1
|
Jiang SS, Li Q, Wang T, Huang YT, Luo TT, Liu W. The reduction effect on sensitization of sesame protein Ses i 3 of ultrasound-assisted glycation treatment through modulation of T cell differentiation. Int J Biol Macromol 2025; 307:142112. [PMID: 40089237 DOI: 10.1016/j.ijbiomac.2025.142112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/22/2025] [Accepted: 03/12/2025] [Indexed: 03/17/2025]
Abstract
This study aimed to investigate the potential reduction on the sensitization of sesame protein Ses i 3 through ultrasound-assisted glycation. Ses i 3 was extracted and purified using an immunoaffinity column, and the allergenicity changes of Ses i 3 were assessed by a comprehensive strategy, and T cell polarization was also assessed in vivo. Results showed ultrasound-assisted glycation treated Ses i 3 was more easily digestible; and the cell degranulation model showed the histamine, tryptase, and β-hexosaminidase induced by ultrasound-assisted glycation treatment were significantly decreased; besides, the serological results demonstrated that a notable decrease in the binding ability of immunoglobulin E (IgE) and IgG; finally, a BALB/c mice model demonstrated an alleviation of allergic responses induced by ultrasonic-assisted glycation treatment. Meanwhile, the results in vivo also found that ultrasonic-assisted glycation treated Ses i 3 induced enhanced Helper T cell (TH) 1 cell differentiation while weakening TH2 cell differentiation, promoting TH1/TH2 balance polarization. Additionally, it induced stronger regulatory T (Treg) cell differentiation, and suppressed TH17 cell differentiation, promoting Treg/TH17 balance. This study demonstrated that the sensitization of Ses i 3 was reduced after ultrasonic-assisted glycation treatment, and this effect was associated with the modulation of T cell differentiation.
Collapse
Affiliation(s)
- Song-Song Jiang
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, Jiangsu 225127, PR China; Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou, Jiangsu 225127, PR China.
| | - Qian Li
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, Jiangsu 225127, PR China
| | - Tao Wang
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, Jiangsu 225127, PR China
| | - Yu-Tong Huang
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, Jiangsu 225127, PR China
| | - Ting-Ting Luo
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, Jiangsu 225127, PR China
| | - Weilin Liu
- Qingdao Municipal Hospital Group, Qindao, Shandong 266000, China
| |
Collapse
|
2
|
Duan Y, Gao Y, Yang H, Shui T, Huang P, Qu J, He R, Xi J. Localization of G3A1b Destroyed by Heat Treatment and Identification of Allergenic Amino Acids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:9827-9834. [PMID: 40214278 DOI: 10.1021/acs.jafc.4c11125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
The G3 subunit is a key allergenic component of glycinin, a major soybean protein. This study utilized molecular cloning and recombinant phage construction to investigate antigenic sites in the G3 subunit that are denatured during heat treatment. Using indirect ELISA, the G3A1b-3-B-II fragment was identified as the denatured antigenic site, further localized to the sequence 236RQIVRKLQGENEEEEKGAIVTVKGGLSV263 through three rounds of screening. Alanine-scanning mutagenesis revealed that residues V255, T256, V257, G259, and L261 are critical for the binding of synthetic peptide P3 (251KGAIVTVKGGLSV263) to IgG and IgE. These findings provide a refined understanding of the amino acid residues that influence glycinin allergenicity. This research lays the groundwork for reducing or eliminating soybean allergenicity through targeted amino acid substitutions, advanced biological breeding techniques, and other interventions. This method overcomes the defect that heat treatment cannot completely eliminate the allergenicity of glycinin.
Collapse
Affiliation(s)
- Yuying Duan
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Yida Gao
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Huanhuan Yang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Tianjiao Shui
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Pengbo Huang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Jinglong Qu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Runrun He
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Jun Xi
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China
| |
Collapse
|
3
|
Hund SK, Sampath V, Zhou X, Thai B, Desai K, Nadeau KC. Scientific developments in understanding food allergy prevention, diagnosis, and treatment. Front Immunol 2025; 16:1572283. [PMID: 40330465 PMCID: PMC12052904 DOI: 10.3389/fimmu.2025.1572283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 03/21/2025] [Indexed: 05/08/2025] Open
Abstract
Food allergies (FAs) are adverse immune reactions to normally innocuous foods. Their prevalence has been increasing in recent decades. They can be IgE-mediated, non-IgE mediated, or mixed. Of these, the mechanisms underlying IgE-mediated FA are the best understood and this has assisted in the development of therapeutics. Currently there are two approved drugs for the treatment of FA, Palforzia and Omalizumab. Palfornia is a characterized peanut product used as immunotherapy for peanut allergy. Immunotherapy, involves exposure of the patient to small but increasing doses of the allergen and slowly builds immune tolerance to the allergen and increases a patient's allergic threshold. Omalizumab, a biologic, is an anti-IgE antibody which binds to IgE and prevents release of proinflammatory allergenic mediators on exposure to allergen. Other biologics, investigational vaccines, nanoparticles, Janus Kinase and Bruton's tyrosine kinase inhibitors, or DARPins are also being evaluated as potential therapeutics. Oral food challenges (OFC) are the gold standard for the diagnosis for FA. However, they are time-consuming and involve risk of anaphylaxis; therefore, alternative diagnostic methods are being evaluated. This review will discuss how the immune system mediates an allergic response to specific foods, as well as FA risk factors, diagnosis, prevention, and treatments for FA.
Collapse
Affiliation(s)
- Shirin Karimi Hund
- Clinic for Internal Medicine, Spital Zollikerberg, Zollikerberg, Switzerland
| | - Vanitha Sampath
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, United States
| | - Xiaoying Zhou
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, United States
| | - Bryan Thai
- Geffen Academy at UCLA, Los Angeles, CA, United States
| | - Khushi Desai
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, United States
| | - Kari C. Nadeau
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, United States
| |
Collapse
|
4
|
Liu L, Zhang Z, Xiao H, Li Z, Lin H. Dietary AGEs and food allergy: insights into the mechanisms of AGEs-induced food allergy and mitigation strategies. Crit Rev Food Sci Nutr 2025:1-18. [PMID: 40129068 DOI: 10.1080/10408398.2025.2481990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Food allergy (FA) is a significant public health concern, with over one billion individuals globally affected, and its prevalence continues to rise. Advanced glycation end products (AGEs) are common hazards in various diet. Recent investigations have shown that AGEs could influence the pathogenesis of FA by interacting with AGEs receptors. This paper provides a comprehensive review of recent advances on diet AGEs, summarized the mechanisms of AGEs in regulating food allergy and mitigation strategies, analyzed the limitations of current research on AGEs and prospected the future research. AGEs could combine with the receptors for AGEs (RAGE) to induce oxidative stress, inflammation and allergic signaling pathways. AGEs can affect allergen epitopes and conformation and regulate intestinal flora in a non-receptor-dependent manner, as well as affect the intestinal barrier and Th1/Th2 immune balance through receptor-dependent pathways to regulate food allergy. Currently, the approaches to reduce the AGEs-induced food allergy mainly depended on improving food processing methods (e.g., low temperature, short time, low pH and non-thermal processing methods), natural AGEs inhibitors and RAGE inhibitors. This review elucidates the influences of AGEs on food allergy and mitigation strategies, which could provide novel insights into reducing food allergy induced by diet AGEs.
Collapse
Affiliation(s)
- Lichun Liu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Ziye Zhang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Zhenxing Li
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Hong Lin
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
5
|
Ogulur I, Mitamura Y, Yazici D, Pat Y, Ardicli S, Li M, D'Avino P, Beha C, Babayev H, Zhao B, Zeyneloglu C, Giannelli Viscardi O, Ardicli O, Kiykim A, Garcia-Sanchez A, Lopez JF, Shi LL, Yang M, Schneider SR, Skolnick S, Dhir R, Radzikowska U, Kulkarni AJ, Imam MB, Veen WVD, Sokolowska M, Martin-Fontecha M, Palomares O, Nadeau KC, Akdis M, Akdis CA. Type 2 immunity in allergic diseases. Cell Mol Immunol 2025; 22:211-242. [PMID: 39962262 PMCID: PMC11868591 DOI: 10.1038/s41423-025-01261-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 01/09/2025] [Indexed: 03/01/2025] Open
Abstract
Significant advancements have been made in understanding the cellular and molecular mechanisms of type 2 immunity in allergic diseases such as asthma, allergic rhinitis, chronic rhinosinusitis, eosinophilic esophagitis (EoE), food and drug allergies, and atopic dermatitis (AD). Type 2 immunity has evolved to protect against parasitic diseases and toxins, plays a role in the expulsion of parasites and larvae from inner tissues to the lumen and outside the body, maintains microbe-rich skin and mucosal epithelial barriers and counterbalances the type 1 immune response and its destructive effects. During the development of a type 2 immune response, an innate immune response initiates starting from epithelial cells and innate lymphoid cells (ILCs), including dendritic cells and macrophages, and translates to adaptive T and B-cell immunity, particularly IgE antibody production. Eosinophils, mast cells and basophils have effects on effector functions. Cytokines from ILC2s and CD4+ helper type 2 (Th2) cells, CD8 + T cells, and NK-T cells, along with myeloid cells, including IL-4, IL-5, IL-9, and IL-13, initiate and sustain allergic inflammation via T cell cells, eosinophils, and ILC2s; promote IgE class switching; and open the epithelial barrier. Epithelial cell activation, alarmin release and barrier dysfunction are key in the development of not only allergic diseases but also many other systemic diseases. Recent biologics targeting the pathways and effector functions of IL4/IL13, IL-5, and IgE have shown promising results for almost all ages, although some patients with severe allergic diseases do not respond to these therapies, highlighting the unmet need for a more detailed and personalized approach.
Collapse
Affiliation(s)
- Ismail Ogulur
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Yasutaka Mitamura
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Duygu Yazici
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Yagiz Pat
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Sena Ardicli
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Department of Genetics, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa, Turkey
| | - Manru Li
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Paolo D'Avino
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Carina Beha
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Huseyn Babayev
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Bingjie Zhao
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Can Zeyneloglu
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | | | - Ozge Ardicli
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Division of Food Processing, Milk and Dairy Products Technology Program, Karacabey Vocational School, Bursa Uludag University, Bursa, Turkey
| | - Ayca Kiykim
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Department of Pediatrics, Division of Pediatric Allergy and Immunology, Cerrahpasa School of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Asuncion Garcia-Sanchez
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Department of Biomedical and Diagnostic Science, School of Medicine, University of Salamanca, Salamanca, Spain
| | - Juan-Felipe Lopez
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Li-Li Shi
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Minglin Yang
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Stephan R Schneider
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Stephen Skolnick
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Seed Health Inc., Los Angeles, CA, USA
| | - Raja Dhir
- Seed Health Inc., Los Angeles, CA, USA
| | - Urszula Radzikowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Abhijeet J Kulkarni
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Manal Bel Imam
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Mar Martin-Fontecha
- Departamento de Quimica Organica, Facultad de Optica y Optometria, Complutense University of Madrid, Madrid, Spain
| | - Oscar Palomares
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University of Madrid, Madrid, Spain
| | - Kari C Nadeau
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Mubeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland.
| |
Collapse
|
6
|
Xu X, He C, Yuan J, Gao J, Meng X, Wu Y, Li X, Tong P, Chen H. Oral Exposure to Clostridium difficile Toxin A Aggravates Food Allergy by Intestinal Barrier Destruction, Mast Cell Activation, and Th2-Biased Immune Responses. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:3130-3141. [PMID: 39847683 DOI: 10.1021/acs.jafc.4c10909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Food allergy is a complex disease, with multiple environmental factors involved. Considering the regulatory effect of Clostridium difficile toxin A (Tcd A) on biological processes of allergic reactions, the role of oral exposure to Tcd A on food allergy was investigated. The intestinal permeability and β-hexosaminidase were promoted by Tcd A using the in vitro Caco-2 and HT-29 cells coculture monolayer and bone marrow-derived mast cell (MCs) degranulation model. When the sensitized mice were challenged with OVA and 4 μg of Tcd A, specific IgE and MCPT-1 levels were increased. The results of flow cytometry and ELISA demonstrated that the Th1 and Treg cells were reduced and higher IL-5 was induced. The jejunum staining showed that villus injury and MC accumulation were aggravated. All of the findings demonstrated that Tcd A could aggravate food allergy, and the orally exposed risk factors aggravating food allergy warrant increasing attention.
Collapse
Affiliation(s)
- Xiaoqian Xu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, P. R. China
- College of Food Science & Technology, Nanchang University, Nanchang 330031, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang 330047, P. R. China
| | - Cuiying He
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, P. R. China
- College of Food Science & Technology, Nanchang University, Nanchang 330031, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang 330047, P. R. China
| | - Jin Yuan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, P. R. China
- College of Food Science & Technology, Nanchang University, Nanchang 330031, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang 330047, P. R. China
| | - Jinyan Gao
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, P. R. China
- College of Food Science & Technology, Nanchang University, Nanchang 330031, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang 330047, P. R. China
| | - Xuanyi Meng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, P. R. China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang 330047, P. R. China
| | - Yong Wu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, P. R. China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang 330047, P. R. China
| | - Xin Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, P. R. China
- College of Food Science & Technology, Nanchang University, Nanchang 330031, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang 330047, P. R. China
| | - Ping Tong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang 330047, P. R. China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, P. R. China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang 330047, P. R. China
| |
Collapse
|
7
|
Jiang D, Xu Y, Jiang H, Xiang X, Wang L. A biomimetic skin microtissue biosensor for the detection of fish parvalbumin. Bioelectrochemistry 2025; 161:108805. [PMID: 39265374 DOI: 10.1016/j.bioelechem.2024.108805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/27/2024] [Accepted: 09/01/2024] [Indexed: 09/14/2024]
Abstract
In this paper, a biomimetic skin microtissue biosensor was developed based on three-dimensional (3D) bioprinting to precisely and accurately determine fish parvalbumin (FV). Based on the principle that allergens stimulate cells to produce ONOO- (peroxynitrite anion), a screen-printed electrode for the detection nanomolar level ONOO- was innovatively prepared to indirectly detect FV based on the level of ONOO- release. Gelatin methacryloyl (GelMA), RBL-2H3 cells, and MS1 cells were used as bio-ink for 3D bioprinting. The high-throughput and standardized preparation of skin microtissue was achieved using stereolithography 3D bioprinting technology. The printed skin microtissues were put into the self-designed 3D platform that integrated cell culture and electrochemical detection. The experimental results showed that the sensor could effectively detect FV when the optimized ratio of RBL-2H3 to MS1 cells and allergen stimulation time were 2:8 and 2 h, respectively. The linear detection range was 0.125-3.0 μg/mL, and the calculated lowest detection limit was 0.122 μg/mL. In addition, the sensor had excellent selectivity, specificity, stability, and reliability. Thus, this study successfully constructed a biomimetic skin microtissue electrochemical sensor for PV detection.
Collapse
Affiliation(s)
- Donglei Jiang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, PR China
| | - Yang Xu
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, PR China
| | - Hui Jiang
- Nanjing Institute for Food and Drug Control, Nanjing, Jiangsu 211198, PR China
| | - Xinyue Xiang
- Jiangsu Grain Group Co., Ltd, Nanjing, Jiangsu 210008, PR China
| | - Lifeng Wang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, PR China.
| |
Collapse
|
8
|
Zhang X, Chen X, Meng X, Wu Y, Gao J, Chen H, Li X. Extracellular adenosine triphosphate: A new gateway for food allergy mechanism research? Food Chem 2025; 464:141821. [PMID: 39486282 DOI: 10.1016/j.foodchem.2024.141821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/24/2024] [Accepted: 10/26/2024] [Indexed: 11/04/2024]
Abstract
Although various studies have been conducted, the detailed mechanisms of food allergy remain a topic of ongoing debate. Recently, researchers have reported that extracellular adenosine triphosphate (eATP), a member of damage-associated molecular patterns secreted by stressed cells, plays a critical role in the progression of asthma and atopic dermatitis. These studies suggest that dysregulated eATP significantly influences various aspects of disease progression, from bodily sensitization to the emergence of clinical manifestations. Given the shared pathogenic mechanisms among asthma, atopic dermatitis, and food allergies, we hypothesize that eATP may also serve as a crucial regulator in the development of food allergies. To elucidate this hypothesis, we first summarize the evidence and limitations of food allergy theories, then discuss the roles of eATP in allergic diseases. We conclude with speculative insights into the potential influence of eATP on food allergy development, aiming to inspire further investigation into the molecular mechanisms of food allergies.
Collapse
Affiliation(s)
- Xing Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Xiao Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Xuanyi Meng
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, PR China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Yong Wu
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, PR China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Jinyan Gao
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, PR China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Xin Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
9
|
Bai J, Zeng Q, Den W, Huang L, Wu Z, Li X, Tong P, Chen H, Yang A. Synergistic Synbiotic-Containing Lactiplantibacillus plantarum and Fructo-Oligosaccharide Alleviate the Allergenicity of Mice Induced by Soy Protein. Foods 2025; 14:109. [PMID: 39796399 PMCID: PMC11720218 DOI: 10.3390/foods14010109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/30/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
Prebiotics and probiotics have key roles in the intervention and treatment of food allergies. This study assesses the effect of Lactiplantibacillus plantarum synergistic fructo-oligosaccharide (Lp-FOS) intervention using an allergic mouse model induced by soy protein. The results showed that Lp synergistic FOS significantly decreased clinical allergy scores, inhibited specific antibodies (IgE, IgG, and IgG1), IL-4, IL-6, and IL-17A levels, and increased IFN-γ and IL-10 levels. Meanwhile, flow cytometry showed that Lp-FOS intervention inhibited the percentage of dendritic cell (DC) subsets in splenocytes and increased the Th1/Th2 and Treg/Th17 ratios. Furthermore, Lp-FOS intervention upregulated the mRNA levels of T-bet and Foxp3 and downregulated the mRNA levels of GATA3. Finally, non-targeted metabolomic analysis showed that Lp-FOS improved serum metabolic disorders caused by food allergies through regulating glycine, serine, and threonine metabolism, butanoate metabolism, glyoxylate and dicarboxylate metabolism, the biosynthesis of cofactors, and glycerophospholipid metabolism. These data showed that the combination formulation Lp-FOS could be a promising adjuvant treatment for food allergies.
Collapse
Affiliation(s)
- Jing Bai
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China; (J.B.); (Q.Z.); (W.D.); (L.H.); (Z.W.); (X.L.); (P.T.); (H.C.)
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China
| | - Qian Zeng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China; (J.B.); (Q.Z.); (W.D.); (L.H.); (Z.W.); (X.L.); (P.T.); (H.C.)
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China
| | - Wen Den
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China; (J.B.); (Q.Z.); (W.D.); (L.H.); (Z.W.); (X.L.); (P.T.); (H.C.)
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China
| | - Liheng Huang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China; (J.B.); (Q.Z.); (W.D.); (L.H.); (Z.W.); (X.L.); (P.T.); (H.C.)
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China
| | - Zhihua Wu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China; (J.B.); (Q.Z.); (W.D.); (L.H.); (Z.W.); (X.L.); (P.T.); (H.C.)
- Sino-German Joint Research Institute, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China
| | - Xin Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China; (J.B.); (Q.Z.); (W.D.); (L.H.); (Z.W.); (X.L.); (P.T.); (H.C.)
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Ping Tong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China; (J.B.); (Q.Z.); (W.D.); (L.H.); (Z.W.); (X.L.); (P.T.); (H.C.)
| | - Hongbing Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China; (J.B.); (Q.Z.); (W.D.); (L.H.); (Z.W.); (X.L.); (P.T.); (H.C.)
- Sino-German Joint Research Institute, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China
| | - Anshu Yang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China; (J.B.); (Q.Z.); (W.D.); (L.H.); (Z.W.); (X.L.); (P.T.); (H.C.)
- Sino-German Joint Research Institute, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China
| |
Collapse
|
10
|
Wong DSH, Santos AF. The future of food allergy diagnosis. FRONTIERS IN ALLERGY 2024; 5:1456585. [PMID: 39575109 PMCID: PMC11578968 DOI: 10.3389/falgy.2024.1456585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/07/2024] [Indexed: 11/24/2024] Open
Abstract
Food allergy represents an increasing global health issue, significantly impacting society on a personal and on a systems-wide level. The gold standard for diagnosing food allergy, the oral food challenge, is time-consuming, expensive, and carries risks of allergic reactions, with unpredictable severity. There is, therefore, an urgent need for more accurate, scalable, predictive diagnostic techniques. In this review, we discuss possible future directions in the world of food allergy diagnosis. We start by describing the current clinical approach to food allergy diagnosis, highlighting novel diagnostic methods recommended for use in clinical practice, such as the basophil activation test and molecular allergology, and go on to discuss tests that require more research before they can be applied to routine clinical use, including the mast cell activation test and bead-based epitope assay. Finally, we consider exploratory approaches, such as IgE glycosylation, IgG4, T and B cell assays, microbiome analysis, and plasma cytokines. Artificial intelligence is assessed for potential integrated interpretation of panels of diagnostic tests. Overall, a framework is proposed suggesting how combining established and emerging technologies can effectively enhance the accuracy of food allergy diagnosis in the future.
Collapse
Affiliation(s)
- Dominic S. H. Wong
- King's College London GKT School of Medical Education, London, United Kingdom
| | - Alexandra F. Santos
- Department of Women and Children’s Health (Paediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
- Children's Allergy Service, Evelina London Children's Hospital, Guy's and St Thomas' Hospital, London, United Kingdom
| |
Collapse
|
11
|
Lee HY, Nazmul T, Lan J, Oyoshi MK. Maternal influences on offspring food allergy. Immunol Rev 2024; 326:130-150. [PMID: 39275992 PMCID: PMC11867100 DOI: 10.1111/imr.13392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2024]
Abstract
The prevalence of allergies has been globally escalating. While allergies could appear at any age, they often develop in early life. However, the significant knowledge gap in the field is the mechanisms by which allergies affect certain people but not others. Investigating early factors and events in neonatal life that have a lasting impact on determining the susceptibilities of children to develop allergies is a significant area of the investigation as it promotes the understanding of neonatal immune system that mediates tolerance versus allergies. This review focuses on the research over the recent 10 years regarding the potential maternal factors that influence offspring allergies with a view to food allergy, a potentially life-threatening cause of anaphylaxis. The role of breast milk, maternal diet, maternal antibodies, and microbiota that have been suggested as key maternal factors regulating offspring allergies are discussed here. We also suggest future research area to expand our knowledge of maternal-offspring interactions on the pathogenesis of food allergy.
Collapse
Affiliation(s)
- Hwa Yeong Lee
- Division of Pediatric Allergy, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Charlestown, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Tanuza Nazmul
- Division of Pediatric Allergy, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Charlestown, MA
| | - Jinggang Lan
- Division of Pediatric Allergy, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Charlestown, MA
| | - Michiko K. Oyoshi
- Division of Pediatric Allergy, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Charlestown, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
12
|
Xie Y, Hu X, Li X, Tong P, Zhang Y, Zheng S, Zhang J, Liu X, Chen H. The macrophage polarization in allergic responses induced by tropomyosin of Macrobrachium nipponense in cell and murine models. Int Immunopharmacol 2024; 135:112333. [PMID: 38805907 DOI: 10.1016/j.intimp.2024.112333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/28/2024] [Accepted: 05/21/2024] [Indexed: 05/30/2024]
Abstract
Macrophages are one of the important immune cells, which play important roles in innate and adaptive immune. However, the roles of macrophages in food allergy are not thoroughly understood. To investigate the roles of macrophages during food allergy, we focused on the relationship between macrophage polarization and allergic responses induced by tropomyosin (TM) in the present study. Arg 1 and CD206 expressions in the TM group were significantly higher than those of the PBS group, while iNOS and TNF-α expressions were no obvious difference, moreover, the morphology of macrophages stimulated by TM was similar to that of M2 macrophages. These results indicated macrophages were mainly polarized toward M2 phenotypes in vitro. The antibodies, mMCP-1, histamine and cytokines, revealed that macrophages could participate in food allergy, and macrophage polarization was associated with changes in allergic-related factors. The cytokine levels of M2 phenotypes were significantly higher than those of M1 phenotypes in peripheral blood. The mRNA expressions and protein levels of Arg1 and iNOS in the jejunum and peritoneal cells indicated that M2 phenotypes were the major macrophage in these tissues compared with M1 phenotypes. Hence, macrophage polarization plays an important role in food allergy.
Collapse
Affiliation(s)
- Yanhai Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing Dong Road, Nanchang, Jiangxi 330047, China; Sino German Joint Research Institute, Nanchang University, 235 Nanjing Dong Road, Nanchang, Jiangxi 330047, China.
| | - Xin Hu
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing Dong Road, Nanchang, Jiangxi 330047, China; Sino German Joint Research Institute, Nanchang University, 235 Nanjing Dong Road, Nanchang, Jiangxi 330047, China; College of Food Science and Technology, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi 330009, China
| | - Xin Li
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing Dong Road, Nanchang, Jiangxi 330047, China; College of Food Science and Technology, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi 330009, China
| | - Ping Tong
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing Dong Road, Nanchang, Jiangxi 330047, China
| | - Yingxue Zhang
- Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI 48201, USA
| | - Shuangyan Zheng
- Sino German Joint Research Institute, Nanchang University, 235 Nanjing Dong Road, Nanchang, Jiangxi 330047, China
| | - Jiasen Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing Dong Road, Nanchang, Jiangxi 330047, China; Sino German Joint Research Institute, Nanchang University, 235 Nanjing Dong Road, Nanchang, Jiangxi 330047, China; College of Food Science and Technology, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi 330009, China
| | - Xin Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing Dong Road, Nanchang, Jiangxi 330047, China; Sino German Joint Research Institute, Nanchang University, 235 Nanjing Dong Road, Nanchang, Jiangxi 330047, China; College of Food Science and Technology, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi 330009, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing Dong Road, Nanchang, Jiangxi 330047, China; Sino German Joint Research Institute, Nanchang University, 235 Nanjing Dong Road, Nanchang, Jiangxi 330047, China.
| |
Collapse
|
13
|
D’Aiuto V, Mormile I, Granata F, Napolitano F, Lamagna L, Della Casa F, de Paulis A, Rossi FW. Worldwide Heterogeneity of Food Allergy: Focus on Peach Allergy in Southern Italy. J Clin Med 2024; 13:3259. [PMID: 38892968 PMCID: PMC11173152 DOI: 10.3390/jcm13113259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/25/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Food allergy (FA) has shown an increasing prevalence in the last decades, becoming a major public health problem. However, data on the prevalence of FA across the world are heterogeneous because they are influenced by several factors. Among IgE-mediated FA, an important role is played by FA related to plant-derived food which can result from the sensitization to a single protein (specific FA) or to homologous proteins present in different foods (cross-reactive FA) including non-specific lipid transfer proteins (nsLTPs), profilins, and pathogenesis-related class 10 (PR-10). In addition, the clinical presentation of FA is widely heterogeneous ranging from mild symptoms to severe reactions up to anaphylaxis, most frequently associated with nsLTP-related FA (LTP syndrome). Considering the potential life-threatening nature of nsLTP-related FA, the patient's geographical setting should always be taken into account; thereby, it is highly recommended to build a personalized approach for managing FA across the world in the precision medicine era. For this reason, in this review, we aim to provide an overview of the prevalence of nsLTP-mediated allergies in the Mediterranean area and to point out the potential reasons for the different geographical significance of LTP-driven allergies with a particular focus on the allergenic properties of food allergens and their cross reactivity.
Collapse
Affiliation(s)
- Valentina D’Aiuto
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (V.D.); (I.M.); (F.N.); (F.D.C.); (A.d.P.); (F.W.R.)
| | - Ilaria Mormile
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (V.D.); (I.M.); (F.N.); (F.D.C.); (A.d.P.); (F.W.R.)
| | - Francescopaolo Granata
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (V.D.); (I.M.); (F.N.); (F.D.C.); (A.d.P.); (F.W.R.)
| | - Filomena Napolitano
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (V.D.); (I.M.); (F.N.); (F.D.C.); (A.d.P.); (F.W.R.)
| | - Laura Lamagna
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy;
| | - Francesca Della Casa
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (V.D.); (I.M.); (F.N.); (F.D.C.); (A.d.P.); (F.W.R.)
| | - Amato de Paulis
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (V.D.); (I.M.); (F.N.); (F.D.C.); (A.d.P.); (F.W.R.)
- Center for Basic and Clinical Immunology Research (CISI), WAO Center of Excellence, University of Naples Federico II, 80131 Naples, Italy
| | - Francesca Wanda Rossi
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (V.D.); (I.M.); (F.N.); (F.D.C.); (A.d.P.); (F.W.R.)
- Center for Basic and Clinical Immunology Research (CISI), WAO Center of Excellence, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
14
|
Lin N, Chi H, Guo Q, Liu Z, Ni L. Notch Signaling Inhibition Alleviates Allergies Caused by Antarctic Krill Tropomyosin through Improving Th1/Th2 Imbalance and Modulating Gut Microbiota. Foods 2024; 13:1144. [PMID: 38672818 PMCID: PMC11048830 DOI: 10.3390/foods13081144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/19/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Antarctic krill tropomyosin (AkTM) has been shown in mice to cause IgE-mediated food allergy. The objective of this work was to investigate the role of Notch signaling in AkTM-sensitized mice, as well as to determine the changes in gut microbiota composition and short-chain fatty acids (SCFAs) in the allergic mice. An AkTM-induced food allergy mouse model was built and N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT) was used as an γ-secretase inhibitor to inhibit the activation of Notch signaling. Food allergy indices, some key transcription factors, histologic alterations in the small intestine, and changes in gut microbiota composition were examined. The results showed that DAPT inhibited Notch signaling, which reduced AkTM-specific IgE, suppressed mast cell degranulation, decreased IL-4 but increased IFN-γ production, and alleviated allergic symptoms. Quantitative real-time PCR and Western blotting analyses revealed that expressions of Hes-1, Gata3, and IL-4 were down-regulated after DAPT treatment, accompanied by increases in T-bet and IFN-γ, indicating that Notch signaling was active in AkTM-sensitized mice and blocking it could reverse the Th1/Th2 imbalance. Expressions of key transcription factors revealed that Notch signaling could promote Th2 cell differentiation in sensitized mice. Furthermore, 16S rRNA sequencing results revealed that AkTM could alter the diversity and composition of gut microbiota in mice, leading to increases in inflammation-inducing bacteria such as Enterococcus and Escherichia-Shigella. Correlation analysis indicated that reduced SCFA concentrations in AkTM-allergic mice may be related to decreases in certain SCFA-producing bacteria, such as Clostridia_UCG-014. The changes in gut microbiota and SCFAs could be partially restored by DAPT treatment. Our findings showed that inhibiting Notch signaling could alleviate AkTM-induced food allergy by correcting Th1/Th2 imbalance and modulating the gut microbiota.
Collapse
Affiliation(s)
- Na Lin
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (N.L.); (Q.G.); (L.N.)
| | - Hai Chi
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (N.L.); (Q.G.); (L.N.)
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China
| | - Quanyou Guo
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (N.L.); (Q.G.); (L.N.)
| | - Zhidong Liu
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (N.L.); (Q.G.); (L.N.)
| | - Ling Ni
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (N.L.); (Q.G.); (L.N.)
| |
Collapse
|
15
|
Valdelvira R, Costa J, Crespo JF, Cabanillas B. Major peanut allergens are quickly released from peanuts when seeds are hydrated under specific conditions. Food Chem 2024; 437:137901. [PMID: 37922800 DOI: 10.1016/j.foodchem.2023.137901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/20/2023] [Accepted: 10/27/2023] [Indexed: 11/07/2023]
Abstract
Allergens release from their biological source is a critical step in allergic sensitization. We sought to investigate in vitro the role of hydration at 1:10 w/v without stirring and 1:5 w/v with and without stirring on the release of major and minor allergens from peanut kernels. We hypothesized that hydration plays a pivotal role in peanut allergens release, affecting major allergens predominantly, and that peanut-water ratio and stirring influence allergen diffusion. We found that major peanut allergen Ara h 1 was quickly released during hydration leading to a decrease in its content in the seed particularly at hydration performed at 1:5 w/v with stirring. Ara h 2 remained more preserved in the hydrated seed, while Ara h 3 showed no content decrease despite its important release into the hydration water. Minor allergens Ara h 8 and Ara h 9 have lower abundance in peanut leading to a reduction of their content in the seed after their diffusion into the water during hydration. The results also demonstrated that a higher seed-to-water ratio (1:5 w/v) and stirring had a more pronounced impact on allergen release.
Collapse
Affiliation(s)
- Rafael Valdelvira
- Department of Allergy, Instituto de Investigación Biosanitaria Hospital 12 de Octubre (imas12), Avenida de Córdoba s/n, 28041 Madrid, Spain
| | - Joana Costa
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Jesus F Crespo
- Department of Allergy, Instituto de Investigación Biosanitaria Hospital 12 de Octubre (imas12), Avenida de Córdoba s/n, 28041 Madrid, Spain
| | - Beatriz Cabanillas
- Department of Allergy, Instituto de Investigación Biosanitaria Hospital 12 de Octubre (imas12), Avenida de Córdoba s/n, 28041 Madrid, Spain.
| |
Collapse
|
16
|
Gallizzi AA, Heinken A, Guéant-Rodriguez RM, Guéant JL, Safar R. A systematic review and meta-analysis of proteomic and metabolomic alterations in anaphylaxis reactions. Front Immunol 2024; 15:1328212. [PMID: 38384462 PMCID: PMC10879545 DOI: 10.3389/fimmu.2024.1328212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/11/2024] [Indexed: 02/23/2024] Open
Abstract
Background Anaphylaxis manifests as a severe immediate-type hypersensitivity reaction initiated through the immunological activation of target B-cells by allergens, leading to the release of mediators. However, the well-known underlying pathological mechanisms do not fully explain the whole variety of clinical and immunological presentations. We performed a systemic review of proteomic and metabolomic studies and analyzed the extracted data to improve our understanding and identify potential new biomarkers of anaphylaxis. Methods Proteomic and metabolomic studies in both human subjects and experimental models were extracted and selected through a systematic search conducted on databases such as PubMed, Scopus, and Web of Science, up to May 2023. Results Of 137 retrieved publications, we considered 12 for further analysis, including seven on proteome analysis and five on metabolome analysis. A meta-analysis of the four human studies identified 118 proteins with varying expression levels in at least two studies. Beside established pathways of mast cells and basophil activation, functional analysis of proteomic data revealed a significant enrichment of biological processes related to neutrophil activation and platelet degranulation and metabolic pathways of arachidonic acid and icosatetraenoic acid. The pathway analysis highlighted also the involvement of neutrophil degranulation, and platelet activation. Metabolome analysis across different models showed 13 common metabolites, including arachidonic acid, tryptophan and lysoPC(18:0) lysophosphatidylcholines. Conclusion Our review highlights the underestimated role of neutrophils and platelets in the pathological mechanisms of anaphylactic reactions. These findings, derived from a limited number of publications, necessitate confirmation through human studies with larger sample sizes and could contribute to the development of new biomarkers for anaphylaxis. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42024506246.
Collapse
Affiliation(s)
- Adrienne Astrid Gallizzi
- INSERM, UMR_S1256, NGERE – Nutrition, Genetics, and Environmental Risk Exposure, Faculty of Medicine of Nancy, University of Lorraine, Vandoeuvre-lès-Nancy, France
| | - Almut Heinken
- INSERM, UMR_S1256, NGERE – Nutrition, Genetics, and Environmental Risk Exposure, Faculty of Medicine of Nancy, University of Lorraine, Vandoeuvre-lès-Nancy, France
| | - Rosa-Maria Guéant-Rodriguez
- INSERM, UMR_S1256, NGERE – Nutrition, Genetics, and Environmental Risk Exposure, Faculty of Medicine of Nancy, University of Lorraine, Vandoeuvre-lès-Nancy, France
- Department of Molecular Medicine and Personalized Therapeutics, Department of Biochemistry, Molecular Biology, Nutrition, and Metabolism, University Hospital of Nancy, Vandoeuvre-lès-Nancy, France
| | - Jean-Louis Guéant
- INSERM, UMR_S1256, NGERE – Nutrition, Genetics, and Environmental Risk Exposure, Faculty of Medicine of Nancy, University of Lorraine, Vandoeuvre-lès-Nancy, France
- Department of Molecular Medicine and Personalized Therapeutics, Department of Biochemistry, Molecular Biology, Nutrition, and Metabolism, University Hospital of Nancy, Vandoeuvre-lès-Nancy, France
| | - Ramia Safar
- INSERM, UMR_S1256, NGERE – Nutrition, Genetics, and Environmental Risk Exposure, Faculty of Medicine of Nancy, University of Lorraine, Vandoeuvre-lès-Nancy, France
| |
Collapse
|
17
|
Ye L, Zheng W, Li X, Han W, Shen J, Lin Q, Hou L, Liao L, Zeng X. The Role of Gluten in Food Products and Dietary Restriction: Exploring the Potential for Restoring Immune Tolerance. Foods 2023; 12:4179. [PMID: 38002235 PMCID: PMC10670377 DOI: 10.3390/foods12224179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Wheat is extensively utilized in various processed foods due to unique proteins forming from the gluten network. The gluten network in food undergoes morphological and molecular structural changes during food processing, affecting the final quality and digestibility of the food. The present review introduces the formation of the gluten network and the role of gluten in the key steps of the production of several typical food products such as bread, pasta, and beer. Also, it summarizes the factors that affect the digestibility of gluten, considering that different processing conditions probably affect its structure and properties, contributing to an in-depth understanding of the digestion of gluten by the human body under various circumstances. Nevertheless, consumption of gluten protein may lead to the development of celiac disease (CD). The best way is theoretically proposed to prevent and treat CD by the inducement of oral tolerance, an immune non-response system formed by the interaction of oral food antigens with the intestinal immune system. This review proposes the restoration of oral tolerance in CD patients through adjunctive dietary therapy via gluten-encapsulated/modified dietary polyphenols. It will reduce the dietary restriction of gluten and help patients achieve a comprehensive dietary intake by better understanding the interactions between gluten and food-derived active products like polyphenols.
Collapse
Affiliation(s)
- Li Ye
- Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; (L.Y.); (W.Z.); (X.L.); (W.H.); (J.S.); (Q.L.); (L.H.)
- Department of Food Science, Foshan University, Foshan 528000, China
| | - Wenyu Zheng
- Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; (L.Y.); (W.Z.); (X.L.); (W.H.); (J.S.); (Q.L.); (L.H.)
- Department of Food Science, Foshan University, Foshan 528000, China
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xue Li
- Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; (L.Y.); (W.Z.); (X.L.); (W.H.); (J.S.); (Q.L.); (L.H.)
- Department of Food Science, Foshan University, Foshan 528000, China
| | - Wenmin Han
- Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; (L.Y.); (W.Z.); (X.L.); (W.H.); (J.S.); (Q.L.); (L.H.)
- Department of Food Science, Foshan University, Foshan 528000, China
| | - Jialing Shen
- Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; (L.Y.); (W.Z.); (X.L.); (W.H.); (J.S.); (Q.L.); (L.H.)
- Department of Food Science, Foshan University, Foshan 528000, China
| | - Qiuya Lin
- Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; (L.Y.); (W.Z.); (X.L.); (W.H.); (J.S.); (Q.L.); (L.H.)
- Department of Food Science, Foshan University, Foshan 528000, China
| | - Liyan Hou
- Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; (L.Y.); (W.Z.); (X.L.); (W.H.); (J.S.); (Q.L.); (L.H.)
- Department of Food Science, Foshan University, Foshan 528000, China
| | - Lan Liao
- Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; (L.Y.); (W.Z.); (X.L.); (W.H.); (J.S.); (Q.L.); (L.H.)
- Department of Food Science, Foshan University, Foshan 528000, China
| | - Xin’an Zeng
- Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; (L.Y.); (W.Z.); (X.L.); (W.H.); (J.S.); (Q.L.); (L.H.)
- Department of Food Science, Foshan University, Foshan 528000, China
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
18
|
Brasal-Prieto M, Fernández-Prades L, Dakhaoui H, Sobrino F, López-Enríquez S, Palomares F. Update on In Vitro Diagnostic Tools and Treatments for Food Allergies. Nutrients 2023; 15:3744. [PMID: 37686776 PMCID: PMC10489659 DOI: 10.3390/nu15173744] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/15/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Food allergy (FA) is an adverse immunological reaction to a specific food that can trigger a wide range of symptoms from mild to life-threatening. This adverse reaction is caused by different immunological mechanisms, such as IgE-mediated, non-IgE-mediated and mixed IgE-mediated reactions. Its epidemiology has had a significant increase in the last decade, more so in developed countries. It is estimated that approximately 2 to 10% of the world's population has FA and this number appears to be increasing and also affecting more children. The diagnosis can be complex and requires the combination of different tests to establish an accurate diagnosis. However, the treatment of FA is based on avoiding the intake of the specific allergenic food, thus being very difficult at times and also controlling the symptoms in case of accidental exposure. Currently, there are other immunomodulatory treatments such as specific allergen immunotherapy or more innovative treatments that can induce a tolerance response. It is important to mention that research in this field is ongoing and clinical trials are underway to assess the safety and efficacy of these different immunotherapy approaches, new treatment pathways are being used to target and promote the tolerance response. In this review, we describe the new in vitro diagnostic tools and therapeutic treatments to show the latest advances in FA management. We conclude that although significant advances have been made to improve therapies and diagnostic tools for FA, there is an urgent need to standardize both so that, in their totality, they help to improve the management of FA.
Collapse
|
19
|
Šošić L, Paolucci M, Flory S, Jebbawi F, Kündig TM, Johansen P. Allergen immunotherapy: progress and future outlook. Expert Rev Clin Immunol 2023:1-25. [PMID: 37122076 DOI: 10.1080/1744666x.2023.2209319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
INTRODUCTION Allergy, the immunological hypersensitivity to innocuous environmental compounds, is a global health problem. The disease triggers, allergens, are mostly proteins contained in various natural sources such as plant pollen, animal dander, dust mites, foods, fungi and insect venoms. Allergies can manifest with a wide range of symptoms in various organs, and be anything from just tedious to life-threatening. A majority of all allergy patients are self-treated with symptom-relieving medicines, while allergen immunotherapy (AIT) is the only causative treatment option. AREAS COVERED This review will aim to give an overview of the state-of-the-art allergy management, including the use of new biologics and the application of biomarkers, and a special emphasis and discussion on current research trends in the field of AIT. EXPERT OPINION Conventional AIT has proven effective, but the years-long treatment compromises patient compliance. Moreover, AIT is typically not offered in food allergy. Hence, there is a need for new, effective and safe AIT methods. Novel routes of administration (e.g. oral and intralymphatic), hypoallergenic AIT products and more effective adjuvants holds great promise. Most recently, the development of allergen-specific monoclonal antibodies for passive immunotherapy may also allow treatment of patients currently not treated or treatable.
Collapse
Affiliation(s)
- Lara Šošić
- Department of Dermatology, University of Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - Marta Paolucci
- Department of Dermatology, University of Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - Stephan Flory
- Department of Dermatology, University of Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - Fadi Jebbawi
- Department of Dermatology, University of Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - Thomas M Kündig
- Department of Dermatology, University of Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
- Department of Dermatology, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - Pål Johansen
- Department of Dermatology, University of Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
- Department of Dermatology, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| |
Collapse
|