1
|
Xian M, Ma Z, Zhan S, Shen L, Li T, Lin H, Huang M, Cai J, Hu T, Liang J, Liang S, Wang S. Network analysis of microbiome and metabolome to explore the mechanism of raw rhubarb in the protection against ischemic stroke via microbiota-gut-brain axis. Fitoterapia 2024; 175:105969. [PMID: 38643860 DOI: 10.1016/j.fitote.2024.105969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/09/2024] [Accepted: 04/17/2024] [Indexed: 04/23/2024]
Abstract
Ischemic stroke (IS) has attracted worldwide attention due to the high mortality and disability rate. Raw rhubarb (RR) is a traditional medicinal plant and whole-food that has been used in China for its various pharmacological activities, such as antioxidant and anti-inflammatory properties. Recent pharmacological research has shown the role of RR against IS, but its mechanism of action remains unclear, particularly in the context of the brain-gut axis. To address this gap in knowledge, the present study was conducted in the middle cerebral artery occlusion/reperfusion (MCAO/R) model with the aim of investigating the effects of RR on regulating the intestinal microbiota barrier and metabolism and thereby reducing inflammatory response so as to improve the IS. The results showed that pre-treatment of RR attenuated cerebral infarct area and inflammation response in MCAO rats. Furthermore, RR also improved intestinal barrier function, including the integrity and permeability of the intestinal barrier. Additionally, RR intervention significantly attenuated gut microbiota dysbiosis caused by ischemic stroke, especially the increased Firmicutes. Notably, the pseudo-germ-free (PGF) rats further demonstrated that the anti-stroke effect of RR might rely on intestinal microbiota. In addition, the UPLC/Q-Orbitrap-MS-Based metabolomics revealed the disrupted metabolic profiles caused by MCAO/R, and a total of 11 differential metabolites were modulated by RR administration, especially bile acids. Further correlation analysis and network pharmacology analysis also demonstrated a strong association between specific bacteria, such as Firmicutes and bile acids. In conclusion, our work demonstrated that RR could effectively ameliorate ischemic stroke by modulating the microbiota and metabolic disorders.
Collapse
Affiliation(s)
- Minghua Xian
- Guangdong Pharmaceutical University, Guangzhou 510006, China; Traditional Chinese Medicine Resource Germplasm Bank Management Center, Yunfu 527322, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Zuqing Ma
- Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Sikai Zhan
- Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lin Shen
- Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Ting Li
- Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Huiting Lin
- Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Mingmin Huang
- Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiale Cai
- Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Tao Hu
- Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiaying Liang
- Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Shengwang Liang
- Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Shumei Wang
- Guangdong Pharmaceutical University, Guangzhou 510006, China; Traditional Chinese Medicine Resource Germplasm Bank Management Center, Yunfu 527322, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
2
|
Quan S, Wen M, Xu P, Chu C, Zhang H, Yang K, Tong S. Efficient screening of pancreatic lipase inhibitors from Rheum palmatum by affinity ultrafiltration-high-performance liquid chromatography combined with high-resolution inhibition profiling. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:540-551. [PMID: 38053479 DOI: 10.1002/pca.3311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 12/07/2023]
Abstract
INTRODUCTION Pancreatic lipase is one of the most important key targets in the treatment of obesity. Inhibition of pancreatic lipase can effectively reduce lipid absorption and treat obesity and other related metabolic disorders. OBJECTIVES The goal of this study is the efficient screening of pancreatic lipase inhibitors in the root and rhizome of Rheum palmatum using affinity ultrafiltration-high-performance liquid chromatography (AUF-HPLC) combined with high-resolution inhibition profiling (HRIP). METHODS Potential pancreatic lipase ligands and pancreatic lipase inhibitors in ethyl acetate fraction of R. palmatum were screened using AUF-HPLC and HRIP, respectively. All screened compounds were identified by HPLC- quadrupole time-of-flight (Q-TOF)/MS. Eight compounds were screened out by both AUF-HPLC and HRIP, and six compounds were screened out by either AUF-HPLC or HRIP alone. The pancreatic lipase inhibitory activities of all screened compounds were verified by enzyme inhibition assay and molecular docking. RESULTS Five new potent pancreatic lipase inhibitors were discovered, namely procyanidin B5 3,3'-di-O-gallate (IC50 = 0.06 ± 0.01 μM), 1,6-di-O-galloyl-2-O-cinnamoyl-β-D-glucoside (IC50 = 12.83 ± 0.67 μM), 1-O-(1,3,5-trihydroxy)phenyl-2-O-galloyl-6-O-cinnamoyl-β-D-glucoside (IC50 = 17.84 ± 1.33 μM), 1,2-di-O-galloyl-6-O-cinnamoyl-β-D-glucoside (IC50 = 18.39 ± 1.52 μM), and 4-(4'-hydroxyphenyl)-2-butanone-4'-O-β-D-(2"-O-galloyl-6"-O-cinnamoyl)-glucoside (IC50 = 2.91 ± 0.40 μM). It was found that procyanidin B5 3,3'-di-O-gallate showed higher pancreatic lipase inhibitory activity than the positive control orlistat (IC50 = 0.12 ± 0.02 μM). CONCLUSION The combination of affinity ultrafiltration-high-performance liquid chromatography (AUF-HPLC) and high-resolution inhibition profiling (HRIP) could reduce the risk of false-negative screening and missed screening and could achieve more efficient screening of bioactive compounds in complex natural products.
Collapse
Affiliation(s)
- Sihua Quan
- College of Pharmaceutical Science, Zhejiang University of Technology, Huzhou, China
| | - Mengyi Wen
- College of Pharmaceutical Science, Zhejiang University of Technology, Huzhou, China
| | - Ping Xu
- College of Pharmaceutical Science, Zhejiang University of Technology, Huzhou, China
| | - Chu Chu
- College of Pharmaceutical Science, Zhejiang University of Technology, Huzhou, China
| | - Hui Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Huzhou, China
| | - Kai Yang
- College of Food Science and Engineering, Zhejiang University of Technology, Huzhou, China
| | - Shengqiang Tong
- College of Pharmaceutical Science, Zhejiang University of Technology, Huzhou, China
| |
Collapse
|
3
|
Wan J, Liang Y, Wei X, Liang H, Chen XL. Chitosan-based double network hydrogel loading herbal small molecule for accelerating wound healing. Int J Biol Macromol 2023; 246:125610. [PMID: 37392909 DOI: 10.1016/j.ijbiomac.2023.125610] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/14/2023] [Accepted: 06/27/2023] [Indexed: 07/03/2023]
Abstract
Skin injuries are one of the most common clinical traumas worldwide, and wound dressings are considered to be one of key factors in wound healing. Natural polymer-based hydrogels have been developed as ideal materials for a new generation of dressings due to their excellent biocompatibility and wetting ability. However, the inadequate mechanical performances and lack of efficacy in promoting wound healing have limited the application of natural polymer-based hydrogels as wound dressings. In this work, a double network hydrogel based on natural chitosan molecules was constructed to enhance the mechanical properties, and emodin, a herbal natural product, was loaded into the hydrogel to improve the healing effect of the dressing. The structure of the chitosan-emodin network formed by Schiff base reaction and microcrystalline network of biocompatible polyvinyl alcohol endowed hydrogels with excellent mechanical properties and ensured its integrity as wound dressings. Moreover, the hydrogel showed excellent wound healing properties due to the loading of emodin. The hydrogel dressing could promote cell proliferation, cell migration, and secretion of growth factors. The animal experimental results also demonstrated that the hydrogel dressing facilitated the regeneration of blood vessels and collagen and accelerated wound healing.
Collapse
Affiliation(s)
- Jia Wan
- Department of Burns, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230088, PR China
| | - Yongzhi Liang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei, Anhui 230026, PR China; School of Science, Harbin Institute of Technology, Shenzhen 518055, PR China
| | - Xiaofeng Wei
- Department of Burns, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230088, PR China
| | - Haiyi Liang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei, Anhui 230026, PR China.
| | - Xu-Lin Chen
- Department of Burns, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230088, PR China.
| |
Collapse
|