1
|
Brugnerotto P, Silva B, Gonzaga LV, Costa ACO. Comprehensive review of pyrrolizidine alkaloids in bee products: Occurrence, extraction, and analytical methods. Food Chem 2025; 483:144211. [PMID: 40239577 DOI: 10.1016/j.foodchem.2025.144211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 04/02/2025] [Accepted: 04/04/2025] [Indexed: 04/18/2025]
Abstract
Pyrrolizidine alkaloids (PAs) and their N-oxides (PANOs) are hepatotoxic secondary metabolites present in certain plant genera, raising health concerns due to their inevitable occurrence in bee products like honey, pollen, royal jelly, and propolis. The European Commission has set a 500 μg kg-1 limit for PAs/PANOs in pollen-based supplements to ensure safety, emphasizing the need for sensitive analytical methods. This review, based on studies published between 2019 and 2024, identifies 51 compounds in bee products, including 32 PAs and 19 PANOs, with lycopsamine, senecionine, echimidine, intermedine, and retrorsine being the most studied. Solvent extraction, often combined with SPE or QuEChERS, is the most used preparation method, while liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) is preferred for detection. Few studies assessed the risk of PAs consumption. These findings support regulatory monitoring of bee product safety and highlight the need for refining detection methods and establishing standardized limits and monitoring for PAs/PANOs.
Collapse
Affiliation(s)
- Patricia Brugnerotto
- Department of Agroindustry Science and Technology, Federal University of Pelotas, Capão do Leão, Rio Grande do Sul State, 96010-900, Brazil; Department of Food Science and Technology, Federal University of Santa Catarina, Florianopolis, Santa Catarina State 88034-001, Brazil.
| | - Bibiana Silva
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianopolis, Santa Catarina State 88034-001, Brazil
| | - Luciano Valdemiro Gonzaga
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianopolis, Santa Catarina State 88034-001, Brazil
| | - Ana Carolina Oliveira Costa
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianopolis, Santa Catarina State 88034-001, Brazil.
| |
Collapse
|
2
|
Lin R, Peng J, Zhu Y, Dong S, Jiang X, Shen D, Li J, Zhu P, Mao J, Wang N, He K. Quantitative Analysis of Pyrrolizidine Alkaloids in Food Matrices and Plant-Derived Samples Using UHPLC-MS/MS. Foods 2025; 14:1147. [PMID: 40238287 PMCID: PMC11989101 DOI: 10.3390/foods14071147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/13/2025] [Accepted: 03/18/2025] [Indexed: 04/18/2025] Open
Abstract
Pyrrolizidine alkaloids (PAs) are a class of nitrogen-containing basic organic compounds that are frequently detected in foods and herbal medicines. Owing to their potential hepatotoxic, genotoxic, and carcinogenic properties, PAs have become a significant focus for monitoring global food safety. In this study, an ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method was developed for the detection and analysis of three foods (tea, honey, and milk) susceptible to PA contamination. This optimized method effectively separated and detected three types of PAs, namely, three pairs of isomers and two pairs of chiral compounds. The limits of detection (LODs) and limits of quantification (LOQs) were determined to be 0.015-0.75 and 0.05-2.5 µg/kg, respectively, with the relative standard deviations (RSDs) of both the interday and intraday precisions remaining below 15%. The average PA recoveries from the honey, milk, and tea matrices fell within the ranges of 64.5-103.4, 65.2-112.2, and 67.6-107.6%, respectively. This method was also applied to 77 samples collected from 33 prefecture-level cities across 16 provinces and included 40 tea, 6 milk, 8 honey, 14 spice, and 9 herbal medicine samples. At least one PA was detected in twenty-three of the samples, with herbal medicines exhibiting the highest total PA content. The obtained results indicate that the developed method demonstrated good repeatability and stability in the detection and quantitative analyses of PAs in food- and plant-derived samples. This method is therefore expected to provide reliable technical support for food safety risk monitoring.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Na Wang
- National Center of Biomedical Analysis, Beijing 100850, China; (R.L.); (J.P.); (Y.Z.); (S.D.); (X.J.); (D.S.); (J.L.); (P.Z.); (J.M.)
| | - Kun He
- National Center of Biomedical Analysis, Beijing 100850, China; (R.L.); (J.P.); (Y.Z.); (S.D.); (X.J.); (D.S.); (J.L.); (P.Z.); (J.M.)
| |
Collapse
|
3
|
Végh R, Csóka M, Sörös C, Sipos L. Underexplored food safety hazards of beekeeping products: Key knowledge gaps and suggestions for future research. Compr Rev Food Sci Food Saf 2024; 23:e13404. [PMID: 39136999 DOI: 10.1111/1541-4337.13404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/06/2024] [Accepted: 06/16/2024] [Indexed: 08/15/2024]
Abstract
These days, a growing consumer demand and scientific interest can be observed for nutraceuticals of natural origin, including apiculture products. Due to the growing emphasis on environmental protection, extensive research has been conducted on the pesticide and heavy metal contamination of bee products; however, less attention is devoted on other food safety aspects. In our review, scientific information on the less-researched food safety hazards of honey, bee bread, royal jelly, propolis, and beeswax are summarized. Bee products originating from certain plants may inherently contain phytotoxins, like pyrrolizidine alkaloids, tropane alkaloids, matrine alkaloids, grayanotoxins, gelsemium alkaloids, or tutin. Several case studies evidence that bee products can induce allergic responses to sensitive individuals, varying from mild to severe symptoms, including the potentially lethal anaphylaxis. Exposure to high temperature or long storage may lead to the formation of the potentially toxic 5-hydroxymethylfurfural. Persistent organic pollutants, radionuclides, and microplastics can potentially be transferred to bee products from contaminated environmental sources. And lastly, inappropriate beekeeping practices can lead to the contamination of beekeeping products with harmful microorganisms and mycotoxins. Our review demonstrates the necessity of applying good beekeeping practices in order to protect honeybees and consumers of their products. An important aim of our work is to identify key knowledge gaps regarding the food safety of apiculture products.
Collapse
Affiliation(s)
- Rita Végh
- Department of Nutrition Science, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - Mariann Csóka
- Department of Nutrition Science, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - Csilla Sörös
- Department of Food Chemistry and Analysis Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - László Sipos
- Department of Postharvest, Institute of Food Science and Technology, Commercial and Sensory Science, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
- Institute of Economics, Centre of Economic and Regional Studies, Hungarian Research Network (HUN-REN), Budapest, Hungary
| |
Collapse
|
4
|
Lis-Cieplak A, Trześniowska K, Stolarczyk K, Stolarczyk EU. Pyrrolizidine Alkaloids as Hazardous Toxins in Natural Products: Current Analytical Methods and Latest Legal Regulations. Molecules 2024; 29:3269. [PMID: 39064851 PMCID: PMC11279032 DOI: 10.3390/molecules29143269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/28/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Pyrrolizidine alkaloids (PAs) are toxic compounds that occur naturally in certain plants, however, there are many secondary pathways causing PA contamination of other plants, including medicinal herbs and plant-based food products, which pose a risk of human intoxication. It is proven that chronic exposure to PAs causes serious adverse health consequences resulting from their cytotoxicity and genotoxicity. This review briefly presents PA occurrence, structures, chemistry, and toxicity, as well as a set of analytical methods. Recently developed sensitive electrochemical and chromatographic methods for the determination of PAs in honey, teas, herbs, and spices were summarized. The main strategies for improving the analytical efficiency of PA determination are related to the use of mass spectrometric (MS) detection; therefore, this review focuses on advances in MS-based methods. Raising awareness of the potential health risks associated with the presence of PAs in food and herbal medicines requires ongoing research in this area, including the development of sensitive methods for PA determination and rigorous legal regulations of PA intake from herbal products. The maximum levels of PAs in certain products are regulated by the European Commission; however, the precise knowledge about which products contain trace but significant amounts of these alkaloids is still insufficient.
Collapse
Affiliation(s)
- Agnieszka Lis-Cieplak
- Spectrometric Methods Department, National Medicines Institute, Chełmska 30/34, 00-725 Warsaw, Poland; (A.L.-C.); (K.T.)
| | - Katarzyna Trześniowska
- Spectrometric Methods Department, National Medicines Institute, Chełmska 30/34, 00-725 Warsaw, Poland; (A.L.-C.); (K.T.)
| | | | - Elżbieta U. Stolarczyk
- Spectrometric Methods Department, National Medicines Institute, Chełmska 30/34, 00-725 Warsaw, Poland; (A.L.-C.); (K.T.)
| |
Collapse
|
5
|
Berzina Z, Pavlenko R, Bartkiene E, Bartkevics V. Mycotoxins and pyrrolizidine alkaloids in herbal dietary supplements. FOOD ADDITIVES & CONTAMINANTS. PART B, SURVEILLANCE 2024; 17:180-192. [PMID: 38629617 DOI: 10.1080/19393210.2024.2332516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 03/14/2024] [Indexed: 06/09/2024]
Abstract
The market demand for herbal dietary supplements is rapidly growing and such products are becoming more common and accessible to consumers. However, the knowledge about their safety remains incomplete. Herbal dietary supplements are one of the food groups that can contribute significantly to human health concerns arising from chronic exposure to pyrrolizidine alkaloids and mycotoxins. This study aimed to simultaneously determine 79 natural contaminants, including mycotoxins, as well as pyrrolizidine and tropane alkaloids in herbal dietary supplements in one analytical run. Exposure assessment and human health risks were assessed for all compounds included in this study. The total concentration of naturally occurring contaminants in herbal dietary supplements reached 5.3 mg kg-1 and the most frequently detected mycotoxins were tentoxin and alternariol monomethyl ether. The latter was detected with the highest frequency, reaching concentrations up to 2.5 mg kg-1. The obtained results indicate a potential risk to public health related to herbal dietary supplement consumption.
Collapse
Affiliation(s)
- Zane Berzina
- Institute of Food Safety, Animal Health and Environment "BIOR", Riga, Latvia
- Faculty of Chemistry, University of Latvia, Riga, Latvia
| | - Romans Pavlenko
- Institute of Food Safety, Animal Health and Environment "BIOR", Riga, Latvia
| | - Elena Bartkiene
- Department of Food Safety and Quality, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Vadims Bartkevics
- Institute of Food Safety, Animal Health and Environment "BIOR", Riga, Latvia
- Faculty of Chemistry, University of Latvia, Riga, Latvia
| |
Collapse
|
6
|
Lu YS, Qiu J, Mu XY, Qian YZ, Chen L. Levels, Toxic Effects, and Risk Assessment of Pyrrolizidine Alkaloids in Foods: A Review. Foods 2024; 13:536. [PMID: 38397512 PMCID: PMC10888194 DOI: 10.3390/foods13040536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Pyrrolizidine alkaloids (PAs) are naturally occurring secondary metabolites of plants. To date, more than 660 types of PAs have been identified from an estimated 6000 plants, and approximately 120 of these PAs are hepatotoxic. As a result of PAs being found in spices, herbal teas, honey, and milk, PAs are considered contaminants in foods, posing a potential risk to human health. Here, we summarize the chemical structure, toxic effects, levels, and regulation of PAs in different countries to provide a better understanding of their toxicity and risk assessment. With recent research on the risk assessment of PAs, this review also discusses the challenges facing this field, aiming to provide a scientific basis for PA toxicity research and safety assessment.
Collapse
Affiliation(s)
- Yu-Shun Lu
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.-S.L.); (Y.-Z.Q.)
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Jing Qiu
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.-S.L.); (Y.-Z.Q.)
| | - Xi-Yan Mu
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.-S.L.); (Y.-Z.Q.)
| | - Yong-Zhong Qian
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.-S.L.); (Y.-Z.Q.)
| | - Lu Chen
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.-S.L.); (Y.-Z.Q.)
| |
Collapse
|
7
|
Tábuas B, Cruz Barros S, Diogo C, Cavaleiro C, Sanches Silva A. Pyrrolizidine Alkaloids in Foods, Herbal Drugs, and Food Supplements: Chemistry, Metabolism, Toxicological Significance, Analytical Methods, Occurrence, and Challenges for Future. Toxins (Basel) 2024; 16:79. [PMID: 38393157 PMCID: PMC10892171 DOI: 10.3390/toxins16020079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/20/2023] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Consumers are increasingly seeking natural alternatives to chemical compounds, including the use of dried aromatic plants as seasonings instead of salt. However, the presence of pyrrolizidine alkaloids (PAs) in food supplements and dried plants has become a concern because of their link to liver diseases and their classification as carcinogenic by the International Agency for Research on Cancer (IARC). Despite European Union (EU) Regulation (EU) 2023/915, non-compliance issues persist, as indicated by alerts on the Rapid Alert System for Food and Feed (RASFF) portal. Analyzing PAs poses a challenge because of their diverse chemical structures and low concentrations in these products, necessitating highly sensitive analytical methods. Despite these challenges, ongoing advancements in analytical techniques coupled with effective sampling and extraction strategies offer the potential to enhance safety measures. These developments aim to minimize consumer exposure to PAs and safeguard their health while addressing the growing demand for natural alternatives in the marketplace.
Collapse
Affiliation(s)
- Bruna Tábuas
- Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal (C.C.)
| | - Sílvia Cruz Barros
- National Institute for Agricultural and Veterinary Research (INIAV), I.P, 4485-655 Vila do Conde, Portugal
| | - Catarina Diogo
- Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal (C.C.)
| | - Carlos Cavaleiro
- Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal (C.C.)
- Chemical Process Engineering and Forest Products Research Centre (CIEPQPF), University of Coimbra, Rua Sílvio Lima, 3030-790 Coimbra, Portugal
| | - Ana Sanches Silva
- Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal (C.C.)
- Center for Study in Animal Science (CECA), Institute of Sciences, Technologies and Agro-Environment of the University of Porto (ICETA), University of Porto, 4501-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| |
Collapse
|
8
|
Letsyo E, Madilo FK, Effah-Manu L. Pyrrolizidine alkaloid contamination of food in Africa: A review of current trends and implications. Heliyon 2024; 10:e24055. [PMID: 38230234 PMCID: PMC10789634 DOI: 10.1016/j.heliyon.2024.e24055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/13/2023] [Accepted: 01/03/2024] [Indexed: 01/18/2024] Open
Abstract
Pyrrolizidine alkaloids (PAs) contamination of foodstuffs has become a topical issue in recent years on account of its potential hepatotoxicity to consumers. This review therefore highlights human exposure to PAs across Africa, focusing on their occurrence, current trends of food contamination, and their associated health implications. A comprehensive search of peer-scientific literature and relevant databases, PubMed, Google Scholar, Science Direct, Web of Science and Scopus, was conducted from 2001 to 2023 focusing mainly on foodstuffs, including grains, herbs, teas, honey, and livestock products. The findings revealed that PA contamination is a prevalent issue in several African countries, with the primary sources of contamination attributed to the consumption of honey and the use of PA plants as herbs in food preparations. Additionally, poor farming practices have been found to influence the presence and levels of PAs in foodstuffs. To mitigate PA contamination in food and safeguarding public health across the continent, several strategies are proposed, including the implementation of stringent regulatory and quality control measures, adoption of Good Agricultural Practices, and public awareness campaigns to educate producers, consumers and beekeepers about the risks associated with PA-contaminated food products.
Collapse
Affiliation(s)
- Emmanuel Letsyo
- Department of Food Science and Technology, Faculty of Applied Sciences and Technology, Ho Technical University, P.O Box HP 217, Ho, Ghana
| | - Felix Kwashie Madilo
- Department of Food Science and Technology, Faculty of Applied Sciences and Technology, Ho Technical University, P.O Box HP 217, Ho, Ghana
| | - Liticia Effah-Manu
- Department of Food Science and Technology, Faculty of Applied Sciences and Technology, Ho Technical University, P.O Box HP 217, Ho, Ghana
| |
Collapse
|
9
|
Hungerford NL, Zawawi N, Zhu T(E, Carter SJ, Melksham KJ, Fletcher MT. Analysis of Pyrrolizidine Alkaloids in Stingless Bee Honey and Identification of a Botanical Source as Ageratum conyzoides. Toxins (Basel) 2024; 16:40. [PMID: 38251258 PMCID: PMC10819179 DOI: 10.3390/toxins16010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
Stingless bee honeys (SBHs) from Australian and Malaysian species were analysed using ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) for the presence of pyrrolizidine alkaloids (PAs) and the corresponding N-oxides (PANOs) due to the potential for such hepatotoxic alkaloids to contaminate honey as a result of bees foraging on plants containing these alkaloids. Low levels of alkaloids were found in these SBHs when assessed against certified PA standards in targeted analysis. However, certain isomers were identified using untargeted analysis in a subset of honeys of Heterotrigona itama which resulted in the identification of a PA weed species (Ageratum conyzoides) near the hives. The evaluation of this weed provided a PA profile matching that of the SBH of H. itama produced nearby, and included supinine, supinine N-oxide (or isomers) and acetylated derivatives. These PAs lacking a hydroxyl group at C7 are thought to be less hepatoxic. However, high levels were also observed in SBH (and in A. conyzoides) of a potentially more toxic diester PA corresponding to an echimidine isomer. Intermedine, the C7 hydroxy equivalent of supinine, was also observed. Species differences in nectar collection were evident as the same alkaloids were not identified in SBH of G. thoracica from the same location. This study highlights that not all PAs and PANOs are identified using available standards in targeted analyses and confirms the need for producers of all types of honey to be aware of nearby potential PA sources, particularly weeds.
Collapse
Affiliation(s)
- Natasha L. Hungerford
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Health and Food Sciences Precinct, Coopers Plains, QLD 4108, Australia or (N.Z.); (M.T.F.)
| | - Norhasnida Zawawi
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Health and Food Sciences Precinct, Coopers Plains, QLD 4108, Australia or (N.Z.); (M.T.F.)
- Faculty of Food Science and Technology, University Putra Malaysia, Serdang 43400, Malaysia
| | - Tianqi (Evonne) Zhu
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Health and Food Sciences Precinct, Coopers Plains, QLD 4108, Australia or (N.Z.); (M.T.F.)
| | - Steve J. Carter
- Forensic and Scientific Services, Queensland Health, Coopers Plains, QLD 4108, Australia; (S.J.C.); (K.J.M.)
| | - Kevin J. Melksham
- Forensic and Scientific Services, Queensland Health, Coopers Plains, QLD 4108, Australia; (S.J.C.); (K.J.M.)
| | - Mary T. Fletcher
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Health and Food Sciences Precinct, Coopers Plains, QLD 4108, Australia or (N.Z.); (M.T.F.)
| |
Collapse
|
10
|
Ahuja V, Singh A, Paul D, Dasgupta D, Urajová P, Ghosh S, Singh R, Sahoo G, Ewe D, Saurav K. Recent Advances in the Detection of Food Toxins Using Mass Spectrometry. Chem Res Toxicol 2023; 36:1834-1863. [PMID: 38059476 PMCID: PMC10731662 DOI: 10.1021/acs.chemrestox.3c00241] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/30/2023] [Accepted: 11/08/2023] [Indexed: 12/08/2023]
Abstract
Edibles are the only source of nutrients and energy for humans. However, ingredients of edibles have undergone many physicochemical changes during preparation and storage. Aging, hydrolysis, oxidation, and rancidity are some of the major changes that not only change the native flavor, texture, and taste of food but also destroy the nutritive value and jeopardize public health. The major reasons for the production of harmful metabolites, chemicals, and toxins are poor processing, inappropriate storage, and microbial spoilage, which are lethal to consumers. In addition, the emergence of new pollutants has intensified the need for advanced and rapid food analysis techniques to detect such toxins. The issue with the detection of toxins in food samples is the nonvolatile nature and absence of detectable chromophores; hence, normal conventional techniques need additional derivatization. Mass spectrometry (MS) offers high sensitivity, selectivity, and capability to handle complex mixtures, making it an ideal analytical technique for the identification and quantification of food toxins. Recent technological advancements, such as high-resolution MS and tandem mass spectrometry (MS/MS), have significantly improved sensitivity, enabling the detection of food toxins at ultralow levels. Moreover, the emergence of ambient ionization techniques has facilitated rapid in situ analysis of samples with lower time and resources. Despite numerous advantages, the widespread adoption of MS in routine food safety monitoring faces certain challenges such as instrument cost, complexity, data analysis, and standardization of methods. Nevertheless, the continuous advancements in MS-technology and its integration with complementary techniques hold promising prospects for revolutionizing food safety monitoring. This review discusses the application of MS in detecting various food toxins including mycotoxins, marine biotoxins, and plant-derived toxins. It also explores the implementation of untargeted approaches, such as metabolomics and proteomics, for the discovery of novel and emerging food toxins, enhancing our understanding of potential hazards in the food supply chain.
Collapse
Affiliation(s)
- Vishal Ahuja
- University
Institute of Biotechnology, Chandigarh University, Mohali, Punjab 140413, India
- University
Centre for Research & Development, Chandigarh
University, Mohali, Punjab 140413, India
| | - Amanpreet Singh
- Department
of Chemistry, University Institute of Science, Chandigarh University, Mohali, Punjab 140413, India
| | - Debarati Paul
- Amity
Institute of Biotechnology, AUUP, Noida, Uttar Pradesh 201313, India
| | - Diptarka Dasgupta
- Material
Resource Efficiency Division, CSIR-Indian
Institute of Petroleum, Dehradun 248005, India
| | - Petra Urajová
- Laboratory
of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň 379
01, Czech Republic
| | - Sounak Ghosh
- Laboratory
of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň 379
01, Czech Republic
| | - Roshani Singh
- Laboratory
of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň 379
01, Czech Republic
| | - Gobardhan Sahoo
- Laboratory
of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň 379
01, Czech Republic
| | - Daniela Ewe
- Laboratory
of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň 379
01, Czech Republic
| | - Kumar Saurav
- Laboratory
of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň 379
01, Czech Republic
| |
Collapse
|