenweg 17, 3080, Tervuren, Belgium
| | - Patrick Berka Njobeh
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, P.O Box 17011, Doornfontein Campus, 2028, Gauteng, South Africa
| |
Collapse
|
2
|
Patil ND, Bains A, Sridhar K, Sharma M, Dhull SB, Goksen G, Chawla P, Inbaraj BS. Recent advances in the analytical methods for quantitative determination of antioxidants in food matrices. Food Chem 2025; 463:141348. [PMID: 39340911 DOI: 10.1016/j.foodchem.2024.141348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/20/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024]
Abstract
Antioxidants are crucial in reducing oxidative stress and enhancing health, necessitating precise quantification in food matrices. Advanced techniques such as biosensors and nanosensors offer high sensitivity and specificity, enabling real-time monitoring and accurate antioxidant quantification in complex food systems. These technologies herald a new era in food analysis, improving food quality and safety through sophisticated detection methods. Their application facilitates comprehensive antioxidant profiling, driving innovation in food technology to meet the rising demand for nutritional optimization and food integrity. These are complemented by electrochemical techniques, spectroscopy, and chromatography. Electrochemical methods provide rapid response times, spectroscopy offers versatile chemical composition analysis, and chromatography excels in precise separation and quantification. Collectively, these methodologies establish a comprehensive framework for food analysis, essential for improving food quality, safety, and nutritional value. Future research should aim to refine these analytical methods, promising significant advancements in food and nutritional science.
Collapse
Affiliation(s)
- Nikhil Dnyaneshwar Patil
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, India
| | - Aarti Bains
- Department of Microbiology, Lovely Professional University, Phagwara 144411, India
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India
| | - Minaxi Sharma
- Research Centre for Life Science and Healthcare, Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute (CBI), University of Nottingham Ningbo China, Ningbo 315000, China
| | - Sanju Bala Dhull
- Department of Food Science and Technology, Chaudhary Devi Lal University, Sirsa 125055, India
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100 Mersin, Turkey
| | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, India.
| | | |
Collapse
|
3
|
Osella MI, Salazar MO, Solís CM, Furlan RLE. New semisynthetic α-glucosidase inhibitor from a doubly-chemically engineered extract. NATURAL PRODUCTS AND BIOPROSPECTING 2025; 15:4. [PMID: 39755857 DOI: 10.1007/s13659-024-00488-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/03/2024] [Indexed: 01/06/2025]
Abstract
Chemically engineered extracts represent a promising source of new bioactive semi-synthetic molecules. Prepared through direct derivatization of natural extracts, they can include constituents enriched with elements and sub-structures that are less common in natural products compared to drugs. Fourteen such extracts were prepared through sequential reactions with hydrazine and a fluorinating reagent, and their α-glucosidase inhibition properties were compared. For the most bioactive mixture, a chemically modified propolis extract, enzyme inhibition increased 22 times due to the reaction sequence. Bio-guided fractionation led to the isolation of a new fluorinated pyrazole produced within the extract by chemical transformation of the flavonoid chrysin. The inhibitor results from the action of the two reagents used on four common functional groups present in natural products (carbonyl, phenol, aromatic carbon, and a double bond). The reactions led to the opening of a 6-member oxygenated heterocycle to produce a 5-member nitrogenated one, as well as the dehydroxylation and fluorination in two different positions of one of the aromatic rings of the natural starting material, all within a complex mixture of natural products. Overall, these transformations led to an approximately 20-fold increase in the α-glucosidase inhibition by the isolated inhibitor compared to its natural precursor.
Collapse
Affiliation(s)
- María I Osella
- Consejo Nacional de Investigaciones Científicas y Técnicas, Suipacha 531, S2002LRK, Rosario, Argentina
| | - Mario O Salazar
- Consejo Nacional de Investigaciones Científicas y Técnicas, Suipacha 531, S2002LRK, Rosario, Argentina
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Argentina
| | - Carlos M Solís
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Argentina
| | - Ricardo L E Furlan
- Consejo Nacional de Investigaciones Científicas y Técnicas, Suipacha 531, S2002LRK, Rosario, Argentina.
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Argentina.
| |
Collapse
|
4
|
Shahryari B, Khani R, Feizy J. A Cu/β-cyclodextrin/reduced graphene oxide nanocomposite for efficient and multi-aflatoxin detection in rice, ginger and bean samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:339-348. [PMID: 39630059 DOI: 10.1039/d4ay01846j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Aflatoxins (AFs) are some of the most important mycotoxins or fungal toxins that cause contamination of food products and are considered a threat to human and animal health. An efficient Cu/β-cyclodextrin/reduced graphene oxide nanocomposite (Cu/β-CD/rGO) has been prepared and applied as a new solid-phase extraction adsorbent for the separation and preconcentration of four AFs (B1, B2, G1, and G2) using high-performance liquid chromatography with fluorescence detection (HPLC-FLD). The successful synthesis of the prepared nanocomposite was confirmed using Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and transmission electron microscopy (TEM). The impacts of pH, amount of adsorbent, sample volume, desorption solvent volume, and salt concentration on the recovery of AFs were precisely investigated and optimized by central composite design (CCD). Under the optimal conditions, the introduced method demonstrated good linearity in the range of 0.4-5.4, 0.08-1.08, 0.4-5.4, and 0.08-1.08 ng g-1 for AFs B1, B2, G1 and G2, respectively. The limits of detection and quantification for the four AFs were obtained in the range of 0.06-0.53 and 0.20-1.62 ng g-1, respectively. The accuracy of the method was evaluated using recovery measurements in spiked real samples such as rice, bean, and ginger samples, and satisfactory recoveries were obtained in the range of 83.5-109.0% with good precision (RSDs between 2.4 and 8.6%). The results of this research revealed that our developed method is sensitive, highly effective, and convenient to perform for the trace analysis of AFs in different real samples.
Collapse
Affiliation(s)
- Behnaz Shahryari
- Department of Chemistry, Faculity of Science, University of Birjand, Birjand 97179-414, Iran.
| | - Rouhollah Khani
- Department of Chemistry, Faculity of Science, University of Birjand, Birjand 97179-414, Iran.
| | - Javad Feizy
- Department of Food Safety and Quality Control, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| |
Collapse
|
5
|
Yu X, Wang M, Wang D, Wei M, Li F, Lyu Y, Liu J. Biosynthesis of Feruloyl Glycerol from Ferulic Acid and Glycerol Through a Two-Enzyme Cascade Reaction. Appl Biochem Biotechnol 2024; 196:8572-8586. [PMID: 38884855 DOI: 10.1007/s12010-024-04984-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2024] [Indexed: 06/18/2024]
Abstract
Feruloyl glycerol (FG) has a variety of biological activities, but the green synthesis methods of FG remain rare. In this study, FG was prepared by a cascade reaction catalyzed by 4-coumarate coenzyme A ligase (4CL) and hydroxycinnamoyl acyltransferase 4 (HCT4). The cascade reaction carried out at solvent water and room temperature is more convenient and greener. Firstly, the product derived from the cascade reaction was characterized by TLC, HPLC, FTIR, and ESI-MS. The results showed that the product was FG. Secondly, the effects of temperature, pH, enzyme ratio, Mg2+ concentration, and CoA concentration on the cascade reaction were investigated. Consequently, the highest reaction rate was obtained at 30 °C, pH 6, an enzyme ratio of 1:3, and Mg2+ concentration of 5 mM. Finally, semi-preparative scale synthesis for FG was conducted. The production of FG reached 35.1 mM at 24 h with the FG conversion of 70.18%. In a word, a novel idea for the efficient and green synthesis of FG was proposed, which had great potential for industrial application.
Collapse
Affiliation(s)
- Xiaohong Yu
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224051, Jiangsu, China
| | - Minyang Wang
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224051, Jiangsu, China
| | - Dujun Wang
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224051, Jiangsu, China
| | - Ming Wei
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224051, Jiangsu, China
| | - Fengwei Li
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224051, Jiangsu, China
| | - Yongmei Lyu
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224051, Jiangsu, China
| | - Jinbin Liu
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224051, Jiangsu, China.
| |
Collapse
|
6
|
Poblete J, Fernández-Martínez J, Aranda M, Quispe-Fuentes I. Green Recovery and Identification of Antioxidant and Enzyme Inhibitor Molecules from Pisco Grape Pomace by Targeted Effects Analysis Using Thin-Layer Chromatography, Bioassay, and Mass Spectrometry. Antioxidants (Basel) 2024; 13:1418. [PMID: 39594559 PMCID: PMC11591367 DOI: 10.3390/antiox13111418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/09/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
The search and identification of inhibitory molecules from novel natural sources, such as pisco grape pomace extract obtained by green techniques, may help to develop agents with therapeutic potential that are beneficial to health with fewer adverse effects than drugs. Many drugs act as enzyme inhibitors, decreasing their activity and thus correcting a metabolic imbalance. This study aims to identify bioactive molecules with antioxidant and inhibitory activity over acetylcholinesterase and cyclooxygenase enzymes present in pisco grape pomace green extracts. Bioactive molecules were detected and identified applying directed effect analysis on planar chromatography coupled to mass spectrometry. For the first time, the presence of antioxidant molecules (quercetin-3-O-glucuronide, quercetin-3-O-glucoside, and gallic acid) and inhibitors of acetylcholinesterase (kaempferol-3-O-glucoside) and cyclooxygenase (gallic acid) enzymes are reported in pisco grape pomace. According to the results, grape pomace could be an alternative to develop novel functional foods and nutraceuticals that provide health benefits and, at the same time, generate a circular economy in the industry.
Collapse
Affiliation(s)
- Jacqueline Poblete
- Food Engineering Department, Universidad de La Serena, Av. Raúl Bitrán 1305, La Serena 1700000, Chile;
| | | | - Mario Aranda
- Department of Chemistry and Pharmacy, Pontificia Universidad Católica de Chile, Santiago 7810000, Chile
| | - Issis Quispe-Fuentes
- Food Engineering Department, Universidad de La Serena, Av. Raúl Bitrán 1305, La Serena 1700000, Chile;
| |
Collapse
|
7
|
Micheloni OB, Ramallo IA, Farroni AE, Furlan RLE. A simple thin-layer chromatography autography for the detection of peroxidase inhibitors. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:1722-1732. [PMID: 39049920 PMCID: PMC11263322 DOI: 10.1007/s13197-024-05946-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/01/2024] [Accepted: 02/13/2024] [Indexed: 07/27/2024]
Abstract
Thin layer chromatography bioautographic assays facilitate the acquisition of activity-profile chromatograms and assist in pinpointing active constituents within complex mixtures by observing the inhibition halos they produce. Peroxidase is an enzyme implicated in the browning of different fresh cut vegetables and in several diseases. A peroxidase bioautographic assay was developed, based on enzyme agarose immobilization and the 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt/radical cation (ABTS/ABTS·+) reporter system. Peroxidase was purified from potatoes with the aim to detect specific inhibitors. To reduce false positives, a non-enzymatic assay was also employed. The best results are obtained when a solution containing agarose, ABTS, hydrogen peroxide, and peroxidase in phosphate buffer is poured over the TLC plate (final concentrations: 0.031 mmoles/cm2, 0.239 µmoles/cm2, and 84.04 U/cm2) and incubated for 70 min. Limit of detection and quantification for quercetin is 0.16 µg and 0.54 µg, respectively. The developed system is able to detect quercetin in a Solidago chilensis Meyen extract and a peroxidase inhibitor in a Cichorium intybus L. extract. Therefore, the assay can detect inhibitory constituents in complex mixtures and differentiate between peroxidase inhibitors and ABTS·+ radical scavengers before any preparative fractionation, helping to take early operational decisions that can save time and resources. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s13197-024-05946-w.
Collapse
Affiliation(s)
- Oscar Bernardo Micheloni
- Escuela de Ciencias Agrarias, Naturales y Ambientales, Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Pergamino, Buenos Aires Argentina
| | - Ivana Ayelen Ramallo
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Suipacha 531, 2000 Rosario, Argentina
| | - Abel Eduardo Farroni
- Escuela de Ciencias Agrarias, Naturales y Ambientales, Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Pergamino, Buenos Aires Argentina
- Laboratorio de Biotecnología, Estación Experimental Agropecuaria Pergamino, Instituto Nacional de Tecnología Agropecuaria, Pergamino, Buenos Aires Argentina
| | - Ricardo Luis Eugenio Furlan
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Suipacha 531, 2000 Rosario, Argentina
| |
Collapse
|
8
|
Lescano LE, Salazar MO, Furlan RLE. Chemically engineered essential oils prepared through thiocyanation under solvent-free conditions: chemical and bioactivity alteration. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:35. [PMID: 38822174 PMCID: PMC11143095 DOI: 10.1007/s13659-024-00456-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/17/2024] [Indexed: 06/02/2024]
Abstract
The generation of chemically engineered essential oils (CEEOs) prepared from bi-heteroatomic reactions using ammonium thiocyanate as a source of bioactive compounds is described. The impact of the reaction on the chemical composition of the mixtures was qualitatively demonstrated through GC-MS, utilizing univariate and multivariate analysis. The reaction transformed most of the components in the natural mixtures, thereby expanding the chemical diversity of the mixtures. Changes in inhibition properties between natural and CEEOs were demonstrated through acetylcholinesterase TLC autography, resulting in a threefold increase in the number of positive events due to the modification process. The chemically engineered Origanum vulgare L. essential oil was subjected to bioguided fractionation, leading to the discovery of four new active compounds with similar or higher potency than eserine against the enzyme. The results suggest that the directed chemical transformation of essential oils can be a valuable strategy for discovering new acetylcholinesterase (AChE) inhibitors.
Collapse
Affiliation(s)
- Liz E Lescano
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Suipacha 531, 2000, Rosario, Argentina
| | - Mario O Salazar
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Suipacha 531, 2000, Rosario, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Suipacha 531, 2000, Rosario, Argentina.
| | - Ricardo L E Furlan
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Suipacha 531, 2000, Rosario, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Suipacha 531, 2000, Rosario, Argentina
| |
Collapse
|
9
|
Beato A, Haudecoeur R, Boucherle B, Peuchmaur M. Expanding Chemical Frontiers: Approaches for Generating Diverse and Bioactive Natural Product-Like Compounds Libraries from Extracts. Chemistry 2024; 30:e202304166. [PMID: 38372433 DOI: 10.1002/chem.202304166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/05/2024] [Accepted: 02/13/2024] [Indexed: 02/20/2024]
Abstract
The realms of natural products and synthetic compounds exhibit distinct chemical spaces that not only differ but also complement each other. While the convergence of these two domains has been explored through semisynthesis and conventional pharmacomodulation endeavours applied to natural frameworks, a recent and innovative approach has emerged that involves the combinatorial generation of libraries of 'natural product-like compounds' (NPLCs) through the direct synthetic derivatization of natural extracts. This has led to the production of numerous NPLCs that incorporate structural elements from both their natural (multiple saturated rings, oxygen content, chiral centres) and synthetic (aromatic rings, nitrogen and halogen content, drug-like properties) precursors. Through careful selection of extracts and reagents, specific bioactivities have been achieved, and this strategy has been deployed in various ways, showing great promise without reaching its full potential to date. This review seeks to provide an overview of reported examples involving the chemical engineering of extracts, showcasing a spectrum of natural product alterations spanning from simple substitutions to complete scaffold remodelling. It also includes an analysis of the accomplishments, perspectives and technical challenges within this field.
Collapse
Affiliation(s)
- Aurélien Beato
- Univ. Grenoble Alpes, CNRS, DPM, Bâtiment E Pôle Chimie BP 53, 38000, Grenoble, France
| | - Romain Haudecoeur
- Univ. Grenoble Alpes, CNRS, DPM, Bâtiment E Pôle Chimie BP 53, 38000, Grenoble, France
| | - Benjamin Boucherle
- Univ. Grenoble Alpes, CNRS, DPM, Bâtiment E Pôle Chimie BP 53, 38000, Grenoble, France
| | - Marine Peuchmaur
- Univ. Grenoble Alpes, CNRS, DPM, Bâtiment E Pôle Chimie BP 53, 38000, Grenoble, France
| |
Collapse
|
10
|
Shang HB, Zhang JM, An Z, Li XQ, Li X, Wu L, Li D. Reversible polarity-switch of thin-layer chromatography by photo-induction with multi-regulation in spatial dimension. Talanta 2024; 271:125654. [PMID: 38224659 DOI: 10.1016/j.talanta.2024.125654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/05/2023] [Accepted: 01/08/2024] [Indexed: 01/17/2024]
Abstract
Generally, thin-layer chromatography always undertakes the indispensable role in rapid screening and identification of specific compounds. Stationary phase is the core part of thin-layer chromatography with fixed property, which leading to the limitations of separation mode of only regulating the composition of mobile phase. This work was an attempt to fabricate the unique photosensitive thin-layer chromatography to make up the above major drawback. 4-[3-(Triethoxysilyl)propoxy]azobenzene (azo-PTES) was synthesized as photosensitive modifier to fabricate the photosensitive stationary phase, and the transformation of cis-trans structure of azo-PTES proceeds along with polarity difference under 365 nm and 473 nm irradiation. Based on this, the proposed photosensitive thin-layer chromatography shows the reversible switch of polarity of stationary phase by photoinduction, followed by the deserved reversible separation behavior. Furthermore, multi-regulation in spatial dimension was achieved based on the high freedom of spatial regulation of photoinduction, which brings about the integration of stationary phase with different polarity, just by photoinduction. The concept of photosensitive thin-layer chromatography provides new idea for improving separation efficiency and developing multi-dimensional thin-layer chromatography on the one plate.
Collapse
Affiliation(s)
- Hai-Bo Shang
- Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University, Yanji City, 133002, Jilin Province, China; Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji City, 133002, Jilin Province, China
| | - Jie-Min Zhang
- Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University, Yanji City, 133002, Jilin Province, China
| | - Zhengjiu An
- Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University, Yanji City, 133002, Jilin Province, China
| | - Xin-Qi Li
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji City, 133002, Jilin Province, China
| | - Xia Li
- Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University, Yanji City, 133002, Jilin Province, China
| | - Lixin Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China.
| | - Donghao Li
- Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University, Yanji City, 133002, Jilin Province, China; Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji City, 133002, Jilin Province, China.
| |
Collapse
|
11
|
Galarce-Bustos O, Obregón C, Vallejos-Almirall A, Folch C, Acevedo F. Application of effect-directed analysis using TLC-bioautography for rapid isolation and identification of antidiabetic compounds from the leaves of Annona cherimola Mill. PHYTOCHEMICAL ANALYSIS : PCA 2023; 34:970-983. [PMID: 37488746 DOI: 10.1002/pca.3265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/26/2023]
Abstract
INTRODUCTION Type 2 diabetes mellitus is a globally prevalent chronic disease characterised by hyperglycaemia and oxidative stress. The search for new natural bioactive compounds that contribute to controlling this condition and the application of analytical methodologies that facilitate rapid detection and identification are important challenges for science. Annona cherimola Mill. is an important source of aporphine alkaloids with many bioactivities. OBJECTIVE The aim of this study is to isolate and identify antidiabetic compounds from alkaloid extracts with α-glucosidase and α-amylase inhibitory activity from A. cherimola Mill. leaves using an effect-directed analysis by thin-layer chromatography (TLC)-bioautography. METHODOLOGY Guided fractionation for α-glucosidase and α-amylase inhibitors in leaf extracts was done using TLC-bioassays. The micro-preparative TLC was used to isolate the active compounds, and the identification was performed by mass spectrometry associated with web-based molecular networks. Additionally, in vitro estimation of the inhibitory activity and antioxidant capacity was performed in the isolated compounds. RESULTS Five alkaloids (liriodenine, dicentrinone, N-methylnuciferine, anonaine, and moupinamide) and two non-alkaloid compounds (3-methoxybenzenepropanoic acid and methylferulate) with inhibitory activity were isolated and identified using a combination of simple methodologies. Anonaine, moupinamide, and methylferulate showed promising results with an outstanding inhibitory activity against both enzymes and antioxidant capacity that could contribute to controlling redox imbalance. CONCLUSIONS These high-throughput methodologies enabled a rapid isolation and identification of seven compounds with potential antidiabetic activity. To our knowledge, the estimated inhibitory activity of dicentrinone, N-methylnuciferine, and anonaine against α-glucosidase and α-amylase is reported here for the first time.
Collapse
Affiliation(s)
- Oscar Galarce-Bustos
- Laboratorio de Farmacognosia, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - Camilo Obregón
- Laboratorio de Farmacognosia, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - Alejandro Vallejos-Almirall
- Grupo Interdisciplinario de Biotecnología Marina (GIBMAR), Centro de Biotecnología, Universidad de Concepción, Concepción, Chile
| | - Christian Folch
- Departamento de Agroindustrias, Facultad de Ingeniería Agrícola, Universidad de Concepción, Chillán, Chile
| | - Francisca Acevedo
- Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
- Center of Excellence translational Medicine, Scientific and Technological Bioresource Nucleus, BIOREN, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
12
|
Huang WC, Hsiung YN, Li CL. An electrochemical immunosensor based on a carboxylated multiwalled carbon nanotube-silver nanoparticle-chitosan functional layer for the detection of fipronil. NANOSCALE ADVANCES 2023; 5:6548-6559. [PMID: 38024294 PMCID: PMC10662075 DOI: 10.1039/d3na00539a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023]
Abstract
Fipronil (FP) is a very effective phenylpyrazole insecticide and is now widely used in agriculture. At the same time, the water and soil in the environment are polluted by FP. For the rapid detection of FP toxicants in food and the environment, we have designed an entirely novel electrochemical immunosensor that employs the combined functionalities of a cMWCNTs-AgNPs-CS-FAb-BSA layer to modify an SPCE by the freeze-drying technique. The high porosity of chitosan (CS) coupled with an excellent electron transfer enabled by the cMWCNTs and AgNPs increased the surface area for anti-fipronil (FAb) antibody immobilization and enhanced the current signal of the immunosensor. Cyclic voltammetry (CV) was applied for the quantitative determination of FP under optimized conditions (0.1 M PBS, pH 7.5, 35 °C incubation temperature, and 40 min incubation duration). The modified electrochemical immunosensor displayed excellent analytical performance, including a wide linear concentration range from 0.1 to 1000 ng mL-1 with a very low limit of detection of 0.021 ng mL-1 and good reproducibility (RSD = 2.58%, n = 6), stability (80.4% sensitivity after 5 days), and selectivity. Not only could the modified electrochemical immunosensor be applied in the FP residue analysis of agricultural products, but the present immobilization strategy can also potentially be applied to different biomolecules.
Collapse
Affiliation(s)
- Wen-Chien Huang
- Department of Chemical and Materials Engineering, Chung Cheng Institute of Technology, National Defense University Taoyuan 33551 Taiwan
| | - You-Ning Hsiung
- Department of Chemical and Materials Engineering, Chung Cheng Institute of Technology, National Defense University Taoyuan 33551 Taiwan
| | - Chia-Ling Li
- Department of Chemical and Materials Engineering, Chung Cheng Institute of Technology, National Defense University Taoyuan 33551 Taiwan
| |
Collapse
|
13
|
Poole CF. Sample preparation for planar chromatography. J Sep Sci 2023; 46:e2300071. [PMID: 36965178 DOI: 10.1002/jssc.202300071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/18/2023] [Accepted: 03/19/2023] [Indexed: 03/27/2023]
Abstract
High-performance thin-layer chromatography has favorable properties for high-throughput separations with a high matrix tolerance. Sample preparation, however, is sometimes required to control specific matrix interferences and to enhance the detectability of target compounds. Trends in contemporary applications have shifted from absorbance and fluorescence detection to methods employing bioassays and mass spectrometry. Traditional methods (shake-flask, heat at reflux, Soxhlet, and hydrodistillation) are being challenged by automated instrumental approaches (ultrasound-assisted and microwave-assisted solvent extraction, pressurized liquid extraction, and supercritical fluid extraction) and the quick, easy cheap, efficient, rugged, and safe extraction method for faster and streamlined sample processing. Liquid-liquid extraction remains the most widely used approach for sample clean-up with increasing competition from solid-phase extraction. On-layer sample, clean-up by planar solid-phase extraction is increasingly used for complex samples and in combination with heart-cut multimodal systems. The automated spray-on sample applicator, the elution head interface, biological detection of target and non-target compounds, and straightforward mass spectrometric detection are highlighted as the main factors directing current interest toward faster and simpler sample workflows, analysis of more complex samples, and the determination of minor contaminants requiring high concentration factors.
Collapse
Affiliation(s)
- Colin F Poole
- Department of Chemistry, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
14
|
Wilson ID, Poole CF. Planar chromatography - Current practice and future prospects. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1214:123553. [PMID: 36495686 DOI: 10.1016/j.jchromb.2022.123553] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/01/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022]
Abstract
Planar chromatography, in the form of thin-layer or high-performance thin-layer chromatography (TLC, HPTLC), continues to provide a robust and widely used separation technique. It is unrivaled as a simple and rapid qualitative method for mixture analysis, or for finding bioactive components in mixtures. The format of TLC/HPTLC also provides a unique method for preserving the separation, enabling further investigation of components of interest (including quantification/structure determination) separated in both time and space from the original analysis. The current practice of planar chromatography and areas of development of the technology are reviewed and promising future directions in the use of TLC/HPTLC are outlined.
Collapse
Affiliation(s)
- Ian D Wilson
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College, Burlington Danes Building, Du Cane Road, London W12 0NN, UK.
| | - Colin F Poole
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA.
| |
Collapse
|
15
|
Irfan Dar M, Qureshi MI, Zahiruddin S, Abass S, Jan B, Sultan A, Ahmad S. In Silico Analysis of PTP1B Inhibitors and TLC-MS Bioautography-Based Identification of Free Radical Scavenging and α-Amylase Inhibitory Compounds from Heartwood Extract of Pterocarpus marsupium. ACS OMEGA 2022; 7:46156-46173. [PMID: 36570189 PMCID: PMC9773359 DOI: 10.1021/acsomega.2c04283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/28/2022] [Indexed: 06/17/2023]
Abstract
Type 2 diabetes mellitus leads to metabolic impairment caused by insulin resistance and hyperglycemia, giving rise to chronic diabetic complications and poor disease prognosis. The heartwood of Pterocarpus marsupium has been used in Ayurveda for a long time, and we sought to find the actual mechanism(s) driving its antidiabetic potential. Methanol was used to prepare the extract using a Soxhlet extraction, and the identification of metabolites was performed by thin-layer chromatography (TLC) and ultraperformance-liquid chromatography and mass spectroscopy (UP-LCMS). The antioxidant potential of methanolic heartwood extract of Pterocarpus marsupium MHPM was determined using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and a reducing power assay. The α-amylase and α-glucosidase enzyme inhibitory potential of MHPM were investigated for their antidiabetic activity against acarbose. TLC-MS-bioautography was performed to identify the compounds responsible for possible antioxidant and antidiabetic activities. Moreover, targeting protein tyrosine phosphatase 1B (PTP1B), a key regulator of insulin resistance, by identified metabolites from MHPM through molecular docking and all-atom molecular dynamics (MD) simulations was also undertaken, suggesting its potential as an antidiabetic herb. The IC50 of free-radical scavenging activity of MHPM against DPPH was 156.342 ± 10.70 μg/mL. Further, the IC50 values of MHPM in α-amylase and α-glucosidase enzymatic inhibitions were 158.663 ± 10.986 μg/mL and 180.21 ± 11.35 μg/mL, respectively. TLC-MS-bioautography identified four free radical scavenging metabolites, and vanillic acid identified by MS analysis showed both free radical scavenging activity and α-amylase inhibitory activity. Among the identified metabolites from MHPM, epicatechin showed significant PTP1B docking interactions, and its MD simulations revealed that PTP1B forms a stable protein-ligand complex with epicatechin throughout the progression, which indicates that epicatechin may be used as a promising scaffold in the development of the antidiabetic drug after isolation from Pterocarpus marsupium. Overall, these findings imply that Pterocarpus marsupium is a source of valuable metabolites that are accountable for its antioxidant and antidiabetic properties.
Collapse
Affiliation(s)
- Mohammad Irfan Dar
- Department
of Biotechnology, Jamia Millia Islamia, New Delhi110025, India
| | | | - Sultan Zahiruddin
- Centre
of Excellence in Unani Medicine (Pharmacognosy & Pharmacology)
and Bioactive Natural Product Laboratory, School of Pharmaceutical
Education and Research, Jamia Hamdard, New Delhi110062, India
| | - Sageer Abass
- Department
of Biotechnology, Jamia Millia Islamia, New Delhi110025, India
| | - Bisma Jan
- Centre
of Excellence in Unani Medicine (Pharmacognosy & Pharmacology)
and Bioactive Natural Product Laboratory, School of Pharmaceutical
Education and Research, Jamia Hamdard, New Delhi110062, India
- Department
of Food Technology School of Interdisciplinary Science & Technology, Jamia Hamdard, New Delhi110062, India
| | - Armiya Sultan
- Department
of Biotechnology, Jamia Millia Islamia, New Delhi110025, India
| | - Sayeed Ahmad
- Centre
of Excellence in Unani Medicine (Pharmacognosy & Pharmacology)
and Bioactive Natural Product Laboratory, School of Pharmaceutical
Education and Research, Jamia Hamdard, New Delhi110062, India
| |
Collapse
|
16
|
Advances in analytical techniques coupled to in vitro bioassays in the search for new peptides with functional activity in effect-directed analysis. Food Chem 2022; 397:133784. [DOI: 10.1016/j.foodchem.2022.133784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/17/2022] [Accepted: 07/23/2022] [Indexed: 11/20/2022]
|
17
|
Yin S, Niu L, Liu Y. Recent Progress on Techniques in the Detection of Aflatoxin B 1 in Edible Oil: A Mini Review. Molecules 2022; 27:6141. [PMID: 36234684 PMCID: PMC9573432 DOI: 10.3390/molecules27196141] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Contamination of agricultural products and foods by aflatoxin B1 (AFB1) is becoming a serious global problem, and the presence of AFB1 in edible oil is frequent and has become inevitable, especially in underdeveloped countries and regions. As AFB1 results from a possible degradation of aflatoxins and the interaction of the resulting toxic compound with food components, it could cause chronic disease or severe cancers, increasing morbidity and mortality. Therefore, rapid and reliable detection methods are essential for checking AFB1 occurrence in foodstuffs to ensure food safety. Recently, new biosensor technologies have become a research hotspot due to their characteristics of speed and accuracy. This review describes various technologies such as chromatographic and spectroscopic techniques, ELISA techniques, and biosensing techniques, along with their advantages and weaknesses, for AFB1 control in edible oil and provides new insight into AFB1 detection for future work. Although compared with other technologies, biosensor technology involves the cross integration of multiple technologies, such as spectral technology and new nano materials, and has great potential, some challenges regarding their stability, cost, etc., need further studies.
Collapse
Affiliation(s)
- Shipeng Yin
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Road, Binhu District, Wuxi 214122, China
| | - Liqiong Niu
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Yuanfa Liu
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Road, Binhu District, Wuxi 214122, China
| |
Collapse
|
18
|
Cabezudo I, Lobertti CA, Véscovi EG, Furlan RLE. Effect-Directed Synthesis of PhoP/PhoQ Inhibitors to Regulate Salmonella Virulence. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6755-6763. [PMID: 35607919 DOI: 10.1021/acs.jafc.2c01087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Salmonella spp. are among the leading bacterial causes of foodborne infections. The PhoP/PhoQ two-component regulatory system serves as a master virulence regulator in Salmonella. Although PhoP/PhoQ represents an ideal target for disarming Salmonella virulence, it has very few inhibitors reported so far. We describe a novel platform by which an inhibitor was selected out of around 185 compounds directly from reaction media containing thiosemicarbazones and mono-, di-, and trihydrazones. To achieve this, tandem library preparation, thin-layer chromatography (TLC) bioautography, and effect-directed deconvolution were applied. We illustrate the potential of this effect-directed synthesis for the identification of new useful bioactive compounds for the food field.
Collapse
Affiliation(s)
- Ignacio Cabezudo
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rosario 2000 Argentina
| | - Carlos A Lobertti
- Instituto de Biología Molecular y Celular de Rosario (IBR CONICET), Rosario S2000EZP Argentina
- Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario 2000 Argentina
| | - Eleonora García Véscovi
- Instituto de Biología Molecular y Celular de Rosario (IBR CONICET), Rosario S2000EZP Argentina
| | - Ricardo L E Furlan
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rosario 2000 Argentina
| |
Collapse
|
19
|
Establishment of the thin-layer chromatography-surface-enhanced Raman spectroscopy and chemometrics method for simultaneous identification of eleven illegal drugs in anti-rheumatic health food. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
20
|
Li YL, Xie FT, Yao C, Zhang GQ, Guan Y, Yang YH, Yang JM, Hu R. A DNA tetrahedral nanomaterial-based dual-signal ratiometric electrochemical aptasensor for the detection of ochratoxin A in corn kernel samples. Analyst 2022; 147:4578-4586. [DOI: 10.1039/d2an00934j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ochratoxin A (OTA) is a highly toxic food contaminant and is harmful to human beings.
Collapse
Affiliation(s)
- Yu-Long Li
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, P. R. China
| | - Fa-Ting Xie
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, P. R. China
| | - Cao Yao
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, P. R. China
| | - Gui-Qun Zhang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, P. R. China
| | - Yan Guan
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, P. R. China
| | - Yun-Hui Yang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, P. R. China
| | - Jian-Mei Yang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, P. R. China
| | - Rong Hu
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, P. R. China
| |
Collapse
|