1
|
Li J, Qi Y, Hamadou AH, Xu B. Variation in quality of noodles by regulating the dynamic transition behavior of gluten proteins though dough crumbles temperature control method at different stages of mixing. Food Res Int 2025; 208:116209. [PMID: 40263844 DOI: 10.1016/j.foodres.2025.116209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/27/2025] [Accepted: 03/11/2025] [Indexed: 04/24/2025]
Abstract
This work explored the gluten proteins evolution with various dough crumbles temperature control methods during mixing on noodles quality. The changes of gluten protein properties including structure, aggregation, and gluten network distribution in dough during mixing with HW-LF (high temperature water and low temperature flour), NW-NF (normal temperature water and normal temperature flour), and LW-HF (low temperature water and high temperature flour) dough crumbles temperature control method were analyzed. According to the results, by maintaining the dough crumbles temperature at 20 °C, HW-LF showed a stronger gluten cross-linking, a more continuous and dense gluten network structure, and a higher dough and noodles quality than LW-HF method at mixing time of 3 min. On the contrary, at mixing time of 9 min, the LW-HF method displayed a higher degree of gluten aggregation with an increase of 10.84 % (disulfide bonds), 4.32 % (hydrogen bonds), 15.29 % (GMP), and 28.57 % (gluten protein molecular chain height) than HW-LF. Besides, LW-HF achieved a 3.51 % augmentation in dough breaking force, 4.96 % reduction in relaxation degree, and 8.99 % and 5.66 % increment in chewiness and hardness, respectively, than HW-LF. Consequently, the LW-HF method facilitated a complete cross-linking of gluten molecules, thus forming a continuous and uniform gluten network, ultimately enhancing the noodles hardness and chewiness. Additionally, an extremely significant positive correlation (p<0.01) and negative correlation were observed between SS bonds with chewiness and protein average length with chewiness, respectively. Therefore, the SS and protein average length demonstrated considerable potential as predictors of noodles chewiness.
Collapse
Affiliation(s)
- Junkui Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Yajing Qi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Alkassoumi Hassane Hamadou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Bin Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China.
| |
Collapse
|
2
|
Zhang L, Yang S, Wang C, Jiang Q, Wang X, Sun B. Moderately mechanically activated starch in improving protein digestibility: Application in noodles. Int J Biol Macromol 2025; 298:139856. [PMID: 39814303 DOI: 10.1016/j.ijbiomac.2025.139856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/10/2025] [Accepted: 01/12/2025] [Indexed: 01/18/2025]
Abstract
The aim of this study was to investigate the mechanism of protein digestibility improvement by exploring the changes in structural characteristics of proteins in noodles with varying levels of mechanically activated starch. Therefore, different levels of mechanically activated wheat starch were mixed with refined wheat flour to produce noodles. Results showed that moderately mechanically activated starch could significantly improve protein digestibility and noodles containing 8.76 % damaged starch exhibited the highest protein digestibility of 88.97 %. This enhancement was due to the ability of moderately mechanically activated starch to hinder the cross-linking of γ-gliadin, D-LMS, and B/C-LMS via disulfide bonds and promote the transition from β-sheets to β-turns. Additionally, moderately mechanically activated starch induced protein unfolding by decreasing the α-helix content and facilitating the transformation from g-g-g to t-g-t conformations, thereby increasing the accessibility of enzymatic hydrolysis sites. However, excessively mechanically activated starch induced protein folding, as evidenced by an increase in the g-g-g conformations content and protein width (11.10), thus slightly reducing protein digestibility to 82.39 % in noodles containing 10.62 % damaged starch. Thus, the results of this study may provide new insights for the development of formulated foods with high protein digestibility for consumers in areas with limited economic resources.
Collapse
Affiliation(s)
- Lingfang Zhang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan Province, PR China
| | - Shuzhen Yang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan Province, PR China
| | - Congcong Wang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan Province, PR China
| | - Qianyi Jiang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan Province, PR China
| | - Xiaoxi Wang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan Province, PR China.
| | - Binghua Sun
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan Province, PR China.
| |
Collapse
|
3
|
Addai FP, Chen X, Zhu H, Zhen Z, Lin F, Feng C, Han J, Wang Z, Wang Y, Zhou Y. Structural Stabilization and Activity Enhancement of Glucoamylase via the Machine-Learning Technique and Immobilization. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:7347-7363. [PMID: 40080106 DOI: 10.1021/acs.jafc.4c11907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Glucoamylases (GLL) hydrolyze starch to glucose syrup without yielding intermediate oligosaccharides, but their lack of stability under industrial conditions poses a major limiting factor. Using consensus- and ancestral-based machine-learning tools, a functional GLL with six mutations (GLLI73l/T130V/N212V/D238G/N327M/S332P) was constructed that exhibited superior hydrolytic activity relative to the wild-type (WT-GLL). An oxidized multi-walled carbon nanotube (oMW-CNT) was used as a solid support to immobilize the WT-GLL with an immobilization capacity of 211.28 mg/g. The specific activity of mutant GLL-6M and GLL@oMW-CNTII was improved by 2.5-fold and 3.9-fold respectively, with both retaining 64.5% residual activity after incubation at 50 °C for 2 h compared to the WT-GLL with 42.6% activity. GLL and GLL-6M were however completely inactivated at 55 °C in 30 min while oMW-CNTII retained ∼43.1% activity. Our results demonstrate that employing a machine-learning approach for enzyme redesign and immobilization is a practicable alternative for improving enzyme performance and stability for industrial applications.
Collapse
Affiliation(s)
- Frank Peprah Addai
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xinglin Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Hao Zhu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Zongjian Zhen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Feng Lin
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture, Zhejiang Institute of Freshwater Fisheries, Huzhou, Zhejiang 313001, China
| | - Chengxiang Feng
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Juan Han
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Zhirong Wang
- Promotion Center for Rural Revitalization of Zhejiang, Hangzhou, Zhejiang 310020, China
| | - Yun Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yang Zhou
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
4
|
Wang J, Qiao W, Bian N, Wu Z, Zhao S. The interaction between starch and gluten and related wheat-based noodles quality, a review. Int J Biol Macromol 2025; 307:142001. [PMID: 40081702 DOI: 10.1016/j.ijbiomac.2025.142001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/25/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
Starch and gluten, the primary components of wheat, play critical roles in determining noodle quality through their synergistic interactions. To unveil the influence of starch-gluten protein interactions on the quality of noodles, further comprehensive exploration in this domain remains imperative. The current understanding of the interactions between gluten and starch in noodles processing was reviewed, with emphasis on water competition, space competition, and covalent and non-covalent interactions. In addition, the influencing factors that impact the starch-gluten interaction, including starch chain, starch granule size, damaged starch content, gluten subunits, processing technology, and additives were discussed. This review describes the interactions between starch and gluten and provides a reference for improving noodle quality.
Collapse
Affiliation(s)
- Jinrong Wang
- Tianjin Key Laboratory of Food Science and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China; Key Laboratory of Low Carbon Cold Chain for Agricultural Products, Ministry of Agriculture and Rural Affairs, Tianjin 300134, China
| | - Wenjing Qiao
- Tianjin Key Laboratory of Food Science and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Ni Bian
- Tianjin Key Laboratory of Food Science and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Zijian Wu
- Tianjin Key Laboratory of Food Science and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China; Key Laboratory of Low Carbon Cold Chain for Agricultural Products, Ministry of Agriculture and Rural Affairs, Tianjin 300134, China.
| | - Songsong Zhao
- Tianjin Key Laboratory of Food Science and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China; Key Laboratory of Low Carbon Cold Chain for Agricultural Products, Ministry of Agriculture and Rural Affairs, Tianjin 300134, China
| |
Collapse
|
5
|
Zhang J, Liu Y, Wang P, Zhao Y, Zhu Y, Xiao X. The Effect of Protein-Starch Interaction on the Structure and Properties of Starch, and Its Application in Flour Products. Foods 2025; 14:778. [PMID: 40077481 PMCID: PMC11899337 DOI: 10.3390/foods14050778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 02/17/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
Grains are an energy source for human beings, and the two main components-starch and protein-determine the application of grains in food. The structure and properties of starch play a decisive role in determining processing characteristics, nutritional properties, and application in grain-based foods. The interaction of proteins with starch greatly affects the structure, physicochemical, and digestive properties of the starch matrix. Scientists have tried to apply this effect to create foods tailored to specific needs. Therefore, studying the effect of protein on the structure and properties of starch in the starch-protein complexes will help in designing personalized and improved starch-based food. This paper reviews the latest research about the effects of endogenous and exogenous proteins on the structure and properties of starch, as well as factors influencing the interaction between protein and starch. This includes investigations of the chain and aggregation structure of proteins with starch, as well as assessments of impacts on thermal properties, rheology, gel texture properties, hydration properties, aging, and digestion. In addition, particular examples illustrating the effects of protein-starch interaction on starch properties in various foods are discussed, providing a reference for designing starch-protein foods that are rich in terms of nutrition and easier to process.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiang Xiao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (J.Z.); (Y.L.); (P.W.); (Y.Z.); (Y.Z.)
| |
Collapse
|
6
|
Zhang Z, Zou Y, Tang Z, Luo H, Zhou Y, Chen J, Zhao G. The application of monoglycerides to improve the quality of fresh noodles: Discerning the roles of acyl chain length and dispersity. Food Chem 2025; 465:142144. [PMID: 39581100 DOI: 10.1016/j.foodchem.2024.142144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/20/2024] [Accepted: 11/17/2024] [Indexed: 11/26/2024]
Abstract
Monoglycerides are widely used in flour-based products, but the roles of their dispersibility and acyl chain length remain unclear. This study investigated the effects of monoglycerides with different chain lengths (C12, C16, C18) dispersed in deionized water (DW) or 95 % ethanol (EE) on fresh noodle quality. Ethanol (2 mL per 200 g flour) had no significant effect on noodle properties, but monoglycerides in EE significantly altered gluten structure through covalent and non-covalent interactions, forming a denser gluten network, as observed by CLSM. Starch-lipid complex formation was confirmed by FT-IR, Raman, and XRD, enhancing cooking and immersion performance. Monoglycerides in EE were more effective than in DW, with impact orders: DW (C12 > C16 ≈ C18) and EE (C12 < C16 < C18), indicating solvent selection was more critical than chain length. This study refined the application method of monoglycerides, enhancing their functional performance and contributing to elevated noodle performance.
Collapse
Affiliation(s)
- Zehua Zhang
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Yiyuan Zou
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Zhiling Tang
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Haoran Luo
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Yun Zhou
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Jia Chen
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Guohua Zhao
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, People's Republic of China; College of Life Science, Sichuan Normal University, Chengdu, 610101, People's Republic of China.
| |
Collapse
|
7
|
Cheng Z, Zhao S, Qiao D, Pi X, Zhang B. Resolving differences in digestion features of cooked rice and wheat noodles: A view from starch multiscale structure. Food Chem 2025; 465:141979. [PMID: 39541689 DOI: 10.1016/j.foodchem.2024.141979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/30/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
The staple foods play an important role in providing energy in the human daily diet. Wheat is the main staple food in northern China, rice in southern China, and the different staple food patterns between the north and south result in health disparities. Therefore, analyzing the differences in the digestion of staple foods are particularly important for understanding the digestive energy supply of staple foods. The firmer gel network structure, thicker crystalline lamellae, more V-type crystallites, higher degree of helical structure, and short-range order in cooked rice impeded the diffusion of amylase on the starch surface and inhibited the amylase-starch binding, leading to a lower rate of enzymatic hydrolysis of starch molecular chains and significantly higher content of RS than wheat noodles (P < 0.05). The different processing methods of cooked rice and wheat noodles influenced the multiscale structure of starch and thus the rate of digestion.
Collapse
Affiliation(s)
- Zihang Cheng
- Group for Cereals and Oils Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food Science, Southwest University, Chongqing 400715, China
| | - Siming Zhao
- Group for Cereals and Oils Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Dongling Qiao
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food Science, Southwest University, Chongqing 400715, China
| | - Xiaowen Pi
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food Science, Southwest University, Chongqing 400715, China
| | - Binjia Zhang
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food Science, Southwest University, Chongqing 400715, China.
| |
Collapse
|
8
|
Huang R, Huang K, Song H, Li S, Guan X. Evaluation of extruded quinoa flour on dough rheology and white salted noodles quality. J Food Sci 2025; 90:e17646. [PMID: 39898977 DOI: 10.1111/1750-3841.17646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/11/2024] [Accepted: 12/18/2024] [Indexed: 02/04/2025]
Abstract
White salted noodles are popular staples in Asia, but the ones with limited nutrient composition and high glycemic value still present significant concerns. This study investigated the potential of incorporating extruded quinoa flour (EQF) into wheat flour to enhance nutrient quality and reduce the starch digestibility of composite noodles. Moreover, the effect of EQF addition on the rheological properties of wheat dough and the cooking properties of composite noodles was also studied. The results showed that increasing the proportion of EQF in the composite flour led to a decrease in pasting viscosities and an increase in pasting temperatures, indicating that EQF inhibits starch gelatinization and retrogradation. The incorporation of EQF increased water absorption and softening degree while decreasing dough development time and viscoelasticity. The cooked noodles exhibited a significant reduction in water absorption, hardness, chewiness, and springiness, while an increase in cooking loss following EQF addition. Notably, noodles supplemented with EQF exhibited reduced overall starch digestibility with an increased digestion rate. Collectively, our results showed that substituting 10-20% EQF for wheat flour in noodles effectively lowered total starch digestibility and avoided high cooking loss. This study will have implications for the industrial application of quinoa as a staple food.
Collapse
Affiliation(s)
- Ruihan Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
| | - Kai Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, People's Republic of China
| | - Hongdong Song
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, People's Republic of China
| | - Sen Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, People's Republic of China
| | - Xiao Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, People's Republic of China
| |
Collapse
|
9
|
Zhang X, Peng P, Ma Q, Niu S, Duan S, Zhang Y, Hu X, Wang X. The Quality and Starch Digestibility of Multi-Grain Noodles Are Regulated by the Additive Amount of Dendrobium Officinale. Foods 2025; 14:413. [PMID: 39942011 PMCID: PMC11817478 DOI: 10.3390/foods14030413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/04/2025] [Accepted: 01/17/2025] [Indexed: 02/16/2025] Open
Abstract
Dendrobium officinale (DO) is a well-known medicinal and edible plant, yet its impact on the quality of noodles has been infrequently reported. In this study, DO was incorporated into multi-grain flour in varying proportions (0, 2, 4, 6, 8%) to prepare noodles, and their quality was assessed. The percentage increase in DO decreased the cooking loss, whiteness, appearance, and taste of the noodles while simultaneously enhancing their water absorption, adhesiveness, smoothness, and starch digestion resistance. Lower supplemental levels of DO (2-4%) facilitated the water absorption of protein and the formation of a dense and extensive protein network surrounding the partially gelatinized starch, which was characterized by higher relative crystallinity. The highest sensory score (77.4) and greatest content of slowly digestible starch content (38%) were observed in the noodles containing 4% DO. Conversely, higher percentages of DO (6-8%) diluted and compromised the protein network in the cooked noodles, leading to water migration from protein to starch. The excessive polysaccharides from DO tended to complex with fully gelatinized starch, promoting starch aggregation and interactions between starch and non-starch components. This ultimately resulted in the highest adhesiveness and resistant starch content (34%) in the cooked noodles with 8% DO. These findings provide a reference for enhancing noodle quality by regulating the amount of DO added, thereby promoting the application of DO in cereal-based food products.
Collapse
Affiliation(s)
- Xinyu Zhang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (X.Z.); (P.P.); (Q.M.); (Y.Z.); (X.H.)
| | - Pai Peng
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (X.Z.); (P.P.); (Q.M.); (Y.Z.); (X.H.)
| | - Qianying Ma
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (X.Z.); (P.P.); (Q.M.); (Y.Z.); (X.H.)
| | - Shance Niu
- College of Horticulture, Hebei Agricultural University, Baoding 071001, China;
- State Key Laboratory of Crop Improvement and Regulation in North China, Hebei Agricultural University, Baoding 071001, China
| | - Shande Duan
- College of Horticulture, Hebei Agricultural University, Baoding 071001, China;
| | - Yimeng Zhang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (X.Z.); (P.P.); (Q.M.); (Y.Z.); (X.H.)
| | - Xinzhong Hu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (X.Z.); (P.P.); (Q.M.); (Y.Z.); (X.H.)
| | - Xiaolong Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (X.Z.); (P.P.); (Q.M.); (Y.Z.); (X.H.)
| |
Collapse
|
10
|
Yang C, Leong SY, King J, Kim EHJ, Morgenstern MP, Peng M, Agyei D, Sutton K, Oey I. Texture Evaluation and In Vivo Oral Tactile Perceptions of Cooked Wheat Pasta Sheets Partially Substituted with Pea Protein. Foods 2024; 13:3798. [PMID: 39682871 DOI: 10.3390/foods13233798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Plant proteins are increasingly incorporated into food products to enhance their nutritional value. However, little is known about how this alters the textural perceptions of such products. This study investigated the substitution of up to 35% wheat flour with pea protein isolate (PPI) into pasta sheets to determine how this influenced texture. Furthermore, an in vivo human mastication test (n = 116 participants) was conducted to evaluate oral tactile perceptions (perceived firmness, stickiness, and brittleness) and chewing time associated with PPI-containing pasta. Cooked pasta hardness decreased from 145 to 96 N at 5% PPI substitution due to the disruption of gluten network but increased to 144 N at 15-25% PPI substitution, indicating a stronger protein network at higher PPI substitution levels. In vivo, pasta substituted with 25% PPI required a shorter chewing time and was perceived as less firm, less sticky, and more brittle than wheat flour-only pasta. Regardless of pasta samples, fast chewers (average chewing time ≤13 s) were better at recognizing differences in pasta firmness, while slow chewers (>13 s) were more sensitive to changes in stickiness and brittleness. The results obtained in this study could contribute to the design of protein-rich pasta tailored to populations with specific texture requirements (e.g., softer texture for the elderly).
Collapse
Affiliation(s)
- Chengyi Yang
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand
- Riddet Institute, Palmerston North 4442, New Zealand
- The New Zealand Institute for Plant & Food Research Limited, Lincoln 7608, New Zealand
| | - Sze Ying Leong
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand
- Riddet Institute, Palmerston North 4442, New Zealand
| | - Jessie King
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand
- Riddet Institute, Palmerston North 4442, New Zealand
| | - Esther H-J Kim
- Riddet Institute, Palmerston North 4442, New Zealand
- The New Zealand Institute for Plant & Food Research Limited, Lincoln 7608, New Zealand
| | - Marco P Morgenstern
- Riddet Institute, Palmerston North 4442, New Zealand
- The New Zealand Institute for Plant & Food Research Limited, Lincoln 7608, New Zealand
| | - Mei Peng
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand
- Riddet Institute, Palmerston North 4442, New Zealand
| | - Dominic Agyei
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand
| | - Kevin Sutton
- Riddet Institute, Palmerston North 4442, New Zealand
- The New Zealand Institute for Plant & Food Research Limited, Lincoln 7608, New Zealand
| | - Indrawati Oey
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand
- Riddet Institute, Palmerston North 4442, New Zealand
| |
Collapse
|
11
|
An D, Qi Y, Liu S, Xu B. Changes in overall digital structure, starch properties and moisture distribution reveal how the hardness of wheat noodles evolves under different cooking status. Food Res Int 2024; 192:114781. [PMID: 39147469 DOI: 10.1016/j.foodres.2024.114781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/08/2024] [Accepted: 07/14/2024] [Indexed: 08/17/2024]
Abstract
To elucidate the relationship between the structural evolution of starch within noodles during cooking and the hardness, the panoramic and local microstructure of cooked noodles were quantitatively analyzed, and the structure of starch in noodles were measured. We found that in the case of starch within cooked noodles with a high degree of swelling, the quantitative analysis of each ring was sufficient to represent the structural differences. Changes occurring in starch inside noodles during cooking were not homogeneous. The structural modifications of starch in the outer ring were greater than in the inner ring along with the extension of cooking time. The main reason responsible for the high hardness was attributed to low swelling degree and high short-range order of starch in the center. Water migration from the periphery to the center of the noodles, which was closely related to the fine structure of amylopectin, determined the state of central starch. Wheat starch with more large amylopectin molecules and more long amylopectin chains could enhance the inhibition of water migration and decrease the swelling degree of starch in the center, in order to endow a high hardness to noodles. These results will be useful for the ingredients selection for the production of noodles with desirable quality. In addition, the analysis method established in this work promoted the realization of quantitative comparison of the cooked noodles microstructure, that is an effective tool to clarify the structural basis of macroscopic quality of noodles.
Collapse
Affiliation(s)
- Di An
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
| | - Yajing Qi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Shuyi Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Bin Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
12
|
Zhang J, Ni Y, Li J, Fan L. The effects of adding various starches on the structures of restructured potato-based dough and the oil uptake of potato chips. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:7194-7203. [PMID: 38624005 DOI: 10.1002/jsfa.13541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/14/2024] [Accepted: 04/16/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND The material composition significantly influences the oil absorption and quality characteristics of fried food products. The oil absorption of restructured potato chips is highly dependent on the structural properties of the restructured potato-based dough produced prior to frying. In this study, three types of starch were added to modify the structure of restructured potato-based dough, allowing the production of potato chips with less oil absorption. RESULTS Distinct differences were observed among the three types of starch in terms of amylose content, chain length distribution, swelling power, solubility, crystalline structure and pasting properties. The addition of wheat starch, corn starch and tapioca starch changed the rheological properties, water distribution and strength of the restructured dough. Importantly, adding wheat starch and corn starch significantly lowered the oil content of potato chips by 7.94% and 13.06%, respectively. The reduction in oil absorption by potato chips was attributed to the increased strength of the starchy gel network of the dough, a slower rate of water evaporation and a limitation of dough expansion during frying. CONCLUSION Adding wheat starch or corn starch to restructured potato-based dough resulted in a decrease in the oil absorption of potato chips by creating a stronger starchy gel network in the dough. This study could guide the development of suitable material compositions, which are important for producing fried food products with lower oil content. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jin Zhang
- State Key Laboratory of Food Science & Resources, Jiangnan University, Wuxi, China
| | - Yang Ni
- State Key Laboratory of Food Science & Resources, Jiangnan University, Wuxi, China
| | - Jinwei Li
- State Key Laboratory of Food Science & Resources, Jiangnan University, Wuxi, China
| | - Liuping Fan
- State Key Laboratory of Food Science & Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, China
| |
Collapse
|
13
|
Liang W, Shen H, Lin Q, Liu X, Zhao W, Wang X, Zeng J, Gao H, Li W. Moderate regulation of wheat B-starch ratio: Improvement of molecular structure, spatial conformation, aggregation behavior of reconstituted fermented doughs and its processing suitability. Int J Biol Macromol 2024; 274:133256. [PMID: 38908629 DOI: 10.1016/j.ijbiomac.2024.133256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/18/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
Aiming to investigate the changes and effects of different particle sizes of wheat A/B starch during dough fermentation, the present study reconstituted A/B starch fractions in ratios of 100:0, 75:25, 50:50, 25:75, and 0:100, further blended with gluten and subjected to slight (20 min), medium (30 min), and high (60 min) fermentation processes by yeasts. Results showed that fermentation gas production promoted gluten network extension, inducing starch granule exposure and dough surface roughness. Also, fermentation fractured protein intermolecular disulfide bonds and decreased α-helix and β-folded structure content, contributing to GMP, LPP, and SPP content decreases. Moreover, moderately increasing the B-starch ratio in the dough can improve gluten network stability, continuity, and air-holding capacity. The 25A-75B steam bread exhibited optimal processing suitability (better morphology, texture, and quality) due to its higher GMP and polymer protein content with lower free sulfhydryl and monomeric protein content. Further, conformational relationships indicated the key indicators influencing dough products' properties were free sulfhydryl content, GMP content, protein molecular weight distribution, and secondary structure. The obtained findings contributed to understanding the effect of wheat starch granule size distribution on dough processing behavior, and future targeted breeding for wheat cultivars with high B-starch content for improved fermentation pasta product qualities.
Collapse
Affiliation(s)
- Wei Liang
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Huishan Shen
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Qian Lin
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Xinyue Liu
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Wenqing Zhao
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Xinyu Wang
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Jie Zeng
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, Henan, PR China
| | - Haiyan Gao
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, Henan, PR China
| | - Wenhao Li
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
14
|
Ma W, Shan J, Wang M, Xie J, Chen Y, Liang L, Feng J, Hu X, Yu Q. Effects of improver on the quality of frozen Chinese sweet rice wine dough: Water status, protein structure and flavor properties. Food Chem 2024; 445:138713. [PMID: 38364495 DOI: 10.1016/j.foodchem.2024.138713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 01/10/2024] [Accepted: 02/06/2024] [Indexed: 02/18/2024]
Abstract
In the study, a sweet wine koji (YQ-5) was successfully selected to make frozen Chinese sweet rice wine dough (F-CD) for flavor enrichment. Subsequently, the effects of single improver (SI: xanthan gum, potassium carbonate, antifreeze protein, diacetyl tartaric esters of monoglycerides and composite improver (XPADG: Four improvers mixed in proportion) on the texture, rheological properties, microstructure, water status, protein secondary structure, volatile flavor substances and sensory properties of F-CD during frozen storage were investigated. The results indicated that XPADG slowed the increase in freezable water and water mobility in the dough, giving dough the most stable rheological properties and minimizing the damage of freezing to the secondary structure and microstructure of proteins. Besides, GC-QTOF/MS analysis showed that XPADG may facilitate the retention of flavoring substances in F-CD after storage for 6 days. Finally, the sensory evaluation showed that XPADG imparted good sensory properties to the product after freezing for 6 days.
Collapse
Affiliation(s)
- Wenjie Ma
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Jialuo Shan
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Mengyao Wang
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Yi Chen
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Lanxi Liang
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Jiazhong Feng
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Xiaobo Hu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Qiang Yu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
15
|
Hou L, Jia Z, Zhao K, Xiao S, Fu Y, Zhan W, Wu Y, Wang X. Effect of oxidized starch on the storage stability of frozen raw noodles: Water distribution, protein structure, and quality attributes. J Food Sci 2024; 89:4148-4161. [PMID: 38838085 DOI: 10.1111/1750-3841.17154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/26/2024] [Accepted: 05/17/2024] [Indexed: 06/07/2024]
Abstract
Freezing is a popular method of food preservation with multiple advantages. However, it may change the internal composition and quality of food. This study aimed to investigate the effect of modified starch on the storage stability of frozen raw noodles (FRNs) under refrigerated storage conditions. Oxidized starch (OS), a modified starch, is widely used in the food industry. In the present study, texture and cooking loss rate analyses showed that the hardness and chewiness of FRNs with added OS increased and the cooking loss rate decreased during the frozen storage process. Low-field nuclear magnetic resonance characterization confirmed that the water-holding capacity of FRNs with OS was enhanced. When 6% OS was added, the maximum freezable water content of FRNs was lower than the minimum freezable water content (51%) of FRNs without OS during freezing. Fourier-transform infrared spectroscopy showed that after the addition of OS, the secondary structures beneficial for structural maintenance were increased, forming a denser protein network and improving the microstructure of FRNs. In summary, the water state, protein structure, and quality characteristics of FRNs were improved by the addition of OS within an appropriate range.
Collapse
Affiliation(s)
- Lili Hou
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan, China
| | - Ziyang Jia
- Department of Analytical and Food Chemistry, Faculty of Sciences, Nutrition and Bromatology Group, Universidade de Vigo, Ourense, Spain
| | - Kaifeng Zhao
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan, China
| | - Shensheng Xiao
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan, China
| | - Yang Fu
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan, China
| | - Wanzhi Zhan
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan, China
| | - Yan Wu
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan, China
| | - Xuedong Wang
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
16
|
Ciftbudak S, Orakdogen N. Anionic starch-based hybrid cryogel-embedded ZnO nanoparticles: tuning the elasticity and pH-functionality of biocomposites with dicarboxylic acid units. SOFT MATTER 2024; 20:4434-4455. [PMID: 38779995 DOI: 10.1039/d4sm00136b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Weakly anionic semi-interpenetrating polymer network (semi-IPN) biocomposites based on starch (ST)-incorporated poly(acrylamide-co-itaconic acid)/ZnO (ST-PAI/ZnO) were synthesized by a simple one-pot method via free radical aqueous polymerization. Hybrid biocomposites exhibited lower equilibrium swelling compared with neat copolymer gel. For both hydrogels and cryogels, swelling followed a decreasing order as copolymer PAI > starch-free PAI/ZnO > ST-PAI/ZnO gels. With the addition of 9% ST and ZnO, the swelling ratio of gels decreased from 898 to 68.3, resulting in a significant increase in elastic modulus. Compared with a fixed amount of ST, biocomposite cryogels exhibited significantly higher modulus than hydrogels. With the addition of 9% ST, the elastic modulus of cryogels reached 22.2 kPa while it was 2.7 kPa for the hydrogels. An equation expressing the effective cross-linking density of semi-IPNs presented by a cubic polynomial as a function of starch was obtained. As pH increased with the presence of dicarboxylic acid units, a gradual increase in swelling occurred at two different pH values. A gradually reproducible swelling change of semi-IPNs was depicted with pH ranging from 2.1 to 11.2. Biocomposite cryogels showed rapid swelling in a buffer solution of pH 11.2 and rapid shrinking in pH 2.1. Salt-induced swelling testing showed that the ability to reduce the degree of swelling and solubility of starch was Br- > Cl- > NO3- > SO42- for anions consistent with the Hofmeister series. Adsorption efficiency for the removal of methyl violet (MV) dye was analyzed using Langmuir, Freundlich, Dubinin-Radushkevich and Temkin isotherm models. The results confirmed that the Langmuir isotherm and pseudo-second-order model are suitable for describing MV adsorption on semi-IPN biocomposites. The synthesized biocomposites with good swelling/deswelling kinetics in different pH-buffer solutions, high saline absorbency, desirable adsorption efficiency, and acceptable pH-dependent swelling reversibility can be considered as smart hybrid materials for the adsorption of the dye in water purification tasks.
Collapse
Affiliation(s)
- Sena Ciftbudak
- Graduate School of Science Engineering and Technology, Department of Chemistry, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
| | - Nermin Orakdogen
- Department of Chemistry, Soft Materials Research Laboratory, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey.
| |
Collapse
|
17
|
Huang PH, Chiu CS, Chan YJ, Su WC, Wang CCR, Lu WC, Li PH. Effect of osmotic pressure and simultaneous heat-moisture phosphorylation treatments on the physicochemical properties of mung bean, water caltrop, and corn starches. Int J Biol Macromol 2024; 272:132358. [PMID: 38750862 DOI: 10.1016/j.ijbiomac.2024.132358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/11/2024] [Accepted: 05/11/2024] [Indexed: 06/10/2024]
Abstract
This study aimed to investigate the physicochemical properties of modified starch prepared through the simultaneous heat-moisture and phosphorylation treatment (HMPT) and osmotic pressure treatment (OPT) for water caltrop starch (WCS), mung bean starch (MBS), and amylose-rich corn starch (CS) for different time periods. Furthermore, variations in starch content [amylose and resistant starch (RS)], swelling powder (SP), water solubility index (WSI), crystallinity, thermal properties, gelatinization enthalpy (ΔH), and glycemic index (GI) were examined. This study demonstrates that neither HMPT nor OPT resulted in a significant increase in the resistant starch (RS) content, whereas all samples succeeded in heat-treating at 105 °C for another 10 min exhibited a significant increase in RS content compared to their native counterparts. Moreover, the gelatinization temperatures of the three starches increased (To, Tp, and Tc), whereas their gelatinization enthalpy (ΔH) and pasting viscosity decreased. In particular, the GI of all three modified starches subjected to HMPT or OPT showed a decreasing trend with modification time, with OPT exhibiting the best effect. Therefore, appropriate modification through HMPT or OPT is a viable approach to develop MBS, WCS, and CS as processed foods with low GI requirements, which exceptionally may be suitable for canned foods, noodles, and bakery products.
Collapse
Affiliation(s)
- Ping-Hsiu Huang
- School of Food, Jiangsu Food and Pharmaceutical Science College, Huai'an City, Jiangsu Province 223003, China
| | - Chien-Shan Chiu
- Department of Dermatology, Taichung Veterans General Hospital, Taichung City 40705, Taiwan
| | - Yung-Jia Chan
- College of Biotechnology and Bioresources, Da-Yeh University, Changhua County 51591, Taiwan
| | - Wei-Chen Su
- Department of Food and Nutrition, Providence University, Taichung City 43301, Taiwan
| | - Chiun-Chung R Wang
- Department of Food and Nutrition, Providence University, Taichung City 43301, Taiwan
| | - Wen-Chien Lu
- Department of Food and Beverage Management, Chung-Jen Junior College of Nursing, Health Sciences and Management, Chia-Yi City 60077, Taiwan
| | - Po-Hsien Li
- Department of Food and Nutrition, Providence University, Taichung City 43301, Taiwan.
| |
Collapse
|
18
|
Zhou X, Chen J, Zheng H, An D, Obadi M, Xu B. Explaining the improving effect of dough crumb-sheet composite rolling on fresh noodle quality: From microstructure and moisture distribution perspective. J Texture Stud 2024; 55:e12836. [PMID: 38702990 DOI: 10.1111/jtxs.12836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/22/2024] [Accepted: 04/01/2024] [Indexed: 05/06/2024]
Abstract
A new technique known as dough crumb-sheet composite rolling (DC-SCR) was used to improve the quality of fresh noodles. However, there is a dearth of theoretical investigations into the optimal selection of specific parameters for this technology, and the underlying mechanisms are not fully understood. Therefore, the effects of dough crumb addition times in DC-SCR on the texture, cooking, and eating quality of fresh noodles were first studied. Then, the underlying regulation mechanism of DC-SCR technology on fresh noodles was analyzed in terms of moisture distribution and microstructure. The study demonstrated that the most significant enhancement in the quality of fresh noodles was achieved by adding dough crumbs six times. Compared with fresh noodles made without the addition of dough crumbs, the initial hardness and chewiness of fresh noodles made by adding six times of dough crumbs increased by 25.32% and 46.82%, respectively. In contrast, the cooking time and cooking loss were reduced by 28.45% and 29.69%, respectively. This quality improvement in fresh noodles made by DC-SCR came from the microstructural differences of the gluten network between the inner and outer layers of the dough sheet. A dense structure on the outside and a loose structure on the inside could endow the fresh noodles made by DC-SCR with higher hardness, a shortened cooking time, and less cooking loss. This study would provide a theoretical and experimental basis for creating high-quality fresh noodles.
Collapse
Affiliation(s)
- Xiaoqian Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jin Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Haitao Zheng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Di An
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Mohammed Obadi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Bin Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
19
|
Wang J, Li Y, Guo X, Zhu K, Wu Z. A Review of the Impact of Starch on the Quality of Wheat-Based Noodles and Pasta: From the View of Starch Structural and Functional Properties and Interaction with Gluten. Foods 2024; 13:1507. [PMID: 38790811 PMCID: PMC11121694 DOI: 10.3390/foods13101507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Starch, as a primary component of wheat, plays a crucial role in determining the quality of noodles and pasta. A deep understanding of the impact of starch on the quality of noodles and pasta is fundamentally important for the industrial progression of these products. The starch structure exerts an influence on the quality of noodles and pasta by affecting its functional attributes and the interaction of starch-gluten proteins. The effects of starch structure (amylopectin structure, amylose content, granules size, damaged starch content) on the quality of noodles and pasta is discussed. The relationship between the functional properties of starch, particularly its swelling power and pasting properties, and the texture of noodles and pasta is discussed. It is important to note that the functional properties of starch can be modified during the processing of noodles and pasta, potentially impacting the quality of the end product, However, this aspect is often overlooked. Additionally, the interaction between starch and gluten is addressed in relation to its impact on the quality of noodles and pasta. Finally, the application of exogenous starch in improving the quality of noodles and pasta is highlighted.
Collapse
Affiliation(s)
- Jinrong Wang
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Yonghui Li
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA;
| | - Xiaona Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (X.G.); (K.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Kexue Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (X.G.); (K.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zijian Wu
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
- Key Laboratory of Low Carbon Cold Chain for Agricultural Products, Ministry of Agriculture and Rural Affairs, Tianjin 300134, China
| |
Collapse
|
20
|
Sahil, Madhumita M, Prabhakar PK. Effect of dynamic high-pressure treatments on the multi-level structure of starch macromolecule and their techno-functional properties: A review. Int J Biol Macromol 2024; 268:131830. [PMID: 38663698 DOI: 10.1016/j.ijbiomac.2024.131830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 04/02/2024] [Accepted: 04/22/2024] [Indexed: 05/05/2024]
Abstract
Over the past decades, dynamic high-pressure treatment (DHPT) executed by high-pressure homogenization (HPH) or microfluidization (DHPM) technology has received humongous research attention for starch macromolecule modification. However, the studies on starch multi-level structure alterations by DHPT have received inadequate attention. Furthermore, no review comprehensively covers all aspects of DHPT, explicitly addressing the combined effects of both technologies (HPH or DHPM) on starch's structural and functional characteristics. Hence, this review focused on recent advancements concerning the influences of DHPT on the starch multi-level structure and techno-functional properties. Intense mechanical actions induced by DHPT, such as high shear and impact forces, hydrodynamic cavitation, instantaneous pressure drops, and turbulence, altered the multi-level structure of starch for a short duration. The DHPT reduces the starch molecular weight and degree of branching, destroys short-range ordered and long-range crystalline structure, and degrades lamellar structure, resulting in partial gelatinization of starch granules. These structural changes influenced their techno-functional properties like swelling power and solubility, freeze-thaw stability, emulsifying properties, retrogradation rate, thermal properties, rheological and pasting, and digestibility. Processing conditions such as pressure level, the number of passes, inlet temperature, chamber geometry used, starch types, and their concentration may influence the above changes. Moreover, dynamic high-pressure treatment could form starch-fatty acids/polyphenol complexes. Finally, we discuss the food system applications of DHPT-treated starches and flours, and some limitations.
Collapse
Affiliation(s)
- Sahil
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat, HR, India
| | - Mitali Madhumita
- Department of Food Technology, School of Health Sciences and Technology, University of Petroleum and Energy Studies, Bidholi, Dehradun, India
| | - Pramod K Prabhakar
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat, HR, India.
| |
Collapse
|
21
|
Argel-Pérez S, Gañán-Rojo P, Cuartas-Marulanda D, Gómez-Hoyos C, Velázquez-Cock J, Vélez-Acosta L, Zuluaga R, Serpa-Guerra A. Characterization of a Novel Starch Isolated from the Rhizome of Colombian Turmeric ( Curcuma longa L.) Cultivars. Foods 2023; 13:7. [PMID: 38201035 PMCID: PMC10778539 DOI: 10.3390/foods13010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/14/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024] Open
Abstract
Turmeric (Curcuma longa L.) plants are native to Southeast Asia and are part of the Zingiberaceae family. Global consumption and production of this plant are expanding. In countries such as Colombia, turmeric is a promising cultivar. Curcuminoids derived from its rhizomes are used in food, pharmaceuticals, and natural cosmetics. Curcuminoids constitute approximately 3 wt% of the rhizome. Many residues rich in cellulose and starch can thus be recovered. This study characterizes a novel starch isolated from Colombian turmeric cultivars. The morphological parameters of the starch were determined using microscopic techniques such as scanning electron microscopy (SEM). Proximate analysis and infrared spectroscopy (ATR-FTIR) were used to analyze the chemical composition, while physical analyses included thermal characterization, swelling power testing, solubility, water retention capacity, and colorimetry evaluation. The new starch granules were ellipsoidal in shape and ranged in diameter from 19.91 to 38.09. A trace amount of remaining curcumin was identified through chemical and physical characterization. The swelling power was 3.52 ± 0.30, and its water retention capacity was 3.44 ± 0.30. Based on these findings, turmeric can be useful in both food and non-food applications. Because starch was extracted from other Zingiberaceae plants, this study also includes a brief review of the related literature.
Collapse
Affiliation(s)
- Shaydier Argel-Pérez
- Programa de Ingeniería en Nanotecnología, Universidad Pontificia Bolivariana, Circular 1, 70-01, Medellin 050031, Colombia; (S.A.-P.); (D.C.-M.); (C.G.-H.); (J.V.-C.)
| | - Piedad Gañán-Rojo
- Facultad de Ingeniería Química, Universidad Pontificia Bolivariana, Circular 1, 70-01, Medellin 050031, Colombia
| | - Diego Cuartas-Marulanda
- Programa de Ingeniería en Nanotecnología, Universidad Pontificia Bolivariana, Circular 1, 70-01, Medellin 050031, Colombia; (S.A.-P.); (D.C.-M.); (C.G.-H.); (J.V.-C.)
| | - Catalina Gómez-Hoyos
- Programa de Ingeniería en Nanotecnología, Universidad Pontificia Bolivariana, Circular 1, 70-01, Medellin 050031, Colombia; (S.A.-P.); (D.C.-M.); (C.G.-H.); (J.V.-C.)
| | - Jorge Velázquez-Cock
- Programa de Ingeniería en Nanotecnología, Universidad Pontificia Bolivariana, Circular 1, 70-01, Medellin 050031, Colombia; (S.A.-P.); (D.C.-M.); (C.G.-H.); (J.V.-C.)
| | - Lina Vélez-Acosta
- Facultad de Ingeniería Agroindustrial, Universidad Pontificia Bolivariana, Circular 1, 70-01, Medellin 050031, Colombia; (L.V.-A.); (R.Z.); (A.S.-G.)
| | - Robin Zuluaga
- Facultad de Ingeniería Agroindustrial, Universidad Pontificia Bolivariana, Circular 1, 70-01, Medellin 050031, Colombia; (L.V.-A.); (R.Z.); (A.S.-G.)
| | - Angélica Serpa-Guerra
- Facultad de Ingeniería Agroindustrial, Universidad Pontificia Bolivariana, Circular 1, 70-01, Medellin 050031, Colombia; (L.V.-A.); (R.Z.); (A.S.-G.)
| |
Collapse
|
22
|
Jia R, Cui C, Gao L, Qin Y, Ji N, Dai L, Wang Y, Xiong L, Shi R, Sun Q. A review of starch swelling behavior: Its mechanism, determination methods, influencing factors, and influence on food quality. Carbohydr Polym 2023; 321:121260. [PMID: 37739518 DOI: 10.1016/j.carbpol.2023.121260] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/18/2023] [Accepted: 08/02/2023] [Indexed: 09/24/2023]
Abstract
Swelling behavior involves the process of starch granules absorbing enough water to swell and increase the viscosity of starch suspension under hydrothermal conditions, making it one of the important aspects in starch research. The changes that starch granules undergo during the swelling process are important factors in predicting their functional properties in food processing. However, the factors that affect starch swelling and how swelling, in turn, affects the texture and digestion characteristics of starch-based foods have not been systematically summarized. Compared to its long chains, the short chains of amylose easily interact with amylopectin chains to inhibit starch swelling. Generally, reducing the swelling of starch could increase the strength of the gel while limiting the accessibility of digestive enzymes to starch chains, resulting in a reduction in starch digestibility. This article aims to conduct a comprehensive review of the mechanism of starch swelling, its influencing factors, and the relationship between swelling and the pasting, gelling, and digestion characteristics of starch. The role of starch swelling in the edible quality and nutritional characteristics of starch-based foods is also discussed, and future research directions for starch swelling are proposed.
Collapse
Affiliation(s)
- Ruoyu Jia
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Congli Cui
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Lin Gao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Yang Qin
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong Province 266109, China; Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying, Shandong Province 257300, China
| | - Na Ji
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong Province 266109, China; Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying, Shandong Province 257300, China
| | - Lei Dai
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong Province 266109, China; Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying, Shandong Province 257300, China
| | - Yanfei Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong Province 266109, China; Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying, Shandong Province 257300, China
| | - Liu Xiong
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Rui Shi
- College of Food Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu Province 210037, China
| | - Qingjie Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong Province 266109, China; Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying, Shandong Province 257300, China.
| |
Collapse
|
23
|
Ye L, Zheng W, Li X, Han W, Shen J, Lin Q, Hou L, Liao L, Zeng X. The Role of Gluten in Food Products and Dietary Restriction: Exploring the Potential for Restoring Immune Tolerance. Foods 2023; 12:4179. [PMID: 38002235 PMCID: PMC10670377 DOI: 10.3390/foods12224179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Wheat is extensively utilized in various processed foods due to unique proteins forming from the gluten network. The gluten network in food undergoes morphological and molecular structural changes during food processing, affecting the final quality and digestibility of the food. The present review introduces the formation of the gluten network and the role of gluten in the key steps of the production of several typical food products such as bread, pasta, and beer. Also, it summarizes the factors that affect the digestibility of gluten, considering that different processing conditions probably affect its structure and properties, contributing to an in-depth understanding of the digestion of gluten by the human body under various circumstances. Nevertheless, consumption of gluten protein may lead to the development of celiac disease (CD). The best way is theoretically proposed to prevent and treat CD by the inducement of oral tolerance, an immune non-response system formed by the interaction of oral food antigens with the intestinal immune system. This review proposes the restoration of oral tolerance in CD patients through adjunctive dietary therapy via gluten-encapsulated/modified dietary polyphenols. It will reduce the dietary restriction of gluten and help patients achieve a comprehensive dietary intake by better understanding the interactions between gluten and food-derived active products like polyphenols.
Collapse
Affiliation(s)
- Li Ye
- Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; (L.Y.); (W.Z.); (X.L.); (W.H.); (J.S.); (Q.L.); (L.H.)
- Department of Food Science, Foshan University, Foshan 528000, China
| | - Wenyu Zheng
- Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; (L.Y.); (W.Z.); (X.L.); (W.H.); (J.S.); (Q.L.); (L.H.)
- Department of Food Science, Foshan University, Foshan 528000, China
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xue Li
- Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; (L.Y.); (W.Z.); (X.L.); (W.H.); (J.S.); (Q.L.); (L.H.)
- Department of Food Science, Foshan University, Foshan 528000, China
| | - Wenmin Han
- Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; (L.Y.); (W.Z.); (X.L.); (W.H.); (J.S.); (Q.L.); (L.H.)
- Department of Food Science, Foshan University, Foshan 528000, China
| | - Jialing Shen
- Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; (L.Y.); (W.Z.); (X.L.); (W.H.); (J.S.); (Q.L.); (L.H.)
- Department of Food Science, Foshan University, Foshan 528000, China
| | - Qiuya Lin
- Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; (L.Y.); (W.Z.); (X.L.); (W.H.); (J.S.); (Q.L.); (L.H.)
- Department of Food Science, Foshan University, Foshan 528000, China
| | - Liyan Hou
- Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; (L.Y.); (W.Z.); (X.L.); (W.H.); (J.S.); (Q.L.); (L.H.)
- Department of Food Science, Foshan University, Foshan 528000, China
| | - Lan Liao
- Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; (L.Y.); (W.Z.); (X.L.); (W.H.); (J.S.); (Q.L.); (L.H.)
- Department of Food Science, Foshan University, Foshan 528000, China
| | - Xin’an Zeng
- Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; (L.Y.); (W.Z.); (X.L.); (W.H.); (J.S.); (Q.L.); (L.H.)
- Department of Food Science, Foshan University, Foshan 528000, China
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
24
|
Jiang S, Xu C, Jiang Y, Xu B, Liu S. Cantilever beam bending as a potential method to determine the elasticity of cooked Udon noodles. J Texture Stud 2023. [PMID: 37926098 DOI: 10.1111/jtxs.12810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/22/2023] [Accepted: 10/19/2023] [Indexed: 11/07/2023]
Abstract
Elasticity is a critical measure of the eating quality of Udon noodles. To characterize the elasticity of Udon noodles, an instrumental method based on the cantilever beam bending test was established. Firstly, the optimum test parameters were determined. Then, texture profile analysis, compression, tension, and cantilever beam bending methods were used to measure the elasticity of 25 commercial Udon noodles with different shapes and sizes, and the correlations between elasticity obtained by the above instrumental methods and sensory evaluation were analyzed. Finally, how the shape and size of Udon noodles influenced their elasticity was discussed in detail. Within the deflection of 2.0 mm, the force increased approximately linearly with increasing deflection, and moderate loading speed (0.5-1.0 mm/s) should be used in the cantilever beam bending experiments to improve the accuracy of results. The bending stiffness obtained by the cantilever beam bending method exhibited a higher coefficient of variation and stronger correlation with the elasticity of sensory evaluation than other instrumental methods. Furthermore, the Udon noodle sample with a higher size, especially the thickness, had higher elasticity, and the Udon noodle sample with a rectangular cross-section showed higher elasticity than that with a circular cross-section. In conclusion, the bending stiffness determined by the cantilever beam bending method could be used to characterize the elasticity of cooked Udon noodles.
Collapse
Affiliation(s)
- Song Jiang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Congmei Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yiyi Jiang
- School of Food Science and Nutrition, University of Leeds, Leeds, UK
| | - Bin Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Shuyi Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
25
|
Shi Y, Li X, Qi Y, Manzoor MF, Cui S, Xu B. Investigating the positive effects of wrap-around resting on the qualities of semi-dried noodles through the quantitative analysis of gluten network. J Texture Stud 2023; 54:105-114. [PMID: 36136727 DOI: 10.1111/jtxs.12722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/15/2022] [Accepted: 09/18/2022] [Indexed: 11/30/2022]
Abstract
In this study, the dough sheet wrap-around was employed to assist the resting process of the semi-dried noodles comparatively with dough crumbs resting and common dough sheet resting. The gluten network quantitative analysis was carried out to investigate the positive impacts of dough sheet wrap-around resting in semi-dried noodles production. The results showed that the dough sheet wrap-around resting improved the color, surface smoothness, cooking qualities, and eating qualities of semi-dried noodles. Dough sheet wrap-around resting for 30 min significantly (p < 0.05) increased the surface smoothness and chewiness by 47.08% and 44.35%, respectively. Furthermore, increased extensibility in the transverse direction of dough sheets generated superior processing properties. The average protein length and width of dough sheets experienced a considerable (p < 0.05) reduction. In contrast, the branching rate was markedly (p < 0.05) augmented, which meant the distribution of gluten network was more uniform and denser. The total protein length and the number of protein network lines both significantly (p < 0.05) increased. The number of transverse protein network lines increased by 28.70%, which was much higher than that (5.77%) of the longitudinal direction. Conclusively, at the optimal dough sheet wrap-around time of 30 min, the higher-quality semi-dried noodles were produced by enhancing the gluten network.
Collapse
Affiliation(s)
- Yanan Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Xue Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yajing Qi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | | | - Shirong Cui
- Jiangsu Xingyuan Food Technology Co. LTD, Yancheng, China
| | - Bin Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
26
|
Synergistic effect of endogenous gluten and oleic acid on wheat starch digestion by forming ordered starch-fatty acid-protein complexes during thermal processing. Curr Res Food Sci 2023; 6:100422. [PMID: 36687172 PMCID: PMC9849868 DOI: 10.1016/j.crfs.2022.100422] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/29/2022] [Accepted: 12/20/2022] [Indexed: 01/04/2023] Open
Abstract
The aim of this study was to understand the potential of endogenous gluten inhibiting the digestibility in vitro of wheat starch (WS) in starch-fatty acid-protein system. Therefore, the influences of gluten and whey protein isolate (WPI) on the properties, multi-scale structure and in vitro digestibility of WS in WS-oleic acid (OA)-protein system were compared. The results of digestibility in vitro indicated that the ternary system of starch-fatty acid-protein showed higher resistant starch (RS) content as well as lower rapidly digestible starch (RDS) content than the binary system of WS-OA, demonstrating protein decreased WS digestion of WS-OA system. The results of pasting properties showed that gluten and WPI both increased the viscosities of WS-OA system during the cooling period due to the formation of WS-OA-protein ternary complex. The results of swelling power and solubility analysis showed that gluten and WPI both decreased the swelling power and solubility of WS-OA binary system. Laser Confocal Raman and X-ray diffraction (XRD) studies indicated that gluten and WPI both increased the ordered degree of WS-OA binary system by decreasing the full width at half maximum (FWHM) of the peak at 480 cm-1 and increasing crystallinity degree. Strikingly, compared with WPI, gluten had greater effects on the digestibility in vitro, pasting properties and ordered degree of WS in WS-OA-protein system. Therefore, gluten as an endogenous protein has the potential application in reduction the enzymatic digestibility of WS by regulating the reassembly of starch and fatty acid during thermal processing.
Collapse
|
27
|
Study on the quality characteristics of hot-dry noodles by microbial polysaccharides. Food Res Int 2023; 163:112200. [PMID: 36596138 DOI: 10.1016/j.foodres.2022.112200] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
The effect of curdlan gum (CG), gellan gum (GG), and xanthan gum (XG) on the quality characteristics of hot-dry noodles (HDN) was investigated. The rheology properties were used to evaluate the quality of the dough, the textural, viscosity, cooking characteristics and water states were investigated to study the quality changes of HDN. Three microbial polysaccharides were found that it could improve the quality of wheat flour and significantly increase the starch viscosity of HDN and delay the water migration rate of HDN. When 0.2% CG, 0.5% GG, and 0.5% XG were added, the HDN showed the best flour swelling power, texture, and tensile properties, and the structure of gluten network was significantly improved. The flourier transform infrared spectroscopy results showed that microbial polysaccharides with appropriate concentrations changed the formation of hydrogen bond in HDN, decreased α-helix and increased β-turn content. Meanwhile, the relative continuous and complete gluten network was formed, which could be proven by microstructure observation. This study provides a reference for functionality applications of HDN with microbial polysaccharides.
Collapse
|
28
|
Liu L, Hu X, Zou L. Wheat polysaccharides and gluten effects on water migration and structure in noodle doughs: An 1H LF-NMR study. J Cereal Sci 2023. [DOI: 10.1016/j.jcs.2023.103628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
29
|
Screening for a rapid evaluation method for the sheeting effect on dough and explicating it from the view of three-dimensional gluten. J Cereal Sci 2022. [DOI: 10.1016/j.jcs.2022.103590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|