1
|
Calegari-Alves YP, da Rosa RL, Costa RP, Innocente-Alves C, Faustino AM, Yates JR, Beys-da-Silva WO, Santi L. Lavandula angustifolia oil induces oxidative stress, stiffening of membranes, and cell wall in Cryptococcus spp. Can J Microbiol 2025; 71:1-13. [PMID: 39620440 DOI: 10.1139/cjm-2024-0084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2025]
Abstract
The Cryptococcus neoformans and Cryptococcus gattii species complexes are the etiological agents of cryptococcosis, a disease responsible for 181 000 deaths annually worldwide due to late diagnosis and limited treatment options. Studies focusing on the identification of new substances with antifungal activity, such as essential oils (EOs), are urgently needed. While the antifungal effects of EO have already been suggested, their mechanism of action at the molecular level still requires evaluation. In this work, we assessed the molecular changes induced by the exposure of Cryptococus neoformans (H99) and Cryptococcus deuterogatti (R265) to lavender essential oil (LEO) using a morphological and proteomics approach. The identified proteins were categorized by Gene Ontology according to biological processes and molecular functions, and Kyoto Encyclopedia of Genes and Genomes pathway analysis was also conducted. Our findings indicate that LEO creates a stressful environment in both strains; however, the response to this stimulus differs between the two species. In C. neoformans, changes were observed in energy metabolism and pathways related to alternative sources of energy and oxidative stress response. In C. deuterogatti, changes were identified in pathways related to cellular architecture, implying that the cell underwent morphological changes such as membrane and cell wall stiffening.
Collapse
Affiliation(s)
- Yohana Porto Calegari-Alves
- Postgraduation Program in Cellular and Molecular Biology, Federal University of Rio Grande do Sul - Porto Alegre, RS 91501-970, Brazil
| | - Rafael Lopes da Rosa
- Postgraduation Program in Cellular and Molecular Biology, Federal University of Rio Grande do Sul - Porto Alegre, RS 91501-970, Brazil
| | - Renata Pereira Costa
- Faculty of Pharmacy, Federal University of Rio Grande do Sul - Porto Alegre, RS 90610-000, Brazil
| | - Camila Innocente-Alves
- Postgraduation Program in Cellular and Molecular Biology, Federal University of Rio Grande do Sul - Porto Alegre, RS 91501-970, Brazil
| | - Aline Martins Faustino
- Faculty of Pharmacy, Federal University of Rio Grande do Sul - Porto Alegre, RS 90610-000, Brazil
| | - John R Yates
- Department of Molecular Medicine, Scripps Research - La Jolla, CA 92122, USA
| | - Walter Orlando Beys-da-Silva
- Postgraduation Program in Cellular and Molecular Biology, Federal University of Rio Grande do Sul - Porto Alegre, RS 91501-970, Brazil
- Faculty of Pharmacy, Federal University of Rio Grande do Sul - Porto Alegre, RS 90610-000, Brazil
| | - Lucélia Santi
- Postgraduation Program in Cellular and Molecular Biology, Federal University of Rio Grande do Sul - Porto Alegre, RS 91501-970, Brazil
- Faculty of Pharmacy, Federal University of Rio Grande do Sul - Porto Alegre, RS 90610-000, Brazil
| |
Collapse
|
2
|
Eshaghi R, Mohsenzadeh M, Ayala-Zavala JF. Bio-nanocomposite active packaging films based on carboxymethyl cellulose, myrrh gum, TiO 2 nanoparticles and dill essential oil for preserving fresh-fish (Cyprinus carpio) meat quality. Int J Biol Macromol 2024; 263:129991. [PMID: 38331078 DOI: 10.1016/j.ijbiomac.2024.129991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 02/10/2024]
Abstract
This study developed a composite film for packaging refrigerated common carp fillets using carboxymethyl cellulose (CMC) (1.5 % w/v)/Myrrh gum (MG) (0.25 % w/v) base with the addition of titanium dioxide nanoparticles (TiO2 NPs) (0.25 %, 0.5 %, and 1 %) and Dill essential oil (DEO) (1.5 %, 2.25 %, and 3 %). The film was produced using a casting method and optimized for mechanical and barrier properties. The incorporation of DEO and TiO2 NPs into CMC/MG composite films significantly reduced moisture content (MC) and water vapor permeability (WVP), improved their tensile strength (TS), and increased their antimicrobial and antioxidant properties. Moreover, MG can improve the physicomechanical properties of the CMC/MG composite films. The film components had good compatibility without significant aggregation or cracks. In conclusion, the optimized CMC/MG (1.5 %/0.25 %) film containing TiO2 NPs (0.5 %), and DEO (2.25 %) has the best overall performance and can be a good source for making edible film. Functionally, this bioactive nanocomposite film significantly increased the shelf life of refrigerated fish fillet samples for 12 days by inhibiting microbial growth and reducing the oxidation rate compared to the control sample. The knowledge obtained from this study can guide the development of bio-nanocomposite and biodegradable food packaging films based on CMC/MG to increase the shelf life of food products and environmental protection.
Collapse
Affiliation(s)
- Reza Eshaghi
- Department of Food Hygiene and Aquaculture, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Mohsenzadeh
- Department of Food Hygiene and Aquaculture, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Jesús Fernando Ayala-Zavala
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C., Carr. Gustavo E. Astiazarán Rosas No. 46, Col. La Victoria, C.P. 83304 Hermosillo, Sonora, Mexico
| |
Collapse
|
3
|
Chen L, Zhu Y, Guo C, Guo Y, Zhao L, Miao Y, DU H, Liu D. Artemisia argyi extract subfraction exerts an antifungal effect against dermatophytes by disrupting mitochondrial morphology and function. Chin J Nat Med 2024; 22:47-61. [PMID: 38278559 DOI: 10.1016/s1875-5364(24)60561-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Indexed: 01/28/2024]
Abstract
Artemisia argyi (A. argyi), a plant with a longstanding history as a raw material for traditional medicine and functional diets in Asia, has been used traditionally to bathe and soak feet for its disinfectant and itch-relieving properties. Despite its widespread use, scientific evidence validating the antifungal efficacy of A. argyi water extract (AAWE) against dermatophytes, particularly Trichophyton rubrum, Trichophyton mentagrophytes, and Microsporum gypseum, remains limited. This study aimed to substantiate the scientific basis of the folkloric use of A. argyi by evaluating the antifungal effects and the underlying molecular mechanisms of its active subfraction against dermatophytes. The results indicated that AAWE exhibited excellent antifungal effects against the three aforementioned dermatophyte species. The subfraction AAWE6, isolated using D101 macroporous resin, emerged as the most potent subfraction. The minimum inhibitory concentrations (MICs) of AAWE6 against T. rubrum, M. gypseum, and T. mentagrophytes were 312.5, 312.5, and 625 μg·mL-1, respectively. Transmission electron microscopy (TEM) results and assays of enzymes linked to cell wall integrity and cell membrane function indicated that AAWE6 could penetrate the external protective barrier of T. rubrum, creating breaches ("small holes"), and disrupt the internal mitochondrial structure ("granary"). Furthermore, transcriptome data, quantitative real-time PCR (RT-qPCR), and biochemical assays corroborated the severe disruption of mitochondrial function, evidenced by inhibited tricarboxylic acid (TCA) cycle and energy metabolism. Additionally, chemical characterization and molecular docking analyses identified flavonoids, primarily eupatilin (131.16 ± 4.52 mg·g-1) and jaceosidin (4.17 ± 0.18 mg·g-1), as the active components of AAWE6. In conclusion, the subfraction AAWE6 from A. argyi exerts antifungal effects against dermatophytes by disrupting mitochondrial morphology and function. This research validates the traditional use of A. argyi and provides scientific support for its anti-dermatophytic applications, as recognized in the Chinese patent (No. ZL202111161301.9).
Collapse
Affiliation(s)
- Le Chen
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yunyun Zhu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Chaowei Guo
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Yujie Guo
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Lu Zhao
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Yuhuan Miao
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Hongzhi DU
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Dahui Liu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China.
| |
Collapse
|
4
|
Abdi-Moghadam Z, Mazaheri Y, Rezagholizade-shirvan A, Mahmoudzadeh M, Sarafraz M, Mohtashami M, Shokri S, Ghasemi A, Nickfar F, Darroudi M, Hossieni H, Hadian Z, Shamloo E, Rezaei Z. The significance of essential oils and their antifungal properties in the food industry: A systematic review. Heliyon 2023; 9:e21386. [PMID: 37954273 PMCID: PMC10637975 DOI: 10.1016/j.heliyon.2023.e21386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 10/15/2023] [Accepted: 10/20/2023] [Indexed: 11/14/2023] Open
Abstract
Essential oils (EOs) are natural products called volatile oils or aromatic and ethereal oils derived from various parts of plants. They possess antioxidant and antimicrobial properties, which offer natural protection against a variety of pathogens and spoilage microorganisms. Studies conducted in the last decade have demonstrated the unique applications of these compounds in the fields of the food industry, agriculture, and skin health. This systematic article provides a summary of recent data pertaining to the effectiveness of EOs and their constituents in combating fungal pathogens through diverse mechanisms. Antifungal investigations involving EOs were conducted on multiple academic platforms, including Google Scholar, Science Direct, Elsevier, Springer, Scopus, and PubMed, spanning from April 2000 to October 2023. Various combinations of keywords, such as "essential oil," "volatile oils," "antifungal," and "Aspergillus species," were used in the search. Numerous essential oils have demonstrated both in vitro and in vivo antifungal activity against different species of Aspergillus, including A. niger, A. flavus, A. parasiticus, A. fumigatus, and A. ochraceus. They have also exhibited efficacy against other fungal species, such as Penicillium species, Cladosporium, and Alternaria. The findings of this study offer novel insights into inhibitory pathways and suggest the potential of essential oils as promising agents with antifungal and anti-mycotoxigenic properties. These properties could make them viable alternatives to conventional preservatives, thereby enhancing the shelf life of various food products.
Collapse
Affiliation(s)
- Zohreh Abdi-Moghadam
- Department of Food Science and Nutrition, Faculty of Medicine Social Determinants of Health Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Yeganeh Mazaheri
- Department of Environmental Health Engineering, Food Safety Division, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Maryam Mahmoudzadeh
- Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mansour Sarafraz
- School of Public Health, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mahnaz Mohtashami
- Department of Biology, School of Basic Science, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Samira Shokri
- Department of Environmental Health Engineering, Food Safety Division, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Ghasemi
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Farshid Nickfar
- University of Applied Science and Technology, Center of Cheshme noshan khorasan (Alis), Iran
| | - Majid Darroudi
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hedayat Hossieni
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Hadian
- Research Department of Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ehsan Shamloo
- Department of Food Science and Technology, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Zeinab Rezaei
- University of Applied Science and Technology, Center of Cheshme noshan khorasan (Alis), Iran
| |
Collapse
|
5
|
Wu Y, Xu X, Jiang X, Liu S, Lin J, Lin X, Zhang Y, Shi C, Zhao C, Yang J. Application of polysaccharide-rich solution derived from waste macroalgae Enteromorpha prolifera in cherry tomato preservation and utilizing post-extraction residue for crude bio-oil production. Food Chem 2023; 409:135301. [PMID: 36587516 DOI: 10.1016/j.foodchem.2022.135301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/07/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022]
Abstract
Preservative is of importance to retard fruit deterioration and prolong the shelf-life. The suitability of using water-soluble polysaccharide extracted from waste macroalgae Enteromorpha prolifera (EPP) for cherry tomato preservation was evaluated. As compared with the control, the EPP-treated cherry tomatoes exhibited better fruit appearance, lower disease index and rot index during storage. Around 47 % EPP-treated cherry tomatoes were commercially acceptable after 36 days, which was however only 15.6 % for untreated cherry tomatoes, indicating the satisfactory preservation effectiveness of EPP-rich solution for cherry tomatoes. The post-extraction residue was commonly underutilized, we herein attempted to employ an emerging thermochemical conversion technique, hydrothermal liquefaction, to produce crude bio-oil (biocrude) from post-extraction E. prolifera. A biocrude yield of ∼23 wt% (dry-ash-free, daf) was obtained, and fatty acids and phenolics were identified to be the two main components in biocrude. The biocrude contained ∼70 % carbon and the higher heating value was ∼30 MJ/kg.
Collapse
Affiliation(s)
- Yijing Wu
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China; Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Minjiang University, Fuzhou 350108, China
| | - Xin Xu
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China; Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Minjiang University, Fuzhou 350108, China
| | - Xuanjing Jiang
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, China
| | - Shuji Liu
- Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen 361013, China
| | - Jingying Lin
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China
| | - Xiaoyu Lin
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China
| | - Yange Zhang
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China; Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Minjiang University, Fuzhou 350108, China
| | - Chuanyang Shi
- Department of Nutrition and Food Studies, Steinhardt School of Culture, Education, and Human Development, New York University, NY, United States
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Jie Yang
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China; Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Minjiang University, Fuzhou 350108, China.
| |
Collapse
|
6
|
New insights into the persistent effect of transient cinnamaldehyde vapor treatment on the growth and aflatoxin synthesis of Aspergillus flavus. Food Res Int 2023; 163:112300. [PMID: 36596201 DOI: 10.1016/j.foodres.2022.112300] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/26/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022]
Abstract
The antimicrobial effects of continuous treatment with essential oils (EOs) in both liquid and gaseous phases have been intensively studied. Due to their rapid volatility, the effects of EOs on microorganisms after transient treatment are also worth exploring. In this work, the persistent effects of cinnamaldehyde (CA) vapor on Aspergillus flavus were detected by a series of biochemical analyses. Transcriptome analysis was also conducted to study the gene expression changes between recovered and normal A. flavus. When CA vapor was removed, biochemical analyses showed that the oxidative stress induced by the antimicrobial atmosphere was alleviated, and almost all the damaged functions were restored apart from mitochondrial function. Remarkably, the suppressed aflatoxin production intensified, which was confirmed by the up-regulation of most genes in the aflatoxin synthetic gene cluster, the velvet-related gene FluG and the aflatoxin precursor acetyl-CoA. Transcriptomic analysis also demonstrated significant changes in secondary metabolism, energy metabolism, oxidative stress, and amino acid metabolism in the recovery group. Taken together, these findings provide new insights into the mechanisms underlying the response of A. flavus to CA vapor treatment and will guide the rational application of EOs.
Collapse
|
7
|
Tian F, Woo SY, Lee SY, Park SB, Zheng Y, Chun HS. Antifungal Activity of Essential Oil and Plant-Derived Natural Compounds against Aspergillus flavus. Antibiotics (Basel) 2022; 11:antibiotics11121727. [PMID: 36551384 PMCID: PMC9774910 DOI: 10.3390/antibiotics11121727] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022] Open
Abstract
Aspergillus flavus is a facultative parasite that contaminates several important food crops at both the pre- and post-harvest stages. Moreover, it is an opportunistic animal and human pathogen that causes aspergillosis diseases. A. flavus also produces the polyketide-derived carcinogenic and mutagenic secondary metabolite aflatoxin, which negatively impacts global food security and threatens human and livestock health. Recently, plant-derived natural compounds and essential oils (EOs) have shown great potential in combatting A. flavus spoilage and aflatoxin contamination. In this review, the in situ antifungal and antiaflatoxigenic properties of EOs are discussed. The mechanisms through which EOs affect A. flavus growth and aflatoxin biosynthesis are then reviewed. Indeed, several involve physical, chemical, or biochemical changes to the cell wall, cell membrane, mitochondria, and related metabolic enzymes and genes. Finally, the future perspectives towards the application of plant-derived natural compounds and EOs in food protection and novel antifungal agent development are discussed. The present review highlights the great potential of plant-derived natural compounds and EOs to protect agricultural commodities and food items from A. flavus spoilage and aflatoxin contamination, along with reducing the threat of aspergillosis diseases.
Collapse
|
8
|
Whole-cell biocatalyzed organic solvent-free conversion of dill oil to cis-(-)-dihydrocarvone rich aromatic hydrosol: Chemical and aroma profiling. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Chen YX, Li W, Zeng H, Zhou G, Cai Q. Transcriptome Analysis Reveals the Mechanism of dill Seed Essential oil Against Sclerotinia sclerotiorum. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221119910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Sclerotinia sclerotiorum is a notorious fungal pathogen with a broad host range, including many important crops. A previous study showed dill seed essential oil (DSEO) could inhibit S sclerotiorum pathogenicity and protect canola production. However, the molecular basis of DSEO anti-fungal activity is still not well studied. To investigate the mechanism of DSEO anti-fungal activity, RNA-sequencing was employed to identify differentially expressed genes (DEGs) of S sclerotiorum in response to DSEO treatment. A total of 2470, 3218, and 3793 DEGs were identified in S sclerotiorum after being treated by DSEO for 0.5, 1, and 2 h, respectively. These genes that express changes in the early stage are more likely affected directly by DSEO. Gene Ontology (GO) analysis revealed that these genes were mainly related to transmembrane transport, cell membrane, ribosome biogenesis, and proteasome complex. DSEO treatment primarily affected the membrane part of the fungal cell, particularly the endoplasmic reticulum (ER) membrane at 0.5 and 1-hour treatment. In addition, a bunch of DEGs associated with the proteasome pathway was markedly enriched at 2 h of treatment. It is speculated that DSEO achieves antifungal effects by influencing these targets or pathways. The information obtained in this study expanded the understanding of the antifungal mechanism of DSEO and enriched the resources available for interpreting its mechanism at molecular level.
Collapse
Affiliation(s)
- Yu-Xin Chen
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Tarim University, Alar, Xinjiang, China
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Food and Biological Engineering, Hubei University of Technology, Wuhan, PR China
| | - Wei Li
- State Key Laboratory of Hybrid Rice, College of Life Science, Wuhan University, Wuhan, China
| | - Hong Zeng
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Tarim University, Alar, Xinjiang, China
| | - Gao Zhou
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Food and Biological Engineering, Hubei University of Technology, Wuhan, PR China
| | - Qiang Cai
- State Key Laboratory of Hybrid Rice, College of Life Science, Wuhan University, Wuhan, China
| |
Collapse
|
10
|
Li YX, Erhunmwunsee F, Liu M, Yang K, Zheng W, Tian J. Antimicrobial mechanisms of spice essential oils and application in food industry. Food Chem 2022; 382:132312. [PMID: 35158267 DOI: 10.1016/j.foodchem.2022.132312] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/11/2022] [Accepted: 01/29/2022] [Indexed: 11/04/2022]
Abstract
Spice essential oils (SEOs) are commonly used in food flavoring and are considered an effective food preservative. It has a broad range of applications and promising development prospects. As a natural food additive, SEOs' antimicrobial effects have been widely studied and utilized towards food preservation. Many SEOs have exhibited significant antimicrobial activities against food-borne pathogenic and food spoilage microorganisms. We reviewed the antibacterial and antifungal properties of SEOs, the active components, their corresponding mechanisms of actions, as well as their application in the food industry, providing a theoretical basis for SEOs' further development and application as natural preservatives.
Collapse
Affiliation(s)
- Yong-Xin Li
- Department of Biomedicine and Food Science, School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, PR China.
| | - Famous Erhunmwunsee
- Department of Biomedicine and Food Science, School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, PR China
| | - Man Liu
- Department of Biomedicine and Food Science, School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, PR China
| | - Kunlong Yang
- Department of Biomedicine and Food Science, School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, PR China
| | - Weifa Zheng
- Department of Biomedicine and Food Science, School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, PR China
| | - Jun Tian
- Department of Biomedicine and Food Science, School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, PR China.
| |
Collapse
|
11
|
Applications of Essential Oils as Antibacterial Agents in Minimally Processed Fruits and Vegetables—A Review. Microorganisms 2022; 10:microorganisms10040760. [PMID: 35456810 PMCID: PMC9032070 DOI: 10.3390/microorganisms10040760] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 02/04/2023] Open
Abstract
Microbial foodborne diseases are a major health concern. In this regard, one of the major risk factors is related to consumer preferences for “ready-to-eat” or minimally processed (MP) fruits and vegetables. Essential oil (EO) is a viable alternative used to reduce pathogenic bacteria and increase the shelf-life of MP foods, due to the health risks associated with food chlorine. Indeed, there has been increased interest in using EO in fresh produce. However, more information about EO applications in MP foods is necessary. For instance, although in vitro tests have defined EO as a valuable antimicrobial agent, its practical use in MP foods can be hampered by unrealistic concentrations, as most studies focus on growth reductions instead of bactericidal activity, which, in the case of MP foods, is of utmost importance. The present review focuses on the effects of EO in MP food pathogens, including the more realistic applications. Overall, due to this type of information, EO could be better regarded as an “added value” to the food industry.
Collapse
|
12
|
He W, Zhu Y, Chen Y, Shen Q, Hua Z, Wang X, Xue P. Inhibitory Effect and Mechanism of Chitosan-Ag Complex Hydrogel on Fungal Disease in Grape. Molecules 2022; 27:1688. [PMID: 35268789 PMCID: PMC8911985 DOI: 10.3390/molecules27051688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/23/2022] [Accepted: 03/02/2022] [Indexed: 01/27/2023] Open
Abstract
Hydrogel antibacterial agent is an ideal antibacterial material because of its ability to diffuse antibacterial molecules into the decayed area by providing a suitable microenvironment and acting as a protective barrier on the decay interface. The biocompatibility and biodegradation make the removal process easy and it is already widely used in medical fields. However, there have been few reports on its application for controlling postharvest diseases in fruit. In this study, the Chitosan-silver (CS-Ag) complex hydrogels were prepared using the physical crosslinking method, which is used for controlling postharvest diseases in grape. The prepared hydrogels were stable for a long period at room temperature. The structure and surface morphology of CS-Ag composite hydrogels were characterized by UV-Vis, FTIR, SEM, and XRD. The inhibitory effects of CS-Ag hydrogel on disease in grape caused by P. expansum, A. niger, and B. cinerea were investigated both in vivo and in vitro. The remarkable antibacterial activity of CS-Ag hydrogels was mainly due to the combined antibacterial and antioxidant effects of CS and Ag. Preservation tests showed that the CS-Ag hydrogel had positive fresh-keeping effect. This revealed that CS-Ag hydrogels can play a critical role in controlling fungal disease in grapes.
Collapse
Affiliation(s)
- Weizhong He
- Institute of Quality Standards & Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (W.H.); (Q.S.); (Z.H.); (X.W.)
- Key Laboratory of Agro-Product Quality and Safety of Xinjiang, Laboratory of Quality and Safety Risk Assessment for Agro-Products, Ministry of Agriculture and Rural Affairs, Urumqi 830091, China
| | - Yajuan Zhu
- The Center for Disease Control and Prevention of Xinjiang Production and Construction Crops, Urumqi 830002, China
| | - Yan Chen
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China;
| | - Qi Shen
- Institute of Quality Standards & Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (W.H.); (Q.S.); (Z.H.); (X.W.)
- Key Laboratory of Agro-Product Quality and Safety of Xinjiang, Laboratory of Quality and Safety Risk Assessment for Agro-Products, Ministry of Agriculture and Rural Affairs, Urumqi 830091, China
| | - Zhenyu Hua
- Institute of Quality Standards & Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (W.H.); (Q.S.); (Z.H.); (X.W.)
- Key Laboratory of Agro-Product Quality and Safety of Xinjiang, Laboratory of Quality and Safety Risk Assessment for Agro-Products, Ministry of Agriculture and Rural Affairs, Urumqi 830091, China
| | - Xian Wang
- Institute of Quality Standards & Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (W.H.); (Q.S.); (Z.H.); (X.W.)
- Key Laboratory of Agro-Product Quality and Safety of Xinjiang, Laboratory of Quality and Safety Risk Assessment for Agro-Products, Ministry of Agriculture and Rural Affairs, Urumqi 830091, China
| | - Peng Xue
- Institute of Quality Standards & Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (W.H.); (Q.S.); (Z.H.); (X.W.)
- Key Laboratory of Agro-Product Quality and Safety of Xinjiang, Laboratory of Quality and Safety Risk Assessment for Agro-Products, Ministry of Agriculture and Rural Affairs, Urumqi 830091, China
| |
Collapse
|
13
|
Zhang L, Chen Y, Li Z, Li X, Fan G. Bioactive properties of the aromatic molecules of spearmint (Mentha spicata L.) essential oil: a review. Food Funct 2022; 13:3110-3132. [DOI: 10.1039/d1fo04080d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Spearmint belongs to the genus Mentha in the family Labiateae (Lamiaceae), which is wildly cultivated worldwide for its remarkable aroma and commercial value. The aromatic molecules of spearmint essential oil,...
Collapse
|
14
|
Qu C, Li Z, Wang X. UHPLC-HRMS-Based Untargeted Lipidomics Reveal Mechanism of Antifungal Activity of Carvacrol against Aspergillus flavus. Foods 2021; 11:foods11010093. [PMID: 35010219 PMCID: PMC8750229 DOI: 10.3390/foods11010093] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 01/13/2023] Open
Abstract
Aspergillus flavus is a common contaminant in grain, oil and their products. Its metabolite aflatoxin B1 (AFB1) has been proved to be highly carcinogenic. Therefore, it is of great importance to find possible antifungal substances to inhibit the growth and toxin production of Aspergillus flavus. Carvacrol (CV) was reported as a potent antifungal monoterpene derived from plants. In this paper, the antifungal effects and mechanism of CV on Aspergillus flavus were investigated. CV was shown good inhibition on the growth of Aspergillus flavus and the production of AFB1. CV used in concentrations ranging from 0, 50, 100 and 200 μg/mL inhibited the germination of spores, mycelia growth and AFB1 production dose-dependently. To explore the antifungal mechanism of CV on Aspergillus flavus, we also detected the ergosterol content of Aspergillus flavus mycelia, employed Scanning Electron Microscopy (SEM) to observe mycelia morphology and utilized Ultra-High-Performance Liquid Chromatography-High-Resolution Mass Spectrometry (UHPLC-HRMS) to explore the lipidome profiles of Aspergillus flavus. The results showed that the production of ergosterol of mycelia was reduced as the CV treatment concentration increased. SEM photographs demonstrated a rough surface and a reduction in the thickness of hyphae in Aspergillus flavus treated with CV (200 µg/mL). In positive ion mode, 21 lipids of Aspergillus flavus mycelium were downregulated, and 11 lipids were upregulated after treatment with 200-µg/mL CV. In negative ion mode, nine lipids of Aspergillus flavus mycelium were downregulated, and seven lipids upregulated after treatment with 200-µg/mL CV. In addition, the analysis of different lipid metabolic pathways between the control and 200-µg/mL CV-treated groups demonstrated that glycerophospholipid metabolism was the most enriched pathway related to CV treatment.
Collapse
Affiliation(s)
- Chenling Qu
- Grain and Oil Storage Department, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China;
- Correspondence: (C.Q.); (X.W.); Tel.: +86-18623717762 (C.Q.); +86-2786812943 (X.W.)
| | - Zhuozhen Li
- Grain and Oil Storage Department, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China;
| | - Xiupin Wang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Correspondence: (C.Q.); (X.W.); Tel.: +86-18623717762 (C.Q.); +86-2786812943 (X.W.)
| |
Collapse
|
15
|
Ranjith A, Srilatha C, Lekshmi P, Rameshbabu N. Antiaflatoxigenic potential of essential oils of spices – a review. WORLD MYCOTOXIN J 2021. [DOI: 10.3920/wmj2020.2636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mycotoxins are important food contaminants posing a significant threat to food and feed safety and public health. Among the mycotoxins, aflatoxins are deemed to be a more significant contaminant due to their potent carcinogenic, and hepatotoxic effects, and their levels are highly regulated in the international food trade. Phytochemicals are considered a major source of natural antifungal agents. The volatile nature of essential oil of plants makes them ideal candidates for antifungal agents due to their ability to distribute in free air spaces in closed containers and penetrate through heterogeneous food materials. In these, essential oils in spices attain special attention due to their commercial availability and low toxicity. This article reviews the antiaflatoxigenic capacity of spice essential oils and the effect of essential oil composition on the activity and mechanism of antifungal action and is expected to be useful for the planning of further research in the subject area.
Collapse
Affiliation(s)
- A. Ranjith
- Spices Board Quality Evaluation Laboratory, R-11, SIPCOT, Gummidipoondi, Tamil Nadu 601201, India
| | - C.M. Srilatha
- Spices Board Quality Evaluation Laboratory, R-11, SIPCOT, Gummidipoondi, Tamil Nadu 601201, India
| | - P.C. Lekshmi
- Spices Board Quality Evaluation Laboratory, R-11, SIPCOT, Gummidipoondi, Tamil Nadu 601201, India
| | - N. Rameshbabu
- Spices Board Quality Evaluation Laboratory, Suganda Bhavan, Palarivattom, Cochin, Kerala 682025, India
| |
Collapse
|
16
|
Essential oils of Bursera morelensis and Lippia graveolens for the development of a new biopesticides in postharvest control. Sci Rep 2021; 11:20135. [PMID: 34635777 PMCID: PMC8505479 DOI: 10.1038/s41598-021-99773-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/28/2021] [Indexed: 11/23/2022] Open
Abstract
Fruit and vegetable crops that are not consumed immediately, unlike other agricultural products, require economic and time investments until they reach the final consumers. Synthetic agrochemicals are used to maintain and prolong the storage life of crops and avoid losses caused by phytopathogenic microorganisms. However, the excessive use of synthetic agrochemicals creates health problems and contributes to environmental pollution. To avoid these problems, less toxic and environment-friendly alternatives are sought. One of these alternatives is the application of biopesticides. However, few biopesticides are currently used. In this study, the biopesticide activity of Bursera morelensis and Lippia graveolens essential oils was evaluated. Their antifungal activity has been verified in an in vitro model, and chemical composition has been determined using gas chromatography-mass spectrometry. Their antifungal activity was corroborated in vitro, and their activity as biopesticides was subsequently evaluated in a plant model. In addition, the persistence of these essential oils on the surface of the plant model was determined. Results suggest that both essential oils are promising candidates for producing biopesticides. This is the first study showing that B. morelensis and L. graveolens essential oils work by inhibiting mycelial growth and spore germination and are environment-friendly biopesticides.
Collapse
|
17
|
Rahman MM, Rahaman MS, Islam MR, Hossain ME, Mannan Mithi F, Ahmed M, Saldías M, Akkol EK, Sobarzo-Sánchez E. Multifunctional Therapeutic Potential of Phytocomplexes and Natural Extracts for Antimicrobial Properties. Antibiotics (Basel) 2021; 10:1076. [PMID: 34572660 PMCID: PMC8468069 DOI: 10.3390/antibiotics10091076] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/30/2021] [Accepted: 09/03/2021] [Indexed: 12/21/2022] Open
Abstract
Natural products have been known for their antimicrobial factors since time immemorial. Infectious diseases are a worldwide burden that have been deteriorating because of the improvement of species impervious to various anti-infection agents. Hence, the distinguishing proof of antimicrobial specialists with high-power dynamic against MDR microorganisms is central to conquer this issue. Successful treatment of infection involves the improvement of new drugs or some common source of novel medications. Numerous naturally occurring antimicrobial agents can be of plant origin, animal origin, microbial origin, etc. Many plant and animal products have antimicrobial activities due to various active principles, secondary metabolites, or phytochemicals like alkaloids, tannins, terpenoids, essential oils, flavonoids, lectins, phagocytic cells, and many other organic constituents. Phytocomplexes' antimicrobial movement frequently results from a few particles acting in cooperative energy, and the clinical impacts might be because of the direct effects against microorganisms. The restorative plants that may furnish novel medication lead the antimicrobial movement. The purpose of this study is to investigate the antimicrobial properties of the phytocomplexes and natural extracts of the plants that are ordinarily being utilized as conventional medications and then recommended the chance of utilizing them in drugs for the treatment of multiple drug-resistant disease.
Collapse
Affiliation(s)
- Md. Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.S.R.); (M.R.I.); (M.E.H.); (F.M.M.); (M.A.)
| | - Md. Saidur Rahaman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.S.R.); (M.R.I.); (M.E.H.); (F.M.M.); (M.A.)
| | - Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.S.R.); (M.R.I.); (M.E.H.); (F.M.M.); (M.A.)
| | - Md. Emon Hossain
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.S.R.); (M.R.I.); (M.E.H.); (F.M.M.); (M.A.)
| | - Faria Mannan Mithi
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.S.R.); (M.R.I.); (M.E.H.); (F.M.M.); (M.A.)
| | - Muniruddin Ahmed
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.S.R.); (M.R.I.); (M.E.H.); (F.M.M.); (M.A.)
| | - Marianela Saldías
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8330507, Chile;
| | - Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey;
| | - Eduardo Sobarzo-Sánchez
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8330507, Chile;
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
18
|
Singh BK, Tiwari S, Dubey NK. Essential oils and their nanoformulations as green preservatives to boost food safety against mycotoxin contamination of food commodities: a review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:4879-4890. [PMID: 33852733 DOI: 10.1002/jsfa.11255] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 04/02/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
Postharvest food spoilage due to fungal and mycotoxin contamination is a major challenge in tropical countries, leading to severe adverse effects on human health. Because of the negative effects of synthetic preservatives on both human health and the environment, it has been recommended that chemicals that have a botanical origin, with an eco-friendly nature and a favorable safety profile, should be used as green preservatives. Recently, the food industry and consumers have been shifting drastically towards green consumerism because of their increased concerns about health and the environment. Among different plant-based products, essential oils (EOs) and their bioactive components are strongly preferred as antimicrobial food preservatives. Despite having potent antimicrobial efficacy and preservation potential against fungal and mycotoxin contamination, essential oils and their bioactive components have limited practical applicability caused by their high volatility and their instability, implying the development of techniques to overcome the challenges associated with EO application. Essential oils and their bioactive components are promising alternatives to synthetic preservatives. To overcome challenges associated with EOs, nanotechnology has emerged as a novel technology in the food industries. Nanoencapsulation may boost the preservative potential of different essential oils by improving their solubility, stability, and targeted sustainable release. Nanoencapsulation of EOs is therefore currently being practiced to improve the stability and bioactivity of natural products. The present review has dealt extensively with the application of EOs and their nanoformulated products encapsulated in suitable polymeric matrices, so as to recommend them as novel green preservatives against foodborne molds and mycotoxin-induced deterioration of stored food commodities. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Bijendra Kumar Singh
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Shikha Tiwari
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Nawal Kishore Dubey
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
19
|
Competency of Clove and Cinnamon Essential Oil Fumigation against Toxigenic and Atoxigenic Aspergillus flavus Isolates. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.3.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aspergillus flavus is a frequent contaminant of maize grain. We isolated this fungus, determined the colony morphology and species (by internal transcribed spacer sequencing) and measured the aflatoxin content. The selected A. flavus fungi were placed into two groups, toxigenic and atoxigenic; both appeared similar morphologically, except that the atoxigenic group lacked sclerotia. An essential oil fumigation test with clove and cinnamon oils as antifungal products was performed on fungal conidial discs and fungal colonies in Petri plates. Cinnamon oil at 2.5 to 5.0 μL/plate markedly inhibited the mycelial growth from conidial discs of both strains, whereas clove oil showed less activity. The oils had different effects on fungal mycelia. The higher clove fumigation doses of 10.0 to 20.0 μL/plate controlled fungal growth, while cinnamon oil caused less inhibition. Compared with atoxigenic groups, toxigenic A. flavus responded stably. Within abnormal A. flavus hyphae, the essential oils degenerated the hyphal morphology, resulting in exfoliated flakes and shrinkage, which were related to fungal membrane injury and collapse of vacuoles and phialide. The treatments, especially those with cinnamon oil, increased the electroconductivity, which suggested a weak mycelium membrane structure. Moreover, the treatments with essential oils reduced the ergosterol content in mycelia and the aflatoxin accumulation in the culture broth. The fumigations with clove and cinnamon oils inhibited the development of both conidia and colonies of A. flavus in dose-dependent manners.
Collapse
|
20
|
Owolabi IO, Songsamoe S, Khunjan K, Matan N. Effect of tapioca starch coated-rubberwood box incorporated with essential oils on the postharvest ripening and quality control of mangosteen during transportation. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
21
|
Sousa RMOF, Cunha AC, Fernandes-Ferreira M. The potential of Apiaceae species as sources of singular phytochemicals and plant-based pesticides. PHYTOCHEMISTRY 2021; 187:112714. [PMID: 33845406 DOI: 10.1016/j.phytochem.2021.112714] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 01/31/2021] [Accepted: 02/21/2021] [Indexed: 05/23/2023]
Abstract
The Apiaceae Lindl. (=Umbelliferae Juss.), which includes several economical important vegetables, herbs, and spices, is one of the most numerous plant family. Umbelliferous crops (namely anise, fennel, carrot, coriander, parsley, etc.) are also valuable sources of botanical flavoring agents and fragrances. In addition, Apiaceae species yield a wide variety of distinctive specialized metabolites (i.e, volatile phenylpropanoids, furanocoumarins, sesquiterpene coumarins, polyacetylenes, and phthalides), some of them been described as uncommon natural phytochemicals exclusive of the family, which offers a great potential for bioprospection. Numerous studies have pointed out the outstanding biological activity of extracts and several classes of phytochemicals from Apiaceae species. Emphasis has been given to essential oils (EOs) and their constituents activities, most likely because this type of plant added value product benefits from a larger acceptance and application potential in integrated pest management (IPM) and integrated vector management (IVM) programs. Several species of the family offer a variety of unique compounds with great potential as biopesticidal and/or synergizing agents. Investigations covering their activity toward agricultural pests and phytopathogens have increased in the last years, nevertheless the interest remains strongly focus on arthropod species, predominantly those acting as vectors of human diseases. From our survey, it is patent the gap of knowledge concerning the potential molluscicidal properties of Apiaceae extracts/phytochemicals, as well as their herbicidal activities against invasive plant species. In this review, we propose to highlight the potential of Apiaceae species as suitable sources of bioactive phytochemicals with great relevance within the frame of plant-based pesticides R&D, and will discuss their applicability in real-world scenarios considering the recent developments regarding the design of stable formulations incorporating Apiaceae bioactive products. We expect that this review will encourage researchers to consider undervalued Apiaceae species as alternative sources of bioactive compounds and will give a contribute to the field by suggesting new research topics.
Collapse
Affiliation(s)
- Rose Marie O F Sousa
- Biology Department, Faculty of Science, University of Porto, Rua Do Campo Alegre S/n, 4169-007, Porto, Portugal; GreenUPorto - Sustainable Agrifood Production, Research Centre, Department of Biology, Faculty of Science, University of Porto, Rua Do Campo Alegre S/n, 4169-007, Porto, Portugal; CITAB, Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, 5000-801, Vila Real, Portugal.
| | - Ana C Cunha
- CITAB, Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, 5000-801, Vila Real, Portugal; Biology Department & CBMA - Centre of Molecular and Environmental Biology (CBMA), School of Sciences, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal; CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal.
| | - Manuel Fernandes-Ferreira
- Biology Department, Faculty of Science, University of Porto, Rua Do Campo Alegre S/n, 4169-007, Porto, Portugal; GreenUPorto - Sustainable Agrifood Production, Research Centre, Department of Biology, Faculty of Science, University of Porto, Rua Do Campo Alegre S/n, 4169-007, Porto, Portugal; CITAB, Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, 5000-801, Vila Real, Portugal; MAPPROD Lda, Rua António de Mariz, 22, 4715-279, Braga, Portugal.
| |
Collapse
|
22
|
Xiong X, Zhang L, Li X, Zeng Q, Deng R, Ren X, Kong Q. Antifungal mechanisms of lavender essential oil in the inhibition of rot disease caused by Monilinia fructicola in postharvest flat peaches. Can J Microbiol 2021; 67:724-736. [PMID: 34153193 DOI: 10.1139/cjm-2020-0484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
As a natural antimicrobial agent, lavender essential oil (LEO) is generally recognized to be safe and effective in the inhibition of phytopathogenic fungi. Direct contact and fumigation (in vivo and in vitro) were used to study the fungistatic effect of LEO on Monilinia fructicola. Additionally, the effect on the ultrastructure of cells and degree of destruction of the cell membrane of M. fructicola were revealed. In addition, the effects of LEO on the expression levels of particular apoptosis-related genes in M. fructicola cells were detected and GC-MS was used to analyse the main components of LEO. LEO had a good inhibitory efficacy against M. fructicola in flat peaches, with almost complete growth inhibition with 800 μL / L. These effects were associated with leakage of cytoplasm contents, hyphal distortion and spore disruption. Moreover, the expression of apoptosis RTG1 and RLM1 genes increased on LEO treatment. These results demonstrate that LEO can inhibit M. fructicola by inducing cytoplasmic membrane damage and cell apoptosis of fungi and that the major ingredients of LEO are monoterpenes and sesquiterpenes which are presumed to contribute to the inhibitory effects.
Collapse
Affiliation(s)
- Xiaolin Xiong
- Shaanxi Normal University, 12401, Xi'an, Shaanxi, China;
| | - Lingling Zhang
- Shaanxi Normal University, 12401, Xi'an, Shaanxi, China;
| | - Xingyan Li
- Shaanxi Normal University, 12401, Xi'an, Shaanxi, China;
| | - Qingzhi Zeng
- Shaanxi Normal University, 12401, Xi'an, Shaanxi, China;
| | - Rongrong Deng
- Shaanxi Normal University, 12401, Xi'an, Shaanxi, China;
| | - Xueyan Ren
- Shaanxi Normal University, 12401, Xi'an, China, 710062;
| | - Qingjun Kong
- Shaanxi Normal University, 12401, Xi'an, Shaanxi, China;
| |
Collapse
|
23
|
Ma W, Johnson ET. Natural flavour (E,E)-2,4-heptadienal as a potential fumigant for control of Aspergillus flavus in stored peanut seeds: Finding new antifungal agents based on preservative sorbic acid. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.107938] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
24
|
Azizian T, Alirezalu A, Hassani A, Bahadori S, Sonboli A. Phytochemical analysis of selected Nepeta species by HPLC-ESI-MS/MS and GC–MS methods and exploring their antioxidant and antifungal potentials. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00819-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
25
|
Hu Z, Yuan K, Zhou Q, Lu C, Du L, Liu F. Mechanism of antifungal activity of Perilla frutescens essential oil against Aspergillus flavus by transcriptomic analysis. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107703] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
26
|
Chaudhari AK, Singh VK, Das S, Dubey NK. Nanoencapsulation of essential oils and their bioactive constituents: A novel strategy to control mycotoxin contamination in food system. Food Chem Toxicol 2021; 149:112019. [PMID: 33508419 DOI: 10.1016/j.fct.2021.112019] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/15/2020] [Accepted: 01/20/2021] [Indexed: 12/14/2022]
Abstract
Spoilage of food by mycotoxigenic fungi poses a serious risk to food security throughout the world. In view of the negative effects of synthetic preservatives, essential oils (EOs) and their bioactive constituents are gaining momentum as suitable substitute to ensure food safety by controlling mycotoxins. However, despite their proven preservative potential against mycotoxins, the use of EOs/bioactive constituents in real food system is still restricted due to instability caused by abiotic factors and negative impact on organoleptic attributes after direct application. Nanoencapsulation in this regard could be a promising approach to address these problems, since the process can increase the stability of EOs/bioactive constituents, barricades their loss and considerably prevent their interaction with food matrices, thus preserving their original organoleptic qualities. The aim of this review is to provide wider and up-to-date overview on recent advances in nanoencapsulation of EOs/bioactive constituents with the objective to control mycotoxin contamination in food system. Further, the information on polymer characteristics, nanoencapsulation techniques, factors affecting the nanoencapsulation, applications of nanoencapsulated formulations, and characterization along with the study on their release kinetics and impacts on organoleptic attributes of food are discussed. Finally, the safety aspects of nanoencapsulated formulations for their safe utilization are also explored.
Collapse
Affiliation(s)
- Anand Kumar Chaudhari
- Laboratory of Herbal Pesticides, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Vipin Kumar Singh
- Laboratory of Herbal Pesticides, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Somenath Das
- Laboratory of Herbal Pesticides, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Nawal Kishore Dubey
- Laboratory of Herbal Pesticides, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
27
|
Zhang C, Zhao J, Famous E, Pan S, Peng X, Tian J. Antioxidant, hepatoprotective and antifungal activities of black pepper (Piper nigrum L.) essential oil. Food Chem 2020; 346:128845. [PMID: 33387832 DOI: 10.1016/j.foodchem.2020.128845] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 11/17/2020] [Accepted: 12/06/2020] [Indexed: 12/12/2022]
Abstract
The essential oil extracted from the black Piper nigrum L. (BPEO) was analyzed for antioxidant, hepatoprotective and antifungal activities. BPEO is rich in total phenolics, total flavonoids and proanthocyanidins, and showed good free radicals and lipid peroxidation scavenging capacities. In a CCl4-induced liver injury mice model, the BPEO treated groups showed increases in the catalase (CAT), glutathione (GSH) and total superoxide dismutase (T-SOD) activities present in the liver and kidney, and reverses the CCl4-elevated total bilirubin (TBIL), glutamate pyruvate transaminase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (AKP) and malondialdehyde (MDA) level, which were confirmed in further analyses of kidney tissue sections. BPEO can effectively inhibit the growth of Aspergillus flavus spoilage fungus in maize. Further analyses indicated that BPEO disrupt the permeability barrier of the cell membrane and lead to mitochondrial dysfunction in A. flavus. Therefore, the current study proved BPEO's potential as hepatoprotective products and natural food preservatives.
Collapse
Affiliation(s)
- Chi Zhang
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, PR China
| | - Jiechang Zhao
- College of Food and Biological Engineering, Xuzhou Institute of Technology, Xuzhou, 221111, China
| | - Erhunmwunsee Famous
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, PR China
| | - Shenyuan Pan
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, PR China
| | - Xue Peng
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, PR China.
| | - Jun Tian
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, PR China.
| |
Collapse
|
28
|
Ellagic Acid Inhibits Trichophyton rubrum Growth via Affecting Ergosterol Biosynthesis and Apoptotic Induction. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:7305818. [PMID: 33193798 PMCID: PMC7641703 DOI: 10.1155/2020/7305818] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/05/2020] [Accepted: 09/16/2020] [Indexed: 11/29/2022]
Abstract
Background Trichophyton rubrum, among other dermatophytes, is a major causative agent for superficial dermatomycoses like onychomycosis and tinea pedis, especially among pediatric and geriatric populations. Ellagic acid (EA) and shikonin (SK) have been reported to have many bioactivities, including antifungal activity. However, the mechanism of EA and SK on Trichophyton rubrum has not yet been reported. Objectives The purposes of this study were to evaluate the antifungal activities of EA and SK against Trichophyton rubrum and to illuminate the underlying action mechanisms. Methods The effect of EA (64, 128, and 256 μg/mL) and SK (8, 4, and 2 μg/mL) on Trichophyton rubrum was investigated with different doses via detecting cell viability, ultrastructure with using a scanning electron microscope (SEM), cell apoptosis and necrosis by using the flow cytometry instrument technique (FCIT), and the ergosterol biosynthesis pathway-related fungal cell membrane key gene expressions in vitro. Results SEM detection revealed that the T. rubrum cell surface was shrivelled, folded, and showed deformation and expansion, visible surface peeling, and broken hyphae, and cell contents overflowed after being treated with EA and SK; the cell apoptosis rate was significantly increased in dose-dependent manner after T. rubrum was treated with EA and SK; the qPCR results showed that mRNA expression of MEP4 and SUB1 was downregulated in EA- and SK-treated groups. Conclusions Overall, our results revealed the underlying antifungal mechanism of EA and SK, which may be related to the destruction of the fungal cell membrane and inhibition of C14 demethylase and the catalytic rate of squalene cyclooxidase in the ergosterol biosynthesis pathway via downregulation of MEP4 and SUB1, suggesting that EA and SK have the potential to be developed further as a natural antifungal agent for clinical use.
Collapse
|
29
|
Kaur V, Kaur R, Bhardwaj U. A review on dill essential oil and its chief compounds as natural biocide. FLAVOUR FRAG J 2020. [DOI: 10.1002/ffj.3633] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Vishaldeep Kaur
- Department of Chemistry Punjab Agricultural University Ludhiana Ludhiana India
| | - Ramandeep Kaur
- Department of Chemistry Punjab Agricultural University Ludhiana Ludhiana India
| | - Urvashi Bhardwaj
- Department of Chemistry Punjab Agricultural University Ludhiana Ludhiana India
| |
Collapse
|
30
|
Janković S, Mitić M, Arsić B, Stankov-Jovanović V. The kinetic and thermodynamic studies of solid-liquid extraction of apigenin-glycosides from parsley ( Petroselinum crispum). SEP SCI TECHNOL 2020. [DOI: 10.1080/01496395.2020.1821219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Sonja Janković
- Faculty of Sciences and Mathematics, Department of Chemistry, University of Niš, Niš, Serbia
| | - Milan Mitić
- Faculty of Sciences and Mathematics, Department of Chemistry, University of Niš, Niš, Serbia
| | - Biljana Arsić
- Faculty of Sciences and Mathematics, Department of Chemistry, University of Niš, Niš, Serbia
| | - Vesna Stankov-Jovanović
- Faculty of Sciences and Mathematics, Department of Chemistry, University of Niš, Niš, Serbia
| |
Collapse
|
31
|
Benali T, Bouyahya A, Habbadi K, Zengin G, Khabbach A, Achbani EH, Hammani K. Chemical composition and antibacterial activity of the essential oil and extracts of Cistus ladaniferus subsp. ladanifer and Mentha suaveolens against phytopathogenic bacteria and their ecofriendly management of phytopathogenic bacteria. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101696] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
32
|
Belabbes R, Mami IR, Dib ME, Mejdoub K, Tabti B, Costa J, Muselli A. Chemical Composition and Biological Activities of Essential Oils of Echinops spinosus and Carlina vulgaris Rich in Polyacetylene Compounds. CURRENT NUTRITION & FOOD SCIENCE 2020. [DOI: 10.2174/1573401315666190206142929] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
The essential oils of aromatic plants are increasingly used as new biocontrol
alternative agents against microbial strains and insect pests of fruits and vegetables, because
of their specificity of biodegradable nature.
Objective:
This work, treats for the first time the chemical composition, antioxidant, antifungal and
insecticidal activities of the essential oils obtained from Echinops spinosus and Carlina vulgaris
from Algeria.
Methods:
The chemical compositions of oils were investigated using GC-FID and GC/MS. Antioxidant
activity was assessed using three methods (2,2-diphenyl-1-picrylhydrazyl, Ferric-Reducing Antioxidant
Power (FRAP) and β-carotene assay). Fumigation toxicity of E. spinosus and C. vulgaris
essential oils was tested against Bactrocera oleae pests of olives.
Results:
Eighteen and thirteen components representing 95.4 and 97.9% were identified in root essential
oils from Echinops spinosus and Carlina vulgaris, respectively. Polyacetylenes were the majority
compounds of essential oils. 5 (But-1-yn-3-enyl).2,2'bithiophene and α-terthienyle were highly
dominants in the E. spinosus essential oil from the roots (54.4 and 26.3%, respectively). Roots of
C. vulgaris produce an essential oil dominated by carlina oxide (33.7%) and 13-methoxy carlina oxide
(11.5%). Comparison of the antioxidant activity of E. spinosus essential oil showed more important
antioxidant effect than C. vulgaris essential oil and the synthetic antioxidant (BHT). Evaluation
of the antifungal activity showed an interesting efficiency of both essential oils against
P. expansum and A. niger with EC50s varied from 5 to 14.5 mg/L. C. arvensis essential oil exhibited
good larvicidal properties. At the concentration of 325 μL/L air, the oil caused mortality of 100% for
Bactrocera Oleae adults after 24 h of exposure.
Conclusion:
Both essential oils rich to polyacetylenes and polythiophenes.components have shown
interesting biological activities, which suggests that plants have the potential to be used as biopesticides
and provide an alternative to chemical pesticides.
Collapse
Affiliation(s)
- Rania Belabbes
- Laboratoire des Substances Naturelles et Bioactives (LASNABIO), Université de Tlemcen, BP 119, 13000, Algeria
| | - Imane R. Mami
- Laboratory of Organic Chemistry, Natural Substances and Analyses (COSNA), University of Tlemcen, Algeria
| | - Mohammed E.A. Dib
- Laboratoire des Substances Naturelles et Bioactives (LASNABIO), Université de Tlemcen, BP 119, 13000, Algeria
| | - Kenza Mejdoub
- Laboratoire d’Ecologie et Gestion des Ecosystemes Naturels, Université de Tlemcen, BP 119, 13000, Algeria
| | - Boufeldja Tabti
- Laboratoire des Substances Naturelles et Bioactives (LASNABIO), Université de Tlemcen, BP 119, 13000, Algeria
| | - Jean Costa
- Laboratoire Chimie des Produits Naturels, UMR CNRS 6134 SPE, Campus Grimaldi, BP 52, 20250 Corte, France
| | - Alain Muselli
- Laboratoire Chimie des Produits Naturels, UMR CNRS 6134 SPE, Campus Grimaldi, BP 52, 20250 Corte, France
| |
Collapse
|
33
|
Illicium verum essential oil, a potential natural fumigant in preservation of lotus seeds from fungal contamination. Food Chem Toxicol 2020; 141:111347. [DOI: 10.1016/j.fct.2020.111347] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/27/2020] [Accepted: 04/09/2020] [Indexed: 01/17/2023]
|
34
|
Ji JY, Yang J, Zhang BW, Wang SR, Zhang GC, Lin LN. Sodium pheophorbide a controls cherry tomato gray mold (Botrytis cinerea) by destroying fungal cell structure and enhancing disease resistance-related enzyme activities in fruit. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 166:104581. [PMID: 32448427 DOI: 10.1016/j.pestbp.2020.104581] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 06/11/2023]
Abstract
Sodium pheophorbide a (SPA) is a natural photosensitizer. The present study investigated the antifungal activity and mechanism of SPA against Botrytis cinerea in vitro and in vivo. Its inhibitory effect was studied on the spore germination and mycelial growth of B. cinerea. The effects of SPA on cell wall integrity, cell membrane permeability, and mycelial morphology of B. cinerea were also determined. Additionally, how SPA effected B. cinerea in vivo was evaluated using cherry tomato fruit. The results showed that SPA effectively inhibited the spore germination and mycelial growth of B. cinerea under light conditions (4000 lx). SPA significantly affected both cell wall integrity and cell membrane permeability (P < .05). In addition, SEM analysis suggested that B. cinerea treated with SPA (12.134 mg/mL) showed abnormal mycelial morphology, including atrophy, collapse, flattening, and mycelial wall dissolution. In vivo tests showed that SPA could increase the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) significantly (P < .05); however, SPA had no significant effect on phenylalanine ammonia lyase (PAL) activity. In short, SPA could destroy the fungal cell structure and enhance disease resistance-related enzyme activity in cherry tomatoes, thereby controlling cherry tomato gray mold.
Collapse
Affiliation(s)
- Jing-Yu Ji
- Heilongjiang Province Key Laboratory of Forest Protection, School of Forest, Northeast Forestry University, Hexing Road 26, Xiangfang District, Harbin 150040, PR China
| | - Jing Yang
- Heilongjiang Province Key Laboratory of Forest Protection, School of Forest, Northeast Forestry University, Hexing Road 26, Xiangfang District, Harbin 150040, PR China
| | - Bo-Wen Zhang
- School of Information and Computer Engineering, Northeast Forestry University, Hexing Road 26, Xiangfang District, Harbin 150040, PR China
| | - Shu-Ren Wang
- Heilongjiang Province Key Laboratory of Forest Protection, School of Forest, Northeast Forestry University, Hexing Road 26, Xiangfang District, Harbin 150040, PR China
| | - Guo-Cai Zhang
- Heilongjiang Province Key Laboratory of Forest Protection, School of Forest, Northeast Forestry University, Hexing Road 26, Xiangfang District, Harbin 150040, PR China.
| | - Lian-Nan Lin
- Yichun University, Xuefu Road 576, Yichun 336000, PR China
| |
Collapse
|
35
|
Ghasemi G, Alirezalu A, Ghosta Y, Jarrahi A, Safavi SA, Abbas-Mohammadi M, Barba FJ, Munekata PES, Domínguez R, Lorenzo JM. Composition, Antifungal, Phytotoxic, and Insecticidal Activities of Thymus kotschyanus Essential Oil. Molecules 2020; 25:E1152. [PMID: 32143475 PMCID: PMC7179150 DOI: 10.3390/molecules25051152] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 11/29/2022] Open
Abstract
Essential oils (EOs) are some of the outstanding compounds found in Thymus that can exert antifungal, phytotoxic, and insecticidal activities, which encourage their exploration and potential use for agricultural and food purposes. The essential oils (EO) obtained from Thymus kotschyanus collected in the East Azerbaijan Province (Iran) were characterized using a gas chromatography-mass spectrometry (GC-MS) analysis. Thymol was the most important compound (60.48%), although 35 other active compounds were identified in the EO. Significant amounts of carvacrol (3.08%), p-cymene (5.56%), and γ-terpinene (6.67%) were found in the EO. The T. kotschyanus EO was tested against important phytopathogenic fungi (Botrytis cinerea, Aspergillus niger, and Penicillium expansum). The antifungal assay showed that the use of ≥500 ppm of EO resulted in a fungicidal effect against all funguses tested. In a similar way, the use of ≥500 ppm of EO inhibited the germination of all crop weed seeds (Amaranthus retroflexus L. and Panicum miliaceum L.) and their subsequent growth, which demonstrated its herbicidal effect. Finally, the insecticidal capacity of T. kotschyanus EO was also observed against selected insects (Oryzaephilus surinamensis and Sitophilus oryzae). O. surinamensis was more susceptible to the effect of EO (LC50 = 4.78 µL/L air) than S. oryzae (LC50 = 13.20 µL/L air). The obtained results of the present study can provide new safe resources to the development of new products for the food, agriculture, and pharmaceutical industries.
Collapse
Affiliation(s)
- Ghader Ghasemi
- Department of Horticultural Sciences, Faculty of Agriculture, Urmia University, Urmia 5756151818, Iran;
| | - Abolfazl Alirezalu
- Department of Horticultural Sciences, Faculty of Agriculture, Urmia University, Urmia 5756151818, Iran;
| | - Youbert Ghosta
- Department of Plant Protection, Faculty of Agriculture, Urmia University, Urmia 165-5715944931, Iran; (Y.G.); (A.J.); (S.A.S.)
| | - Azadeh Jarrahi
- Department of Plant Protection, Faculty of Agriculture, Urmia University, Urmia 165-5715944931, Iran; (Y.G.); (A.J.); (S.A.S.)
| | - Seyed Ali Safavi
- Department of Plant Protection, Faculty of Agriculture, Urmia University, Urmia 165-5715944931, Iran; (Y.G.); (A.J.); (S.A.S.)
| | - Mahdi Abbas-Mohammadi
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran 1983969411, Iran;
| | - Francisco J. Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, València, Spain;
| | - Paulo E. S. Munekata
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, 16 San Cibrao das Viñas, 32900 Ourense, Spain (R.D.)
| | - Rubén Domínguez
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, 16 San Cibrao das Viñas, 32900 Ourense, Spain (R.D.)
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, 16 San Cibrao das Viñas, 32900 Ourense, Spain (R.D.)
| |
Collapse
|
36
|
Chen Y, Guo Q, Wei J, Zhang J, Zhang Z, Wang JD, Wu B. Inhibitory effect and mechanism of nitric oxide (NO) fumigation on fungal disease in Xinjiang Saimaiti dried apricots. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108507] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Hazrati S, Rezaeipour V, Asadzadeh S. Effects of phytogenic feed additives, probiotic and mannan-oligosaccharides on performance, blood metabolites, meat quality, intestinal morphology, and microbial population of Japanese quail. Br Poult Sci 2019; 61:132-139. [PMID: 31661976 DOI: 10.1080/00071668.2019.1686122] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
1. The aim of this experiment was to investigate the effects of ajwain (Trachyspermum ammi) and dill (Anethum graveolens) essential oils (AEO and DEO, respectively), probiotic (PRO) and mannan-oligosaccharides (MOS) on the growth performance, serum metabolites, meat quality, intestinal morphology and microbial populations of Japanese quail.2. A total of 375 one-day-old Japanese quail were randomly allocated into five treatment groups with five replicates of 15 birds each for a 42 d feeding experiment. The dietary treatments were a basal diet (control) or the same diet supplemented with PRO (0.15 g/kg feed), MOS (2 g/kg feed), AEO (0.25 g/kg feed) or DEO (0.25 g/kg feed).3. AEO, MOS, and PRO supplementation increased weight gain, while diets supplemented with AEO decreased feed intake (FI), and improved feed conversion ratio from d 1 to 21 (P < 0.05). The relative weight of the gizzard was higher in birds supplemented with AEO compared to control group, while the birds fed MOS diet had the longest intestine (P < 0.05). Ceca length was greater in control, MOS and PRO groups (P < 0.05). Both essential oils decreased malondialdehyde (MDA) concentration of breast meat and percentage of cooking loss in quail (P < 0.05). The villus length (VL) was greater in birds fed diet supplemented with MOS, AEO, and DEO (P < 0.05).The population of E.coli decreased in Japanese quail fed MOS, while Lactobacilli spp. count was increased in the MOS group (P < 0.05).4. In conclusion, AEO, MOS, and PRO supplementation exhibited a positive effect on growth performance, while lipid peroxidation of the meat decreased in birds fed AEO and DEO diets. The intestinal morphometric indices increased in quail fed the AEO, MOS, and DEO diets. Supplementation with MOS modulated intestinal microbial populations of the Japanese quail.
Collapse
Affiliation(s)
- S Hazrati
- Department of Animal Science, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran
| | - V Rezaeipour
- Department of Animal Science, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran
| | - S Asadzadeh
- Department of Animal Science, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran
| |
Collapse
|
38
|
Al-Sheddi ES, Al-Zaid NA, Al-Oqail MM, Al-Massarani SM, El-Gamal AA, Farshori NN. Evaluation of cytotoxicity, cell cycle arrest and apoptosis induced by Anethum graveolens L . essential oil in human hepatocellular carcinoma cell line. Saudi Pharm J 2019; 27:1053-1060. [PMID: 31997913 PMCID: PMC6978617 DOI: 10.1016/j.jsps.2019.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 09/22/2019] [Indexed: 12/30/2022] Open
Abstract
Anethum graveolens L. (A. graveolens) commonly known as dill, is an essential oil bearing plant extensively being used in traditional system of medicine. However, the reports on the components and biological responses of A. graveolens essential oil (AG-EO) from Saudi Arabia are scarce. The present study was designed to explore the presence of basic constituents and apoptosis induced by AG-EO in HepG2 cells. The constituents in AG-EO was analyzed by Gas chromatography-Mass spectroscopy (GC-MS). Cytotoxicity of AG-EO was measured by MTT assay and cell cycle arrest and apoptosis assays were conducted by using flow cytometer. Based on GC-MS analysis, the main constituents present in AG-EO were carvone (53.130%), dillapole (25.420%), dihydrocarvone 2 (11.350%) and dihydrocarvone 1 (6.260%). A few other minor components were also identified viz. cis-dihydrocarveol (0.690%), limonene (0.580%), isodihydrocarveol (0.370%), myristicin (0.210%) and cis-arsone (0.190%). The cytotoxicity results showed that AG-EO decrease the cell viability and inhibit the cell growth of HepG2 cells in a concentration-dependent manner. The inhibitory activity of AG-EO was found with IC50 = 59.6 ± 5.64. The cell cycle arrest results showed that HepG2 cells exposed to AG-EO exhibited an increase in G2/M and pre-G1 cell population after 24 h exposure. Furthermore, the flow cytometry data revealed the primarily activation of cell death by apoptosis manners in HepG2 cells exposed to AG-EO. Overall, results from this study highlighted the anticancer potential of AG-EO, which could be considered as a new agent for the management of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Ebtesam S. Al-Sheddi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Nouf A. Al-Zaid
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mai M. Al-Oqail
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Shaza M. Al-Massarani
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ali A. El-Gamal
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Pharmacognosy Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Nida N. Farshori
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
39
|
da Silva Bomfim N, Kohiyama CY, Nakasugi LP, Nerilo SB, Mossini SAG, Romoli JCZ, Graton Mikcha JM, Abreu Filho BAD, Machinski M. Antifungal and antiaflatoxigenic activity of rosemary essential oil ( Rosmarinus officinalis L.) against Aspergillus flavus. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2019; 37:153-161. [PMID: 31644378 DOI: 10.1080/19440049.2019.1678771] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The increased risk to health by diverse pathologies, such as cancer, liver diseases, and endocrine alterations, caused by chemical residues in food, has led to the search for sustainable agricultural management alternatives, such as the use of essential oils for the development of natural and eco-friendly fungicides. The aim of this study was to evaluate the antifungal and antiaflatoxigenic activity of Rosmarinus officinalis L. essential oil (REO) against Aspergillus flavus Link. REO was obtained by hydrodistillation and its major components were identified as 1,8-cineole (eucalyptol, 52.2%), camphor (15.2%) and α-pinene (12.4%) by GC/MS and NMR. The minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) were both 500 µg/mL. REO reduced the mycelial growth of A. flavus at a concentration of 250 µg/mL (15.3%). The results obtained from scanning electron microscopy (SEM) demonstrated a reduction in the size of conidiophores and in the thickness of hyphae in A. flavus caused by treatment with REO (250 µg/mL). The production of ergosterol and the biomass of mycelium were both reduced as the REO treatment concentration increased. The production of aflatoxins B1 and B2 was inhibited after treatment with 250 µg/mL REO, a concentration below the MIC/MFC, indicating that the antiaflatoxigenic effect of REO is independent of its antifungal effect and is likely due to its direct action upon toxin biosynthesis. The data demonstrated that REO may be used as an alternative to synthetic fungicides.
Collapse
Affiliation(s)
- Natália da Silva Bomfim
- Department of Health Basic Sciences, Laboratory of Toxicology, State University of Maringá, Maringa, Brazil.,Department of Nutrition, Brazil University - Tupa Faculties, Tupa, Brazil
| | - Cássia Yumie Kohiyama
- Department of Health Basic Sciences, Laboratory of Toxicology, State University of Maringá, Maringa, Brazil
| | - Lydiana Pollis Nakasugi
- Department of Health Basic Sciences, Laboratory of Toxicology, State University of Maringá, Maringa, Brazil
| | | | | | | | | | - Benício Alves de Abreu Filho
- Department of Health Basic Sciences, Laboratory of Food Microbiology, State University of Maringá, Maringa, Brazil
| | - Miguel Machinski
- Department of Health Basic Sciences, Laboratory of Toxicology, State University of Maringá, Maringa, Brazil
| |
Collapse
|
40
|
Wang B, Liu F, Li Q, Xu S, Zhao X, Xue P, Feng X. Antifungal activity of zedoary turmeric oil against Phytophthora capsici through damaging cell membrane. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 159:59-67. [PMID: 31400785 DOI: 10.1016/j.pestbp.2019.05.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/21/2019] [Accepted: 05/23/2019] [Indexed: 06/10/2023]
Abstract
Phytophthora capsici is a plant oomycete pathogen, which causes many devastating diseases on a broad range of hosts. Zedoary turmeric oil (ZTO) is a kind of natural plant essential oil that has been widely used in pharmaceutical applications. However, the antifungal activity of ZTO against phytopathogens remains unknown. In this study, we found ZTO could inhibit P. capsici growth and development in vitro and in detached cucumber and Nicotiana benthamiana leaves. Besides, ZTO treatment resulted in severe damage to the cell membrane of P. capsici, leading to the leakage of intracellular contents. ZTO also induced a significant increase in relative conductivity, malondialdehyde concentration and glycerol content. Furthermore, we identified 50 volatile organic compounds from ZTO, and uncovered Curcumol, β-elemene, curdione and curcumenol with strong inhibitory activities against mycelial growth of P. capsici. Overall, our results not only shed new light on the antifungal mechanism of ZTO, but also imply a promising alternative for the control of phytophthora blight caused by P. capsici.
Collapse
Affiliation(s)
- Bi Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Fei Liu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Qi Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Shu Xu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Xingzeng Zhao
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Peilin Xue
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Xu Feng
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| |
Collapse
|
41
|
A Novel Way for Whey: Cheese Whey Fermentation Produces an Effective and Environmentally-Safe Alternative to Chlorine. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9142800] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Cheese whey has been described as an environmental hazard due to its high organic content. Although it has been suggested that whey can be used as food disinfectant, it continues to pose an environmental problem because it still contains a high organic load. Here, we aimed to develop a low-cost, scalable fermentation protocol to produce a disinfectant from dairy waste that has very little organic content and high levels of lactic acid. Fermentation was achieved with industrial whey from ewe, goat, and cow’s milk, using a specific mesophilic-lactic acid bacteria starter mix over 120 h, which yielded the highest lactic acid production and the lowest lactose content. Antibacterial activity was observed against Listeria monocytogenes, Salmonella enterica, and Escherichia coli O157:H7, plus a total of thirteen other food pathogenic and spoilage strains, and antibacterial activities were determined to be highest after 120 h. We further validated this whey’s application as a disinfectant in shredded lettuce and compared its efficacy to that of chlorine, evaluating microbial quality, texture, color, and sensory perception, pH, and O2 and CO2 determinations. Results showed that not only was microbial quality better when using our whey solution (p < 0.05), but also the quality indicators for whey were statistically similar to those treated with chlorine. Hence, our work validates the use of an industrial waste whey as a low-cost, efficient, and environmentally safe disinfectant, with potential applications for minimally processed foodstuffs as an alternative to chlorine.
Collapse
|
42
|
Mehdizadeh T, Mojaddar Langroodi A, Shakouri R, Khorshidi S. Physicochemical, microbiological, and sensory characteristics of probiotic yogurt enhanced with
Anethum graveolens
essential oil. J Food Saf 2019. [DOI: 10.1111/jfs.12683] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Tooraj Mehdizadeh
- Department of Food Hygiene and Quality Control, Faculty of Veterinary MedicineUrmia University Urmia Iran
| | - Ali Mojaddar Langroodi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary MedicineUrmia University Urmia Iran
| | - Roghieh Shakouri
- Agricultural and Natural Resources Research Center of West Azarbaijan Urmia Iran
| | - Sonia Khorshidi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary MedicineUrmia University Urmia Iran
| |
Collapse
|
43
|
Zorzi Tomazoni E, Ribeiro RTS, Pauletti GF, Soares GLG, Schwambach J. Inhibition of Alternaria stem canker on tomato by essential oils from Baccharis species. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2019; 54:781-790. [PMID: 31264925 DOI: 10.1080/03601234.2019.1633212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 06/09/2019] [Indexed: 06/09/2023]
Abstract
The toxicity of four essential oils extracted from Baccharis articulata, Baccharis ochracea, Baccharis psiadioides and Baccharis trimera was tested against the phytopathogen Alternaria alternata, which causes Alternaria stem canker on tomatoes. Diseases caused by Alternaria fungi are responsible for great economic losses in terms of production and are controlled by synthetic fungicides; however, essential oils offer an alternative, since they have been proven to be effective for controlling against various plant pathogens. In this way, the antifungal activity of Baccharis essential oils was tested using potato dextrose agar medium with concentrations ranging from 0.1 to 20.0 µL mL-1. Baccharis trimera and Baccharis ochracea essential oils presented 100% mycelial growth inhibition of A. alternata and were also able to control Alternaria stem canker disease under greenhouse conditions. Tomato plants treated with these essential oils exhibited area under the disease progress curve (AUDPC) values of 230.10 and 241.42, differing from the control condition, which showed an AUDPC value of 268.92. The essential oils of B. trimera and B. ochracea can be an alternative for controlling Alternaria stem canker disease of tomatoes and should be formulated as a potential fungicide against the A. alternata pathogen.
Collapse
Affiliation(s)
- Elisa Zorzi Tomazoni
- Institute of Biotechnology, University of Caxias do Sul, Rua Francisco Getúlio Vargas , Caxias do Sul , RS , Brazil
| | - Rute T S Ribeiro
- Institute of Biotechnology, University of Caxias do Sul, Rua Francisco Getúlio Vargas , Caxias do Sul , RS , Brazil
| | - Gabriel F Pauletti
- Institute of Biotechnology, University of Caxias do Sul, Rua Francisco Getúlio Vargas , Caxias do Sul , RS , Brazil
| | - Geraldo L G Soares
- Department of Botany, Laboratory of Chemical Ecology and Chemotaxonomy (LEQTAX), Institute of Biosciences, Federal University of Rio Grande do Sul , Porto Alegre , RS , Brazil
| | - Joséli Schwambach
- Institute of Biotechnology, University of Caxias do Sul, Rua Francisco Getúlio Vargas , Caxias do Sul , RS , Brazil
| |
Collapse
|
44
|
Nanoencapsulated plant-based bioactive formulation against food-borne molds and aflatoxin B1 contamination: Preparation, characterization and stability evaluation in the food system. Food Chem 2019; 287:139-150. [DOI: 10.1016/j.foodchem.2019.02.045] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/09/2019] [Accepted: 02/10/2019] [Indexed: 11/20/2022]
|
45
|
Sollepura Boregowda R, Murali N, C Udayashankar A, R Niranjana S, S Lund O, S Prakash H. Antifungal Activity of Eclipta alba Metabolites against Sorghum Pathogens. PLANTS 2019; 8:plants8030072. [PMID: 30909408 PMCID: PMC6473702 DOI: 10.3390/plants8030072] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/14/2019] [Accepted: 03/19/2019] [Indexed: 11/16/2022]
Abstract
Unscientific use of synthetic fungicides in plant disease management has environmental ramifications, such as disease resurgence and serious health problems due to their carcinogenicity. This has prompted the identification and development of eco-friendly greener alternatives. Eclipta alba extract was evaluated for its antifungal activity in in vitro and in vivo against sorghum fungal pathogens Fusarium thapsinum, Alternaria alternata, Epicoccum sorghinum, and Curvularia lunata. The column purified methanolic extract of E. alba exhibited good antifungal activity against the target pathogens. The MIC was observed at 80 mg/mL for all tested pathogenic fungi, whereas MFC was 80 mg/mL for E. sorghinum, 100 mg/mL for F. thapsinum, A. alternata, and C. lunata. In vitro germination percentage was significantly high in seeds treated with E. alba extract (98%) over untreated control (91%). Significant disease protection of 95% was observed in greenhouse and 66% disease protection was noticed in field experiments. The efficacy of E. alba extract in field conditions was improved with the use of E. alba extract formulation. The profile of phytochemicals in E. alba methanol fractions was obtained by ultra-performance liquid chromatography (UPLC) mass spectroscopy. The [M-H]− at m/z 313.3, m/z 797.9, and m/z 269.0 revealed the presence of wedelolactone, eclalbasaponin II, and apigenin, respectively. The H-nuclear magnetic resonance spectroscopy (1H-NMR) chemical shift value supported the findings of the mass spectrometry. The results highlighted the possible use of E. alba methanolic extract as alternative to chemical fungicide in sorghum disease management.
Collapse
Affiliation(s)
| | - Nandhini Murali
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru 570006, India.
| | - Arakere C Udayashankar
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru 570006, India.
| | - Siddapura R Niranjana
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru 570006, India.
| | - Ole S Lund
- Department of Plant and Environmental Science, University of Copenhagen, HøjbakkegårdAllé 13, 2630 Taastrup, Denmark.
| | - Harischandra S Prakash
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru 570006, India.
| |
Collapse
|
46
|
Kaur N, Chahal KK, Kumar A, Singh R, Bhardwaj U. Antioxidant activity of Anethum graveolens L. essential oil constituents and their chemical analogues. J Food Biochem 2019; 43:e12782. [PMID: 31353585 DOI: 10.1111/jfbc.12782] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 12/31/2018] [Accepted: 01/02/2019] [Indexed: 01/16/2023]
Abstract
In the present study, Dill (Anethum graveolens) seed essential oil, its nonpolar and polar fractions, compounds isolated and derivatized were evaluated for their antioxidant potential using different in vitro assays. The major compounds carvone, limonene, and camphor were isolated from dill seed essential oil using column chromatography and characterized using spectroscopic techniques. Among all the tested components for antioxidant activity, carveol and perillyl alcohol were most effective (IC50 values < 0.16 mg/ml), whereas camphor was least effective (IC50 values > 10 mg/ml). All the tested compounds exhibited lower antioxidant potential than the standard. PRACTICAL APPLICATIONS: Oxidation of food products was delayed by compounds known as antioxidants. The use of synthetic antioxidant is restricted because of carcinogenicity in human servings and plant-based natural antioxidant are preferred due to safety and less toxicity. The aim of this in vitro study was to assess the antioxidant activity of the different constituents of dill seed essential oil. The present study revealed that carvone and its derivatives are potent scavengers of free radicals which might be due to the presence of unsaturated hydroxyl group. Thus, natural antioxidants are the important source of alternative medicines and natural therapy in the pharmaceutical industry.
Collapse
Affiliation(s)
- Navneet Kaur
- Department of Chemistry, Punjab Agricultural University, Ludhiana, Punjab
| | | | - Amit Kumar
- Department of Chemistry, Punjab Agricultural University, Ludhiana, Punjab
| | - Ravinder Singh
- Department of Chemistry, Punjab Agricultural University, Ludhiana, Punjab
| | - Urvashi Bhardwaj
- Department of Chemistry, Punjab Agricultural University, Ludhiana, Punjab
| |
Collapse
|
47
|
A review on antifungal activity and mode of action of essential oils and their delivery as nano-sized oil droplets in food system. Journal of Food Science and Technology 2018; 55:4701-4710. [PMID: 30482966 DOI: 10.1007/s13197-018-3394-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/01/2018] [Accepted: 08/14/2018] [Indexed: 01/07/2023]
Abstract
An escalated demand of minimally processed food and increased negative perception for synthetic preservative has led to a lookout for a natural preservative. Essential oils (EOs) are volatile and aromatic secondary metabolites of plants that have been tapped mainly for its flavour and fragrances and various biological properties such as antimicrobial and antioxidant. The constituents and antifungal potential of EOs have been reported widely in the present scientific literature. Moreover, the current scientific research dealing with the mode of action of EOs on fungal spores and mycelial cells are very scarce, unlike bacteria. The antimicrobial efficacy of EO in real food system may alter due to interaction with food matrix components. Besides, minimum alteration in sensory qualities while retaining its maximum activity is the most sought-after criteria for food preservation with EOs. If the oil is applied in excess to have better antimicrobial activity, it may end up having an unacceptable organoleptic impact on the food. Appropriate edible delivery systems of EOs as an emulsion is a probable approach to retain the maximum efficacy of EOs in the food system. Nano-emulsification of EO could increase its bioactivity due to increased bioavailability in the food matrix. The basis of this review is to provide an overview of current knowledge about the antifungal properties and antifungal mode of action of EOs, and to recognize the application of EO as nano-sized oil droplets in the food system.
Collapse
|
48
|
Vieira JN, Gonçalves CL, Villarreal JPV, Gonçalves VM, Lund RG, Freitag RA, Silva AF, Nascente PS. Chemical composition of essential oils from the apiaceae family, cytotoxicity, and their antifungal activity in vitro against candida species from oral cavity. BRAZ J BIOL 2018; 79:432-437. [PMID: 30328892 DOI: 10.1590/1519-6984.182206] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 01/27/2018] [Indexed: 11/21/2022] Open
Abstract
The aims of this research were: evaluate the chemical composition and the cytotoxicity of the Cuminum cyminum (cumin), Anethum graveolens (dill), Pimpinella anisum (anise) and Foeniculum vulgare (fennel) essential oils, as well as their antifungal activity in vitro against ten Candida spp. isolates. The chemical composition of the oils was analyzed by means of gas chromatography coupled with mass spectrometry (GC/MS). The cytotoxicity assays were performed, using the cell proliferation reagent WST-1 in L929 mouse fibroblasts (20x103 well-1). The determinate the Minimum Inhibitory Concentration (MIC), was performed through the Broth Microdilution technique (CLSI). The chemical main components were the cuminaldehyde (32.66%) for cumin, carvone (34.89%) for the dill, trans-anethole (94.01%) for the anise and anethole (79.62%) for the fennel. Anise and fennel did not were cytotoxic in all the tested concentrations, however the cumin oil was cytotoxic in the concentration of 20 mg.mL-1 and the dill in the concentrations of 20 and 8 mg.mL-1. All yeasts were susceptible against the evaluated essential oils. Cumin presented the lowest MIC against yeasts. We concluded that all the essential oils presented inhibitory action against Candida spp., and C . cyminum, P. anisum and F. vulgare were not cytotoxic in the same minimum inhibitory concentrations for the fungi.
Collapse
Affiliation(s)
- J N Vieira
- Laboratório de Parasitologia, Departamento de Microbiologia e Parasitologia, Institute de Biologia, Universidade Federal de Pelotas - UFPel, s/n, Capão do Leão, CEP 96010-900, Pelotas, RS, Brasil
| | - C L Gonçalves
- Laboratório de Parasitologia, Departamento de Microbiologia e Parasitologia, Institute de Biologia, Universidade Federal de Pelotas - UFPel, s/n, Capão do Leão, CEP 96010-900, Pelotas, RS, Brasil
| | - J P V Villarreal
- Laboratório de Parasitologia, Departamento de Microbiologia e Parasitologia, Institute de Biologia, Universidade Federal de Pelotas - UFPel, s/n, Capão do Leão, CEP 96010-900, Pelotas, RS, Brasil
| | - V M Gonçalves
- Departamento de Química Orgânica, Universidade Federal de Pelotas - UFPel, s/n, Capão do Leão, CEP 96010-900, Pelotas, RS, Brasil
| | - R G Lund
- Departamento de Odontologia Restauradora, Faculdade de Odontologia, Universidade Federal de Pelotas - UFPel, Ruas Chaves, 457, Centro, CEP 96020-080, Pelotas, RS, Brasil
| | - R A Freitag
- Departamento de Química Orgânica, Universidade Federal de Pelotas - UFPel, s/n, Capão do Leão, CEP 96010-900, Pelotas, RS, Brasil
| | - A F Silva
- Departamento de Odontologia Restauradora, Faculdade de Odontologia, Universidade Federal de Pelotas - UFPel, Ruas Chaves, 457, Centro, CEP 96020-080, Pelotas, RS, Brasil
| | - P S Nascente
- Laboratório de Parasitologia, Departamento de Microbiologia e Parasitologia, Institute de Biologia, Universidade Federal de Pelotas - UFPel, s/n, Capão do Leão, CEP 96010-900, Pelotas, RS, Brasil
| |
Collapse
|
49
|
|
50
|
da Cunha T, Ferraz LP, Wehr PP, Kupper KC. Antifungal activity and action mechanisms of yeasts isolates from citrus against Penicillium italicum. Int J Food Microbiol 2018; 276:20-27. [DOI: 10.1016/j.ijfoodmicro.2018.03.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 03/08/2018] [Accepted: 03/23/2018] [Indexed: 11/27/2022]
|