1
|
Shao C, Wang M, Li X, Kong Y, Li A, Li X, Zhang C, Wang Y, Zeng X, Gong H, Fan X. Improving the storage quality of sweet cherry by natamycin nanoparticles/chitosan coating. Int J Biol Macromol 2025; 289:138795. [PMID: 39681247 DOI: 10.1016/j.ijbiomac.2024.138795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/28/2024] [Accepted: 12/13/2024] [Indexed: 12/18/2024]
Abstract
In this study, natamycin nanoparticles were prepared by anti-solvent method, and natamycin nanoparticles/chitosan coating was prepared and investigated for the preservation of sweet cherry. The results of particle size showed that the prepared natamycin nanoparticles were nano-sized, with a particle size of 209 ± 10 nm. The results of scanning electron microscope (SEM) showed that the apparent morphology was a uniform spherical structure. Fourier transform infrared spectroscopy (FTIR) proved that the prepared natamycin after the combination of Polyvinylpyrrolidone (PVP) and natamycin still had its own functional groups without new chemical bond. Compared with the control samples the solubility of natamycin increased to 1 mg/mL, leading to the enhanced antifungal activity of natamycin nanoparticles/chitosan. Natamycin nanoparticles/chitosan effectively maintained the color of sweet cherry fruits and delayed the decline of firmness, total soluble solids (TSS) and titratable acidity (TA) during storage. In particular, it effectively delayed the decay of sweet cherries, with the lowest decay rate of 10.1 %, which was 66.4 % lower than that of the control group, and there wasn't decay of sweet cherry in 35 d storage. Therefore, natamycin nanoparticles/chitosan was effectively to delay cherry fruit senescence and improved the quality of sweet cherry during the storage period.
Collapse
Affiliation(s)
- Chen Shao
- School of Food Engineering, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Food Green Processing and Quality Control, Ludong University, Yantai, Shandong 264025, PR China
| | - Mengxin Wang
- School of Food Engineering, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Food Green Processing and Quality Control, Ludong University, Yantai, Shandong 264025, PR China
| | - Xiaohe Li
- School of Food Engineering, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Food Green Processing and Quality Control, Ludong University, Yantai, Shandong 264025, PR China
| | - Yanhui Kong
- Yantai Landscape Construction and Maintenance Center, Yantai, Shandong 264000, PR China
| | - Ao Li
- School of Food Engineering, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Food Green Processing and Quality Control, Ludong University, Yantai, Shandong 264025, PR China
| | - Xiulian Li
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Chaoqi Zhang
- School of Food Engineering, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Food Green Processing and Quality Control, Ludong University, Yantai, Shandong 264025, PR China
| | - Yunfan Wang
- School of Food Engineering, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Food Green Processing and Quality Control, Ludong University, Yantai, Shandong 264025, PR China
| | - Xiangquan Zeng
- Department of Food Science, College of Agriculture, Purdue University, West Lafayette, IN 47906, USA
| | - Hansheng Gong
- School of Food Engineering, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Food Green Processing and Quality Control, Ludong University, Yantai, Shandong 264025, PR China.
| | - Xinguang Fan
- School of Food Engineering, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Food Green Processing and Quality Control, Ludong University, Yantai, Shandong 264025, PR China.
| |
Collapse
|
2
|
Dai Y, Xing L, Liu S, Liu J, Zhu T, Jiang T, Zheng X, Zhou S, Lu J. Enhancing stability and flavor of mung bean-based milk through ultrasound treatment: Impacts on physical-chemical properties and protein structure. Int J Biol Macromol 2025; 286:138465. [PMID: 39645106 DOI: 10.1016/j.ijbiomac.2024.138465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/23/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
Mung bean-based milk (MBM) is a novel plant-based milk that offers several benefits. However, being a legume, the biggest challenge of MBM is its instability and off-flavor. The present study investigated changes in physical-chemical properties and flavor compounds during the ultrasound treatment of MBM. Compared to the untreated and ultrasonic samples before enzyme hydrolysis (UBE), the ultrasonic samples after enzyme hydrolysis and before homogenization (UBH) exhibited a smaller average particle size, higher magnitude of zeta potential, a homogenous structure, and fewer fragments. Ultrasound treatment shifted the protein secondary structure from ordered to disordered. The sample treated by ultrasound after enzymatic hydrolysis for 25 min had the highest free SH group, the lowest surface tension and the highest surface hydrophobicity, preventing protein aggregation. The off-flavor compounds in MBM, including pentanol, hexanol, and hexanal were significantly reduced in UBH 25 min sample. In conclusion, ultrasonication impacted the physical-chemical properties and flavor compounds considerably to improve the stability and flavor of MBM.
Collapse
Affiliation(s)
- Ying Dai
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory of Flavor Chemistry, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Lina Xing
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory of Flavor Chemistry, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Shuangneng Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory of Flavor Chemistry, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Jinqi Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory of Flavor Chemistry, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Tong Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory of Flavor Chemistry, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Tianqi Jiang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory of Flavor Chemistry, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Xiaowei Zheng
- Nutrition & Health Research Institute, COFCO Corporation, Beijing 102209, China
| | - Sumei Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory of Flavor Chemistry, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China.
| | - Jing Lu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory of Flavor Chemistry, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
3
|
Ning R, Cheng X, Lei F, Duan J, Wang K, Jiang J. Antimicrobial multi-crosslinking tamarind xyloglucan/protein-chitosan coating packaging films with self-recovery and biocompatible properties. Int J Biol Macromol 2024; 279:134949. [PMID: 39179071 DOI: 10.1016/j.ijbiomac.2024.134949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/08/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
Natural and high-quality biomass-based coating films are considered promising packaging to consumers. However, the poor mechanical properties and weak antimicrobial activity of biomass materials have limited their practical application. A cleaner and low-cost strategy is used to prepare antimicrobial, self-recovery, and biocompatible coating films using tamarind kernel powder (TKP) and chitosan (CS). The TKP protein and chitosan chains were covalently cross-linked with tetrakis(hydroxymethyl)phosphonium chloride (THPC) to form a three-dimensional network based on THPC-amine dynamic bonds, and act as a sacrificial bond. Then, the hydrogen bond forms an interpenetrating network to build a strong multi-network film. Thus, the THPC multi-crosslinking TKP based films showed enhanced stretchable property (increased from 3.23 % to 77.54 %), and self-recovery after 30 min of recovery. Additionally, the film has been found to exhibit low water vapor permeability, low oxygen transmittance rate, and excellent antimicrobial efficiency (maximum inhibition zones: 24.39 mm). Moreover, the prepared films were demonstrated to be biocompatible and non-hemolytic based on cell viability and hemolytic activity assays. The method described herein could broaden the scope of biomass-based materials in the realm of antimicrobial coating films.
Collapse
Affiliation(s)
- Ruxia Ning
- Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), National Forest and Grass Administration Woody Spices (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China
| | - Xichuang Cheng
- Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), National Forest and Grass Administration Woody Spices (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China
| | - Fuhou Lei
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China
| | - Jiufang Duan
- Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), National Forest and Grass Administration Woody Spices (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China
| | - Kun Wang
- Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), National Forest and Grass Administration Woody Spices (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China
| | - Jianxin Jiang
- Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), National Forest and Grass Administration Woody Spices (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
4
|
Cao Y, Zhang X, Song X, Li W, Ren Z, Feng J, Ma Z, Liu X, Wang Y. Efficacy and toxic action of the natural product natamycin against Sclerotinia sclerotiorum. PEST MANAGEMENT SCIENCE 2024; 80:1981-1990. [PMID: 38087429 DOI: 10.1002/ps.7930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/16/2023] [Accepted: 12/10/2023] [Indexed: 12/31/2023]
Abstract
BACKGROUND Sclerotinia stem rot caused by Sclerotinia sclerotiorum seriously endangers oilseed rape production worldwide, and the occurrence of fungicide-resistant mutants of S. sclerotiorum leads to control decline. Thus, it is critical to explore new green substitutes with different action mechanisms and high antifungal activity. Herein, the activity and the action mechanism of natamycin against S. sclerotiorum were evaluated. RESULTS Natamycin showed potent inhibition on the mycelial growth of S. sclerotiorum, and half-maximal effective concentration (EC50 ) values against 103 S. sclerotiorum strains ranged from 0.53 to 4.04 μg/mL (mean 1.44 μg/mL). Natamycin also exhibited high efficacy against both carbendazim- and dimethachlone-resistant strains of S. sclerotiorum on detached oilseed rape leaves. No cross-resistance was detected between natamycin and carbendazim. Natamycin markedly disrupted hyphal form, sclerotia formation, integrity of the cell membrane, and reduced the content of oxalic acid and ergosterol, whereas it increased the reactive oxygen species (ROS) and malondialdehyde content. Interestingly, exogenous addition of ergosterol could reduce the inhibition of natamycin against S. sclerotiorum. Importantly, natamycin significantly inhibited expression of the Cyp51 gene, which is contrary to results for the triazole fungicide flusilazole, indicating a different action mechanism from triazole fungicides. CONCLUSION Natamycin is a promising effective candidate for the resistance management of S. sclerotiorum. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuxuan Cao
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Xianyang, China
| | - Xu Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Xianyang, China
| | - Xiaoning Song
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Xianyang, China
| | - Wenkui Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Xianyang, China
- Provincial Center for Bio-Pesticide Engineering, Xianyang, China
| | - Zheng Ren
- College of Language and Culture, Northwest A&F University, Xianyang, China
| | - Juntao Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Xianyang, China
- Provincial Center for Bio-Pesticide Engineering, Xianyang, China
| | - Zhiqing Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Xianyang, China
- Provincial Center for Bio-Pesticide Engineering, Xianyang, China
| | - Xili Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Xianyang, China
| | - Yong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Xianyang, China
- Provincial Center for Bio-Pesticide Engineering, Xianyang, China
| |
Collapse
|
5
|
Yu F, Wu X, Chen W, Yan F, Li W. Computer-assisted discovery and evaluation of potential ribosomal protein S6 kinase beta 2 inhibitors. Comput Biol Med 2024; 172:108204. [PMID: 38484695 DOI: 10.1016/j.compbiomed.2024.108204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/11/2024] [Accepted: 02/19/2024] [Indexed: 03/26/2024]
Abstract
S6K2 is an important protein in mTOR signaling pathway and cancer. To identify potential S6K2 inhibitors for mTOR pathway treatment, a virtual screening of 1,575,957 active molecules was performed using PLANET, AutoDock GPU, and AutoDock Vina, with their classification abilities compared. The MM/PB(GB)SA method was used to identify four compounds with the strongest binding energies. These compounds were further investigated using molecular dynamics (MD) simulations to understand the properties of the S6K2/ligand complex. Due to a lack of available 3D structures of S6K2, OmegaFold served as a reliable 3D predictive model with higher evaluation scores in SAVES v6.0 than AlphaFold, AlphaFold2, and RoseTTAFold2. The 150 ns MD simulation revealed that the S6K2 structure in aqueous solvation experienced compression during conformational relaxation and encountered potential energy traps of about 19.6 kJ mol-1. The virtual screening results indicated that Lys75 and Lys99 in S6K2 are key binding sites in the binding cavity. Additionally, MD simulations revealed that the ligands remained attached to the activation cavity of S6K2. Among the compounds, compound 1 induced restrictive dissociation of S6K2 in the presence of a flexible region, compound 8 achieved strong stability through hydrogen bonding with Lys99, compound 9 caused S6K2 tightening, and the binding of compound 16 was heavily influenced by hydrophobic interactions. This study suggests that these four potential inhibitors with different mechanisms of action could provide potential therapeutic options.
Collapse
Affiliation(s)
- Fangyi Yu
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Xiaochuan Wu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - WeiSong Chen
- Department of Respiratory Medicine, Jinhua Municipal Central Hospital, Jinhua, Zhejiang, 321000, China
| | - Fugui Yan
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Wen Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China.
| |
Collapse
|
6
|
Chen J, Zhang Z, Li R, Li H, Tang H. Investigating the interaction mechanism between gliadin and lysozyme through multispectroscopic analysis and molecular dynamic simulations. Food Res Int 2024; 180:114081. [PMID: 38395578 DOI: 10.1016/j.foodres.2024.114081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024]
Abstract
The development of stable nanocomplexes based on gliadin and other biopolymers shows potential applications as delivery vehicles in the food industry. However, there is limited study specifically targeting the gliadin-lysozyme system, and their underlying interaction mechanism remains poorly understood. Therefore, the objective of this study was to investigate the binding mechanism between gliadin and lysozyme using a combination of multispectroscopic methods and molecular dynamic simulations. Stable gliadin-lysozyme complex nanoparticles were prepared using an anti-solvent precipitation method with a gliadin-to-lysozyme mass ratio of 2:1 and pH 4.0. The characteristic changes in the UV-visible spectrum of gliadin induced by lysozyme confirmed the complex formation. The analyses of fluorescence, FT-IR spectra, and dissociation tests demonstrated the indispensability of hydrophobic, electrostatic, and hydrogen bonding interactions in the preparation of the composites. Scanning electron microscopy revealed that the surface morphology of the nanoparticles changed from smooth and spherical to rough and irregular with the addition of lysozyme. Furthermore, molecular dynamic simulations suggested that lysozyme bound to the hydrophobic region of gliadin and hydrogen bonding was crucial for the stability of the complex. These findings contribute to the advancement of gliadin-lysozyme complex nanoparticles as an efficient delivery system for encapsulating bioactive compounds in food industry.
Collapse
Affiliation(s)
- Jin Chen
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, PR China
| | - Zhuangwei Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| | - Renjie Li
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, PR China
| | - Huihui Li
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, PR China
| | - Hongjin Tang
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, PR China.
| |
Collapse
|
7
|
Marcano RGV, Khalil NM, de Lurdes Felsner M, Mainardes RM. Mitigating amphotericin B cytotoxicity through gliadin-casein nanoparticles: Insights into synthesis, optimization, characterization, in vitro release and cytotoxicity evaluation. Int J Biol Macromol 2024; 260:129471. [PMID: 38237837 DOI: 10.1016/j.ijbiomac.2024.129471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 12/27/2023] [Accepted: 01/11/2024] [Indexed: 01/29/2024]
Abstract
Amphotericin B (AmB) is a widely used antifungal agent; however, its clinical application is limited due to severe side effects and nephrotoxicity associated with parenteral administration. In recent years, there has been growing interest in the utilization of food-grade materials as innovative components for nanotechnology-based drug delivery systems. This study introduces gliadin/casein nanoparticles encapsulating AmB (AmB_GliCas NPs), synthesized via antisolvent precipitation. Formulation was refined using a 24 factorial design, assessing the influence of gliadin and casein concentrations, as well as organic and aqueous phase volumes, on particle size, polydispersity index (PDI), and zeta potential. The optimal composition with 2 % gliadin, 0.5 % casein, and a 1:5 organic-to-aqueous phase ratio, yielded nanoparticles with a 442 nm size, a 0.307 PDI, a -20 mV zeta potential, and 82 % entrapment efficiency. AmB was confirmed to be amorphous within the nanoparticles by X-ray diffraction. These NPs released AmB sustainably over 96 h, primarily in its monomeric form. Moreover, NPs maintained stability in simulated gastrointestinal fluids with minimal drug release and showed significantly lower hemolytic activity and cytotoxicity on Vero cells than free AmB, suggesting their promise for oral AmB delivery.
Collapse
Affiliation(s)
- Rossana Gabriela Vásquez Marcano
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia St, 838, 85040-167 Guarapuava, PR, Brazil
| | - Najeh Maissar Khalil
- Departamento de Farmácia, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia St, 838, 85040-167 Guarapuava, PR, Brazil
| | - Maria de Lurdes Felsner
- Departamento de Química, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia St, 838, 85040-167 Guarapuava, PR, Brazil
| | - Rubiana Mara Mainardes
- Departamento de Farmácia, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia St, 838, 85040-167 Guarapuava, PR, Brazil.
| |
Collapse
|
8
|
Martins VFR, Pintado ME, Morais RMSC, Morais AMMB. Recent Highlights in Sustainable Bio-Based Edible Films and Coatings for Fruit and Vegetable Applications. Foods 2024; 13:318. [PMID: 38275685 PMCID: PMC10814993 DOI: 10.3390/foods13020318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
The present review paper focuses on recent developments in edible films and coatings made of base compounds from biological sources, namely plants, animals, algae, and microorganisms. These sources include by-products, residues, and wastes from agro-food industries and sea products that contribute to sustainability concerns. Chitosan, derived from animal biological sources, such as crustacean exoskeletons, has been the most studied base compound over the past three years. Polysaccharides typically constitute no more than 3-5% of the film/coating base solution, with some exceptions, like Arabic gum. Proteins and lipids may be present in higher concentrations, such as zein and beeswax. This review also discusses the enrichment of these bio-based films and coatings with various functional and/or bioactive compounds to confer or enhance their functionalities, such as antimicrobial, antioxidant, and anti-enzymatic properties, as well as physical properties. Whenever possible, a comparative analysis among different formulations was performed. The results of the applications of these edible films and coatings to fruit and vegetable products are also described, including shelf life extension, inhibition of microbial growth, and prevention of oxidation. This review also explores novel types of packaging, such as active and intelligent packaging. The potential health benefits of edible films and coatings, as well as the biodegradability of films, are also discussed. Finally, this review addresses recent innovations in the edible films and coatings industry, including the use of nanotechnologies, aerogels, and probiotics, and provides future perspectives and the challenges that the sector is facing.
Collapse
Affiliation(s)
| | | | | | - Alcina M. M. B. Morais
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal; (V.F.R.M.); (M.E.P.); (R.M.S.C.M.)
| |
Collapse
|
9
|
Fu X, Chang X, Xu S, Xu H, Ge S, Xie Y, Wang R, Xu Y, Luo Z, Shan Y, Ding S. Development of a chitosan/pectin-based multi-active food packaging with both UV and microbial defense functions for effectively preserving of strawberry. Int J Biol Macromol 2024; 254:127968. [PMID: 37944717 DOI: 10.1016/j.ijbiomac.2023.127968] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
Multi-active food packaging was prepared for strawberry fruit preservation where epigallocatechin gallate (EGCG)-containing pectin matrix and natamycin (NATA)-containing chitosan (CS) matrix were utilized to complete LBL electrostatic self-assembly. The results showed that the physicochemical properties of the multi-active packaging were closely related to the addition of NATA and EGCG. It was found that NATA and EGCG were embedded in the CS/pectin matrix through intermolecular hydrogen bonding interactions. The CN/PE 15 % multi-active films prepared based on the spectral stacking theory formed a barrier to UV light in the outer layer, exhibited excellent NATA protection under UV light exposure conditions at different times, and provided long-lasting and sustained bacterial inhibition in the inner layer. In addition, the CN/PE 15 % multi-active packaging extended the shelf life of strawberry at room temperature compared with the control samples. In conclusion, the developed CN/PE 15 % packaging provided potential applications for multi-active food packaging materials.
Collapse
Affiliation(s)
- Xincheng Fu
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; DongTing Laboratory, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Xia Chang
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; DongTing Laboratory, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Saiqing Xu
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; DongTing Laboratory, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Haishan Xu
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; DongTing Laboratory, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Shuai Ge
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; DongTing Laboratory, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Ying Xie
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; DongTing Laboratory, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Rongrong Wang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yanqun Xu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310000, China
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310000, China
| | - Yang Shan
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; DongTing Laboratory, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Shenghua Ding
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; DongTing Laboratory, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| |
Collapse
|
10
|
Hu Q, Jin Y, Xiao Y, Shen S, Chen J, Huan C, Fang S. ε-Polylysine and soybean protein isolate form nanoscale to microscale electrostatic complexes in solution: properties, interactions and as antimicrobial edible coatings on citrus. Int J Biol Macromol 2023; 253:126616. [PMID: 37652339 DOI: 10.1016/j.ijbiomac.2023.126616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/12/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
A feasible approach to enhance the antimicrobial efficacy of ε-polylysine (PL) in applications is to form delivery complexes with delicate structures and good dispersion properties. This work aims to study the multiscale structures, properties and interactions, and edible coating applications of the electrostatic complex formed by PL and soy protein isolate (SPI). When the mass ratio of SPI to PL (SE) was between 5 and 15, especially 11, microscale solid-liquid phase separation occurred in the system due to the small absolute zeta potential. When the SE was in the range of 15-20, the system formed a stable nanoscale suspension, the average particle size and zeta potential were 191 nm and -20 mV, respectively. The physicochemical properties of the complexes were investigated including the colloidal properties, spectroscopy and interactions analysis, viscosity, contact angle, and antimicrobial activities against Escherichia coli, Staphylococcus aureus, and Penicillium expansum. Finally, the in vivo application on citrus demonstrated that the nanoscale PL/SPI electrostatic complex (SE = 20) as functional coatings has both barrier and antimicrobial activities. The study provides a novel application strategy for PL and nanoscale electrostatic complexes as postharvest coatings.
Collapse
Affiliation(s)
- Qiuyun Hu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yuanyue Jin
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yawen Xiao
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Shuling Shen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Jie Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Chen Huan
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Sheng Fang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| |
Collapse
|
11
|
Cao Y, Song X, Xu G, Zhang X, Yan H, Feng J, Ma Z, Liu X, Wang Y. Study on the Antifungal Activity and Potential Mechanism of Natamycin against Colletotrichum fructicola. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:17713-17722. [PMID: 37943656 DOI: 10.1021/acs.jafc.3c05154] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
In this investigation, the antifungal activity, its influence on the quality of apples, and the molecular mechanism of natamycin against Colletotrichum fructicola were systematically explored. Our findings indicated that natamycin showed significant inhibition against C. fructicola. Moreover, it efficaciously maintained the apple quality by modulating the physicochemical index. Research on the antifungal mechanism showed that natamycin altered the mycelial microstructure, disrupted the plasma membrane integrality, and decreased the ergosterol content of C. fructicola. Interestingly, the exogenous addition of ergosterol weakened the antifungal activity of natamycin. Importantly, natamycin markedly inhibited the expression of Cyp51A and Cyp51B genes in C. fructicola, which was contrary to the results obtained after treatment with triazole fungicide flusilazole. All these results exhibited sufficient proof that natamycin had enormous potential to be conducive as a promising biopreservative against C. fructicola on apples, and these findings will advance our knowledge on the mechanism of natamycin against pathogenic fungi.
Collapse
Affiliation(s)
- Yuxuan Cao
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi, China
| | - Xiaoning Song
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi, China
| | - Guanyou Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi, China
| | - Xu Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi, China
| | - He Yan
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi, China
- Provincial Center for Bio-Pesticide Engineering, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi, China
| | - Juntao Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi, China
- Provincial Center for Bio-Pesticide Engineering, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi, China
| | - Zhiqing Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi, China
- Provincial Center for Bio-Pesticide Engineering, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi, China
| | - Xili Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi, China
| | - Yong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi, China
- Provincial Center for Bio-Pesticide Engineering, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi, China
| |
Collapse
|
12
|
Abdel-Hakim A, Belal F, Hammad MA, El-Maghrabey M. Rapid microwave synthesis of N and S dual-doped carbon quantum dots for natamycin determination based on fluorescence switch-off assay. Methods Appl Fluoresc 2023; 11:045007. [PMID: 37586384 DOI: 10.1088/2050-6120/acf119] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 08/16/2023] [Indexed: 08/18/2023]
Abstract
Green, one-pot, quick, and easily synthesized nitrogen and sulfur co-doped carbon quantum dots (N,S-CDs) were obtained from cheap and readily available chemicals (sucrose, urea, and thiourea) using a microwave-assisted approach in about 4 min and utilized as a turn-off fluorescent sensor for estimation of natamycin (NAT). First, the effect of N and S doping on the microwave-synthesized CDs' quantum yield was carefully studied. CDs derived from sucrose alone failed to produce a high quantum yield; then, to increase the quantum yield, doping with heteroatoms was carried out using either urea or thiourea. A slight increase in quantum yield was observed upon using thiourea with sucrose, while an obvious enhancement of quantum yield was obtained when urea was used instead of thiourea. Surprisingly, using a combination of urea and thiourea together results in N,S-CDs with the highest quantum yield (53.5%), uniform and small particle size distribution, and extended stability. The fluorescent signal of N,S-CDs was quenched upon addition of NAT due to inner filter effect and static quenching in a manner that allowed for quantitative determination of NAT over a range of 0.5-10.0μg ml-1(LOD = 0.10μg ml-1). The N,S-CDs were applicable for determination of NAT in aqueous humor, eye drops, different environmental water samples, and bread with excellent performance. The selectivity study indicated excellent selectivity of the prepared N,S-CDs toward NAT with little interference from possibly interfering substances. In-silico toxicological evaluation of NAT was conducted to estimate its long-term toxicity and drug-drug interactions. Finally, the preparation of N,S-CDs, and analytical procedure compliance with the green chemistry principles were confirmed by two greenness assessment tools.
Collapse
Affiliation(s)
- Ali Abdel-Hakim
- Analytical Chemistry Department, Faculty of Pharmacy, University of Sadat City, Sadat City, Monufia, 32897, Egypt
| | - Fathalla Belal
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35526, Egypt
| | - Mohamed A Hammad
- Analytical Chemistry Department, Faculty of Pharmacy, University of Sadat City, Sadat City, Monufia, 32897, Egypt
| | - Mahmoud El-Maghrabey
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35526, Egypt
- Graduate School of Biomedical Sciences, Course of Pharmaceutical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| |
Collapse
|
13
|
Fang M, Wang J, Fang S, Zuo X. Fabrication of carboxymethyl chitosan films for cheese packaging containing gliadin-carboxymethyl chitosan nanoparticles co-encapsulating natamycin and theaflavins. Int J Biol Macromol 2023; 246:125685. [PMID: 37406906 DOI: 10.1016/j.ijbiomac.2023.125685] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/15/2023] [Accepted: 07/02/2023] [Indexed: 07/07/2023]
Abstract
In this study, gliadin-carboxymethyl chitosan composite nanoparticles (GC NPs) co-encapsulated natamycin (Nata) and theaflavins (TFs) were constructed and added as an antioxidant, antifungal, and structural enhancer to carboxymethyl chitosan (CMCS) films. The stabilized GC NPs with a particle size of 160.7 ± 2.8 nm, a zeta potential of -29.0 ± 0.9 mV, and a protein content in the supernatant of 96 ± 1 % could be fabricated. Tests of pH and salt ions showed that the stability of NPs dispersion was based on electrostatic repulsion. Co-encapsulation of TFs enhanced the photostability of Nata and the antioxidant activity of the NPs dispersion. The interactions between gliadin with Nata and TFs were studied by molecular simulations. As a functional additive, the addition of Nata/TFs-GC NPs could improve the optical properties, mechanical properties, water-blocking capability, and antifungal and antioxidant activities of the CMCS films. The in-vivo test showed that the functional film could be used to inhibit the growth of Aspergillus niger on cheese.
Collapse
Affiliation(s)
- Meihan Fang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Jialu Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Sheng Fang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| | - Xiaobo Zuo
- Zhejiang Key Laboratory of Transboundary Applied Technology for Tea Resources, Hangzhou Tea Research Institute, CHINA COOP, Hangzhou 310016, China.
| |
Collapse
|
14
|
Gunny AAN, Leem SJ, Makhtar MMZ, Zainuddin N, Mohd Roslim MH, Raja Hashim RH, Pusphanathan K, Siddiqui MR, Alam M, Rafatullah M. The Use of Essential Oil Embedded in Polylactic Acid/Chitosan-Based Film for Mango Post-Harvest Application against Pathogenic Fungi. Polymers (Basel) 2023; 15:2722. [PMID: 37376369 DOI: 10.3390/polym15122722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Mango has a high global demand. Fruit fungal disease causes post-harvest mango and fruit losses. Conventional chemical fungicides and plastic prevent fungal diseases but they are hazardous to humans and the environment. Direct application of essential oil for post-harvest fruit control is not a cost-effective approach. The current work offers an eco-friendly alternative to controlling the post-harvest disease of fruit using a film amalgamated with oil derived from Melaleuca alternifolia. Further, this research also aimed to assess the mechanical, antioxidant, and antifungal properties of the film infused with essential oil. ASTM D882 was performed to determine the tensile strength of the film. The antioxidant reaction of the film was assessed using the DPPH assay. In vitro and in vivo tests were used to evaluate the inhibitory development of the film against pathogenic fungi, by comparing the film with different levels of essential oil together with the treatment of the control and chemical fungicide. Disk diffusion was used to evaluate mycelial growth inhibition, where the film incorporated with 1.2 wt% essential oil yielded the best results. For in vivo testing of wounded mango, the disease incidence was successfully reduced. For in vivo testing of unwounded mango to which the film incorporated with essential oil was applied, although some quality parameters such as the color index were not significantly affected, weight loss was reduced, soluble solid content was increased, and firmness was increased, compared to the control. Thus, the film incorporated with essential oil (EO) from M. alternifolia can be an environmentally friendly alternative to the conventional approach and the direct application of essential oil to control post-harvest disease in mango.
Collapse
Affiliation(s)
- Ahmad Anas Nagoor Gunny
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Kompleks Pusat Pengajian Jejawi 3, Arau 02600, Perlis, Malaysia
- Centre of Excellence for Biomass Utilization (CoEBU), Universiti Malaysia Perlis (UniMAP), Arau 02600, Perlis, Malaysia
| | - Siew Juan Leem
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Kompleks Pusat Pengajian Jejawi 3, Arau 02600, Perlis, Malaysia
| | - Muaz Mohd Zaini Makhtar
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia
| | - Nor'Izzah Zainuddin
- Indah Water Konsortium, Lorong Perda Utama 13, Bukit Mertajam 14000, Penang, Malaysia
| | - Muhammad Huzaifah Mohd Roslim
- Department of Crop Science, Faculty of Agricultural and Forestry Sciences, Universiti Putra Malaysia Bintulu Campus, Bintulu 97008, Sarawak, Malaysia
| | - Raja Hasnida Raja Hashim
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Kompleks Pusat Pengajian Jejawi 3, Arau 02600, Perlis, Malaysia
| | - Kavita Pusphanathan
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia
| | - Masoom Raza Siddiqui
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mahboob Alam
- Division of Chemistry and Biotechnology, Dongguk University, 123 Dongdaero, Gyeongju-si 780714, Republic of Korea
| | - Mohd Rafatullah
- Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia
| |
Collapse
|
15
|
Carpentieri S, Ferrari G, Donsì F. All-natural wheat gliadin-gum arabic nanocarriers for encapsulation and delivery of grape by-products phenolics obtained through different extraction procedures. Food Chem 2023; 424:136385. [PMID: 37247597 DOI: 10.1016/j.foodchem.2023.136385] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/21/2023] [Accepted: 05/13/2023] [Indexed: 05/31/2023]
Abstract
Grape pomace (GP), the major winery by-product, is still rich in phenolic compounds, scarcely applied in food systems due to physicochemical instability issues. This work aimed at fabricating gliadin (G)-based nanoparticles through antisolvent precipitation, for delivery of GP extracts, investigating different extraction strategies with ethanol/water solution (70:30 v/v). Interestingly, the fabricated nanoparticles were characterized by a nanometric size range with hydraulic diameter values around 100 nm and ζ-potential of 18-22 mV. The addition of gum arabic (GA), at the optimized G/GA ratio 1:1, improved particle stability and encapsulation efficiency of GP polyphenols. The two-step extraction of GP in the G-rich solvent retrieved from G extraction, as evidenced by total phenolics (1.24 times higher than the two separately obtained extracts G/GP10:10), HPLC-PDA analysis, encapsulation efficiency (62.9% in terms of epicatechin), and simulated digestion (95.6% release of epicatechin), represented the most promising approach to obtain G nanoparticles for efficient delivery of GP extracts.
Collapse
Affiliation(s)
- Serena Carpentieri
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Giovanna Ferrari
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy; ProdAl Scarl c/o University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Francesco Donsì
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy.
| |
Collapse
|
16
|
Acidic natural deep eutectic solvents as dual solvents and catalysts for the solubilization and deglycosylation of soybean isoflavone extracts: Genistin as a model compound. Food Chem 2023; 406:134999. [PMID: 36459802 DOI: 10.1016/j.foodchem.2022.134999] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 11/02/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022]
Abstract
This study investigated the possibility of using green solvent natural deep eutectic solvents (NADESs) as dual solvent-catalysts for the solubilization and deglycosylation of soybean isoflavones. The deglycosylation behavior of genistin as a model compound in NADESs was compared. Acidic NADESs showed moderate solubility for genistin and could hydrolyze it to form genistein. The onset temperature of deglycosylation in the choline chloride/malic acid (Ch-Ma) was 60 °C. The solubilities of genistin in the Ch-Ma system were modeled. The dissolution process was endothermic and mainly enthalpy-driven. The deglycosylation followed first-order kinetics with a half-life (t1/2) of 40 min at 90 °C. The method was validated using soybean isoflavone extracts as a substrate and the ratio of glycoside to aglycone in the extracts could be adjusted by changing the conditions. The methods have great potential in the extraction and preparation of ready-to-use isoflavone extracts from soybean and other legumes.
Collapse
|
17
|
Characterizations of konjac glucomannan/curdlan edible coatings and the preservation effect on cherry tomatoes. Int J Biol Macromol 2023; 232:123359. [PMID: 36693611 DOI: 10.1016/j.ijbiomac.2023.123359] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
In this study, konjac glucomannan (KGM) and curdlan were used to fabricate composite coating (KC). The coating solutions were investigated using a rheological method, and the coatings were characterized by water solubility tests, water vapor permeability (WVP), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). The preservation effect of KC coating on cherry tomatoes stored at room temperature was determined. Results indicated that the curdlan addition can adjust the hydrophilicity/hydrophobicity of KGM coatings. Curdlan addition enhanced intermolecular entanglement and film-forming property. Increasing curdlan content in KC coatings significantly decreased the moisture content, dissolution and swelling ratio, and WVP. The KGM-curdlan composites behaved as high-performance coatings with good compatibility and uniformity. The K3C2 coating showed the best uniformity, water barrier, and thermal stability. The application of K3C2 coating significantly reduced the weight loss, decay loss, and delayed the decreases of firmness, soluble solids, total acid, and VC contents of cherry tomatoes. The KGM/curdlan edible coatings have promising potential for prolonging the shelf life of cherry tomatoes and applications in fruits preservation in the future.
Collapse
|
18
|
Jamming to unjamming: Phase transition in cyclodextrin-based emulsions mediated by sodium casein. J Colloid Interface Sci 2023; 640:540-548. [PMID: 36878071 DOI: 10.1016/j.jcis.2023.02.143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/17/2023] [Accepted: 02/26/2023] [Indexed: 03/05/2023]
Abstract
HYPOTHESIS Cyclodextrin (CD) can spontaneously build up the solid particle membrane with CD-oil inclusion complexes (ICs) by a self-assembly process. Sodium casein (SC) is expected to preferentially adsorb at the interface to transform the type of interfacial film. The high-pressure homogenization can increase interfacial contact opportunities of the components, which promote the phase transition of the interfacial film. EXPERIMENTS We added SC by sequential and simultaneous orders to mediate the assembly model of the CD-based films, examined the patterns in which the films adopt phase transitions to retard emulsion flocculation, and studied the physic-chemical properties of the emulsions and films from the structural arrest, interface tension, interfacial rheology, linear rheology, and nonlinear viscoelasticities through Fourier transform (FT)-rheology and Lissajous-Bowditch plots. FINDINGS The interfacial and large amplitude oscillatory shear (LAOS) rheological results showed that the films changed from jammed to unjammed. We divide the unjammed films into two types: one is SC dominated liquid-like film, which is fragile and related to droplet coalescence; the other is cohesive SC-CD film, which helps droplet rearrangement and retards droplet flocculation. Our results highlight the potential of mediating phase transformation of interfacial films to improve emulsion stability.
Collapse
|
19
|
Guo Z, Liu Y, Xiang J, Liang X. Mechanochemical preparation of red clover extract/β-cyclodextrin dispersion: Enhanced water solubility and activities in alleviating high-fat diet-induced lipid accumulation and gut microbiota dysbiosis in mice. Food Chem 2023; 420:136084. [PMID: 37060670 DOI: 10.1016/j.foodchem.2023.136084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/25/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Red clover (RC) extract is rich in isoflavones (formononetin and biochanin A) that have various biological functions. However, its low water solubility limits its bioavailability. In this study, an RC extract/β-cyclodextrin (RC/β-CD) dispersion was prepared by ball milling to enhance its water solubility and biological availability. The water solubility of formononetin and biochanin A was 34.45 and 13.65 μg/mL (increased to 3.11 and 2.14 times higher than that of RC alone), respectively. The alleviating effects of the dispersion on lipid accumulation and gut microbiota were evaluated in mice. The RC/β-CD dispersion showed a better effect on inhibiting lipid accumulation, especially on total triglycerides. The dispersion group had a higher relative abundance of Akkermansia, Muribaculaceae, and Bacteroides than RC alone, along with a higher level of acetic and butyric acid. The study provides a feasible way for improving the bioaccessibility and bioactivity of RC isoflavones in red clover.
Collapse
Affiliation(s)
- Zili Guo
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Yilin Liu
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jiani Xiang
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xianrui Liang
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
20
|
Xu X, Peng X, Huan C, Chen J, Meng Y, Fang S. Development of natamycin-loaded zein-casein composite nanoparticles by a pH-driven method and application to postharvest fungal control on peach against Monilinia fructicola. Food Chem 2023; 404:134659. [DOI: 10.1016/j.foodchem.2022.134659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/05/2022] [Accepted: 10/15/2022] [Indexed: 11/22/2022]
|
21
|
Niu X, Lin L, Liu L, Wang H. Preparation of a novel glucose oxidase-N-succinyl chitosan nanospheres and its antifungal mechanism of action against Colletotrichum gloeosporioides. Int J Biol Macromol 2023; 228:681-691. [PMID: 36549621 DOI: 10.1016/j.ijbiomac.2022.12.171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 12/10/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
In this work, a new glucose oxidase-N-succinyl chitosan (GOD-NSCS) nanospheres was prepared through the immobilization of glucose oxidase (GOD) on N-succinyl chitosan (NSCS) nanospheres. Compared to the free GOD, GOD-NSCS nanospheres demonstrated the excellent anti-Colletotrichum gloeosporioides activity with the EC50 values of 211.2 and 10.7 μg/mL against mycelial growth and spores germination. The computational biology analysis demonstrated that the substrate presented the similar binding free energy with GOD-NSCS nanospheres (-27.64 kcal/mol) compared with the free GOD (-24.04 kcal/mol), indicating that GOD-NSCS nanospheres had the same oxidation efficiency and produced more H2O2. Moreover, the enzyme activity stability of GOD-NSCS nanospheres could be prolonged to 10 d. The cell membrane was destructed by the treatment of H2O2 produced by GOD, leading to the cell death. In vivo test, GOD-NSCS nanospheres treatment significantly prolonged the preservation period of mangoes 2-fold. Collectively, these results suggested that GOD-NSCS nanospheres suppresses anthracnose in postharvest mangoes by inhibiting the growth of C. gloeosporioides and might become a potential natural preservative for fruits and vegetables.
Collapse
Affiliation(s)
- Xiaodi Niu
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Li Lin
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Lu Liu
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Hongsu Wang
- College of Food Science and Engineering, Jilin University, Changchun, China.
| |
Collapse
|
22
|
Voci S, Gagliardi A, Ambrosio N, Salvatici MC, Fresta M, Cosco D. Gliadin Nanoparticles Containing Doxorubicin Hydrochloride: Characterization and Cytotoxicity. Pharmaceutics 2023; 15:pharmaceutics15010180. [PMID: 36678809 PMCID: PMC9860592 DOI: 10.3390/pharmaceutics15010180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023] Open
Abstract
Doxorubicin hydrochloride (DOX) is a well-known antitumor drug used as first line treatment for many types of malignancies. Despite its clinical relevance, the administration of the compound is negatively affected by dose-dependent off-target toxicity phenomena. Nanotechnology has helped to overcome these important limitations by improving the therapeutic index of the bioactive and promoting the translation of novel nanomedicines into clinical practice. Herein, nanoparticles made up of wheat gliadin and stabilized by polyoxyethylene (2) oleyl ether were investigated for the first time as carriers of DOX. The encapsulation of the compound did not significantly affect the physico-chemical features of the gliadin nanoparticles (GNPs), which evidenced a mean diameter of ~180 nm, a polydispersity index < 0.2 and a negative surface charge. The nanosystems demonstrated great stability regarding temperature (25−50 °C) and were able to retain high amounts of drug, allowing its prolonged and sustained release for up to a week. In vitro viability assay performed against breast cancer cells demonstrated that the nanoencapsulation of DOX modulated the cytotoxicity of the bioactive as a function of the incubation time with respect to the free form of the drug. The results demonstrate the potential use of GNPs as carriers of hydrophilic antitumor compounds.
Collapse
Affiliation(s)
- Silvia Voci
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario “S Venuta”, 88100 Catanzaro, Italy
| | - Agnese Gagliardi
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario “S Venuta”, 88100 Catanzaro, Italy
| | - Nicola Ambrosio
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario “S Venuta”, 88100 Catanzaro, Italy
| | - Maria Cristina Salvatici
- Institute of Chemistry of Organometallic Compounds (ICCOM)-Electron Microscopy Centre (Ce.M.E.), National Research Council (CNR), Via Madonna del Piano n. 10, Sesto Fiorentino, 50019 Florence, Italy
| | - Massimo Fresta
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario “S Venuta”, 88100 Catanzaro, Italy
| | - Donato Cosco
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario “S Venuta”, 88100 Catanzaro, Italy
- Correspondence: ; Tel.: +39-0961-369-4119
| |
Collapse
|
23
|
Maghoumi M, Amodio ML, Fatchurrahman D, Cisneros-Zevallos L, Colelli G. Pomegranate Husk Scald Browning during Storage: A Review on Factors Involved, Their Modes of Action, and Its Association to Postharvest Treatments. Foods 2022; 11:3365. [PMID: 36359978 PMCID: PMC9657661 DOI: 10.3390/foods11213365] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/16/2022] [Accepted: 10/19/2022] [Indexed: 08/05/2023] Open
Abstract
The pomegranate (Punica granatum L.), which contains high levels of health-promoting compounds, has received much attention in recent decades. Fruit storage potential ranges from 3 to 4 months in air and from 4 to 6 months in Controlled Atmospheres (CA) with 3-5% oxygen and 10-15% carbon dioxide. Storage life is limited by decay, chilling injury, weight loss (WL), and husk scald. In particular, husk scald (HS) limits pomegranate long-term storage at favorable temperatures. HS appears as skin browning which expands from stem end towards the blossom end during handling or long-term storage (10-12 weeks) at 6-10 °C. Even though HS symptoms are limited to external appearance, it may still significantly reduce pomegranate fruit marketability. A number of postharvest treatments have been proposed to prevent husk scald, including atmospheric modifications, intermittent warming, coatings, and exposure to 1-MCP. Long-term storage may induce phenolic compounds accumulation, affect organelles membranes, and activate browning enzymes such as polyphenol oxidases (PPO) and peroxidases (POD). Due to oxidation of tannins and phenolics, scalding becomes visible. There is no complete understanding of the etiology and biochemistry of HS. This review discusses the hypothesized mechanism of HS based on recent research, its association to postharvest treatments, and their possible targets.
Collapse
Affiliation(s)
- Mahshad Maghoumi
- Dipartimento di Scienze Agrarie, Degli Alimenti e Dell’ambiente, Università di Foggia, Via Napoli 25, 71122 Foggia, Italy
| | - Maria Luisa Amodio
- Dipartimento di Scienze Agrarie, Degli Alimenti e Dell’ambiente, Università di Foggia, Via Napoli 25, 71122 Foggia, Italy
| | - Danial Fatchurrahman
- Dipartimento di Scienze Agrarie, Degli Alimenti e Dell’ambiente, Università di Foggia, Via Napoli 25, 71122 Foggia, Italy
| | - Luis Cisneros-Zevallos
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Giancarlo Colelli
- Dipartimento di Scienze Agrarie, Degli Alimenti e Dell’ambiente, Università di Foggia, Via Napoli 25, 71122 Foggia, Italy
| |
Collapse
|
24
|
Wu X, Hu Q, Liang X, Chen J, Huan C, Fang S. Methyl jasmonate encapsulated in protein-based nanoparticles to enhance water dispersibility and used as coatings to improve cherry tomato storage. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Impact of Guar Gum and Locust Bean Gum Addition on the Pasting, Rheological Properties, and Freeze-Thaw Stability of Rice Starch Gel. Foods 2022; 11:foods11162508. [PMID: 36010508 PMCID: PMC9407422 DOI: 10.3390/foods11162508] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/13/2022] [Accepted: 08/16/2022] [Indexed: 11/25/2022] Open
Abstract
Improving the gel texture and stability of rice starch (RS) by natural hydrocolloids is important for the development of gluten-free starch-based products. In this paper, the effects of guar gum and locust bean gum on the pasting, rheological properties, and freeze−thaw stability of rice starch were investigated by using a rapid visco analyzer, rheometer, and texture analyzer. Both gums can modify the pasting properties, revealed by an increment in the peak, trough, and final viscosities, and prevent the short-term retrogradation tendency of RS. Dynamic viscoelasticity measurements also indicated that the starch−gum system exhibits superior viscoelastic properties compared with starch alone, as revealed by its higher storage modulus (G′). Compared with the control, the hysteresis loop area of the guar gum-containing system and locust bean gum-containing system was reduced by 37.7% and 24.2%, respectively, indicating that the addition of gums could enhance shear resistance and structure recovery properties. The thermodynamic properties indicated that both gums retard short-term retrogradation as well as long-term retrogradation of the RS gels. Interestingly, the textural properties and freeze−thaw stability of the RS gel were significantly improved by the addition of galactomannans (p < 0.05), and guar gum was more effective than locust bean gum, which may be due to the different mannose to galactose ratio. The results provide alternatives for gluten-free recipes with improved texture properties and freeze−thaw stability.
Collapse
|
26
|
Preparation of alginate-whey protein isolate and alginate-pectin-whey protein isolate composites for protection and delivery of Lactobacillus plantarum. Food Res Int 2022; 161:111794. [DOI: 10.1016/j.foodres.2022.111794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/09/2022] [Accepted: 08/18/2022] [Indexed: 11/23/2022]
|
27
|
Fabrication of High-Acyl Gellan-Gum-Stabilized β-Carotene Emulsion: Physicochemical Properties and In Vitro Digestion Simulation. Foods 2022; 11:foods11121742. [PMID: 35741940 PMCID: PMC9222914 DOI: 10.3390/foods11121742] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 12/02/2022] Open
Abstract
The β-carotene emulsion system using high-acyl gellan gum (HA) as an emulsifier was fabricated and systematically studied. The stability and stabilizing mechanism of the emulsion using medium-chain triglyceride as oil phase with a water-oil mass ratio of 9:1 under different physicochemical conditions of heat, pH, and ions were investigated by analyzing mean particle size (MPS), emulsion yield (EY), and dynamic stability. The effects of the HA-β-carotene emulsion system on the bioaccessibility of β-carotene in vitro were conducted. During the simulated oral digestion stage (SODP) and simulated gastric digestion stage (SGDP), the emulsion systems stabilized with different HA contents showed good stability, and the changes of MPS and zeta potential (ZP) were within 2.5 μm and 3.0 mV, respectively. After entering the simulated intestinal digestion phase (SIDP), β-carotene was released from oil droplets and formed micelles with bile salts, phospholipids, etc. HA-β-carotene emulsion can enhance the release rate of free fatty acid (FFA), which ultimately affects the β-carotene bioaccessibility. These results indicate that HA can be used to prepare carotene emulsion and improve its bioavailability. The study provides a reference for the application of HA as a natural emulsifier and the delivery of β-carotene.
Collapse
|