1
|
Yang Y, Wang L, Deng Q, Liu Y, Zhou Q. What contributes to the richness and stability of the sesame flavor? Compr Rev Food Sci Food Saf 2025; 24:e70155. [PMID: 40243127 DOI: 10.1111/1541-4337.70155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/28/2025] [Accepted: 02/13/2025] [Indexed: 04/18/2025]
Abstract
Sesame, an oilseed crop with a long history, is renowned for its distinctive flavor characteristics and diverse uses. In-depth research on the stable and potent flavor components in sesame not only enhances the taste and aroma of sesame products but also promotes their high-value utilization. This review comprehensively discusses the latest advancements in the flavor of processed sesame foods, systematically categorizing 187 compounds that contribute to the flavor. The focus is on sulfur-containing compounds and heterocyclic compounds. From a molecular sensory perspective, this study explores the impact of various factors on flavor profiles. Moreover, sesame seeds contain natural polyphenols, such as sesamin, sesamol, and sesamolin, which enhance the flavor and stability of sesame products and play a crucial role in maintaining the stability during processing and storage. Future research should focus on using machine learning models for real-time flavor optimization. This approach can leverage robust data analysis to adjust parameters promptly and achieve desired flavor outcomes. Additionally, integrating cutting-edge detection technology to establish a comprehensive sesame food flavor database will provide essential data for flavor research, simplify the flavor enhancement process, ensure scientific and efficient flavor adjustment, and maintain stable flavor quality. This will help to promote the development and utilization of nutritious and delicious sesame products in-line with consumer preferences, thereby driving growth in the sesame industry.
Collapse
Affiliation(s)
- Yini Yang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oil Seed Processing of Ministry of Agriculture, Oil Crops and Lipids Process Technology National and Local Joint Engineering Laboratory, Wuhan, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, China
| | - Linhai Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oil Seed Processing of Ministry of Agriculture, Oil Crops and Lipids Process Technology National and Local Joint Engineering Laboratory, Wuhan, China
| | - Qianchun Deng
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oil Seed Processing of Ministry of Agriculture, Oil Crops and Lipids Process Technology National and Local Joint Engineering Laboratory, Wuhan, China
| | - Ye Liu
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, China
| | - Qi Zhou
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oil Seed Processing of Ministry of Agriculture, Oil Crops and Lipids Process Technology National and Local Joint Engineering Laboratory, Wuhan, China
| |
Collapse
|
2
|
Fan Y, Cui C, Liu Y, Wu K, Du Z, Jiang X, Zhao F, Zhang R, Wang J, Mei H, Zhang H. Physiological and Transcriptional Responses of Sesame ( Sesamum indicum L.) to Waterlogging Stress. Int J Mol Sci 2025; 26:2603. [PMID: 40141245 PMCID: PMC11942034 DOI: 10.3390/ijms26062603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/09/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
Waterlogging stress significantly impacts the growth and productivity of crops. As a traditional oil crop, sesame (Sesamum indicum L.) suffers substantial damage due to waterlogging stress. However, the mechanism underlying waterlogging stress in sesame is still unclear. In this study, we investigated the physiological indicators of two sesame genotypes under waterlogging stress. The results revealed that the activity of antioxidant enzymes in sesame was affected, with the contents of malondialdehyde (MDA) and hydrogen peroxide (H2O2) significantly increased. Additionally, transcriptional analysis identified a total of 15,143 differentially expressed genes (DEGs). Among them, 759 DEGs exhibited consistent differential expression across all time points, representing the core waterlogging-responsive genes. Gene Ontology (GO) enrichment analysis indicated that the DEGs were primarily associated with hypoxia, stimulus response, and oxidoreductase enzyme activities. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that these DEGs were mainly enriched in the metabolic and biosynthesis of secondary metabolites, glycolysis/gluconeogenesis, phenylpropanoid biosynthesis, MAPK signaling pathway-plant, carbon fixation by Calvin cycle, plant hormone signal transduction, and plant-pathogen interaction pathways. Furthermore, transcription factors (TFs) such as AP2/ERF, bHLH, bZIP, and WRKY may play key roles in the transcriptional changes induced by waterlogging stress. Combined with weighted gene co-expression network analysis (WGCNA) analysis and K-means clustering, a total of 5 hub genes and 56 genes were identified, including F-box protein (Sin09950 and Sin12912), bZIP (Sin04465, Sin00091), WRKY (Sin01376, Sin06113), and so on. In brief, this study explored the regulatory network involved in waterlogging stress in sesame at the transcriptome level, providing valuable insights into unraveling the molecular mechanisms of waterlogging stress and facilitating the breeding of improved waterlogging-tolerant sesame varieties.
Collapse
Affiliation(s)
- Yadong Fan
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Y.F.); (C.C.); (Y.L.); (K.W.); (Z.D.); (X.J.); (F.Z.); (R.Z.); (J.W.)
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Chengqi Cui
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Y.F.); (C.C.); (Y.L.); (K.W.); (Z.D.); (X.J.); (F.Z.); (R.Z.); (J.W.)
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Yanyang Liu
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Y.F.); (C.C.); (Y.L.); (K.W.); (Z.D.); (X.J.); (F.Z.); (R.Z.); (J.W.)
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Ke Wu
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Y.F.); (C.C.); (Y.L.); (K.W.); (Z.D.); (X.J.); (F.Z.); (R.Z.); (J.W.)
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Zhenwei Du
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Y.F.); (C.C.); (Y.L.); (K.W.); (Z.D.); (X.J.); (F.Z.); (R.Z.); (J.W.)
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Xiaolin Jiang
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Y.F.); (C.C.); (Y.L.); (K.W.); (Z.D.); (X.J.); (F.Z.); (R.Z.); (J.W.)
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Fengli Zhao
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Y.F.); (C.C.); (Y.L.); (K.W.); (Z.D.); (X.J.); (F.Z.); (R.Z.); (J.W.)
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Ruping Zhang
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Y.F.); (C.C.); (Y.L.); (K.W.); (Z.D.); (X.J.); (F.Z.); (R.Z.); (J.W.)
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Jingjing Wang
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Y.F.); (C.C.); (Y.L.); (K.W.); (Z.D.); (X.J.); (F.Z.); (R.Z.); (J.W.)
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Hongxian Mei
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Y.F.); (C.C.); (Y.L.); (K.W.); (Z.D.); (X.J.); (F.Z.); (R.Z.); (J.W.)
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Haiyang Zhang
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Y.F.); (C.C.); (Y.L.); (K.W.); (Z.D.); (X.J.); (F.Z.); (R.Z.); (J.W.)
- The Shennong Laboratory, Zhengzhou 450002, China
| |
Collapse
|
3
|
Jafari A, Parsi Nezhad B, Rasaei N, Aleebrahim-Dehkordi E, Rajabi A, Alaghi A. Clinical evidence of sesame (Sesamum indicum L.) products and its bioactive compounds on anthropometric measures, blood pressure, glycemic control, inflammatory biomarkers, lipid profile, and oxidative stress parameters in humans: a GRADE-assessed systematic review and dose-response meta-analysis. Nutr Metab (Lond) 2025; 22:22. [PMID: 40069782 PMCID: PMC11899564 DOI: 10.1186/s12986-025-00910-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 02/10/2025] [Indexed: 03/14/2025] Open
Abstract
This comprehensive systematic review and meta-analysis aimed to assess the impact of sesame (Sesamum indicum L.) supplementation on cardiovascular disease risk factors. Relevant research was discovered via PubMed, Scopus, Web of Science, CENTRAL, and EMBASE up to June 2024. The assessment of study quality was conducted using the Cochrane risk-of-bias tool. Thirteen trials, with interventions ranging from 4 to 12 weeks and involving 521 participants, demonstrated significant reductions in glycated hemoglobin (HbA1c) (Standardized Mean Difference [SMD] = - 0.67; 95% Confidence Interval [CI] - 1.01, - 0.32; P < 0.001), C-reactive protein (CRP) (SMD = - 0.51; 95% CI - 0.96, - 0.05; P = 0.028), and interleukin-6 (IL-6) (SMD = - 0.74; 95% CI - 1.16, - 0.32; P < 0.001), and a marginally significant effect on fasting blood sugar (FBS) (SMD = - 0.57; 95% CI - 1.16, 0.02; P = 0.057). Subgroup analyses revealed that sesame supplementation significantly reduced CRP and malondialdehyde (MDA) in populations without chronic diseases, while total cholesterol (TC) and MDA were reduced in those with chronic diseases. MDA was significantly reduced in females, especially those aged 50 or older. At dosages of 10 g per day or less, CRP, high-density lipoprotein cholesterol (HDL), and TC showed significant improvements. Meta-regression highlighted a significant dose-dependent reduction in TC levels at 10 g/day, and a significant duration-dependent decrease in TG levels at 8 weeks of supplementation. Sesame supplementation demonstrates potential benefits in improving glycemic control, inflammatory markers, and lipid profiles, making it a promising adjunct therapy for reducing cardiovascular disease risk factors.
Collapse
Affiliation(s)
- Ali Jafari
- Student Research Committee, Department of Community Nutrition, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Bahare Parsi Nezhad
- Student Research Committee, Department of Nutrition, School of Health, Golestan University of Medical Sciences, Gorgan, Iran
| | - Niloufar Rasaei
- Micronutrient Research Center, Research Institute for Endocrine Disorders, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elahe Aleebrahim-Dehkordi
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Abdolhalim Rajabi
- Environmental Health Research Center, Department of Biostatistics and Epidemiology, Faculty of Health, Golestan University of Medical Sciences, Gorgan, Iran
| | - Alireza Alaghi
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Golestan Research Center of Gastroenterology and Hepatology, 3rd Floor, Heart Complex, Sayyad-e-Shirazi Hospital, Sayyad-e-Shirazi Boulevard, Gorgan, Golestan Province, Iran.
| |
Collapse
|
4
|
Li Y, Wu F, Wang Y, Li B, Prabhakaran P, Zhou W, Han Y, Sun-Waterhouse D, Li D, Li F. Sesamin Alleviates Allergen-Induced Diarrhea by Restoring Gut Microbiota Composition and Intestinal Barrier Function. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:1965-1981. [PMID: 39772607 DOI: 10.1021/acs.jafc.4c10158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Food allergens are the key triggers of allergic diarrhea, causing damage to the immune-rich ileum. This weakens the mucosal barrier and tight junctions, increases intestinal permeability, and exacerbates allergen exposure, thereby worsening the condition. Sesamin, a natural lignan isolated from sesame seed, has shown potential in regulating immune responses, but its effects on intestinal health remain unclear. In this study, we constructed an ovalbumin (OVA)-induced allergic diarrhea mouse model, which demonstrated increased mast cell degranulation, reduced tight junction integrity, and impaired intestinal barrier function. Pro-inflammatory cytokines were significantly increased in the ileum, along with unbalanced cluster of differentiation 4 (CD4+) T-cell immunity, altered gut microbiota composition, and disrupted bacterial metabolism. Sesamin treatment significantly alleviated intestinal damage by modulating gut microbiota abundance, enhancing short-chain fatty acid (SCFA) production, and increasing SCFA receptor expression. This study suggests that sesamin may be a promising therapeutic candidate for allergic diarrhea and intestinal injury.
Collapse
Affiliation(s)
- Yu Li
- College of Food Science and Engineering, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Shandong Agricultural University, Taian 271018, China
| | - Fan Wu
- College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Yongli Wang
- College of Food Science and Engineering, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Shandong Agricultural University, Taian 271018, China
| | - Bo Li
- Jinan Vocational College of Nursing, Jinan 250102, China
| | - Pranesha Prabhakaran
- College of Food Science and Engineering, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Shandong Agricultural University, Taian 271018, China
| | - Wenbo Zhou
- College of Food Science and Engineering, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Shandong Agricultural University, Taian 271018, China
| | - Yu Han
- College of Food Science and Engineering, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Shandong Agricultural University, Taian 271018, China
| | - Dongxiao Sun-Waterhouse
- College of Food Science and Engineering, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Shandong Agricultural University, Taian 271018, China
- School of Chemical Sciences, The University of Auckland, Auckland 92019, New Zealand
| | - Dapeng Li
- College of Food Science and Engineering, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Shandong Agricultural University, Taian 271018, China
| | - Feng Li
- College of Food Science and Engineering, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Shandong Agricultural University, Taian 271018, China
| |
Collapse
|
5
|
Xiang PF, Zhang ZS, Le W, Wei YY, Li BZ. Effect of thermal pretreatments on the quality attributes and irradiation markers of sesame oil extracted from sesame seeds without and with gamma irradiation. Food Chem 2025; 463:141401. [PMID: 39326314 DOI: 10.1016/j.foodchem.2024.141401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/12/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024]
Abstract
This study comparatively studied the effects of three thermal pretreatment methods, i.e., wet-heat (WT), roasting (RT) and microwave (MT), on the quality attributes and irradiation markers of sesame oil obtained from sesame seeds without and with gamma irradiation. Results showed that gamma irradiation had negligible effect on the quality of sesame seeds and their extracted oils. The effects of thermal pretreatments on irradiated and non-irradiated sesame seeds and their oils were similar, little synergistic effects were observed. The RT-treated oils had more carotenoids, chlorophyll, total phenols, tocopherols, and heterocyclic volatiles content, as well as longer oxidation induction time, but darker color compared with their WT- and MT-treated counterparts. All oil samples had identical FTIR spectra. Eight radiolytic hydrocarbons were identified in the irradiated sesame oils. Thermal pretreatments reduced the content of radiolytic hydrocarbons, but did not significantly change their composition. Our study helps to identify products from irradiated sesame seeds.
Collapse
Affiliation(s)
- Peng-Fei Xiang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 45001, PR China
| | - Zhen-Shan Zhang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 45001, PR China.
| | - Wu Le
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 45001, PR China
| | - Yun-Yi Wei
- College of Food and Quality Engineering, Nanning University, Nanning 530200, China
| | - Bing-Zheng Li
- College of Food and Quality Engineering, Nanning University, Nanning 530200, China; Institute of Grand Health, Guangxi Academy of Sciences, Nanning 530007, China
| |
Collapse
|
6
|
Wei S, Wu Y, Xi J. CO 2-responsive switchable hydrophilic solvent as a novel extractant for selective extraction and separation of natural bioactive ingredients: A comprehensive review. Food Chem 2025; 463:141170. [PMID: 39288456 DOI: 10.1016/j.foodchem.2024.141170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/07/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024]
Abstract
When conventional solvents such as water, methanol, ethanol, hexane, petroleum ether, etc., are used to extract active ingredients from natural resources, an evaporation process is required to remove solvent from active ingredients, which not only consumes huge amounts of energy, but also causes harm to human health and the environment. The CO2-responsive switchable hydrophilic solvent (SHS) based on amines and water is an emerging, green and recyclable solvent, which not only has high extraction efficiency of active ingredients, but also can remove solvent from active ingredients without evaporation process. This paper reviews the research progress of amine-based SHS in the extraction of bioactive ingredients from natural resources. The process flow, extraction mechanism, critical influencing factors, recovery of amines and latest applications have been summarized. On this basis, some shortcomings of amine-based SHS are also pointed out. Finally, the improvement directions of amine-based SHS extraction in the future is prospected.
Collapse
Affiliation(s)
- Shuang Wei
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yuntao Wu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Jun Xi
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
7
|
Yu P, Wang J, Lao F, Shi H, Xu X, Wu J. Investigation on sweaty off-flavors in small mill sesame oil and its formation mechanism via molecular sensory science, preparative gas chromatography, and microbiomics. Food Chem 2025; 463:141224. [PMID: 39303469 DOI: 10.1016/j.foodchem.2024.141224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/30/2024] [Accepted: 09/08/2024] [Indexed: 09/22/2024]
Abstract
The distinctive and enjoyable aroma of small mill sesame oil (SMSO) originates from the aqueous extraction process. However, in the sedimentation stage in industrial production, when the external ambient temperature is elevated, unpleasant sweaty off-flavors may be present from an unknown source. Based on the odor screening and verification strategy, 76 volatile flavor compounds were identified in different SMSOs, and 3 key areas had a sweaty odor via gas chromatography olfactometry (GC-O) analysis. The validation experiment utilizing preparative gas chromatography (pre-GC) confirmed the sweaty off-flavors were butyric acid, 2-methylbutyric acid, and isobutyric acid, with odor activity values ranging from 1 to 100. Furthermore, microbiological investigations on sesame residues gathered during the sedimentation process at various temperatures revealed sweaty off-flavors were mostly attributed to the collaborative interaction of Lactobacillus, Yarrowia lipolytica, and butanoate 1-phosphotransferase. This study offers a fundamental theoretical foundation for enhancing the quality control and flavor of SMSO.
Collapse
Affiliation(s)
- Pei Yu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100038, People's Republic of China.
| | - Jing Wang
- Wilmar (Shanghai) Biotechnology Research and Development Center Co., Ltd., 118 Gaodong Road, Pudong New District, Shanghai 200137, People's Republic of China.
| | - Fei Lao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100038, People's Republic of China.
| | - Haiming Shi
- Wilmar (Shanghai) Biotechnology Research and Development Center Co., Ltd., 118 Gaodong Road, Pudong New District, Shanghai 200137, People's Republic of China.
| | - Xuebing Xu
- Wilmar (Shanghai) Biotechnology Research and Development Center Co., Ltd., 118 Gaodong Road, Pudong New District, Shanghai 200137, People's Republic of China.
| | - Jihong Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100038, People's Republic of China.
| |
Collapse
|
8
|
Li H, Hu F, Zhou J, Yang L, Li D, Zhou R, Zhou T, Zhang Y, Wang L, You J. Genome-wide characterization of the DIR gene family in sesame reveals the function of SiDIR21 in lignan biosynthesis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109282. [PMID: 39527898 DOI: 10.1016/j.plaphy.2024.109282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/18/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Furofuran-type lignans, mainly sesamin and sesamolin, are the most representative functional active ingredients in sesame (Sesamum indicum L.). Their exceptional antioxidant properties, medicinal benefits, and health-promoting functions have garnered significant attention. Dirigent (DIR) proteins, found in vascular plants, are crucial for the biosynthesis of secondary metabolites, like lignans, and essential for responding to abiotic and biotic stresses. Despite their importance, they have yet to be systematically analyzed, especially those involved in lignan synthesis in sesame. This study unveiled 44 DIR genes in sesame. Phylogenetic analysis categorized these SiDIRs into five subgroups (DIR-a, DIR-b/d, DIR-e, DIR-f, and DIR-g), aligning with conserved motifs and gene structures analyses. Expression analysis unveiled distinct tissue-specific and hormone-responsive expression patterns among the SiDIR gene family members. Particularly, SiDIR21, a member of the DIR-a subgroup, exhibited robust expression in lignan-accumulating tissues and consistently high expression levels in germplasm during seed development with high sesamin content. Furthermore, SiDIR21 overexpression in hairy roots significantly increased sesamin and sesamolin contents, confirming its role in lignan synthesis. Overall, our study offers a valuable resource for exploring SiDIRs' functions and the lignan biosynthesis pathway in sesame.
Collapse
Affiliation(s)
- Huan Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Fengduo Hu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Jianglong Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Li Yang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Donghua Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Rong Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Ting Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Yanxin Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Linhai Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
| | - Jun You
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
| |
Collapse
|
9
|
Guan L, Zhu L, Zhang X, Han Y, Wang K, Ji N, Yao X, Zhou Y, Li B, Chen Q, Fan J, Sha D, Lu S. Perilla Seed Oil and Protein: Composition, Health Benefits, and Potential Applications in Functional Foods. Molecules 2024; 29:5258. [PMID: 39598647 PMCID: PMC11596803 DOI: 10.3390/molecules29225258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024] Open
Abstract
Perilla (Perilla frutescens) seeds are emerging as a valuable resource for functional foods and medicines owing to their rich oil and protein content with diverse nutritional and health benefits. Perilla seed oil (PSO) possesses a high level of a-linolenic acid (ALA), a favorable ratio of unsaturated to saturated fatty acids, and other active ingredients such as tocopherols and phytosterols, which contribute to its antioxidant, anti-inflammatory, and cardiovascular protective effects. The balanced amino acid ratio and good functional properties of perilla seed protein make it suitable for a variety of food applications. The chemical composition, health benefits, and potential applications of PSO as well as the structural characterization, functional properties, modification methods, bioactivities, and application scenarios of perilla seed protein are comprehensively presented in this paper. Furthermore, the challenges as well as future prospects and research focus of PSO and perilla seed protein are discussed. The growing interest in plant-based diets and functional foods has made PSO and perilla seed protein promising ingredients for the development of novel foods and health products. The purpose of this paper is to highlight implications for future research and development utilizing these two untapped resources to improve human health and nutrition.
Collapse
Affiliation(s)
- Lijun Guan
- Institute of Food Processing Research, Heilongjiang Province Academy of Agricultural Sciences, Harbin 150086, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
| | - Ling Zhu
- Institute of Food Processing Research, Heilongjiang Province Academy of Agricultural Sciences, Harbin 150086, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
| | - Xindi Zhang
- Institute of Food Processing Research, Heilongjiang Province Academy of Agricultural Sciences, Harbin 150086, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
| | - Yaxi Han
- Institute of Food Processing Research, Heilongjiang Province Academy of Agricultural Sciences, Harbin 150086, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
| | - Kunlun Wang
- Institute of Food Processing Research, Heilongjiang Province Academy of Agricultural Sciences, Harbin 150086, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
| | - Nina Ji
- Institute of Soya Research, Heilongjiang Province Academy of Agricultural Sciences, Harbin 150086, China
| | - Xinmiao Yao
- Institute of Food Processing Research, Heilongjiang Province Academy of Agricultural Sciences, Harbin 150086, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
| | - Ye Zhou
- Institute of Food Processing Research, Heilongjiang Province Academy of Agricultural Sciences, Harbin 150086, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
| | - Bo Li
- Institute of Food Processing Research, Heilongjiang Province Academy of Agricultural Sciences, Harbin 150086, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
| | - Qing Chen
- Institute of Food Processing Research, Heilongjiang Province Academy of Agricultural Sciences, Harbin 150086, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
| | - Jing Fan
- Institute of Food Processing Research, Heilongjiang Province Academy of Agricultural Sciences, Harbin 150086, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
| | - Dixin Sha
- Institute of Food Processing Research, Heilongjiang Province Academy of Agricultural Sciences, Harbin 150086, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
| | - Shuwen Lu
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
| |
Collapse
|
10
|
Cheng Q, Bao Y, Lin Q, Qi T, Zhang X. The effect of sesamol on endogenous substances and oxidative stability of walnut oil. Front Nutr 2024; 11:1476734. [PMID: 39483783 PMCID: PMC11525596 DOI: 10.3389/fnut.2024.1476734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/16/2024] [Indexed: 11/03/2024] Open
Abstract
This study explored the effect of sesamol on the stability of walnut oil based on the changes of endogenous characteristics in the oxidation process, which provided a theoretical reference for the application of natural antioxidants in walnut oil. A total of 300 mg/kg sesamol (SP), compound antioxidant AC (sesamol 353.62 mg/kg, citric acid 149.60 mg/kg, and BHA 76.33 mg/kg) and 35% sesame oil (35%-SO) were added to walnut oil respectively; in addition, 200 mg/kg t-butylhydroquinone (TBHQ), butylated hydroxyanisole (BHA), and citric acid were used as controls and blank walnut oil to study their effects on peroxide value, acid value, carbonyl compounds, conjugated olefins, phenols, flavonoids, sterols, vitamin E, β-carotene, and 51 fatty acids of walnut oil and their correlation between endogenous antioxidant components. The results showed that the addition of SP, 35%-SO, and AC could inhibit the increase of peroxide value, acid value, and carbonyl compounds in walnut oil, and could inhibit the decrease of β-carotene, total phenols, total sterols, and vitamin E. SP and 35%-SO could inhibit the decrease of total flavonoids, and several antioxidants could inhibit the decrease of endogenous antioxidant components in walnut oil. At the same time, it can better inhibit the change of unsaturated fatty acids in walnut oil. By the end of oxidation, the unsaturated fatty acids of blank walnut oil decreased by 10.31%, but AC, SP, and 35%-SO treatment groups increased by 10.90, 5.09 and 4.13%, respectively. Indicating that it had a certain protective effect on unsaturated fatty acids in walnut oil. There was a certain correlation between the endogenous substances of walnut oil. so the addition of several antioxidants can enhance the endogenous antioxidants of walnut oil, inhibit the oxidation of unsaturated fatty acids, and inhibit the increase of carbonyl compounds, codienes, acid value, and peroxide value. SP and AC have better antioxidant effects on walnut oil and improve the stability of walnut oil.
Collapse
Affiliation(s)
- Qin Cheng
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yuanyuan Bao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Qi Lin
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Tingmei Qi
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Xinyong Zhang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
| |
Collapse
|
11
|
Liu C, Chen YQ, Lin H, Shi PY, Song J, Wu WL, Xiao QW, Dai Q. Two flavors in adulterated sesame oil: discovery, confirmation, and content regularity study. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6210-6219. [PMID: 39193637 DOI: 10.1039/d4ay01132e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Exploring and accurately detecting new adulteration markers in sesame oil is an important measure for sesame oil adulteration monitoring. In this study, two endogenous flavors sulfurol and γ-nonalactone which can be used as potential adulteration markers were first discovered in sesame oil and accurately quantified. First, the two endogenous flavors were discovered using gas chromatography-mass spectrometry (GC-MS), and their structures were confirmed by comparing the mass spectrograms with the NIST spectral library. Then the liquid chromatography-tandem mass spectrometry (LC-MS/MS) method using direct methanol extraction pretreatment and vanillin-D3 as an internal standard was developed for rapid quantitation and application. The method was successfully validated with recoveries ranging from 88.5% to 102.2% and relative standard deviations between 2.6% and 10.5% (n = 6). The combined method of GC-MS and LC-MS/MS was indicated to be efficient and highly sensitive for detection of sulfurol and γ-nonalactone in edible oil. Subsequently, 31 sesame oils from the market were detected, revealing that 31 samples contained the identified flavors within a relatively consistent range. However, the concentration of these flavor substances in one sample was abnormally high, indicating that there was a potential risk of adulteration. Therefore, the developed method shows good potential for quality evaluation and adulteration screening of sesame oil.
Collapse
Affiliation(s)
- Chuan Liu
- Chengdu Institute of Food Inspection, Chengdu 611130, China.
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health, State Administration for Market Regulation, Beijing 100029, China
- Irradiation Preservation Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Yan-Qiu Chen
- Chengdu Institute of Food Inspection, Chengdu 611130, China.
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health, State Administration for Market Regulation, Beijing 100029, China
- Irradiation Preservation Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Hao Lin
- Chengdu Institute of Food Inspection, Chengdu 611130, China.
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health, State Administration for Market Regulation, Beijing 100029, China
- Irradiation Preservation Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Pei-Yu Shi
- Chengdu Institute of Food Inspection, Chengdu 611130, China.
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health, State Administration for Market Regulation, Beijing 100029, China
- Irradiation Preservation Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Juan Song
- Chengdu Institute of Food Inspection, Chengdu 611130, China.
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health, State Administration for Market Regulation, Beijing 100029, China
- Irradiation Preservation Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Wen-Lin Wu
- Chengdu Institute of Food Inspection, Chengdu 611130, China.
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health, State Administration for Market Regulation, Beijing 100029, China
- Irradiation Preservation Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Quan-Wei Xiao
- Chengdu Institute of Food Inspection, Chengdu 611130, China.
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health, State Administration for Market Regulation, Beijing 100029, China
- Irradiation Preservation Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Qin Dai
- Chengdu Institute of Food Inspection, Chengdu 611130, China.
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health, State Administration for Market Regulation, Beijing 100029, China
- Irradiation Preservation Key Laboratory of Sichuan Province, Chengdu 611130, China
| |
Collapse
|
12
|
Osei CY, Lee S, Lee GA, Lee SH, Yoo E, Lee JE, Kim EG, Yang TJ. Evaluation of Agronomic Traits, Total Phenolic Content, and Antioxidant Properties of Sesame Seeds of Different Colors and Origin. Foods 2024; 13:2932. [PMID: 39335860 PMCID: PMC11431559 DOI: 10.3390/foods13182932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Rising health concerns regarding chronic diseases call for exploring natural sources of antioxidants and factors that influence their activity. This study evaluated the diversity of 112 sesame germplasms from Africa and Asia based on ten agronomic traits (seven quantitative and three qualitative), two antioxidant activities (ABTS and DPPH radical scavenging activities), and the content of one metabolite (TPC). TPC, DPPH, and ABTS were in the ranges of 4.98-87.88 µg GAE/mg DE, 3.97-46.23 µg AAE/mg DE, and 3.42-176.01 µg TE/mg DE, respectively. Statistical analyses revealed significant variations in agronomic traits, TPC, and antioxidant activities among the sesame germplasms (p < 0.05). Furthermore, the individual and interaction effects of seed color and the continent of origin on the levels of the quantitative traits, TPC, ABTS, and DPPH were analyzed, and the correlation among the traits was further evaluated. Diversity in TPC, ABTS, and DPPH was significantly associated with seed color and most of the quantitative agronomic traits (p < 0.05) but not with continent of origin. Principal component analysis revealed TPC, ABTS, DPPH, and five quantitative traits as the most discriminant traits. In general, six sesame accessions with high TPC and antioxidant activities (IT194356, IT170094, IT29971, IT185998, IT104246, and IT169623) as well as important agronomic traits were identified and, hence, could be used for developing improved sesame varieties.
Collapse
Affiliation(s)
- Collins Yeboah Osei
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea; (C.Y.O.); (S.L.); (G.-A.L.); (E.Y.); (J.-E.L.); (E.-G.K.)
- Council for Scientific and Industrial Research, Plant Genetic Resources Research Institute, Bunso P.O. Box 7, Ghana
| | - Sookyeong Lee
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea; (C.Y.O.); (S.L.); (G.-A.L.); (E.Y.); (J.-E.L.); (E.-G.K.)
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Science, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea;
| | - Gi-An Lee
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea; (C.Y.O.); (S.L.); (G.-A.L.); (E.Y.); (J.-E.L.); (E.-G.K.)
| | - Sae Hyun Lee
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Science, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea;
| | - Eunae Yoo
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea; (C.Y.O.); (S.L.); (G.-A.L.); (E.Y.); (J.-E.L.); (E.-G.K.)
| | - Jae-Eun Lee
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea; (C.Y.O.); (S.L.); (G.-A.L.); (E.Y.); (J.-E.L.); (E.-G.K.)
| | - Eun-Gyeong Kim
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea; (C.Y.O.); (S.L.); (G.-A.L.); (E.Y.); (J.-E.L.); (E.-G.K.)
| | - Tae-Jin Yang
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Science, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea;
| |
Collapse
|
13
|
Anyogu A, Somorin YM, Oladipo AO, Raheem S. Food safety issues associated with sesame seed value chains: Current status and future perspectives. Heliyon 2024; 10:e36347. [PMID: 39253262 PMCID: PMC11381738 DOI: 10.1016/j.heliyon.2024.e36347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/11/2024] Open
Abstract
Sesame (Sesamum indicum) is an oilseed crop which is increasingly recognised as a functional food by consumers due to its nutritional and nutraceutical components. Consequently, global demand for sesame has increased significantly over the last three decades. Sesame is an important export crop in producing countries, contributing to their socio-economic development. However, in recent years, major foodborne incidents have been associated with imported sesame seeds and products made with these seeds. Foodborne hazards are a potential risk to consumer health and hinder international trade due to border rejections and increased import controls. An insight into the routes of contamination of these hazards across the value chain and factors affecting persistence may lead to more focused intervention and prevention strategies. It was observed that Salmonella is a significant microbial hazard in imported sesame seeds and has been associated with several global outbreaks. Sesame is mainly cultivated in the tropical and subtropical regions of Africa and Asia by smallholder farmers. Agricultural and manufacturing practices during harvesting, storage, and processing before export may allow for the contamination of sesame seeds with Salmonella. However, only a few studies collect data on the microbiological quality of sesame across the value chain in producing countries. In addition, the presence of mycotoxins and pesticides above regulatory limits in sesame seeds is a growing concern. Eliminating foodborne hazards in the sesame value chain requires urgent attention from researchers, producers, processors, and regulators and suggestions for improving the safety of these foods are discussed.
Collapse
Affiliation(s)
- Amarachukwu Anyogu
- Food Safety and Security, School of Biomedical Sciences, University of West London, London, W5 5RF, United Kingdom
| | - Yinka M Somorin
- University of Glasgow, Glasgow, G12 8QQ, United Kingdom
- Department of Biological Science, Ajayi Crowther University, Oyo, Nigeria
| | - Abigail Oluseye Oladipo
- Food Safety and Security, School of Biomedical Sciences, University of West London, London, W5 5RF, United Kingdom
| | - Saki Raheem
- School of Life Sciences, University of Westminster, London, W1W 6UW, United Kingdom
| |
Collapse
|
14
|
Kim DY, Oh S, Ko HS, Park S, Jeon YJ, Kim J, Yang DK, Park KW. Sesamolin suppresses adipocyte differentiation through Keap1-dependent Nrf2 activation in adipocytes. Nutr Res 2024; 128:14-23. [PMID: 39002358 DOI: 10.1016/j.nutres.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 07/15/2024]
Abstract
Sesamolin, a lignan isolated from sesame oils, has been found to possess neuroprotective, anticancer, and free radical scavenging properties. We hypothesized that sesamolin could stimulate the activity of nuclear factor erythroid-derived 2-like 2 (Nrf2) and inhibit adipocyte differentiation of preadipocytes. The objective of this study was to investigate effects of sesamolin on adipocyte differentiation and its underlying molecular mechanisms. In this study, we determined the effects of treatment with 25 to 100 µM sesamolin on adipogenesis in cell culture systems. Sesamolin inhibited lipid accumulation and suppressed the expression of adipocyte markers during adipocyte differentiation of C3H10T1/2, 3T3-L1, and primary preadipocytes. Mechanism studies revealed that sesamolin increased Nrf2 protein expression without inducing its mRNA, leading to an increase in the expression of Nrf2 target genes such as heme oxygenase 1 and NAD(P)H:quinone oxidoreductase 1 (Nqo1) in C3H10T1/2 adipocytes and mouse embryonic fibroblasts. These effects were significantly attenuated in Nrf2 knockout (KO) mouse embryonic fibroblasts, indicating that effects of sesamolin were dependent on Nrf2. In H1299 human lung cancer cells with KO of Kelch like-ECH-associated protein 1 (Keap1), a negative regulator of Nrf2, sesamolin failed to further increase Nrf2 protein expression. However, upon reexpressing Keap1 in Keap1 KO cells, the ability of sesamolin to elevate Nrf2 protein expression was restored, highlighting the crucial role of Keap1 in sesamolin-induced Nrf2 activation. Taken together, these findings show that sesamolin can inhibit adipocyte differentiation through Keap1-mediated Nrf2 activation.
Collapse
Affiliation(s)
- Da-Young Kim
- Department of Food Science and Biotechnology, Food Clinical Research Center, Sungkyunkwan University, Suwon, Korea
| | - Seungjun Oh
- Department of Food Science and Biotechnology, Food Clinical Research Center, Sungkyunkwan University, Suwon, Korea
| | - Hae-Sun Ko
- Department of Food Science and Biotechnology, Food Clinical Research Center, Sungkyunkwan University, Suwon, Korea
| | - Sanghee Park
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Korea
| | - Young-Jun Jeon
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Korea
| | - Jihoe Kim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Dong Kwon Yang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Chonbuk National University, Iksan, Republic of Korea
| | - Kye Won Park
- Department of Food Science and Biotechnology, Food Clinical Research Center, Sungkyunkwan University, Suwon, Korea.
| |
Collapse
|
15
|
Thiangthientham P, Kallayanathum W, Juntautsa S, Leethongdee S. Sesame oil as a partial substitute for egg yolk in goat semen extenders. Anim Reprod Sci 2024; 266:107500. [PMID: 38820784 DOI: 10.1016/j.anireprosci.2024.107500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 05/16/2024] [Indexed: 06/02/2024]
Abstract
This study aimed to evaluate the effects of replacing egg yolk extender with sesame oil on the quality of sperm in goats following incubation at 37°C, chilling at 4°C, and freezing. Semen samples were collected from four intact male goats. The individual semen sample was divided into six groups consisting of a control group and five treatment groups with different egg yolk-to-sesame oil ratios. Seminal plasma was removed, and the sperm pellet was diluted with experimental semen extenders. The control group contained an extender of 10 % egg yolk (SO0), and the experimental extenders were composed of 8.75 % egg yolk and 1.25 % sesame oil (SO1.25); 7.5 % egg yolk and 2.5 % sesame oil (SO2.5); 5 % egg yolk and 5 % sesame oil (SO5); 2.5 % egg yolk and 7.5 % sesame oil (SO7.5); and 10 % sesame oil (SO10). Each group of semen was divided into three groups, incubated at 37°C for 1 h, chilled at 4°C for 4 h, or frozen for 24 h. Five replicates were performed. Sperm quality was evaluated, including motility, viability, and functional membrane integrity. The SO1.25 group achieved the highest sperm quality rate among the treatment groups, and the extender did not have a negative effect compared to the control. However, the total replacement of egg yolk with sesame oil in an extender resulted in the lowest sperm quality. In conclusion, the ratios of egg yolk and sesame oil that were acceptable for goat semen cryopreservation were 8.75 % and 1.25 %, respectively.
Collapse
Affiliation(s)
- Pintira Thiangthientham
- The Reproduction in Domestic Animal Research Unit, Faculty of Veterinary Sciences, Mahasarakham University, Mahasarakham 44000, Thailand; Small Ruminant Research Unit, Faculty of Veterinary Sciences, Mahasarakham University, Mahasarakham 44000, Thailand.
| | - Wirakan Kallayanathum
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Siriluck Juntautsa
- Bioveterinary Research Unit, Faculty of Veterinary Sciences, Mahasarakham University, MahaSarakham 44000, Thailand
| | - Sukanya Leethongdee
- The Reproduction in Domestic Animal Research Unit, Faculty of Veterinary Sciences, Mahasarakham University, Mahasarakham 44000, Thailand; Small Ruminant Research Unit, Faculty of Veterinary Sciences, Mahasarakham University, Mahasarakham 44000, Thailand.
| |
Collapse
|
16
|
Hu BB, Yin WT, Zhang HB, Zhai ZQ, Liu HM, Wang XD. The interaction between lipid oxidation and the Maillard reaction model of lysine-glucose on aroma formation in fragrant sesame oil. Food Res Int 2024; 186:114397. [PMID: 38729739 DOI: 10.1016/j.foodres.2024.114397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 05/12/2024]
Abstract
The formation mechanism behind the sophisticated aromas of sesame oil (SO) has not been elucidated. The interaction effects of the Maillard reaction (MR) and lipid oxidation on the aroma formation of fragrant sesame oil were investigated in model reaction systems made of l-lysine (Lys) and d-glucose (Glc) with or without fresh SO (FSO) or oxidized SO (OSO). The addition of OSO to the Lys-Glc model increased the MR browning at 294 nm and 420 nm and enhanced the DPPH radical scavenging activity greater than the addition of FSO (p < 0.05). The presence of lysine and glucose inhibited the oxidation of sesame oil, reduced the loss of γ-tocopherol, and facilitated the formation of sesamol (p < 0.05). The Maillard-lipid interaction led to the increased concentrations of some of the alkylpyrazines, alkylfurans, and MR-derived ketones and acids (p < 0.05) while reducing the concentrations of other pyrazines, lipid-derived furans, aliphatic aldehydes, ketones, alcohols, and acids (p < 0.05). The addition of FSO to the MR model enhanced the characteristic roasted, nutty, sweet, and fatty aromas in sesame oil (p < 0.05), while excessive lipid oxidation (OSO) brought about an unpleasant oxidized odor and reduced the characteristic aromas. This study helps to understand the sophisticated aroma formation mechanism in sesame oil and provides scientific instruction for precise flavor control in the production of sesame oil.
Collapse
Affiliation(s)
- Bei-Bei Hu
- School of Food Science and Technology, Henan University of Technology, 100 Lianhua Road, Zhengzhou 450001, China
| | - Wen-Ting Yin
- School of Food Science and Technology, Henan University of Technology, 100 Lianhua Road, Zhengzhou 450001, China.
| | - Heng-Bo Zhang
- School of Food Science and Technology, Henan University of Technology, 100 Lianhua Road, Zhengzhou 450001, China
| | - Zhuo-Qing Zhai
- School of Food Science and Technology, Henan University of Technology, 100 Lianhua Road, Zhengzhou 450001, China
| | - Hua-Min Liu
- School of Food Science and Technology, Henan University of Technology, 100 Lianhua Road, Zhengzhou 450001, China
| | - Xue-de Wang
- School of Food Science and Technology, Henan University of Technology, 100 Lianhua Road, Zhengzhou 450001, China
| |
Collapse
|
17
|
Dai M, Xin H, Dai W, Huang X, Wang X. Association of cooking oil and incident of frailty in older adults: a cohort study. BMC Geriatr 2024; 24:424. [PMID: 38741040 DOI: 10.1186/s12877-024-05052-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 05/07/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Studies examining the potential association between cooking oil and frailty risk in older adults have produced conflicting outcomes. Therefore, our objective was to explore the relationship between cooking oil (vegetable and animal fat oils), changes in oil usage, and the risk of frailty in older adults. METHODS We included 4,838 participants aged ≥ 65 years without frailty (frailty index < 0.25) from the 2011 wave of the Chinese Longitudinal Healthy Longevity Survey. Follow-up occurred in the 2014 and 2018 waves. Cox proportional hazard models were utilized to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) to examine the association between cooking oil and frailty. Additionally, we evaluated the effect of switching cooking oil on frailty during the follow-up period. RESULTS During a median follow-up of 3.0 (2.8-6.9) years, 1,348 individuals (27.9%) developed frailty. Compared to those using vegetable oil, users of animal fat oil had a lower risk of frailty (HR = 0.72, 95% CI: 0.61-0.85). Participants who switched from vegetable oil to animal fat oil, as well as those consistently using animal fat oil, had lower risks of frailty with HRs of 0.70 (0.52-0.95) and 0.63 (0.51-0.77) respectively, compared to those who consistently used vegetable oil. Conversely, individuals who switched from animal fat oil to vegetable oil experienced an increased risk of frailty (HR: 1.41, 95% CI: 1.01-1.97). CONCLUSIONS The utilization of animal fat oil in cooking exhibited a reduced frailty risk among older adults. Conversely, transitioning from animal fat oil to vegetable oil may elevate the risk. These findings propose that substituting vegetable oil with animal fat oil in the diet may safeguard against frailty.
Collapse
Affiliation(s)
- Miao Dai
- Department of Geriatrics, Jiujiang First People's Hospital, Jiujiang, Jiangxi, 332000, China
| | - Huaping Xin
- Department of Geriatrics, Yichun People's Hospital, Yichun, Jiangxi, 330600, China
| | - Weiwei Dai
- Department of Dermatology, Jiujiang First People's Hospital, Jiujiang, Jiangxi, 332000, China
| | - Xiaohong Huang
- Department of Geriatrics, Jiujiang First People's Hospital, Jiujiang, Jiangxi, 332000, China
| | - Xiang Wang
- Department of Cardiology, Jiujiang First People's Hospital, Jiujiang, Jiangxi, 332000, China.
| |
Collapse
|
18
|
Yuenyong J, Bennett C, Jiamyangyuen S, Mahatheeranont S, Sookwong P. Development of a Simultaneous Normal-Phase HPLC Analysis of Lignans, Tocopherols, Phytosterols, and Squalene in Sesame Oil Samples. Foods 2024; 13:1368. [PMID: 38731739 PMCID: PMC11083186 DOI: 10.3390/foods13091368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
The objective of this study was to develop a simultaneous analytical method for the determination of lignans, tocols, phytosterols, and squalene using high-performance liquid chromatography coupled with a diode array and fluorescence detector (HPLC-DAD-FLD). The method employed a VertisepTM UPS silica HPLC column (4.6 × 250 mm, 5 µm) with a mobile phase mixture of n-hexane/tetrahydrofuran/2-propanol. This approach enabled the simultaneous analysis of ten compounds within 22 min. The linear correlation (R2) exceeded 0.9901. The limit of detection (LOD) and limit of quantitation (LOQ) were up to 0.43 µg mL-1 for lignans and tocopherols and up to 326.23 µg mL-1 for phytosterol and squalene. The precision and accuracy of the intra-day and inter-day variation were less than 1.09 and 3.32% relative standard deviations (RSDs). Furthermore, the developed method was applied for the analysis of targeted compounds in twenty-eight sesame oil samples (1775-8965 µg g-1 total lignans, 29.7-687.9 µg g-1 total tocopherols, 2640-9500 µg g-1 phytosterol, and 245-4030 µg g-1 squalene). The HPLC method that has been developed was proven to be a reliable and effective tool for the determination of those functional compounds among sesame oil samples.
Collapse
Affiliation(s)
- Jitkunya Yuenyong
- Rice and Cereal Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (J.Y.); (C.B.); (S.M.)
- The Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chonlada Bennett
- Rice and Cereal Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (J.Y.); (C.B.); (S.M.)
- Material Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sudarat Jiamyangyuen
- Division of Food Science and Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
| | - Sugunya Mahatheeranont
- Rice and Cereal Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (J.Y.); (C.B.); (S.M.)
- Material Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- The Functional Food Research Center for Well-Being, Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Phumon Sookwong
- Rice and Cereal Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (J.Y.); (C.B.); (S.M.)
- Material Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- The Functional Food Research Center for Well-Being, Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
19
|
Dossou SSK, Luo Z, Deng Q, Zhou R, Zhang Y, Li D, Li H, Tozo K, You J, Wang L. Biochemical and Molecular Insights into Variation in Sesame Seed Antioxidant Capability as Revealed by Metabolomics and Transcriptomics Analysis. Antioxidants (Basel) 2024; 13:514. [PMID: 38790619 PMCID: PMC11117558 DOI: 10.3390/antiox13050514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Sesame seeds are important resources for relieving oxidation stress-related diseases. Although a significant variation in seeds' antioxidant capability is observed, the underlying biochemical and molecular basis remains elusive. Thus, this study aimed to reveal major seed components and key molecular mechanisms that drive the variability of seeds' antioxidant activity (AOA) using a panel of 400 sesame accessions. The seeds' AOA, total flavonoid, and phenolic contents varied from 2.03 to 78.5%, 0.072 to 3.104 mg CAE/g, and 2.717 to 21.98 mg GAE/g, respectively. Analyses revealed that flavonoids and phenolic acids are the main contributors to seeds' AOA variation, irrespective of seed coat color. LC-MS-based polyphenol profiling of high (HA) and low (LA) antioxidant seeds uncovered 320 differentially accumulated phenolic compounds (DAPs), including 311 up-regulated in HA seeds. Tricin, persicoside, 5,7,4',5'-tetrahydro-3',6-dimethoxyflavone, 8-methoxyapigenin, and 6,7,8-tetrahydroxy-5-methoxyflavone were the top five up-regulated in HA. Comparative transcriptome analysis at three seed developmental stages identified 627~2357 DEGs and unveiled that differential regulation of flavonoid biosynthesis, phenylpropanoid biosynthesis, and stilbene biosynthesis were the key underlying mechanisms of seed antioxidant capacity variation. Major differentially regulated phenylpropanoid structural genes and transcription factors were identified. SINPZ0000571 (MYB), SINPZ0401118 (NAC), and SINPZ0500871 (C3H) were the most highly induced TFs in HA. Our findings may enhance quality breeding.
Collapse
Affiliation(s)
- Senouwa Segla Koffi Dossou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Laboratory of Plant Biotechnology and Physiology, University of Lomé, Lomé 01 BP 1515, Togo;
| | - Zishu Luo
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Qianchun Deng
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Rong Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Yanxin Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Donghua Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Huan Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Koffi Tozo
- Laboratory of Plant Biotechnology and Physiology, University of Lomé, Lomé 01 BP 1515, Togo;
| | - Jun You
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Linhai Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| |
Collapse
|
20
|
Mostashari P, Mousavi Khaneghah A. Sesame Seeds: A Nutrient-Rich Superfood. Foods 2024; 13:1153. [PMID: 38672826 PMCID: PMC11049391 DOI: 10.3390/foods13081153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/23/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Sesame seeds (Sesamum indicum L.) have been cultivated for thousands of years and have long been celebrated for their culinary versatility. Beyond their delightful nutty flavor and crunchy texture, sesame seeds have also gained recognition for their remarkable health benefits. This article provides an in-depth exploration of the numerous ways in which sesame seeds contribute to overall well-being. Sesame seeds are a powerhouse of phytochemicals, including lignans derivatives, tocopherol isomers, phytosterols, and phytates, which have been associated with various health benefits, including the preservation of cardiovascular health and the prevention of cancer, neurodegenerative disorders, and brain dysfunction. These compounds have also been substantiated for their efficacy in cholesterol management. Their potential as a natural source of beneficial plant compounds is presented in detail. The article further explores the positive impact of sesame seeds on reducing the risk of chronic diseases thanks to their rich polyunsaturated fatty acids content. Nevertheless, it is crucial to remember the significance of maintaining a well-rounded diet to achieve the proper balance of n-3 and n-6 polyunsaturated fatty acids, a balance lacking in sesame seed oil. The significance of bioactive polypeptides derived from sesame seeds is also discussed, shedding light on their applications as nutritional supplements, nutraceuticals, and functional ingredients. Recognizing the pivotal role of processing methods on sesame seeds, this review discusses how these methods can influence bioactive compounds. While roasting the seeds enhances the antioxidant properties of the oil extract, certain processing techniques may reduce phenolic compounds.
Collapse
Affiliation(s)
- Parisa Mostashari
- Department of Food Science and Technology, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran 1981619573, Iran;
- Department of Food Science and Technology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran 1941933111, Iran
| | - Amin Mousavi Khaneghah
- Faculty of Biotechnologies (BioTech), ITMO University, 9 Lomonosova Street, Saint Petersburg 191002, Russia
| |
Collapse
|
21
|
Wang R, Wu LX, Guo BX, Zhao PH, Yin WT, Liu HM, Mei HX, Duan YH. Characterization of aroma-active compounds in sesame hulls at different roasting temperatures by SAFE and GC-O-MS. Food Chem X 2024; 21:101203. [PMID: 38384683 PMCID: PMC10878863 DOI: 10.1016/j.fochx.2024.101203] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/29/2024] [Accepted: 02/04/2024] [Indexed: 02/23/2024] Open
Abstract
The study characterized the aroma-active compounds produced by sesame hulls at three roasting temperatures and analyzed the similarities and differences in the aroma profile of sesame hulls with whole seeds and kernels after roasting. Roasting hulls produced mainly furans, aldehydes, and ketones volatiles. 140 Compounds were identified as aroma-active compounds, including 36 key aroma compounds (odor activity value, OAV ≥ 1). Among them, furanone (caramel-like, OAV = 80), 3-methylbutanal (fruity, OAV = 124), and 2-methoxy-4-vinylphenol (burnt, smoky, OAV = 160) gave hulls (180 °C) sweet, burnt, and smoky aroma. Due to the contribution of vanillin (fatty, sweet milk, OAV = 45), 2-hydroxy-3-butanone (caramel-like, roast, OAV = 46), and 2-methoxy-4-vinylphenol (OAV = 78), hulls (200 °C) shown strong sweet and roast note. These results identified compounds that contributed significantly to the aroma of sesame hulls and elucidated the contribution of sesame hulls to the flavor of roasted whole seeds and sesame oil.
Collapse
Affiliation(s)
- Rui Wang
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Lin-Xuan Wu
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Bing-Xin Guo
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Peng-Hao Zhao
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Wen-Ting Yin
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Hua-Min Liu
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Hong-Xian Mei
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450008, China
| | - Ying-Hui Duan
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450008, China
| |
Collapse
|
22
|
Kim S, Lee E, Lee J, An YJ, Oh E, Kim JI, Kim SW, Kim MY, Lee MH, Cho KS. Identification of QTLs and allelic effect controlling lignan content in sesame ( Sesamum indicum L.) using QTL-seq approach. Front Genet 2023; 14:1289793. [PMID: 38148976 PMCID: PMC10750367 DOI: 10.3389/fgene.2023.1289793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/27/2023] [Indexed: 12/28/2023] Open
Abstract
Sesame (Sesamum indicum L.), an oilseed crop, is gaining worldwide recognition for its healthy functional ingredients as consumption increases. The content of lignans, known for their antioxidant and anti-inflammatory effects, is a key agronomic trait that determines the industrialization of sesame. However, the study of the genetics and physiology of lignans in sesame is challenging, as they are influenced by multiple genes and environmental factors, therefore, the understanding of gene function and synthetic pathways related to lignan in sesame is still limited. To address these knowledge gaps, we conducted genetic analyses using F7 recombinant inbred line (RIL) populations derived from Goenbaek and Gomazou as low and high lignin content variants, respectively. Using the QTL-seq approach, we identified three loci, qLignan1-1, qLignan6-1, and qLignan11-1, that control lignan content, specifically sesamin and sesamolin. The allelic effect between loci was evaluated using the RIL population. qLignan6-1 had an additive effect that increased lignan content when combined with the other two loci, suggesting that it could be an important factor in gene pyramiding for the development of high-lignan varieties. This study not only highlights the value of sesame lignan, but also provides valuable insights for the development of high-lignan varieties through the use of DNA markers in breeding strategies. Overall, this research contributes to our understanding of the importance of sesame oil and facilitates progress in sesame breeding for improved lignan content.
Collapse
Affiliation(s)
- Sungup Kim
- Upland Crop Breeding Research Division, Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang, Republic of Korea
| | - Eunsoo Lee
- Upland Crop Breeding Research Division, Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang, Republic of Korea
| | - Jeongeun Lee
- Upland Crop Breeding Research Division, Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang, Republic of Korea
| | - Yeon Ju An
- Upland Crop Breeding Research Division, Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang, Republic of Korea
| | - Eunyoung Oh
- Upland Crop Breeding Research Division, Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang, Republic of Korea
| | - Jung In Kim
- Upland Crop Breeding Research Division, Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang, Republic of Korea
| | - Sang Woo Kim
- Upland Crop Breeding Research Division, Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang, Republic of Korea
| | - Min Young Kim
- Upland Crop Breeding Research Division, Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang, Republic of Korea
| | - Myoung Hee Lee
- Upland Crop Breeding Research Division, Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang, Republic of Korea
| | - Kwang-Soo Cho
- Central Crop Breeding Research Division, Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration, Suwon, Republic of Korea
| |
Collapse
|
23
|
Langyan S, Yadava P, Khan FN, Sharma S, Singh R, Bana RS, Singh N, Kaur V, Kalia S, Kumar A. Trends and advances in pre- and post-harvest processing of linseed oil for quality food and health products. Crit Rev Food Sci Nutr 2023; 65:746-769. [PMID: 38032160 DOI: 10.1080/10408398.2023.2280768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Linseed is an ancient crop used for diverse purposes since the beginning of civilization. In recent times, linseed has emerged as a superfood due to its high content of health-promoting omega-3 fatty acids and other bioactive compounds. Among primary health effects, it has potential to manage hypertension, diabetes, osteoporosis, atherosclerosis, cancer, arthritis, neurological, cardiovascular diseases including blood cholesterol levels, constipation, diarrhea, and autoimmune disorders etc. due to the presence of omega-3 fatty acid, lignans, high dietary fibers, and proteins, whereas, secondary health effects comprise of relieving from various skin disorders. Due to these health-beneficial properties, interest in linseed oil necessitates the intensification of research efforts on various aspects. These include cultivation technology, varietal and genetic improvement, post-harvest processing, profiling of nutrients and bioactive compounds, pre-clinical and clinical studies, etc. The present review discussed the advances in linseed research including pre- and post-harvest processing. However, focus on the bioactive compounds present in linseed oil and their health effects are also presented. Linseed cultivation, pre- and post-harvest processing aspects are covered including climatic, edaphic, agronomic factors, type of cultivar and storage conditions etc, which impact the overall oil yield and its nutritional quality. Various emerging applications of linseed oil in functional food, nutraceutical, pharmaceutical, and cosmeceutical preparations were also presented in detail. Further, recommendations were made on linseed oil research in the field of genetics, breeding germplasm resources and genome editing for exploring its full applications as a nutrition and health product.
Collapse
Affiliation(s)
- Sapna Langyan
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Pranjal Yadava
- Indian Agricultural Research Institute, New Delhi, India
| | | | - Sanjula Sharma
- Oilseed Section, Punjab Agricultural University, Ludhiana, India
| | - Renu Singh
- Indian Agricultural Research Institute, New Delhi, India
| | | | - Nisha Singh
- National Institute for Plant Biotechnology, New Delhi, India
| | - Vikender Kaur
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | | | - Ashok Kumar
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| |
Collapse
|
24
|
Meng Z, Liu D, Li S, Xu Z, Deng Q, Liu Y. A fast multi-residue analysis of twenty-four classes of pesticide in sesame (Sesamum indicum L.) and their migration into processed products. Food Res Int 2023; 173:113322. [PMID: 37803633 DOI: 10.1016/j.foodres.2023.113322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 10/08/2023]
Abstract
Sesame is widely used as a nutritional supplement or condiment because of its nutritious properties and palatable flavor. However, the extensive use of pesticides in sesame fields has paradoxically decreased the nutritional vantage. The current study used QuEChERS with a low-temperature freezing method to develop a multi-residue analytical approach to detect target analytes (pesticides) in sesame seed, sesame oil, sesame paste, and sesame meal. The migration ability of target pesticides during oil processing was investigated using HPLC-MS/MS and GC-MS: 35% of pesticides decreased, with processing factors (PFs) lower than 0.98, whereas 65% migrated from the seed to the oil during processing. The migration success of methoxyfenozide was the highest, while clothianidin and pymetrozine demonstrated a significantly lower rate of transfer. The results provide insight into the types of pesticides that should be used in farming practices of sesame to decrease the impact on human health.
Collapse
Affiliation(s)
- Ziwei Meng
- Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2, Haidian District, Beijing 100193, PR China.
| | - Dan Liu
- Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2, Haidian District, Beijing 100193, PR China.
| | - Shuhui Li
- Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2, Haidian District, Beijing 100193, PR China.
| | - Zhiyi Xu
- Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2, Haidian District, Beijing 100193, PR China.
| | - Qianqian Deng
- Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2, Haidian District, Beijing 100193, PR China.
| | - Yang Liu
- Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2, Haidian District, Beijing 100193, PR China.
| |
Collapse
|
25
|
Comini E, Rubiales D, Reveglia P. Variability of Fatty Acid Composition and Lignan Content in Sesame Germplasm, and Effect of Roasting. ACS FOOD SCIENCE & TECHNOLOGY 2023; 3:1747-1758. [PMID: 37881444 PMCID: PMC10594645 DOI: 10.1021/acsfoodscitech.3c00304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 10/27/2023]
Abstract
Sesame (Sesamum indicum) seeds are highly valued for their culinary applications and for producing a premium-quality oil. This study investigated the polyphenol content and fatty acid composition of a set of sesame accessions and examined their association with seed colors. Among the different colors, black-seeded accessions exhibited the highest total lignan content, while white-seeded accessions had average lower levels. Brown-seeded accessions showed relatively lower concentrations of sesamol and intermediate levels of sesamolin and sesamin than other colors. The oil derived from these seeds contained unsaturated fatty acids (UFAs) and saturated fatty acids (SFAs), nutritionally crucial for human consumption. Brown varieties exhibited higher concentrations of these fatty acids. Roasting black and white sesame seeds at increasing temperatures (180 and 250 °C) significantly affected lignan and UFAs concentrations. Higher temperatures resulted in elevated levels of detrimental t-oleic and t-linoleic acids. Furthermore, sesamolin content notably decreased at 180 °C and became undetectable at 250 °C. The temperature also caused a marked increase in sesamol, regardless of seed color. PCA analysis highlighted clusters between white and black varieties according to roasting temperature, displaying the potential application of chemometrics to assess processing effects and ensure sesame quality and safety. This research provides valuable insights for exploiting sesame within agrosystems in Mediterranean climates.
Collapse
Affiliation(s)
- Eleonora Comini
- Institute for Sustainable
Agriculture, CSIC, Córdoba, 14004, Spain
| | - Diego Rubiales
- Institute for Sustainable
Agriculture, CSIC, Córdoba, 14004, Spain
| | | |
Collapse
|
26
|
Riya P, Kumar SS, Giridhar P. Phytoconstituents, GC-MS Characterization of Omega Fatty Acids, and Antioxidant Potential of Less-Known Plant Rivina humilis L. ACS OMEGA 2023; 8:28519-28530. [PMID: 37576640 PMCID: PMC10413828 DOI: 10.1021/acsomega.3c02883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/12/2023] [Indexed: 08/15/2023]
Abstract
Rivina humilis L. (Petiveriaceae), commonly known as the pigeon berry, accumulates betalains in berries. The present study was focused on identifying the phytoconstituents, mineral content, fatty acid composition, phenolics, flavonoids, antinutritional factors, and antioxidant activities of different plant parts (leaf, stem, root, and seeds), which are otherwise not well explored. Phytoconstituent analysis revealed seeds as a potential source of carbohydrates (50.15 g/100 g), proteins (10.96 g/100 g), and fats (11.25 g/100 g). Roots showed the highest fat (17.66 g/100 g) and dietary fiber (81.49 g/100 g). Leaves and roots contain more iron (29.59 and 29.39 mg/100 g), whereas seed has high zinc content (12.09 mg/100 g). Leaf oil showed 47.83 g/100 g of omega-3-fatty acid, confirmed by GC-MS analysis. Seed oil showed 22.23 g/100, 44.48 g/100, and 24.04 g/100 g of palmitic, oleic, and linoleic acids, respectively. The leaf extract has the highest TPC (597.55 mg/100 g), followed by the seed (421.68 mg/100 g). The leaf's 80% ethanolic extract had high TFC (2442.19 mg/100 g), followed by 70% methanolic extract (1566.25 mg/100 g). The antinutritional profile indicated significant phytic acid and oxalates in the leaf (9.3 g/100 and 2.07 g/100 g) and stem (6.9 and 1.58 g/100 g) and low tannin content (<0.5 g/100 g). The leaf's 80% ethanolic extract exhibited double the TAA than 70% methanolic extract (1.52 g/100 g). The leaf with an 80% ethanolic extract had the lowest DPPH and ABTS radical scavenging EC50 (2.22 and 0.37 mg/mL). The leaf with an 80% ethanolic extract (479.73 mg/100 g) and seed (391.14 mg/100 g) had the highest FRAP activity. Our study proves that different parts of R. humilis had a good content of phytoconstituents, bioactives, and antioxidant activities. Hence, R. humilis leaves and seeds are a novel source of omega fatty acids and minerals reported for the first time and have potential applications in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Poyilil Riya
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Plant
Cell Biotechnology Department, CSIR-Central
Food Technological Research Institute, Mysuru, Karnataka 570020, India
| | - Sandopu Sravan Kumar
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Plant
Cell Biotechnology Department, CSIR-Central
Food Technological Research Institute, Mysuru, Karnataka 570020, India
| | - Parvatam Giridhar
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Plant
Cell Biotechnology Department, CSIR-Central
Food Technological Research Institute, Mysuru, Karnataka 570020, India
| |
Collapse
|
27
|
Matsumura Y, Kitabatake M, Kayano SI, Ito T. Dietary Phenolic Compounds: Their Health Benefits and Association with the Gut Microbiota. Antioxidants (Basel) 2023; 12:antiox12040880. [PMID: 37107256 PMCID: PMC10135282 DOI: 10.3390/antiox12040880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 04/08/2023] Open
Abstract
Oxidative stress causes various diseases, such as type II diabetes and dyslipidemia, while antioxidants in foods may prevent a number of diseases and delay aging by exerting their effects in vivo. Phenolic compounds are phytochemicals such as flavonoids which consist of flavonols, flavones, flavanonols, flavanones, anthocyanidins, isoflavones, lignans, stilbenoids, curcuminoids, phenolic acids, and tannins. They have phenolic hydroxyl groups in their molecular structures. These compounds are present in most plants, are abundant in nature, and contribute to the bitterness and color of various foods. Dietary phenolic compounds, such as quercetin in onions and sesamin in sesame, exhibit antioxidant activity and help prevent cell aging and diseases. In addition, other kinds of compounds, such as tannins, have larger molecular weights, and many unexplained aspects still exist. The antioxidant activities of phenolic compounds may be beneficial for human health. On the other hand, metabolism by intestinal bacteria changes the structures of these compounds with antioxidant properties, and the resulting metabolites exert their effects in vivo. In recent years, it has become possible to analyze the composition of the intestinal microbiota. The augmentation of the intestinal microbiota by the intake of phenolic compounds has been implicated in disease prevention and symptom recovery. Furthermore, the “brain–gut axis”, which is a communication system between the gut microbiome and brain, is attracting increasing attention, and research has revealed that the gut microbiota and dietary phenolic compounds affect brain homeostasis. In this review, we discuss the usefulness of dietary phenolic compounds with antioxidant activities against some diseases, their biotransformation by the gut microbiota, the augmentation of the intestinal microflora, and their effects on the brain–gut axis.
Collapse
Affiliation(s)
- Yoko Matsumura
- Department of Nutrition, Faculty of Health Sciences, Kio University, Kitakatsuragi-gun, Nara 635-0832, Japan
- Department of Immunology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Masahiro Kitabatake
- Department of Immunology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Shin-ichi Kayano
- Department of Nutrition, Faculty of Health Sciences, Kio University, Kitakatsuragi-gun, Nara 635-0832, Japan
| | - Toshihiro Ito
- Department of Immunology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| |
Collapse
|
28
|
Influence of different thermal treatment methods on the processing qualities of sesame seeds and cold-pressed oil. Food Chem 2023; 404:134683. [DOI: 10.1016/j.foodchem.2022.134683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 10/11/2022] [Accepted: 10/16/2022] [Indexed: 11/05/2022]
|
29
|
Battino M, Belwal T, Prieto MA. Valorization of food products using natural functional compounds for improving organoleptic and functional chemistry. Food Chem 2023. [DOI: 10.1016/j.foodchem.2022.134181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Tansawat R, Jindawatt S, Ekkaphan P, Ruengphayak S, Vanavichit A, Suttipanta N, Vimolmangkang S, De-Eknamkul W. Metabolomics approach to identify key volatile aromas in Thai colored rice cultivars. FRONTIERS IN PLANT SCIENCE 2023; 14:973217. [PMID: 36925754 PMCID: PMC10011493 DOI: 10.3389/fpls.2023.973217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
In addition to white jasmine rice, Thailand has many native-colored rice varieties with numerous health benefits and the potential to become a global economic crop. However, the chemical characteristics of aromatic substances in native-colored rice are still mostly unknown. This study aimed to identify the key volatile aroma compounds and the biosynthetic pathways possibly involved in their formation in Thai native-colored rice varieties, and thus leading to the search for potential genetic markers for breeding colored rice with better aromatic properties. Twenty-three rice varieties in four categories: aromatic white, aromatic black, non-aromatic black, and non-aromatic red, were investigated (n=10 per variety). Seed husks were removed before the analysis of rice volatile aromas by static headspace gas chromatography-mass spectrometry. Untargeted metabolomics approach was used to discover the key volatile compounds in colored rice. Forty-eight compounds were detected. Thirty-eight of the 48 compounds significantly differed among groups at p<0.05, 28 of which at p<0.0001, with the non-aromatic black and red rice containing much lower content of most volatile constituents than the aromatic black and white rice. Focusing on the aromatic black rice, the samples appeared to contain high level of both compound groups of aldehydes (3-methylbutanal, 2-methylbutanal, 2-methylpropanal, pentanal, hexanal) and alcohols (butane-2,3-diol, pentan-1-ol, hexan-1-ol). Biosynthetically, these distinctive black-rice volatile compounds were proposed to be formed from the metabolic degradation of branched-chain amino acids (L-leucine, L-isoleucine and L-valine) and polyunsaturated fatty acids (linoleic acid and α-linolenic acid), involving the branched-chain aminotransferases and keto-acid decarboxylases and the 9-lipoxygonases and 13-lipoxygeases, respectively. The proposed degradative pathways of amino acids and fatty acids were well agreed with the profiles key volatile compounds detected in the Thai native-colored rice varieties.
Collapse
Affiliation(s)
- Rossarin Tansawat
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Supawat Jindawatt
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Paweena Ekkaphan
- Scientific and Technological Research Equipment Center, Chulalongkorn University, Bangkok, Thailand
| | - Siriphat Ruengphayak
- Rice Science Center & Rice Gene Discovery Unit, Kasetsart University, Nakhon Pathom, Thailand
| | - Apichart Vanavichit
- Rice Science Center & Rice Gene Discovery Unit, Kasetsart University, Nakhon Pathom, Thailand
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom, Thailand
| | - Nitima Suttipanta
- Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubon Ratchathani, Thailand
| | - Sornkanok Vimolmangkang
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Wanchai De-Eknamkul
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
31
|
Cortés-Camargo S, Román-Guerrero A, Alvarez-Ramirez J, Alpizar-Reyes E, Velázquez-Gutiérrez SK, Pérez-Alonso C. Microstructural influence on physical properties and release profiles of sesame oil encapsulated into sodium alginate-tamarind mucilage hydrogel beads. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2023. [DOI: 10.1016/j.carpta.2023.100302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023] Open
|
32
|
Grigaliūnaitė I, Ruiz-Méndez MV. Cleaner lipid processing: Supercritical carbon dioxide (Sc-CO2) and short path distillation. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023. [PMID: 37516465 DOI: 10.1016/bs.afnr.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Today, regulations and consumer awareness demand production technologies with minimum impact on the environment and maximum utilization of available resources. In the field of lipids, two well-known technologies for avoiding the use of organic solvents and chemicals stand out: supercritical (Sc) fluids and short path distillation (SPD). To date, both technologies involve high operating costs that have limited their application to selected high value-added products which are high temperature sensitive. However, improvements in process control and materials make further implementation of these techniques possible. In this chapter, an integrative review has been carried out with the aim of compiling the literature on the application of these technologies to lipid extraction, micronization and fractionation of liquid mixtures. Special attention has been paid to the separation of compounds by both technologies: deacidification, partial purification of acylglycerol compounds, isolation of unsaponifiable compounds and separation of toxic and polluting compounds.
Collapse
|
33
|
Application of Maillard Reaction Products Derived Only from Enzymatically Hydrolyzed Sesame Meal to Enhance the Flavor and Oxidative Stability of Sesame Oil. Molecules 2022; 27:molecules27248857. [PMID: 36557989 PMCID: PMC9781902 DOI: 10.3390/molecules27248857] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 11/27/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
The low-temperature roasting of sesame oil has become increasingly popular because of its nutritional benefits; however, the flavor is reduced. In order to improve the quality of sesame oil without exogenous addition, sesame meal was hydrolyzed and further used to prepare Maillard reaction products (MRPs) while protease hydrolysis (PH) and glucoamylase-protease hydrolysis (GPH) were used, and their respective Maillard products (PHM and GPHM) were added in the oils for reducing sugar and total sugar content determination, free amino acid determination, and color and descriptive sensory analysis, as well as electronic nose, SPME-GC-MS, odor activity value, and oxidative stability analyses. Results showed that the MRPs could be produced using the enzymatically hydrolyzed sesame meal without exogenous addition, and the oil flavor blended with GPHM (GPHM-SO) was significantly (p < 0.05) improved with the best sensory quality. The composition of pyrazines (119.35 μg/mL), furans (13.95 μg/mL), and sulfur substances (6.25 μg/mL) contributed positively to sensory properties in GPHM-SO, and 2,5-dimethylpyrazine, 2,6-dimethylpyrazine, and 2,3-dimethylpyrazine were characterized as the key flavor compounds with odor activity values of 7.01, 14.80, and 31.38, respectively. Furthermore, the oxidative stability of the oil was significantly improved with the addition of MRPs, and the shelf life of GPHM-SO was predicted to be extended by 1.9 times more than that of the crude oil based on the accelerated oxidation fitting analysis. In general, the MRPs derived only from sesame meal can enhance the flavor and oxidative stability of sesame oil and can be applied in the oil industry.
Collapse
|
34
|
Singh N, Jain P, Ujinwal M, Langyan S. Escalate protein plates from legumes for sustainable human nutrition. Front Nutr 2022; 9:977986. [PMID: 36407518 PMCID: PMC9672682 DOI: 10.3389/fnut.2022.977986] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 09/22/2022] [Indexed: 11/06/2022] Open
Abstract
Protein is one of the most important, foremost, and versatile nutrients in food. The quantity and quality of protein are determinants of its nutritional values. Therefore, adequate consumption of high-quality protein is essential for optimal growth, development, and health of humans. Based on short-term nitrogen balance studies, the Recommended Dietary Allowance of protein for the healthy adult with minimal physical activity is 0.8 g protein/kg body weight (BW) per day. Proteins are present in good quantities in not only animals but also in plants, especially in legumes. With the growing demand for protein, interest in plant proteins is also rising due to their comparative low cost as well as the increase in consumers' demand originating from health and environmental concerns. Legumes are nutrient-dense foods, comprising components identified as "antinutritional factors" that can reduce the bioavailability of macro and micronutrients. Other than nutritive value, the physiochemical and behavioral properties of proteins during processing plays a significant role in determining the end quality of food. The term "complete protein" refers to when all nine essential amino acids are present in the correct proportion in our bodies. To have a balanced diet, the right percentage of protein is required for our body. The consumption of these high protein-containing foods will lead to protein sustainability and eradicate malnutrition. Here, we shed light on major opportunities to strengthen the contribution of diversity in legume crops products to sustainable diets. This review will boost awareness and knowledge on underutilized proteinous foods into national nutritional security programs.
Collapse
Affiliation(s)
- Nisha Singh
- Department of Bioinformatics, Gujarat Biotechnology University, Gandhinagar, Gujarat, India
| | - Priyanka Jain
- National Institute of Plant Genome Research, New Delhi, India
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Noida, Uttar Pradesh, India
| | - Megha Ujinwal
- Department of Bioinformatics, Gujarat Biotechnology University, Gandhinagar, Gujarat, India
| | - Sapna Langyan
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| |
Collapse
|
35
|
Montenegro-Landívar MF, Tapia-Quirós P, Vecino X, Reig M, Granados M, Farran A, Cortina JL, Saurina J, Valderrama C. Recovery of Natural Polyphenols from Spinach and Orange By-Products by Pressure-Driven Membrane Processes. MEMBRANES 2022; 12:669. [PMID: 35877872 PMCID: PMC9317247 DOI: 10.3390/membranes12070669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 11/16/2022]
Abstract
Spinach and orange by-products are well recognized for their health benefits due to the presence of natural polyphenols with antioxidant activity. Therefore, the demand to produce functional products containing polyphenols recovered from vegetables and fruits has increased in the last decade. This work aims to use the integrated membrane process for the recovery of polyphenols from spinach and orange wastes, implemented on a laboratory scale. The clarification (microfiltration and ultrafiltration, i.e., MF and UF), pre-concentration (nanofiltration, NF), and concentration (reverse osmosis, RO) of the spinach and orange extracts were performed using membrane technology. Membrane experiments were carried out by collecting 1 mL of the permeate stream after increasing the flow rate in 1 mL/min steps. The separation and concentration factors were determined by HPLC-DAD in terms of total polyphenol content and by polyphenol families: hydroxybenzoic acids, hydroxycinnamic acids, and flavonoids. The results show that the transmembrane flux depended on the feed flow rate for MF, UF, NF, and RO techniques. For the spinach and orange matrices, MF (0.22 µm) could be used to remove suspended solids; UF membranes (30 kDa) for clarification; NF membranes (TFCS) to pre-concentrate; and RO membranes (XLE for spinach and BW30 for orange) to concentrate. A treatment sequence is proposed for the two extracts using a selective membrane train (UF, NF, and RO) to obtain polyphenol-rich streams for food, pharmaceutical, and cosmetic applications, and also to recover clean water streams.
Collapse
Affiliation(s)
- María Fernanda Montenegro-Landívar
- Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, Universitat Politècnica de Catalunya (UPC)—BarcelonaTECH, C/Eduard Maristany 10-14, 08930 Barcelona, Spain; (P.T.-Q.); (X.V.); (M.R.); (A.F.); (J.L.C.); (C.V.)
- Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain
| | - Paulina Tapia-Quirós
- Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, Universitat Politècnica de Catalunya (UPC)—BarcelonaTECH, C/Eduard Maristany 10-14, 08930 Barcelona, Spain; (P.T.-Q.); (X.V.); (M.R.); (A.F.); (J.L.C.); (C.V.)
- Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain
| | - Xanel Vecino
- Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, Universitat Politècnica de Catalunya (UPC)—BarcelonaTECH, C/Eduard Maristany 10-14, 08930 Barcelona, Spain; (P.T.-Q.); (X.V.); (M.R.); (A.F.); (J.L.C.); (C.V.)
- Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain
- Chemical Engineering Department, School of Industrial Engineering—Research Center in Technologies, Energy and Industrial Processes (CINTECX), Campus As Lagoas-Marcosende, University of Vigo, 36310 Vigo, Spain
| | - Mónica Reig
- Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, Universitat Politècnica de Catalunya (UPC)—BarcelonaTECH, C/Eduard Maristany 10-14, 08930 Barcelona, Spain; (P.T.-Q.); (X.V.); (M.R.); (A.F.); (J.L.C.); (C.V.)
- Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain
| | - Mercè Granados
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain; (M.G.); (J.S.)
| | - Adriana Farran
- Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, Universitat Politècnica de Catalunya (UPC)—BarcelonaTECH, C/Eduard Maristany 10-14, 08930 Barcelona, Spain; (P.T.-Q.); (X.V.); (M.R.); (A.F.); (J.L.C.); (C.V.)
- Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain
| | - José Luis Cortina
- Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, Universitat Politècnica de Catalunya (UPC)—BarcelonaTECH, C/Eduard Maristany 10-14, 08930 Barcelona, Spain; (P.T.-Q.); (X.V.); (M.R.); (A.F.); (J.L.C.); (C.V.)
- Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain
- Water Technology Centre (CETAQUA), Carretera d’Esplugues, 75, 08940 Cornellà de Llobregat, Spain
| | - Javier Saurina
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain; (M.G.); (J.S.)
| | - César Valderrama
- Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, Universitat Politècnica de Catalunya (UPC)—BarcelonaTECH, C/Eduard Maristany 10-14, 08930 Barcelona, Spain; (P.T.-Q.); (X.V.); (M.R.); (A.F.); (J.L.C.); (C.V.)
- Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain
| |
Collapse
|
36
|
Morya S, Menaa F, Jiménez-López C, Lourenço-Lopes C, BinMowyna MN, Alqahtani A. Nutraceutical and Pharmaceutical Behavior of Bioactive Compounds of Miracle Oilseeds: An Overview. Foods 2022; 11:foods11131824. [PMID: 35804639 PMCID: PMC9265468 DOI: 10.3390/foods11131824] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 02/01/2023] Open
Abstract
India plays an important role in the production of oilseeds, which are mainly cultivated for future extraction of their oil. In addition to the energic and nutritional contribution of these seeds, oilseeds are rich sources of bioactive compounds (e.g., phenolic compounds, proteins, minerals). A regular and moderate dietary supplementation of oilseeds promotes health, prevents the appearance of certain diseases (e.g., cardiovascular diseases (CVDs), cancers) and delays the aging process. Due to their relevant content in nutraceutical molecules, oilseeds and some of their associated processing wastes have raised interest in food and pharmaceutical industries searching for innovative products whose application provides health benefits to consumers. Furthermore, a circular economy approach could be considered regarding the re-use of oilseeds’ processing waste. The present article highlights the different oilseed types, the oilseeds-derived bioactive compounds as well as the health benefits associated with their consumption. In addition, the different types of extractive techniques that can be used to obtain vegetable oils rich from oilseeds, such as microwave-assisted extraction (MAE), ultrasonic-assisted extraction (UAE) and supercritical fluid extraction (SFE), are reported. We conclude that the development and improvement of oilseed markets and their byproducts could offer even more health benefits in the future, when added to other foods.
Collapse
Affiliation(s)
- Sonia Morya
- Department of Food Technology & Nutrition, School of Agriculture, Lovely Professional University (LPU), Punjab 144001, India
- Correspondence: (S.M.); (F.M.)
| | - Farid Menaa
- Department of Internal Medicine and Nanomedicine, California Innovations Corporation (Fluorotronics-CIC), San Diego 92037, CA, USA
- Correspondence: (S.M.); (F.M.)
| | | | - Catarina Lourenço-Lopes
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Vigo 36310, Spain;
| | | | - Ali Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia;
| |
Collapse
|