1
|
Shi L, Wang J, Chen G, Kwok LY, Zhang W. Sensory quality and Metabolomic fingerprinting of Lacticaseibacillus paracasei-derived fermented soymilk beverages: Impact of starter strain and storage. Food Chem 2025; 482:144147. [PMID: 40199154 DOI: 10.1016/j.foodchem.2025.144147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/27/2025] [Accepted: 03/29/2025] [Indexed: 04/10/2025]
Abstract
Few previous studies have concurrently evaluated the effects of different fermentation bacterial strains and storage durations on the characteristics of fermented soymilk beverages (FSBs). This study used Lacticaseibacillus paracasei to conduct systematic assessments and demonstrated that soy protein is the optimal ingredient for sensory evaluation. Both investigated strains (PC-01 and PC646) significantly enhanced the nutritional and flavor profiles of FSBs, introducing a range of bioactive metabolites absent in non-fermented soymilk. Throughout the storage period, a decline in pH and viable bacterial counts was observed, along with an increase in titratable acidity and stability. Moreover, the metabolomic structure and metabolite abundance varied considerably between the FSBs produced by the two strains, with the non-volatile components showing greater variation, whereas the storage duration predominantly influenced the volatile metabolite components. These insights highlight the critical roles of strain selection and storage duration in shaping the nutritional and sensory qualities of FSBs.
Collapse
Affiliation(s)
- Linbo Shi
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Jicheng Wang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Guohuan Chen
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lai-Yu Kwok
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Wenyi Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China.
| |
Collapse
|
2
|
Zhao B, Yuan Z, Ji N, Zhao H, Zhang W, Jia L, Zhichao W, Zhu Y. Characterization of a new style tofu coagulated by fermentation of Lactobacillus plantarum SJ-L-1. J Food Sci 2024; 89:5350-5362. [PMID: 39042474 DOI: 10.1111/1750-3841.17263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/25/2024]
Abstract
A new style of tofu coagulated through the fermentation of Lactobacillus plantarum SJ-L-1 was produced. L. plantarum SJ-L-1 with a high growth rate and excellent acid production ability was isolated and identified from naturally fermented soy yellow whey. The gene annotation indicated the potential outstanding isoflavone conversion capacity of L. plantarum SJ-L-1. Furthermore, fermentation tofu was prepared using L. plantarum SJ-L-1 and Lactobacillus rhamnosus 1-16 as the starter microbiota. Compared to traditional MgCl2 tofu and fermented soy whey tofu, SJ-L-1 tofu exhibited a slight increase in hardness and better structure uniformity. SJ-L-1 tofu also possessed the highest levels of total isoflavone content (76.33 µg/g) and volatile compounds (561.54 µg/kg) among the four styles of tofu. This research indicated that this new type of tofu coagulated through a combination of heat and fermentation of L. plantarum SJ-L-1 represents a promising candidate for future functional foods.
Collapse
Affiliation(s)
- Bingyu Zhao
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
| | - Zuoyun Yuan
- Department of Science Technology and Innovation, COFCO Nutrition and Health Research Institute, Future Science and Technology Park South, BeiJing, China
| | - Nairu Ji
- School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Hongling Zhao
- School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Weiwei Zhang
- School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Liu Jia
- Internal Trade Food Science Research Institute, BeiJing, China
| | - Wu Zhichao
- Internal Trade Food Science Research Institute, BeiJing, China
| | - Yunping Zhu
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
- School of Food and Health, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
3
|
Goksen G, Sugra Altaf Q, Farooq S, Bashir I, Capozzi V, Guruk M, Bavaro SL, Sarangi PK. A glimpse into plant-based fermented products alternative to animal based products: Formulation, processing, health benefits. Food Res Int 2023; 173:113344. [PMID: 37803694 DOI: 10.1016/j.foodres.2023.113344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 07/29/2023] [Accepted: 08/03/2023] [Indexed: 10/08/2023]
Abstract
Fermented foods and beverages are increasingly being included in the diets of people around the world, as they significantly contribute to flavor and interest in nutrition and food consumption. Plant sources, like cereals and pulses, are employed to produce vegan fermented foods that are either commercially available or the subject of ongoing scientific investigation. In addition, the inclination towards nutritionally healthy, natural, and clean-label products amongst consumers has encouraged the development of vegan fermented products alternative to animal-based products for industrial-scale production. However, as the vegan diet is more restrictive than the vegetarian diet, manufacturing food products for vegans presents a significant problem due to the limited availability of many raw materials. So further research is required on this topic. This paper aims to review the formulation, quality, microbial resources, health benefits, and safety of foods that can be categorised as vegan fermented foods and beverages.
Collapse
Affiliation(s)
- Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100 Mersin, Türkiye.
| | - Qazi Sugra Altaf
- Department of Food Engineering, Cukurova University, Balcali 01380, Adana, Türkiye
| | - Salma Farooq
- Desh Bhagat University, Mandi Gobindgarh, Punjab 147203, India; Islamic University of Science and Technology Awantipora, Pulwama 192301, India
| | - Iqra Bashir
- Sher-e-Kashmir University of Agricultural Sciences and Technology, India
| | - Vittorio Capozzi
- National Research Council of Italy - Institute of Sciences of Food Production (ISPA), c/o CS-DAT, via Protano, 71121 Foggia, Italy
| | - Mumine Guruk
- Department of Food Engineering, Cukurova University, Balcali 01380, Adana, Türkiye
| | - Simona Lucia Bavaro
- National Research Council of Italy - Institute of Sciences of Food Production (ISPA), Largo Paolo Braccini 2, 10095 Grugliasco, Turin, Italy
| | | |
Collapse
|
4
|
Guan Z, Zhang J, Zhang S, He Y, Li Y, Regenstein JM, Xie Y, Zhou P. Effect of Coagulant and Treatment Conditions on the Gelation and Textural Properties of Acidic Whey Tofu. Foods 2023; 12:foods12050918. [PMID: 36900435 PMCID: PMC10000490 DOI: 10.3390/foods12050918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 02/24/2023] Open
Abstract
This study aimed to investigate the properties of acidic whey tofu gelatin generated from two acidic whey coagulants by pure fermentation of Lactiplantibacillus paracasei and L. plantarum, as well as the characteristics of acidic whey tofu. The optimal holding temperature and the amount of coagulants added were determined based on the pH, water-holding capacity, texture, microstructure, and rheological properties of tofu gelation. Then, the differences in quality between tofu produced by pure bacterial fermentation and by natural fermentation were investigated under optimal tofu gelatin preparation conditions. The tofu gelatin presented the best texture at 37 °C with a 10% addition of coagulants fermented by both L. paracasei and L. plantarum. Under these conditions, the coagulant produced by the fermentation of L. plantarum resulted in a shorter formation time and stronger tofu gelatin compared with that produced from L. paracasei. Tofu produced by the fermentation of L. paracasei had higher pH, less hardness, and a rougher network structure, whereas tofu produced by the fermentation of L. plantarum was closer to tofu produced by natural fermentation in terms of pH, texture, rheology, and microstructure.
Collapse
Affiliation(s)
- Ziyu Guan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jie Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Correspondence: ; Tel./Fax: +86-510-85326012
| | - Shitong Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yun He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yadi Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Joe M. Regenstein
- Department of Food Science, Cornell University, Ithaca, NY 14853-7201, USA
| | - Yuan Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Peng Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
5
|
Kopru S, Cadir M, Soylak M. Investigation of Trace Elements in Vegan Foods by ICP-MS After Microwave Digestion. Biol Trace Elem Res 2022; 200:5298-5306. [PMID: 35006553 DOI: 10.1007/s12011-022-03106-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 01/04/2022] [Indexed: 11/29/2022]
Abstract
Veganism is gaining popularity around the world day by day. Vegan nutrition is a diet in which not all animal foods are used. A vegan diet does not contain meat, fish, milk and dairy products, and eggs and consists of vegetables, fruits, grains, legumes, and nuts. Vegan diets maintain energy balances in a wide variety of plant foods. So, health problems can be seen due to nutrient and mineral deficiencies in the long-term continuation of the vegan diet. Due to insufficient intake of vitamins and minerals such as vitamin D, vitamin B12, calcium, iron, and zinc, energy and protein balance in the body may not be achieved by vegan individuals. The contents of aluminum, chromium, manganese, iron, cobalt, nickel, copper, zinc, arsenic, mercury, cadmium, and lead have been analyzed by inductively coupled plasma mass spectrometer (ICP-MS) in 10 different vegan foods purchased from Turkey. Certified reference material (1547 peach leaves) was used for validating the digestion procedure. Dry, wet, and microwave processes were compared, and it was found that the microwave digestion method was the best. Element levels in the analyzed samples were found below the legal limits. The purpose of this work is to investigate the trace element content of various foods used in vegan nutrition.
Collapse
Affiliation(s)
- Semiha Kopru
- Department of Chemistry, Faculty of Sciences, Erciyes University, 38039, Kayseri, Turkey
- Technology Research and Application Center, Erciyes University, Kayseri, Turkey
| | - Mehmet Cadir
- Department of Chemistry, Faculty of Sciences, Erciyes University, 38039, Kayseri, Turkey
- Technology Research and Application Center, Erciyes University, Kayseri, Turkey
| | - Mustafa Soylak
- Department of Chemistry, Faculty of Sciences, Erciyes University, 38039, Kayseri, Turkey.
- Technology Research and Application Center, Erciyes University, Kayseri, Turkey.
| |
Collapse
|
6
|
Mendoza-Avendaño C, Ovando-Chacón SL, Luján-Hidalgo MC, Meza-Gordillo R, Ruiz-Cabrera MA, Grajales-Lagunes A, Gutiérrez-Miceli FA, Abud-Archila M. Volatile Compounds in Tofu Obtained by Soy Milk Fermentation with Lactobacillus plantarum BAL-03-ITTG and Lactobacillus fermentum BAL-21-ITTG. Curr Microbiol 2022; 79:317. [DOI: 10.1007/s00284-022-03014-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/27/2022] [Indexed: 11/03/2022]
|
7
|
Gottardi D, Siroli L, Braschi G, Rossi S, Ferioli F, Vannini L, Patrignani F, Lanciotti R. High-Pressure Homogenization and Biocontrol Agent as Innovative Approaches Increase Shelf Life and Functionality of Carrot Juice. Foods 2021; 10:2998. [PMID: 34945548 PMCID: PMC8701166 DOI: 10.3390/foods10122998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/19/2021] [Accepted: 12/02/2021] [Indexed: 12/21/2022] Open
Abstract
Recently, application of high-pressure homogenization (HPH) treatments has been widely studied to improve shelf life and rheological and functional properties of vegetable and fruit juices. Another approach that has drawn the attention of researchers is the use of biocontrol cultures. Nevertheless, no data on their possible combined effect on fruit juices shelf life and functionality have been published yet. In this work, the microbial, organoleptic, and technological stability of extremely perishable carrot juice and its functionality were monitored for 12 and 7 days (stored at 4 and 10 °C, respectively) upon HPH treatment alone or in combination with a fermentation step using the biocontrol agent L. lactis LBG2. HPH treatment at 150 MPa for three passes followed by fermentation with L. lactis LBG2 extended the microbiological shelf life of the products of at least three and seven days when stored at 10 °C and 4 °C, respectively, compared to untreated or only HPH-treated samples. Moreover, the combined treatments determined a higher stability of pH and color values, and a better retention of β-carotene and lutein throughout the shelf-life period when compared to unfermented samples. Eventually, use of combined HPH and LBG2 resulted in the production of compounds having positive sensory impact on carrot juice.
Collapse
Affiliation(s)
- Davide Gottardi
- Department of Agricultural and Food Sciences, Campus of Food Science, Piazza Goidanich 60, 47521 Cesena, FC, Italy; (D.G.); (L.S.); (G.B.); (S.R.); (F.F.); (L.V.); (F.P.)
| | - Lorenzo Siroli
- Department of Agricultural and Food Sciences, Campus of Food Science, Piazza Goidanich 60, 47521 Cesena, FC, Italy; (D.G.); (L.S.); (G.B.); (S.R.); (F.F.); (L.V.); (F.P.)
- Interdepartmental Centre for Agri-Food Industrial Research, Campus of Food Science, Via Quinto Bucci 336, 47521 Cesena, FC, Italy
| | - Giacomo Braschi
- Department of Agricultural and Food Sciences, Campus of Food Science, Piazza Goidanich 60, 47521 Cesena, FC, Italy; (D.G.); (L.S.); (G.B.); (S.R.); (F.F.); (L.V.); (F.P.)
| | - Samantha Rossi
- Department of Agricultural and Food Sciences, Campus of Food Science, Piazza Goidanich 60, 47521 Cesena, FC, Italy; (D.G.); (L.S.); (G.B.); (S.R.); (F.F.); (L.V.); (F.P.)
| | - Federico Ferioli
- Department of Agricultural and Food Sciences, Campus of Food Science, Piazza Goidanich 60, 47521 Cesena, FC, Italy; (D.G.); (L.S.); (G.B.); (S.R.); (F.F.); (L.V.); (F.P.)
| | - Lucia Vannini
- Department of Agricultural and Food Sciences, Campus of Food Science, Piazza Goidanich 60, 47521 Cesena, FC, Italy; (D.G.); (L.S.); (G.B.); (S.R.); (F.F.); (L.V.); (F.P.)
- Interdepartmental Centre for Agri-Food Industrial Research, Campus of Food Science, Via Quinto Bucci 336, 47521 Cesena, FC, Italy
| | - Francesca Patrignani
- Department of Agricultural and Food Sciences, Campus of Food Science, Piazza Goidanich 60, 47521 Cesena, FC, Italy; (D.G.); (L.S.); (G.B.); (S.R.); (F.F.); (L.V.); (F.P.)
- Interdepartmental Centre for Agri-Food Industrial Research, Campus of Food Science, Via Quinto Bucci 336, 47521 Cesena, FC, Italy
| | - Rosalba Lanciotti
- Department of Agricultural and Food Sciences, Campus of Food Science, Piazza Goidanich 60, 47521 Cesena, FC, Italy; (D.G.); (L.S.); (G.B.); (S.R.); (F.F.); (L.V.); (F.P.)
- Interdepartmental Centre for Agri-Food Industrial Research, Campus of Food Science, Via Quinto Bucci 336, 47521 Cesena, FC, Italy
| |
Collapse
|
8
|
Liu Z, Wang Y, Liu Y, Zhang Q, Li W, Dong M, Rui X. The Conformational Structural Change of Soy Glycinin via Lactic Acid Bacteria Fermentation Reduced Immunoglobulin E Reactivity. Foods 2021; 10:foods10122969. [PMID: 34945520 PMCID: PMC8701212 DOI: 10.3390/foods10122969] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/19/2021] [Accepted: 11/25/2021] [Indexed: 02/02/2023] Open
Abstract
This study investigated the fermentation of isolated soy glycinin by using the Lactiplantibacillus plantarum B1-6 strain, its reduction effect on immunoglobulin E (IgE) reactivity, the relationship with protein aggregation/gelation state and conformational changes. Fermentation was performed under different glycinin concentrations (0.1%, 0.5%, 1% and 2%, w/v) and varied fermentation terminal pH levels (FT-pH) (pH 6.0, 4.5, 4.0 and 3.5). L. plantarum B1-6 showed potency in reducing immunoreactivity to 0.10–69.85%, as determined by a sandwich enzyme-linked immunosorbent assay. At a FT-pH of 6.0 and 4.5, extremely low IgE reactivity (0.1–22.32%) was observed. Fermentation resulted in a great increase (2.31–6.8-fold) in particle size and a loss of intensity in A3 and basic subunits. The conformation of glycinin was altered, as demonstrated by improved surface hydrophobicity (1.33–7.39-fold), decreased intrinsic fluorescence intensity and the α-helix structure. Among the four selected concentrations, glycinin at 1% (w/v, G-1) evolved the greatest particles during fermentation and demonstrated the lowest immunoreactivity. Principal component analysis confirmed that particle size, intrinsic fluorescence intensity, α-helix and ionic bond were closely related to immunoreactivity reduction.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xin Rui
- Correspondence: ; Tel.: +86-156-5166-1026
| |
Collapse
|
9
|
Yang M, Li N, Tong L, Fan B, Wang L, Wang F, Liu L. Comparison of physicochemical properties and volatile flavor compounds of pea protein and mung bean protein-based yogurt. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112390] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
10
|
Zhao L, Jia L, Ma B, Zhong W, Huang Y, Duan F. Heat-resistant bacteria contamination investigation in Chinese soybean curd industrial processing using high-throughput gene sequencing and MALDI-TOF-MS. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Pi X, Yang Y, Sun Y, Cui Q, Wan Y, Fu G, Chen H, Cheng J. Recent advances in alleviating food allergenicity through fermentation. Crit Rev Food Sci Nutr 2021; 62:7255-7268. [PMID: 33951963 DOI: 10.1080/10408398.2021.1913093] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The increasing prevalence of food allergies is a significant challenge to global food health and safety. Various strategies have been deployed to decrease the allergenicity of food for preventing and reducing related disorders. Compared to other methods, fermentation has unique advantages in reducing the allergenicity of food and may represent a new trend in preventing food-induced allergies. This review introduces the characteristics of allergens in various foods, including shellfish, soy, peanut, milk, tree nut, egg, wheat, and fish. The mechanism and pathological symptoms of allergic reactions are then summarized. Furthermore, the advantages of fermentation for reducing the allergenicity of these foods and preventing allergies are evaluated. Fermentation is an efficient approach for reducing or eliminating food allergenicity. Simultaneously, it improved the nutritional value and physicochemical properties of food materials. It is conceivable that a combination of mixed strain fermentation with additional processing, such as heat treatment, pulsed light, and ultrasonication, will efficiently reduce the allergenicity of various foods and preserve their unique taste and nutritional components, providing significance for patients with allergies.
Collapse
Affiliation(s)
- Xiaowen Pi
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yili Yang
- Suzhou Institute of Systems Medicine, Center for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, Jiangsu, China
| | - Yuxue Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Qiang Cui
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yin Wan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Guiming Fu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Jianjun Cheng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| |
Collapse
|
12
|
Yang X, Ke C, Li L. Physicochemical, rheological and digestive characteristics of soy protein isolate gel induced by lactic acid bacteria. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2020.110243] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
13
|
Paz S, Rubio C, Gutiérrez ÁJ, González-Weller D, Hardisson A. Human exposure assessment to potentially toxic elements (PTEs) from tofu consumption. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10.1007/s11356-021-13076-5. [PMID: 33638083 DOI: 10.1007/s11356-021-13076-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
Potentially toxic elements (PTEs) (V, B, Ba, Li, Sr, Cr, Ni, Al, Pb, Cd) were determined in 130 samples of different tofu types (natural, flavored, smoked, and fresh made) by ICP-OES (inductively coupled plasma optical emission spectrometry). Al was the most notable element found with the highest concentration (6.71 mg/kg ww) found in flavored tofu. Ni level (0.38 mg/kg) stands out in smoked tofu. European tofu has higher PTE levels than Chinese tofu. Organic-produced tofu has higher PTE concentrations than conventional produced tofu. A total of 200 g/day of smoked tofu confers a contribution percentage of 39.6% of its TDI (tolerable daily intake). In addition, 200 g/day of flavored tofu would mean a high Pb contribution with a 23.2% of the BMDL (benchmark dose level) set in 0.63 μg/kg bw/day to the development of nephrotoxicity. Mean consumption would not pose a risk to adults' health. Considering the obtained results, it would be advisable to establish limits for certain metals such as Pb, Al, and Ni in this type of product. Furthermore, it is recommendable to set consumer guidelines to some tofu types in order to avoid excessive intake of PTEs.
Collapse
Affiliation(s)
- Soraya Paz
- Department of Toxicology, Universidad de La Laguna, La Laguna, Tenerife, Canary Islands, Spain.
| | - Carmen Rubio
- Department of Toxicology, Universidad de La Laguna, La Laguna, Tenerife, Canary Islands, Spain
| | - Ángel J Gutiérrez
- Department of Toxicology, Universidad de La Laguna, La Laguna, Tenerife, Canary Islands, Spain
| | - Dailos González-Weller
- Health Inspection and Laboratory Service, Canary Health Service, S/C de Tenerife, Tenerife, Canary Islands, Spain
| | - Arturo Hardisson
- Department of Toxicology, Universidad de La Laguna, La Laguna, Tenerife, Canary Islands, Spain
| |
Collapse
|
14
|
Paz S, Rubio C, Gutiérrez ÁJ, González-Weller D, Hardisson A. Dietary Intake of Essential Elements (Na, K, Mg, Ca, Mn, Zn, Fe, Cu, Mo, Co) from Tofu Consumption. Biol Trace Elem Res 2021; 199:382-388. [PMID: 32314142 DOI: 10.1007/s12011-020-02151-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/07/2020] [Indexed: 02/02/2023]
Abstract
Tofu is one of the most consumed soybean products. Currently, tofu is consumed in vegan and vegetarian diets to avoid meat. However, it is necessary to determine the content of essential elements to assess the dietary intake. Essential elements (Na, K, Mg, Ca, Mn, Zn, Fe, Cu, Mo, Co) were determined in 130 samples of tofu by ICP-OES (inductively coupled plasma optical emission spectroscopy). The highest element content was found in flavoured tofu; the most notable were Na (2519 mg/kg wet weight) and Fe (19.5 mg/kg ww). Consumption of 200 g/day of flavoured tofu by adults would mean a high contribution of Cu (46.9% women, 38.1% men), Fe (55.7% women, 65.0% men) and Na (25.2% adults) to its AI (adequate intakes) sets by the EFSA (European Food Safety Authority). Natural tofu would mean a remarkably Mn contribution (50% adults) to the AI. Tofu could be an important source of essential elements such as Mg, Mn, Na, Cu and Fe.
Collapse
Affiliation(s)
- Soraya Paz
- Department of Toxicology, Universidad de La Laguna, La Laguna, Tenerife, Canary Islands, Spain.
| | - Carmen Rubio
- Department of Toxicology, Universidad de La Laguna, La Laguna, Tenerife, Canary Islands, Spain
| | - Ángel J Gutiérrez
- Department of Toxicology, Universidad de La Laguna, La Laguna, Tenerife, Canary Islands, Spain
| | - Dailos González-Weller
- Health Inspection and Laboratory Service, Canary Health Service, S/C de Tenerife, Tenerife, Canary Islands, Spain
| | - Arturo Hardisson
- Department of Toxicology, Universidad de La Laguna, La Laguna, Tenerife, Canary Islands, Spain
| |
Collapse
|
15
|
Yang X, Wang Y, Hao M, Li L. Synergistic Effect of the Lactic Acid Bacteria and Salt Coagulant in Improvement of Quality Characteristics and Storage Stability of Tofu. J Oleo Sci 2020; 69:1455-1465. [PMID: 33055439 DOI: 10.5650/jos.ess20102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In this study, a new way to produce tofu with lactic acid bacteria (Lactobacillus casei, L. casei) and salt coagulant (magnesium sulfate) has been developed and optimized in order to improve the quality characteristics and the storage stability. Processing parameters (bean-water ratio, inoculation amount, magnesium sulfate concentration and pressing time) of tofu were studied. Yield, water holding capacity (WHC), texture and sensory were measured for evaluating quality characteristics of tofu. Based on the single factor and response surface methodology (RSM), the optimized conditions of tofu were determined as follows: bean-water ratio was 1:4 g/mL, fermentation time was 5 h at 37°C when the inoculation amount was 4.0%, magnesium sulfate concentration was 2.0 mol/L and pressing time was 1 h. Under the optimum conditions, the yield of the tofu was 140.45 g, the WHC was 87.25 %, the hardness was 420.36 g, and the tofu had better sensory characteristics, soft, uniform texture, as well as good flavor. The shelf life and stability of tofu during storage were also evaluated under the optimum conditions. The results showed that fermented tofu had a longer shelf life than unfermented tofu at room temperature. Compared with the "pasteurization + low temperature" group and "low temperature" group, the fermented tofu in the "microwave + low temperature" group had a longer shelf life and better-quality properties during storage. Tofu, prepared by the lactic acid bacteria fermentation and salt coagulant, would be accepted as a new type of tofu according to its quality characteristics and storage stability.
Collapse
Affiliation(s)
- Xiaoyu Yang
- College of Food Science, Northeast Agricultural University
| | - Yan Wang
- College of Food Science, Northeast Agricultural University
| | - Ming Hao
- College of Food Science, Northeast Agricultural University
| | - Liang Li
- College of Food Science, Northeast Agricultural University
| |
Collapse
|
16
|
Vann K, Techaparin A, Apiraksakorn J. Beans germination as a potential tool for GABA-enriched tofu production. Journal of Food Science and Technology 2020; 57:3947-3954. [PMID: 33071316 DOI: 10.1007/s13197-020-04423-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/25/2020] [Accepted: 04/03/2020] [Indexed: 11/28/2022]
Abstract
Gamma-aminobutyric acid (GABA) is an inhibitory neurotransmitter that can be found in many plants, especially beans. Beans are normally used for producing vegetarian foods, such as bean milks, bean sprouts, and tofu. Thus, the aims of this study were to determine the GABA content in various germinated beans (yellow beans, black beans, green beans, and red beans) as well in tofu products made from different types of germinated beans. The results showed that soaking and germination significantly contributed to an increase in GABA production. The GABA content increased to a maximum value of 0.89, 3.09, 3.93 and 4.78 mg/g in yellow beans, red beans, green beans, and black beans, respectively. Moreover, due to the bean characteristics, green beans, red beans, and black beans were collected at 6 h after germination while yellow beans were collected at 0 h after germination. As a result, only yellow bean sprouts could be used for tofu production since they are composed of a high amount of proteins and a low amount of carbohydrates. The GABA content in tofu was 0.55 mg/g, which was lower than that in soybean milk (0.65 mg/g), likely due to the filtration and pressing processes of tofu production.
Collapse
Affiliation(s)
- Kimroeun Vann
- Graduate School, Khon Kaen University, Khon Kaen, Thailand.,Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, Thailand
| | - Atiya Techaparin
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, Thailand
| | - Jirawan Apiraksakorn
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, Thailand.,Fermentation Research Center for Value Added Agricultural Products (FerVAAP), Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
17
|
Yang X, Su Y, Li L. Study of soybean gel induced by Lactobacillus plantarum: Protein structure and intermolecular interaction. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108794] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
18
|
A new style of fermented tofu by Lactobacillus casei combined with salt coagulant. 3 Biotech 2020; 10:81. [PMID: 32099732 DOI: 10.1007/s13205-019-2040-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 12/26/2019] [Indexed: 10/25/2022] Open
Abstract
This research provided a new way to improve the quality of tofu using lactic acid bacteria combined with salt coagulants. In this study, the effect of Lactobacillus casei (L. casei) combined with salt coagulants (MgCl2, MgSO4, CaCl2, CaSO4) on the yield, water-holding capacity (WHC), texture, sensory factors, microstructure and flavour were analysed to evaluate the quality characteristics of fermented tofu. The results showed that the yield of tofu was significantly increased by the fermentation of L. casei (24.75-31.26%). There was no significant difference in the WHC of the tofu, and the value range of WHC was 77.32-80.52%. Fermentation increased the hardness of the tofu and made the tofu structure uniform. In L. casei + MgSO4 tofu, 10 flavour compounds were detected, and the relative content (54.29%) of the four main flavour compounds was highest. L. casei + MgSO4 had the highest sensory value (23.26). The fermentation of L. casei combined with salt coagulants significantly improved the quality characteristics of tofu.
Collapse
|
19
|
Bao W, Huang X, Liu J, Han B, Chen J. Influence of Lactobacillus brevis on metabolite changes in bacteria-fermented sufu. J Food Sci 2020; 85:165-172. [PMID: 31898817 DOI: 10.1111/1750-3841.14968] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 10/23/2019] [Accepted: 10/28/2019] [Indexed: 12/27/2022]
Abstract
Sufu is a form of food derived from traditional Chinese fermented soybean. It has a unique flavor and contains abundant nutrients. With demands for healthy food on the rise, a higher level of sufu functionality is required. In fermentation of soybean-derived products, lactic acid bacteria (LAB) are widely used as an adjunct culture, which provides health benefits and enhances flavor of food. Among LAB, Lactobacillus brevis has the potential to generate γ-aminobutyric acid (GABA), which is well-known for its physiological functions. In this study, L. brevis was added to bacteria-fermented sufu to evaluate its impacts on sufu quality. Sufu was produced via co-inoculation with Bacillus subtilis and L. brevis (group A sufu) or a single inoculation with B. subtilis (group B sufu). Metabolite changes in the two groups during fermentation were investigated and physicochemical changes were observed. The results indicated that the addition of L. brevis increased the concentration of GABA and decreased the concentrations of histamine and serotonin. The concentrations of volatile compounds, such as esters and acids, especially 2-methyl-butanoic acid ethyl ester, as well as the concentrations of phenylethyl alcohol and 3-methyl-butanol were significantly higher in group A. Inoculation of L. brevis changed the metabolite profile of sufu and improved its functionality and safety of edibility. The current study explored the potential of applying L. brevis to the manufacture of bacteria-fermented sufu.
Collapse
Affiliation(s)
- Wenjing Bao
- Beijing Laboratory for Food Quality and Safety, College of Food Science & Nutritional Engineering, China Agricultural Univ., Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural Univ., Beijing, China
| | - Xiaoning Huang
- Beijing Laboratory for Food Quality and Safety, College of Food Science & Nutritional Engineering, China Agricultural Univ., Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural Univ., Beijing, China
| | - Jingjing Liu
- Beijing Laboratory for Food Quality and Safety, College of Food Science & Nutritional Engineering, China Agricultural Univ., Beijing, China
- Library, Beijing Univ. of Chemical Technology, Beijing, China
| | - Beizhong Han
- Beijing Laboratory for Food Quality and Safety, College of Food Science & Nutritional Engineering, China Agricultural Univ., Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural Univ., Beijing, China
| | - Jingyu Chen
- Beijing Laboratory for Food Quality and Safety, College of Food Science & Nutritional Engineering, China Agricultural Univ., Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural Univ., Beijing, China
| |
Collapse
|
20
|
Wang C, Zhou S, Du Q, Qin W, Wu D, Raheem D, Yang W, Zhang Q. Shelf life prediction and food safety risk assessment of an innovative whole soybean curd based on predictive models. Journal of Food Science and Technology 2019; 56:4233-4241. [PMID: 31477994 DOI: 10.1007/s13197-019-03893-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 06/08/2019] [Accepted: 06/24/2019] [Indexed: 11/29/2022]
Abstract
The aim of the present study is to predict the shelf life and evaluate the risk profile of an innovative whole soybean curd (WSC). Two main spoilage strains were isolated from spoiled WSC and identified as B. subtilis and B. cereus. The origin analysis confirmed that B. subtilis and B. cereus originated from soybean materials and survived in soybean curd. For microbial contamination analysis, thermotolerant coliforms, E. coli and S. aureus were not detected in soybean curd. The predicted shelf life of WSC and okara-filtered curd that was stored at 10 °C were 141.95 h (5.91 d) and 206.25 h (8.59 d), respectively. Moreover, the models applied in this study exhibited great fitting goodness and the predicted growth parameters were fail-safe. To conclude, introduction of okara into soybean curd reinforced the initial contamination level but didn't significantly increase the risk profile of WSC.
Collapse
Affiliation(s)
- Chenzhi Wang
- 1College of Food Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014 Sichuan China
| | - Siyi Zhou
- 1College of Food Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014 Sichuan China
| | - Qinling Du
- 1College of Food Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014 Sichuan China
| | - Wen Qin
- 1College of Food Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014 Sichuan China.,2Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an, 625014 Sichuan China
| | - Dingtao Wu
- 1College of Food Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014 Sichuan China.,2Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an, 625014 Sichuan China
| | - Dele Raheem
- 5Northern Institute of Environmental and Minority Law, Arctic Centre, University of Lapland, 96101 Rovaniemi, Finland
| | - Wenyu Yang
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture/Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, 611130 Sichuan China.,4College of Agronomy, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Qing Zhang
- 1College of Food Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014 Sichuan China.,Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture/Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, 611130 Sichuan China
| |
Collapse
|
21
|
Manera C, Olguin NT, Bravo-Ferrada BM, Tymczyszyn EE, Delfederico L, Bibiloni H, Caballero AC, Semorile L, La Hens DV. Survival and implantation of indigenous psychrotrophic Oenococcus oeni strains during malolactic fermentation in a Patagonian Pinot noir wine. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.02.063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
22
|
Wang C, Du Q, Yao T, Dong H, Wu D, Qin W, Raheem D, Zhang Q. Spoilage Bacteria Identification and Food Safety Risk Assessment of Whole Soybean Curd. Indian J Microbiol 2019; 59:250-253. [PMID: 31031443 PMCID: PMC6458188 DOI: 10.1007/s12088-019-00778-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 01/04/2019] [Indexed: 11/26/2022] Open
Abstract
As a highly hydrated gel-type food, soybean curd is perishable and the development of spoilage bacteria has been described. Whole soybean curd (WSC), an innovative soy product retains the most nutrients in raw ingredients and exhibits more nutritive value compared with conventional soybean curd (CSC). However, the risk assessment of WSC is not well evaluated up to now. In this study, the same species of spoilage microorganism were separated from WSC and CSC. Two main spoilage strains were separated and identified as B. subtilis and B. cereus. The risk ranking scores of WSC was higher than that of CSC but still within medium risk range. In summary, we reported the presence of B. subtilis and B. cereus in WSC for the first time. Further, application of the risk ranger tool confirmed that the risk profile of WSC was medium and acceptable.
Collapse
Affiliation(s)
- Chenzhi Wang
- College of Food Science, Sichuan Agricultural University, Ya’an, 625014 China
| | - Qinling Du
- College of Food Science, Sichuan Agricultural University, Ya’an, 625014 China
| | - Tianwei Yao
- College of Food Science, Sichuan Agricultural University, Ya’an, 625014 China
| | - Hongmin Dong
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5 Canada
| | - Dingtao Wu
- College of Food Science, Sichuan Agricultural University, Ya’an, 625014 China
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Ya’an, 625014 China
| | - Dele Raheem
- Northern Institute for Environmental and Minority Law (NIEM), Arctic Centre, University of Lapland, 96101 Rovaniemi, Finland
| | - Qing Zhang
- College of Food Science, Sichuan Agricultural University, Ya’an, 625014 China
| |
Collapse
|
23
|
Siroli L, Camprini L, Pisano MB, Patrignani F, Lanciotti R. Volatile Molecule Profiles and Anti- Listeria monocytogenes Activity of Nisin Producers Lactococcus lactis Strains in Vegetable Drinks. Front Microbiol 2019; 10:563. [PMID: 30972045 PMCID: PMC6443959 DOI: 10.3389/fmicb.2019.00563] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 03/05/2019] [Indexed: 12/03/2022] Open
Abstract
This work aimed to evaluate the potential of 15 nisin producing Lactococcus lactis strains, isolated from dairy products, for the fermentation of soymilk and carrot juice. In particular, the acidification and the production of nisin in the food matrices were recorded. Moreover, three strains (LBG2, FBG1P, and 3LC39), that showed the most promising results were further scrutinized for their anti-Listeria monocytogenes activity and volatile molecules profile during fermentation of soymilk and carrot juice. Lactococcus lactis strains LBG2, FBG1P, and 3LC39 resulted the most interesting ones, showing rapid growth and acidification on both food matrices. The higher amounts of nisin were detected in soymilk samples fermented by the strain LBG2 after 24 and 48 h (26.4 mg/L). Furthermore, the rapid acidification combined with the production of nisin resulted in a strong anti-Listeria activity, reducing the pathogen loads below the detection limit, in carrot juice samples fermented by the strains LBG2 and FBG1P and in soymilk by the strain LBG2. The fermentation increased the presence of volatile molecules such as aldehydes and ketones with a positive impact on the organoleptic profile of both the fermented products. These results highlighted the interesting potential of three nisin producing L. lactis strains for the production of fermented carrot juice and soymilk. In fact, the fermentation by lactic acid bacteria, combined or not with other mild technologies, represents a good strategy for the microbiological stabilization of these products. Furthermore, the increase of molecules with a positive sensory impact, such as aldehydes and ketones, in the fermented products suggests a possible improvement of their organoleptic characteristics.
Collapse
Affiliation(s)
- Lorenzo Siroli
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Cesena, Italy
| | - Lucia Camprini
- Interdepartmental Center for Industrial Agri-food Research, University of Bologna, Cesena, Italy
| | - Maria Barbara Pisano
- Department of Medical Sciences and Public Health, University of Cagliari, Monserrato, Italy
| | - Francesca Patrignani
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Cesena, Italy
- Interdepartmental Center for Industrial Agri-food Research, University of Bologna, Cesena, Italy
| | - Rosalba Lanciotti
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Cesena, Italy
- Interdepartmental Center for Industrial Agri-food Research, University of Bologna, Cesena, Italy
| |
Collapse
|
24
|
Changes in soy protein immunoglobulin E reactivity, protein degradation, and conformation through fermentation with Lactobacillus plantarum strains. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.09.034] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
25
|
Xing G, Rui X, Wang D, Liu M, Chen X, Dong M. Effect of Fermentation pH on Protein Bioaccessibility of Soymilk Curd with Added Tea Polyphenols As Assessed by in Vitro Gastrointestinal Digestion. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:11125-11132. [PMID: 29185340 DOI: 10.1021/acs.jafc.7b04456] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The aim of this study was to compare the effect of fermentation pH on protein bioaccessibility of four soymilk curds enriched with tea polyphenols (TP). The curds were generated by fermentation with Weissella hellenica D1501 and the fermentation terminated at different pH values, namely at pH 5.7, 5.4, 5.1, and 4.8 (SMTP-5.7, SMTP-5.4, SMTP-5.1, SMTP-4.8). Particle-size distribution, soluble protein content, gel electrophoresis, and peptides content were monitored at oral, gastric, and intestinal levels. Results showed that SMTP-4.8 was the matrix most resistant to protein digestion in the gastric phase according to the soluble protein content. Similar particle size distribution and protein degradation patterns were observed for these curds in gastric and intestinal phase. However, there was a significant difference (P < 0.05) in the content of small peptides (<10 kDa) at the end of intestinal digestion among the four curds. Overall, terminating fermentation at pH 5.4-5.7 of soymilk curds enriched with TP is recommended.
Collapse
Affiliation(s)
- Guangliang Xing
- College of Food Science and Technology, Nanjing Agricultural University , Nan Jing, Jiangsu, PRC
| | - Xin Rui
- College of Food Science and Technology, Nanjing Agricultural University , Nan Jing, Jiangsu, PRC
| | - Dan Wang
- College of Food Science and Technology, Nanjing Agricultural University , Nan Jing, Jiangsu, PRC
| | - Mei Liu
- College of Food Science and Technology, Nanjing Agricultural University , Nan Jing, Jiangsu, PRC
| | - Xiaohong Chen
- College of Food Science and Technology, Nanjing Agricultural University , Nan Jing, Jiangsu, PRC
| | - Mingsheng Dong
- College of Food Science and Technology, Nanjing Agricultural University , Nan Jing, Jiangsu, PRC
| |
Collapse
|
26
|
Microbial contamination of tofu in Korea and growth characteristics of Bacillus cereus isolates in Tofu. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2016.11.081] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
27
|
|
28
|
Rui X, Xing G, Zhang Q, Zare F, Li W, Dong M. Protein bioaccessibility of soymilk and soymilk curd prepared with two Lactobacillus plantarum strains as assessed by in vitro gastrointestinal digestion. INNOV FOOD SCI EMERG 2016. [DOI: 10.1016/j.ifset.2016.09.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Ferri M, Serrazanetti DI, Tassoni A, Baldissarri M, Gianotti A. Improving the functional and sensorial profile of cereal-based fermented foods by selecting Lactobacillus plantarum strains via a metabolomics approach. Food Res Int 2016. [DOI: 10.1016/j.foodres.2016.08.044] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Wang J, Xiao Y, Rui X, Xu X, Guan Y, Zhang Q, Dong M. Fu brick tea extract supplementation enhanced probiotic viability and antioxidant activity of tofu under simulated gastrointestinal digestion condition. RSC Adv 2016. [DOI: 10.1039/c6ra20730h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this study, a novel tofu (named as bio-tofu) was developed by adding Fu brick tea extract (FBTE) into soymilk and using the probiotic Lactobacillus plantarum B1-6 as a bio-coagulant.
Collapse
Affiliation(s)
- Jinpeng Wang
- College of Food Science and Technology
- Nanjing Agricultural University
- Nanjing 210095
- P. R. China
| | - Yu Xiao
- College of Food Science and Technology
- Nanjing Agricultural University
- Nanjing 210095
- P. R. China
| | - Xin Rui
- College of Food Science and Technology
- Nanjing Agricultural University
- Nanjing 210095
- P. R. China
| | - Xiao Xu
- College of Food Science and Technology
- Nanjing Agricultural University
- Nanjing 210095
- P. R. China
| | - Ying Guan
- College of Food Science and Technology
- Nanjing Agricultural University
- Nanjing 210095
- P. R. China
| | - Qiuqin Zhang
- College of Food Science and Technology
- Nanjing Agricultural University
- Nanjing 210095
- P. R. China
| | - Mingsheng Dong
- College of Food Science and Technology
- Nanjing Agricultural University
- Nanjing 210095
- P. R. China
| |
Collapse
|
31
|
Enhanced shelf-life of tofu by using bacteriocinogenic Weissella hellenica D1501 as bioprotective cultures. Food Control 2014. [DOI: 10.1016/j.foodcont.2014.05.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
32
|
Nikiforidis CV, Matsakidou A, Kiosseoglou V. Composition, properties and potential food applications of natural emulsions and cream materials based on oil bodies. RSC Adv 2014. [DOI: 10.1039/c4ra00903g] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Oil bodies are micron- or submicron-sized organelles found mainly in parts of plants such as seeds, nuts or some fruits and their main role is to function as energy stores.
Collapse
Affiliation(s)
| | - Anthia Matsakidou
- Laboratory of Food Chemistry and Technology
- Department of Chemistry
- Aristotle University
- Thessaloniki, Greece
| | - Vasilios Kiosseoglou
- Laboratory of Food Chemistry and Technology
- Department of Chemistry
- Aristotle University
- Thessaloniki, Greece
| |
Collapse
|
33
|
Montanari C, Sado Kamdem S, Serrazanetti D, Vannini L, Guerzoni M. Oxylipins generation in Lactobacillus helveticus
in relation to unsaturated fatty acid supplementation. J Appl Microbiol 2013; 115:1388-401. [DOI: 10.1111/jam.12347] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 07/19/2013] [Accepted: 08/05/2013] [Indexed: 11/30/2022]
Affiliation(s)
- C. Montanari
- Department of Agricultural and Food Sciences; Alma Mater Studiorum; University of Bologna; Bologna Italy
- Inter-departmental Centre of Industrial Agri-Food Research (CIRI Agroalimentare); Cesena Italy
| | - S.L. Sado Kamdem
- Laboratoire de Microbiologie; Department of Biochemistry; University of Yaounde; Yaounde Cameroon
| | - D.I. Serrazanetti
- Department of Agricultural and Food Sciences; Alma Mater Studiorum; University of Bologna; Bologna Italy
- Inter-departmental Centre of Industrial Agri-Food Research (CIRI Agroalimentare); Cesena Italy
| | - L. Vannini
- Department of Agricultural and Food Sciences; Alma Mater Studiorum; University of Bologna; Bologna Italy
- Inter-departmental Centre of Industrial Agri-Food Research (CIRI Agroalimentare); Cesena Italy
| | - M.E. Guerzoni
- Department of Agricultural and Food Sciences; Alma Mater Studiorum; University of Bologna; Bologna Italy
| |
Collapse
|