1
|
Su LH, Qian HL, Xu ST, Yang C, Wang Z, Yan XP. Designing flexible aliphatic linker based molecular imprinted covalent organic framework for rapid and selective extraction and detection of trace zearalenone. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137778. [PMID: 40037192 DOI: 10.1016/j.jhazmat.2025.137778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/06/2025]
Abstract
Food and environment contaminations by zearalenone (ZEN) has aroused serious issues in public health. Sensitive and accurate detection of ZEN remains a daunting challenge due to complex interference and low residue in real samples. Herein, we report a novel molecular imprinted covalent organic framework with flexible aliphatic linkers (ALCOF-MIP) for rapid and selective extraction of ZEN in real samples. Flexible aliphatic linkers were employed to regulate the molecular conformation and enhance hydrophily, enabling ALCOF-MIP to possess high selectivity and fast kinetics for ZEN extraction. ALCOF-MIP with selective imprinting sites displayed the maximum adsorption capacity for ZEN (1250 mg g-1, exceeding most of reported adsorbents). Furthermore, the ALCOF-MIP based solid-phase extraction coupled with high-performance liquid chromatography gave a wide linear range (1-500 ng mL-1), low detection limit (0.06 ng mL-1) and high precision (≤3.2 %). The recovery of spiked ZEN in real samples ranged from 90.7 % to 99.1 %. The proposed method is promising for monitoring mycotoxin residues and assessing food safety without matrix interferences.
Collapse
Affiliation(s)
- Li-Hong Su
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hai-Long Qian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Shu-Ting Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Cheng Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiu-Ping Yan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
2
|
Jiang X, Cheng J, Yang Z, Wang P. A stable and reusable aluminum-based metal-organic framework for the effective extraction of four aflatoxins from vegetable oils. Food Chem 2025; 472:142964. [PMID: 39848054 DOI: 10.1016/j.foodchem.2025.142964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 01/25/2025]
Abstract
The high specific surface area of metal-organic framework (MOF) materials endows them with efficient adsorption capabilities, thereby facilitating sample purification. In this study, a novel aluminum-based MOF (Al-MOF) was synthesized and employed as a solid-phase extraction (SPE) adsorbent for the purification of aflatoxins B1 (AFB1), AFB2, AFG1, and AFG2 in vegetable oils. It was revealed that Al-MOF adsorbs aflatoxins through hydrogen bonding and π-π interactions. Under optimal SPE conditions, liquid chromatography-tandem mass spectrometry analysis yielded limits of detection ranging from 0.06 to 0.25 μg/kg and limits of quantification from 0.21 to 0.84 μg/kg for the four aflatoxins. Recovery rates at concentrations of 5, 10, and 20 μg/kg ranged from 74 % to 110 %, with coefficients of variation below 11 %. This method achieves efficient and cost-effective purification of aflatoxins in vegetable oils. Compared to national standard methods, this approach offers advantages such as lower material costs, ease of storage, and reusability.
Collapse
Affiliation(s)
- Xianhong Jiang
- Institute of Quality Standards and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jie Cheng
- Institute of Quality Standards and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Zhihui Yang
- Institute of Quality Standards and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Peilong Wang
- Institute of Quality Standards and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
3
|
Liu M, Zhang Y, Cheng R, Tan T, Guo L, Liu F, Wan Y. Determination of five alternaria toxins in peppermint by dispersive solid-phase extraction coupled with ultra-high performance liquid chromatography-tandem mass spectrometry based on MOF-808-TFA. Food Chem 2025; 471:142822. [PMID: 39799690 DOI: 10.1016/j.foodchem.2025.142822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/22/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
An efficient and rapid ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MSMS) method was developed for simultaneous determination of 5 alternaria toxins (ATs) in edible and medicinal plant - peppermint using MOF-808-trifluoroacetic acid (MOF-808-TFA) as the adsorbent. Characterization methods such as scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and N2 adsorption-desorption demonstrated that the synthesized MOF-808-TFA had a regular ortho-octahedral configuration and high specific surface area. Under the optimal conditions, the 5 ATs showed good linearity (R2 ≥ 0.9993) in their respective concentration ranges. The limits of quantifications (LOQs) of the method ranged from 0.21 to 0.48 μg/L, and the recoveries were 77.8-118.2 %, with the relative standard deviations (RSDs) less than 8.9 %.
Collapse
Affiliation(s)
- Minhai Liu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, People's Republic of China
| | - Yan Zhang
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, People's Republic of China
| | - Rui Cheng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, People's Republic of China
| | - Ting Tan
- Center of Analysis and Testing, Nanchang University, Nanchang 330031, People's Republic of China
| | - Lan Guo
- Center of Analysis and Testing, Nanchang University, Nanchang 330031, People's Republic of China
| | - Fan Liu
- Center of Analysis and Testing, Nanchang University, Nanchang 330031, People's Republic of China; State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330031, People's Republic of China
| | - Yiqun Wan
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, People's Republic of China; State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330031, People's Republic of China.
| |
Collapse
|
4
|
Dong Y, Wang C, Gao Y, Xu J, Ping H, Liu F, Niu A. Bleaching of Idesia polycarpa Maxim. Oil Using a Metal-Organic Framework-Based Adsorbent: Kinetics and Adsorption Isotherms. Foods 2025; 14:787. [PMID: 40077489 PMCID: PMC11898808 DOI: 10.3390/foods14050787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/07/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
Idesia polycarpa Maxim. is a woody oil crop with great potential for edible oil production. While crude oil is rich in pigments, traditional bleaching methods have limited effectiveness in improving its color. In this study, a metal-organic framework (MOF) material, MIL-88B(Fe), was synthesized and used for the bleaching of Idesia polycarpa Maxim. oil. The adsorption selectivity of MIL-88B(Fe) and the adsorption process of carotenoids and chlorophyll were investigated. The results demonstrated that the synthesized MIL-88B(Fe) exhibited excellent bleaching capability, achieving a bleaching rate of 97.67% in 65 min. It showed a strong adsorption effect on pigments, particularly carotenoids. The content of lutein decreased from 118.27 mg/kg to 0.01 mg/kg after 65 min of bleaching. The squalene and phytosterol contents in the oil were minimally affected by the bleaching process, while the free fatty acid content slightly increased due to the high reaction temperature and the adsorbent properties. The adsorption process of MIL-88B(Fe) was best described by a pseudo-first-order kinetic model, indicating that the adsorption was a spontaneous and endothermic chemical process. Moreover, MIL-88B(Fe) demonstrated good safety and reusability, making it a promising novel adsorbent for the bleaching of Idesia polycarpa Maxim. oil and other oils with a high pigment content for the vegetable oil industry.
Collapse
Affiliation(s)
- Yiyang Dong
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.D.); (Y.G.); (J.X.); (H.P.); (F.L.); (A.N.)
| | - Chengming Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.D.); (Y.G.); (J.X.); (H.P.); (F.L.); (A.N.)
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Yu Gao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.D.); (Y.G.); (J.X.); (H.P.); (F.L.); (A.N.)
| | - Jing Xu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.D.); (Y.G.); (J.X.); (H.P.); (F.L.); (A.N.)
| | - Hongzheng Ping
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.D.); (Y.G.); (J.X.); (H.P.); (F.L.); (A.N.)
| | - Fangrong Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.D.); (Y.G.); (J.X.); (H.P.); (F.L.); (A.N.)
| | - Aifeng Niu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.D.); (Y.G.); (J.X.); (H.P.); (F.L.); (A.N.)
| |
Collapse
|
5
|
Zhou H, Tao L, Tian W, Song Z, Yang Z, Li Q, Yu Y, Qi F. Development of a mesoporous polypyrrole nanofiber mat for simultaneous detection of multiple mycotoxins in various foods. Food Chem 2025; 463:141153. [PMID: 39255705 DOI: 10.1016/j.foodchem.2024.141153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/11/2024] [Accepted: 09/03/2024] [Indexed: 09/12/2024]
Abstract
Due to health hazards and co-contamination of mycotoxins, efficient separation and detection of multiple mycotoxins in food is highly desirable yet challenging. In this study, we prepared a novel mesoporous polypyrrole nanofiber mat (M-PPy NFM) for extracting multiple mycotoxins from food. The mesoporous effects and multifunctional PPy contribute to higher recovery and purification efficiency of M-PPy NFM for mycotoxins by facilitating hydrogen bonding and π-π interaction. Under optimized conditions, a simple, eco-friendly solid phase extraction (SPE) method coupled with high-performance liquid chromatography-mass spectrometry (HPLC-MS/MS) was developed for mycotoxin detection. This innovative method demonstrates good linearity (0.9991-0.9999), low detection limits (0.03-0.33 μg kg-1), satisfactory recoveries (92.0 %-108.0 %) and precision (0.3 %-11.7 %). Notably, it significantly reduces organic solvent consumption to 3.1 mL while minimizing adsorbent usage to 5.0 mg. Moreover, M-PPy NFM could be reused ten times. This study confirms the huge potential of M-PPy NFM for efficient applications in mycotoxin extraction and determination.
Collapse
Affiliation(s)
- Huimin Zhou
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - LiMei Tao
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Wenxin Tian
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Zhaojie Song
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Zesha Yang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Qiang Li
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Yan Yu
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Feifei Qi
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an 710061, China.
| |
Collapse
|
6
|
Wu L, Chen M, Huo X, Xu Q, Yin X, Zhao XH, Zhou Y, Huang J. Development and validation of a DLLME-HPLC-FLD method for determination of aflatoxins in Chrysanthemum morifolium based on quality by design principles. PHYTOCHEMICAL ANALYSIS : PCA 2025; 36:326-338. [PMID: 39261748 DOI: 10.1002/pca.3445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/13/2024]
Abstract
INTRODUCTION Aflatoxins, potent carcinogens produced by Aspergillus species, present significant health risks and commonly contaminate herbal products such as Chrysanthemum morifolium. Detecting these toxins in C. morifolium proves challenging due to the complex nature of the herbal matrix and the fluctuating levels of toxins found in different samples. OBJECTIVES This study aimed to develop and optimize a novel method for the detection of aflatoxins in C. morifolium using dispersive liquid-liquid microextraction combined with high-performance liquid chromatography-fluorescence detection based on quality by design principles. METHODOLOGY The method involved determining critical method attributes and parameters through the Plackett-Burman design, followed by optimization using the Box-Behnken design. Monte Carlo simulation was employed to establish a design space, which was experimentally verified. Method validation was performed to confirm accuracy, precision, and stability. RESULTS The developed method exhibited excellent linearity (R2 > 0.9991) for aflatoxins B1, B2, G1, and G2 across a range of concentrations, with recovery rates between 85.52% and 102.01%. The validated method effectively quantified aflatoxins in C. morifolium under different storage conditions, highlighting the impact of temperature and storage time on aflatoxin production. CONCLUSION This study successfully established a reliable and effective method for the detection of aflatoxins in C. morifolium, highlighting the importance of strict storage conditions to reduce aflatoxin contamination. Using a quality by design framework, the method demonstrated robustness and high analytical performance, making it suitable for routine quality control of herbal products.
Collapse
Affiliation(s)
- Linlin Wu
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Meixu Chen
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Xinyi Huo
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Qilin Xu
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Xianggang Yin
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Xiao Han Zhao
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Yifeng Zhou
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Jun Huang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| |
Collapse
|
7
|
Wang Z, Gu S, Ma Y, Duo H, Wu W, Yang Q, Hou X. An efficient PCN-224/graphene aerogel-based extraction method for monitoring the degradation of organophosphorus pesticides in juice. J Chromatogr A 2024; 1738:465500. [PMID: 39509855 DOI: 10.1016/j.chroma.2024.465500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/21/2024] [Accepted: 11/01/2024] [Indexed: 11/15/2024]
Abstract
An efficient PCN-224/graphene aerogel modified silica (PCN-224/GA@Sil)-based extraction method was established for monitoring the degradation process of two organophosphorus pesticides (OPPs) in juice. PCN-224/GA@Sil exhibited higher surface area (307.35 m2 g-1) than graphene oxide modified silica (254.09 m2 g-1). The introduction of PCN-224 endowed the sorbent with excellent adsorption specificity towards OPPs due to the ZrˑˑˑS/O coordination bond. PCN-224 exhibited relatively higher theoretical adsorption energies of PCN-224 towards fenitrothion and fenthion were 0.68 eV and -0.31 eV. The established PCN-224/GA@Sil-HPLC method showed the linearity of 0.2-500 μg L-1 for analytes. The matrix effects in juice were 9.68 % and 3.61 % for fenitrothion and fenthion. Finally, it was used for the sample pretreatment of juice preventing interference from food matrices to monitor the degradation of two OPPs. A combination method of ultrasound and xenon lamp was adopted to degrade fenitrothion and fenthion displaying the synergistic effect (SE=2.12, 1.39).
Collapse
Affiliation(s)
- Zirou Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Sitian Gu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yu Ma
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Huixiao Duo
- School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Wei Wu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qingli Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiudan Hou
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
8
|
Rasheed U, Ain QU, Liu B. Integration of Fe-MOF-laccase-magnetic biochar: From Rational Designing of a biocatalyst to aflatoxin B1 decontamination of peanut oil. CHEMOSPHERE 2024; 367:143424. [PMID: 39368492 DOI: 10.1016/j.chemosphere.2024.143424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/05/2024] [Accepted: 09/25/2024] [Indexed: 10/07/2024]
Abstract
Enzymatic degradation of aflatoxins in food commodities has gained significant attention. However, enzyme denaturation in organic media discourages their direct use in oils to remove aflatoxins. For that, enzymes are immobilized or encapsulated for improved stability and reusability under unfavorable conditions. We sandwiched the laccase between a carrier and an outer protective layer. We used spent-mushroom-substrate (SMS) derived porous magnetic biochar as the laccase carrier and coated it with an iron MOF to create a biocomposite, Fe-BTC@Lac@FB. The immobilized laccase demonstrated enhanced chemical, thermal, and storage stability and proficient reusability. Fe-BTC@Lac@FB exhibited 11 times enhanced aflatoxin B1 (AFB1) degradation compared to free laccase (FL). In addition, thermally inactivated Fe-BTC@Lac@FB could adsorb 11.2 mg/g of AFB1 from peanut oil. Multi-aflatoxin removal also proved promising, while Fe-BTC@Lac@FB could retain >85 % of AFB1 removal efficacy after five reusability cycles. Fe-BTC@Lac@FB treatment did not affect peanut oil quality as indicated by different oil quality parameters and proved essentially non-cytotoxic. All these aspects helped recognize Fe-BTC@Lac@FB as an excellent laccase-carrying material with exceptionally higher stability, activity, and reusability.
Collapse
Affiliation(s)
- Usman Rasheed
- Institute of Applied Microbiology, College of Agriculture, Guangxi University, Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning, 530004, China, Nanning, 530005, China
| | - Qurat Ul Ain
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, China
| | - Bin Liu
- Institute of Applied Microbiology, College of Agriculture, Guangxi University, Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning, 530004, China, Nanning, 530005, China.
| |
Collapse
|
9
|
Zhang X, Jiao R, Ren Y, Wang Y, Li H, Ou D, Ling N, Ye Y. Adsorptive removal of aflatoxin B1 via spore protein from Aspergillus luchuensis YZ-1. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135148. [PMID: 38986415 DOI: 10.1016/j.jhazmat.2024.135148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/13/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
Aflatoxin B1 (AFB1) is the most toxic mycotoxin commonly found in the environment. Finding efficient and environmentally friendly ways to remove AFB1 is critical. In this study, Aspergillus luchuensis YZ-1 demonstrated a potent ability to adsorb AFB1 for the first time, and the binding of AFB1 to YZ-1 is highly stable. Spores exhibited higher adsorption efficiency than mycelia, adsorbing approximately 95 % of AFB1 within 15 min. The spores were comprehensively characterized using scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, and atomic force microscopy. Various adsorption kinetic models (pseudo-first and pseudo-second order), adsorption isotherm models (Freundlich and Langmuir), Fourier transform infrared, and X-ray photoelectron spectroscopy were used to investigate the adsorption properties and mechanisms. The adsorption capacity of spores decreased with heating, urea, and SDS treatments, indicating that spore proteins may be the primary substance for AFB1 adsorption. Subsequent experiments showed that proteins with molecular weights greater than 50 kDa played a key role in the adsorption. Additionally, the spores possess excellent storage properties and are valuable for adsorbing AFB1 from vegetable oils. Therefore, the YZ-1 spores hold promise for development into a novel biosorbent for AFB1 removal.
Collapse
Affiliation(s)
- Xiyan Zhang
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Rui Jiao
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yuwei Ren
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yang Wang
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Hui Li
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Dexin Ou
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Na Ling
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yingwang Ye
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
10
|
Liu M, Zhang X, Luan H, Zhang Y, Xu W, Feng W, Song P. Bioenzymatic detoxification of mycotoxins. Front Microbiol 2024; 15:1434987. [PMID: 39091297 PMCID: PMC11291262 DOI: 10.3389/fmicb.2024.1434987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 07/08/2024] [Indexed: 08/04/2024] Open
Abstract
Mycotoxins are secondary metabolites produced during the growth, storage, and transportation of crops contaminated by fungi and are physiologically toxic to humans and animals. Aflatoxin, zearalenone, deoxynivalenol, ochratoxin, patulin, and fumonisin are the most common mycotoxins and can cause liver and nervous system damage, immune system suppression, and produce carcinogenic effects in humans and animals that have consumed contaminated food. Physical, chemical, and biological methods are generally used to detoxify mycotoxins. Although physical methods, such as heat treatment, irradiation, and adsorption, are fast and simple, they have associated problems including incomplete detoxification, limited applicability, and cause changes in food characteristics (e.g., nutritive value, organoleptic properties, and palatability). Chemical detoxification methods, such as ammonification, ozonation, and peroxidation, pollute the environment and produce food safety risks. In contrast, bioenzymatic methods are advantageous as they achieve selective detoxification and are environmentally friendly and reusable; thus, these methods are the most promising options for the detoxification of mycotoxins. This paper reviews recent research progress on common mycotoxins and the enzymatic principles and mechanisms for their detoxification, analyzes the toxicity of the degradation products and describes the challenges faced by researchers in carrying out enzymatic detoxification. In addition, the application of enzymatic detoxification in food and feed is discussed and future directions for the development of enzymatic detoxification methods are proposed for future in-depth study of enzymatic detoxification methods.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Peng Song
- College of Life Sciences, Liaocheng University, Liaocheng, China
| |
Collapse
|
11
|
Hudu AR, Addy F, Mahunu GK, Abubakari A, Opoku N. Zearalenone contamination in maize, its associated producing fungi, control strategies, and legislation in Sub-Saharan Africa. Food Sci Nutr 2024; 12:4489-4512. [PMID: 39055180 PMCID: PMC11266927 DOI: 10.1002/fsn3.4125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 02/26/2024] [Accepted: 03/13/2024] [Indexed: 07/27/2024] Open
Abstract
The fungal genus Fusarium contains many important plant pathogens as well as endophytes of wild and crop plants. Globally, Fusarium toxins in food crops are considered one of the greatest food safety concerns. Their occurrence has become more pronounced in Africa in recent times. Among the major Fusarium mycotoxins with food and feed safety concerns, zearalenone is frequently detected in finished feeds and cereals in Africa. However, the impact of indigenous agricultural practices (pre- and postharvest factors) and food processing techniques on the prevalence rate of Fusarium species and zearalenone occurrence in food and feed have not been collated and documented systematically. This review studies and analyzes recent reports on zearalenone contamination in maize and other cereal products from Africa, including its fungi producers, agronomic and climate variables impacting their occurrences, preventive measures, removal/decontamination methods, and legislations regulating their limits. Reports from relevant studies demonstrated a high prevalence of F. verticillioides and F. graminearum as Africa's main producers of zearalenone. Elevated CO2 concentration and high precipitation may carry along an increased risk of zearalenone contamination in maize. African indigenous processing methods may contribute to reduced ZEA levels in agricultural products and foods. Most African countries do not know their zearalenone status in the food supply chain and they have limited regulations that control its occurrence.
Collapse
Affiliation(s)
- Abdul Rashid Hudu
- Department of Agricultural Biotechnology, Faculty of Agriculture, Food and Consumer SciencesUniversity for Development StudiesNyankpalaGhana
| | - Francis Addy
- Department of Biotechnology and Molecular Biology, Faculty of BiosciencesUniversity for Development StudiesNyankpalaGhana
| | - Gustav Komla Mahunu
- Department of Food Science and Technology, Faculty of Agriculture, Food, and Consumer SciencesUniversity for Development StudiesNyankpalaGhana
| | - Abdul‐Halim Abubakari
- Department of Horticulture, Faculty of Agriculture, Food, and Consumer SciencesUniversity for Development StudiesNyankpalaGhana
| | - Nelson Opoku
- Department of Biotechnology and Molecular Biology, Faculty of BiosciencesUniversity for Development StudiesNyankpalaGhana
| |
Collapse
|
12
|
Fu C, Hou L, Chen D, Huang T, Yin S, Ding P, Liao Q, Huang X, Xiong Y, Ge J, Li X. Targeted Detoxification of Aflatoxin B 1 in Edible Oil by an Enzyme-Metal Nanoreactor. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5966-5974. [PMID: 38446589 DOI: 10.1021/acs.jafc.3c09094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Mycotoxin contamination is an important issue for food safety and the environment. Removing mycotoxins from food without losing nutrients and flavor components remains a challenge. In this study, a novel strategy was proposed for the targeted removal of aflatoxin B1 (AFB1) from peanut oil using an amphipathic enzyme-metal hybrid nanoreactor (PL-GOx-Fe3O4@COF) constructed with covalent organic frameworks (COFs) which can selectively adsorb AFB1. Due to the confined space provided by COFs and the proximity effect between GOx and Fe3O4, the detoxification of AFB1 is limited in the nanoreactor without affecting the composition and properties of the oil. The detoxification efficiency of AFB1 in the chemoenzymatic cascade reaction catalyzed by PL-GOx-Fe3O4@COF is six times higher than that of the combination of free GOx and Fe3O4. The AFB1 transformation product has nontoxicity to kidney and liver cells. This study provides a powerful tool for the targeted removal of mycotoxins from edible oils.
Collapse
Affiliation(s)
- Caicai Fu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Lirui Hou
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Dingchun Chen
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Teng Huang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Shutao Yin
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Ping Ding
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Qiansui Liao
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Jun Ge
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Xiaoyang Li
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| |
Collapse
|
13
|
Li Y, Chen S, Yu Z, Yao J, Jia Y, Liao C, Chen J, Wei Y, Guo R, He L, Ding K. A Novel Bacillus Velezensis for Efficient Degradation of Zearalenone. Foods 2024; 13:530. [PMID: 38397507 PMCID: PMC10888444 DOI: 10.3390/foods13040530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/03/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Zearalenone (ZEN) is considered one of the most serious mycotoxins contaminating grains and their by-products, causing significant economic losses in the feed and food industries. Biodegradation pathways are currently considered the most efficient solution to remove ZEN contamination from foods. However, low degradation rates and vulnerability to environmental impacts limit the application of biodegradation pathways. Therefore, the main research objective of this article was to screen strains that can efficiently degrade ZEN and survive under harsh conditions. This study successfully isolated a new strain L9 which can efficiently degrade ZEN from 108 food ingredients. The results of sequence alignment showed that L9 is Bacillus velezensis. Meanwhile, we found that the L9 degradation rate reached 91.14% at 24 h and confirmed that the primary degradation mechanism of this strain is biodegradation. The strain exhibits resistance to high temperature, acid, and 0.3% bile salts. The results of whole-genome sequencing analysis showed that, it is possible that the strain encodes the key enzyme, such as chitinase, carboxylesterases, and lactone hydrolase, that work together to degrade ZEN. In addition, 227 unique genes in this strain are primarily involved in its replication, recombination, repair, and protective mechanisms. In summary, we successfully excavated a ZEN-degrading, genetically distinct strain of Bacillus velezensis that provides a solid foundation for the detoxification of feed and food contamination in the natural environment.
Collapse
Affiliation(s)
- Yijia Li
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (Y.L.); (S.C.); (Z.Y.); (J.Y.); (Y.J.); (C.L.); (J.C.); (Y.W.); (R.G.); (L.H.)
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Songbiao Chen
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (Y.L.); (S.C.); (Z.Y.); (J.Y.); (Y.J.); (C.L.); (J.C.); (Y.W.); (R.G.); (L.H.)
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450000, China
| | - Zuhua Yu
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (Y.L.); (S.C.); (Z.Y.); (J.Y.); (Y.J.); (C.L.); (J.C.); (Y.W.); (R.G.); (L.H.)
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Jie Yao
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (Y.L.); (S.C.); (Z.Y.); (J.Y.); (Y.J.); (C.L.); (J.C.); (Y.W.); (R.G.); (L.H.)
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Yanyan Jia
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (Y.L.); (S.C.); (Z.Y.); (J.Y.); (Y.J.); (C.L.); (J.C.); (Y.W.); (R.G.); (L.H.)
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450000, China
| | - Chengshui Liao
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (Y.L.); (S.C.); (Z.Y.); (J.Y.); (Y.J.); (C.L.); (J.C.); (Y.W.); (R.G.); (L.H.)
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Jian Chen
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (Y.L.); (S.C.); (Z.Y.); (J.Y.); (Y.J.); (C.L.); (J.C.); (Y.W.); (R.G.); (L.H.)
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Ying Wei
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (Y.L.); (S.C.); (Z.Y.); (J.Y.); (Y.J.); (C.L.); (J.C.); (Y.W.); (R.G.); (L.H.)
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Rongxian Guo
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (Y.L.); (S.C.); (Z.Y.); (J.Y.); (Y.J.); (C.L.); (J.C.); (Y.W.); (R.G.); (L.H.)
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Lei He
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (Y.L.); (S.C.); (Z.Y.); (J.Y.); (Y.J.); (C.L.); (J.C.); (Y.W.); (R.G.); (L.H.)
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Ke Ding
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (Y.L.); (S.C.); (Z.Y.); (J.Y.); (Y.J.); (C.L.); (J.C.); (Y.W.); (R.G.); (L.H.)
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450000, China
| |
Collapse
|
14
|
Munjanja BK, Nomngongo PN, Mketo N. Mycotoxins in Vegetable Oils: A Review of Recent Developments, Current Challenges and Future Perspectives in Sample Preparation, Chromatographic Determination, and Analysis of Real Samples. Crit Rev Anal Chem 2023; 55:316-329. [PMID: 38133964 DOI: 10.1080/10408347.2023.2286642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Mycotoxins are toxic compounds that are formed as secondary metabolites by some fungal species that contaminate crops during pre- and postharvest stages. Exposure to mycotoxins can lead to adverse health effects in humans, such as carcinogenicity, mutagenicity, and teratogenicity. Hence, there is a need to develop analytical methods for their determination in vegetable oils that possess high sensitivity and selectivity. In the current review (116 references), the recent developments, current challenges, and perspectives in sample preparation techniques and chromatographic determination are summarized. It is impressive that current sample preparation techniques such as dispersive liquid-liquid microextraction (DLLME), quick, easy, cheap, rugged, and safe method (QuEChERS) and solid phase extraction (SPE) have exhibited high extraction recoveries and minimal matrix effects. However, a few studies have reported signal suppression or enhancement. Regarding chromatographic techniques, high sensitivity and selectivity have been reported by liquid chromatography coupled to fluorescence detection, tandem mass spectrometry, or high-resolution mass spectrometry. Furthermore, current challenges and perspectives in this field are tentatively proposed.
Collapse
Affiliation(s)
- Basil K Munjanja
- Department of Chemistry, University of South Africa, Roodepoort, South Africa
| | - Philiswa N Nomngongo
- Department of Chemical Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Nomvano Mketo
- Department of Chemistry, University of South Africa, Roodepoort, South Africa
| |
Collapse
|
15
|
Abasi N, Faraji AR, Davood A. Adsorptive removal of aflatoxin B 1 from water and edible oil by dopamine-grafted biomass chitosan-iron-cobalt spinel oxide nanocomposite: mechanism, kinetics, equilibrium, thermodynamics, and oil quality. RSC Adv 2023; 13:34739-34754. [PMID: 38035230 PMCID: PMC10682912 DOI: 10.1039/d3ra06495f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023] Open
Abstract
Currently, the use of magnetic physical adsorbents for detoxification is widely applied in the food industry; however, the fabrication of high-efficiency low-cost absorbents without damaging the nutritional quality of food is a major challenge. Herein, a simple, green, efficient, and cost-effective method for the magnetic solid-phase extraction of aflatoxin B1 (AFB1) from edible oils and aqueous matrices was developed using a dopamine-loaded biomass chitosan-iron-cobalt spinel oxide nanocomposite (DC/CFOS NC). The characterization, physicochemical processes, mechanism, and reusability of DC/CFOS were systematically evaluated in detail. It was found that the adsorption characteristic of DC/CFOS NC was accurately represented by the pseudo-second-order kinetics (k2 = 0.199 g mg-1 min-1) and Freundlich isotherm models (Kf = 1.139 (mg g-1) (L mg-1), R2 = 0.991)), and its adsorptive process is feasible, spontaneous, and exothermic. Benefiting from its high specific surface area, microporous structure, and polar/non-polar active sites, the as-prepared DC/CFOS exhibited an excellent adsorption performance for AFB1 (50.0 μg mL-1), as measured using the Freundlich isotherm model. The mechanistic studies demonstrated that the synergistic effects of the surface complexation and electrostatic interactions between the functional groups of DC/CFOS NC and AFB1 were the dominant adsorption pathways. Besides, DC/CFOS exhibited negligible impacts on the nutritional quality of the oil after the removal process and storage. Thus, DC/CFOS NC showed sufficient efficacy and safety in the removal of AFB1 from contaminated edible oil.
Collapse
Affiliation(s)
- N Abasi
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University Tehran Iran
| | - A R Faraji
- Department of Organic Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University Tehran Iran +98 21 22600099 +98 21 22640051
- Nutrition and Food Sciences Research Center, Tehran Medical Sciences, Islamic Azad University Tehran Iran
| | - A Davood
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University Tehran Iran
| |
Collapse
|