1
|
Yang H, Li J, Mao J, Xu C, Song J, Xie F. Deep Eutectic Solvent-Based Dispersive Liquid-Liquid Microextraction Coupled with LC-MS/MS for the Analysis of Two Ochratoxins in Capsicum. Molecules 2023; 28:7634. [PMID: 38005355 PMCID: PMC10673409 DOI: 10.3390/molecules28227634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Ochratoxins, a common class of mycotoxin in capsicum, and techniques and methods for the determination of mycotoxins in spices have been increasingly developed in recent years. An innovative and eco-friendly method of dispersive liquid-liquid microextraction (DLLME) was demonstrated in this study, based on a synthesized deep eutectic solvent (DES) combined with LC-MS/MS, for the quantification and analysis of two ochratoxins in capsicum. The DES-DLLME method parameters entail selecting the DES type (thymol:decanoic acid, molar ratio 1:1) and DES volume (100 μL). The volume of water (3 mL) and salt concentration (0 g) undergo optimization following a step-by-step approach to achieve optimal target substance extraction efficiency. The matrix effect associated with the direct detection of the target substance in capsicum was significantly reduced in this study by the addition of isotopic internal standards corresponding to the target substance. This facilitated optimal conditions wherein quantitative analysis using LC-MS/MS revealed a linear range of 0.50-250.00 µg/mL, with all two curves calibrated with internal standards showing correlation coefficients (r2) greater than 0.9995. The method's limits of detection (LODs) and limits of quantification (LOQs) fell in the ranges of 0.14-0.45 μg/kg and 0.45-1.45 μg/kg, respectively. The method's spiked recoveries ranged from 81.97 to 105.17%, indicating its sensitivity and accuracy. The environmental friendliness of the technique was assessed using two green assessment tools, AGREE and complexGAPI, and the results showed that the technique was more in line with the concept of sustainable development compared to other techniques for detecting ochratoxins in capsicum. Overall, this study provides a new approach for the determination of mycotoxins in a complex food matrix such as capsicum and other spices using DES and also contributes to the application of green analytical chemistry methods in the food industry.
Collapse
Affiliation(s)
- Hongbo Yang
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China; (J.L.); (C.X.); (J.S.); (F.X.)
| | - Jin Li
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China; (J.L.); (C.X.); (J.S.); (F.X.)
| | - Jianfei Mao
- College of Chemistry, Sichuan University, Chengdu 610064, China
- Guizhou Jiandee Technology Co., Ltd., Guiyang 550025, China
| | - Chan Xu
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China; (J.L.); (C.X.); (J.S.); (F.X.)
| | - Jieyu Song
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China; (J.L.); (C.X.); (J.S.); (F.X.)
| | - Feng Xie
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China; (J.L.); (C.X.); (J.S.); (F.X.)
- Guizhou Academy of Testing and Analysis, Guiyang 550014, China
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564507, China
| |
Collapse
|
2
|
Chen J, Wang H, Chen Y, Zhu Q, Wan J. Inhibitive effect and mechanism of cinnamaldehyde on growth and OTA production of Aspergillus niger in vitro and in dried red chilies. Food Res Int 2023; 168:112794. [PMID: 37120239 DOI: 10.1016/j.foodres.2023.112794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/23/2023] [Accepted: 04/03/2023] [Indexed: 05/01/2023]
Abstract
Mould and mycotoxin contamination is an ongoing issue in agriculture and food industry. Production by Aspergillus niger DTZ-12 in Guizhou dried red chilies was found, leading to significant economic losses. In this study, the inhibitive efficacy (Effective Concentration, EC) of cinnamaldehyde (CIN), eugenol (EUG), carvacrol (CAR), and linalool (LIN) against A. niger DTZ-12 were evaluated. CIN with the best antifungal capacity was then investigated for the comprehensive inhibitory activity against A. niger DTZ-12 including mycelia, spores, and physiological activities. Results showed that CIN can effectively retard mycelial growth, spore germination, and OTA production of A. niger DTZ-12 in vitro and in dried red chilies during storage. At physiological level, CIN can increase cell membrane permeability by reducing the ergosterol, decrease ATP content and ATPase activity, and promote the accumulation of reactive oxygen species (ROS) and malondialdehyde (MDA) in cell. These results suggested that CIN displayed a great potential to be employed as a natural and effective alternative preservative during dried red chili storage.
Collapse
Affiliation(s)
- Jiang Chen
- College of Life Sciences, Guizhou University, Huaxi District, Guiyang 550025, Guizhou Province, China
| | - Hua Wang
- Department of Liquor and Food Engineering, Guizhou University, Huaxi District, Guiyang 550025, Guizhou Province, China
| | - Yuanshan Chen
- Department of Liquor and Food Engineering, Guizhou University, Huaxi District, Guiyang 550025, Guizhou Province, China
| | - Qiujin Zhu
- Department of Liquor and Food Engineering, Guizhou University, Huaxi District, Guiyang 550025, Guizhou Province, China
| | - Jing Wan
- College of Life Sciences, Guizhou University, Huaxi District, Guiyang 550025, Guizhou Province, China; Department of Liquor and Food Engineering, Guizhou University, Huaxi District, Guiyang 550025, Guizhou Province, China; Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Huaxi District, Guiyang 550025, Guizhou Province, China.
| |
Collapse
|
3
|
Chen J, Chen Y, Zhu Q, Wan J. Ochratoxin A contamination and related high-yield toxin strains in Guizhou dried red chilies. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
4
|
Human exposure to ochratoxin A and its natural occurrence in spices marketed in Chile (2016–2020): A case study of merkén. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2022.104885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Wei L, Wang Z, Chen Y. Optical Biosensor for Ochratoxin A Detection in Grains Using an Enzyme-Mediated Click Reaction and Polystyrene Nanoparticles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14798-14804. [PMID: 36372964 DOI: 10.1021/acs.jafc.2c05137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Herein, we develop an optical biosensor for highly sensitive and facile detection of ochratoxin A (OTA) using an enzyme-mediated click reaction for signal amplification and polystyrene nanoparticles (PNPs) for signal readout. Alkaline phosphatase was employed to hydrolyze the ascorbic acid-phosphate to generate ascorbic acid, which reduces Cu(II) to Cu(I). Cu(I) can catalyze the click reaction between alkyne-functionalized magnetic beads and azide-functionalized PNPs to form complexes, while unbound PNPs acted as the signal probe. This strategy utilized the high efficiency of click chemistry and the inherent optical absorption properties of PNPs, which effectively improved the sensitivity of conventional immunoassays and simplified the procedures using magnetic separation technology. This optical biosensor enabled OTA detection in a linear range of 0.1 to 50 ng/mL with a detection limit of 54 pg/mL. Moreover, it has been successfully challenged with OTA detection in maize samples, revealing its potential as a promising tool for mycotoxin screening.
Collapse
Affiliation(s)
- Luyu Wei
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Zhilong Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Yiping Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, Guangdong, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, Guangdong, China
| |
Collapse
|
6
|
Pickova D, Toman J, Ostry V, Malir F. Natural Occurrence of Ochratoxin A in Spices Marketed in the Czech Republic during 2019-2020. Foods 2021; 10:2984. [PMID: 34945534 PMCID: PMC8701753 DOI: 10.3390/foods10122984] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/18/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
Spices are a popular ingredient in cuisine worldwide but can pose a health risk as they are prone to fungal infestation and mycotoxin contamination. The purpose of this study was to evaluate ochratoxin A (OTA) in 54 single-kind traditional and less traditional spices, each of which was purchased in six samples of different batches (324 samples in total) at the Czech market during 2019-2020. The HPLC-FLD method with pre-treatment by immunoaffinity columns was employed to determine OTA. The limits of detection and quantification were 0.03 ng g-1 and 0.10 ng g-1, respectively. A total of 101 (31%) samples of 19 spice kinds were positive at concentrations ranging from 0.11-38.46 ng g-1. Only turmeric was contaminated with an OTA level exceeding the European Union limits. However, most spices have no regulation, thus further extensive monitoring of various mycotoxins in various kinds of spices is necessary. Chilli and black pepper are the most studied spices for OTA contamination, however, many other kinds of spice can also be highly contaminated, but studies on them are less common, rare, or have not yet been performed. The uniqueness of this study lies in the wide range of spice types studied for the presence of OTA on the Czech market.
Collapse
Affiliation(s)
- Darina Pickova
- Department of Biology, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, CZ-50003 Hradec Kralove, Czech Republic; (V.O.); (F.M.)
| | - Jakub Toman
- Department of Biology, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, CZ-50003 Hradec Kralove, Czech Republic; (V.O.); (F.M.)
| | - Vladimir Ostry
- Department of Biology, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, CZ-50003 Hradec Kralove, Czech Republic; (V.O.); (F.M.)
- Center for Health, Nutrition and Food in Brno, National Institute of Public Health in Prague, Palackeho 3a, CZ-61242 Brno, Czech Republic
| | - Frantisek Malir
- Department of Biology, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, CZ-50003 Hradec Kralove, Czech Republic; (V.O.); (F.M.)
| |
Collapse
|
7
|
Li X, Ma W, Ma Z, Zhang Q, Li H. The Occurrence and Contamination Level of Ochratoxin A in Plant and Animal-Derived Food Commodities. Molecules 2021; 26:6928. [PMID: 34834020 PMCID: PMC8623125 DOI: 10.3390/molecules26226928] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 11/17/2022] Open
Abstract
Ochratoxin A (OTA) is a highly toxic mycotoxin and poses great threat to human health. Due to its serious toxicity and widespread contamination, great efforts have been made to evaluate its human exposure. This review focuses on the OTA occurrence and contamination level in nine plant and animal derived food commodities: cereal, wine, coffee, beer, cocoa, dried fruit, spice, meat, and milk. The occurrence and contamination level varied greatly in food commodities and were affected by many factors, including spices, geography, climate, and storage conditions. Therefore, risk monitoring must be routinely implemented to ensure minimal OTA intake and food safety.
Collapse
Affiliation(s)
- Xianjiang Li
- Food Safety Laboratory, Division of Metrology in Chemistry, National Institute of Metrology, Beijing 100029, China; (Q.Z.); (H.L.)
| | - Wen Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China;
| | - Zhiyong Ma
- Beijing State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China;
| | - Qinghe Zhang
- Food Safety Laboratory, Division of Metrology in Chemistry, National Institute of Metrology, Beijing 100029, China; (Q.Z.); (H.L.)
| | - Hongmei Li
- Food Safety Laboratory, Division of Metrology in Chemistry, National Institute of Metrology, Beijing 100029, China; (Q.Z.); (H.L.)
| |
Collapse
|
8
|
Zhao X, Jin X, Lin Z, Guo Q, Liu B, Yuan Y, Yue T, Zhao X. Simultaneous Rapid Detection of Aflatoxin B 1 and Ochratoxin A in Spices Using Lateral Flow Immuno-Chromatographic Assay. Foods 2021; 10:foods10112738. [PMID: 34829017 PMCID: PMC8623159 DOI: 10.3390/foods10112738] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/04/2021] [Indexed: 11/16/2022] Open
Abstract
Spices are susceptible to contamination by aflatoxin B1 (AFB1) and ochratoxin A (OTA), which are both mycotoxins with high toxicity and carcinogenicity. In this study, we aimed to develop an immuno-chromatographic strip test for the simultaneous quantification of AFB1 and OTA in spices by spraying the coupled antigens AFB1-ovalbumin (AFB1-OVA) and OTA-ovalbumin (OTA-OVA) on a nitrocellulose membrane. The test strip had high sensitivity, good specificity, and strong stability. The detection limits of these two mycotoxins in Chinese prickly ash, pepper, chili, cinnamon, and aniseed were 5 μg/kg. The false positivity rate was 2%, and the false negativity rate was 0%. The maximum coefficient of variation was 4.28% between batches and 5.72% within batches. The average recovery rates of AFB1 and OTA in spices were 81.2-113.7% and 82.2-118.6%, respectively, and the relative standard deviation (RSD) was <10%. The actual sample detection was consistent with high performance liquid chromatography analysis results. Therefore, the immuno-chromatographic test strips developed in this study can be used for the on-site simultaneous detection of AFB1 and OTA in spices. This method would allow the relevant regulatory agencies to strengthen supervision in an effort to reduce the possible human health hazards of such contaminated spices.
Collapse
Affiliation(s)
- Xue Zhao
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling 712100, China; (X.Z.); (X.J.); (Z.L.); (Q.G.); (B.L.); (Y.Y.); (T.Y.)
| | - Xindi Jin
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling 712100, China; (X.Z.); (X.J.); (Z.L.); (Q.G.); (B.L.); (Y.Y.); (T.Y.)
| | - Zhang Lin
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling 712100, China; (X.Z.); (X.J.); (Z.L.); (Q.G.); (B.L.); (Y.Y.); (T.Y.)
| | - Qi Guo
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling 712100, China; (X.Z.); (X.J.); (Z.L.); (Q.G.); (B.L.); (Y.Y.); (T.Y.)
| | - Bin Liu
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling 712100, China; (X.Z.); (X.J.); (Z.L.); (Q.G.); (B.L.); (Y.Y.); (T.Y.)
- Laboratory of Quality & Safety Risk Assessment for Agro-Products (Yangling), Ministry of Agriculture and Rural Affairs, Yangling 712100, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling 712100, China; (X.Z.); (X.J.); (Z.L.); (Q.G.); (B.L.); (Y.Y.); (T.Y.)
- Laboratory of Quality & Safety Risk Assessment for Agro-Products (Yangling), Ministry of Agriculture and Rural Affairs, Yangling 712100, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling 712100, China; (X.Z.); (X.J.); (Z.L.); (Q.G.); (B.L.); (Y.Y.); (T.Y.)
- Laboratory of Quality & Safety Risk Assessment for Agro-Products (Yangling), Ministry of Agriculture and Rural Affairs, Yangling 712100, China
| | - Xubo Zhao
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling 712100, China; (X.Z.); (X.J.); (Z.L.); (Q.G.); (B.L.); (Y.Y.); (T.Y.)
- Laboratory of Quality & Safety Risk Assessment for Agro-Products (Yangling), Ministry of Agriculture and Rural Affairs, Yangling 712100, China
- Correspondence:
| |
Collapse
|
9
|
Rojas LM, Qu Y, He L. A facile solvent extraction method facilitating surface-enhanced Raman spectroscopic detection of ochratoxin A in wine and wheat. Talanta 2021; 224:121792. [PMID: 33379021 DOI: 10.1016/j.talanta.2020.121792] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/14/2020] [Accepted: 10/17/2020] [Indexed: 12/16/2022]
Abstract
The capability of a solvent-mediated liquid-liquid extraction (LLE) method to improve the detection of ochratoxin A (OTA) in food matrixes using surface-enhanced Raman spectroscopy (SERS) is described. SERS detection of mycotoxins with nanoparticle aggregation is a simple method but with low reproducibility due to the heterogeneous distribution of the nanoparticle aggregates. We evaluated three different LLE protocols to analyze their performance in combination with SERS. A facile extraction method based on sample acidification and addition of chloroform as a separation solvent showed to not only extract OTA from wine and wheat but also facilitate the uniform distribution of the nanoparticles leading to an improvement of the detection signals and the reproducibility. This method enables rapid and simple analysis of mycotoxin Ochratoxin A in food systems.
Collapse
Affiliation(s)
| | - Yanqui Qu
- Department of Food Science, University of Massachusetts, MA, Amherst, USA
| | - Lili He
- Department of Food Science, University of Massachusetts, MA, Amherst, USA.
| |
Collapse
|
10
|
Khataee A, Sohrabi H, Arbabzadeh O, Khaaki P, Majidi MR. Frontiers in conventional and nanomaterials based electrochemical sensing and biosensing approaches for Ochratoxin A analysis in foodstuffs: A review. Food Chem Toxicol 2021; 149:112030. [DOI: 10.1016/j.fct.2021.112030] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/19/2021] [Accepted: 01/24/2021] [Indexed: 12/22/2022]
|
11
|
Han B, Fang C, Sha L, Jalalah M, Al-Assiri MS, Harraz FA, Cao Y. Cascade strand displacement reaction-assisted aptamer-based highly sensitive detection of ochratoxin A. Food Chem 2020; 338:127827. [PMID: 32822900 DOI: 10.1016/j.foodchem.2020.127827] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 08/10/2020] [Accepted: 08/10/2020] [Indexed: 11/24/2022]
Abstract
Ochratoxin A (OTA) is a toxic metabolite that is widely distributed in food products. Herein, we proposed a new fluorescent aptasensor for OTA detection by using cascade strand displacement reaction. The binding of OTA and OTA aptamer on magnetic beads surface inhibited its hybridization with complementary DNA, and subsequently initiated the strand displacement reaction that induced amplified fluorescence signal. By tracing fluorescence response, our method demonstrated an improved detection limit of 0.63 ng/mL, a short assay time of 110 min, and a satisfactory detection specificity by using ochratoxin B, aflatoxin B1, and zearalenone as control toxins. Recovery studies were conducted by spiking OTA in real food samples, including white wine, red wine, cereal drink, coffee beverage and tea beverage, and confirmed desirable accuracy and practical applicability of our method. Therefore, our method may have a great potential use in the food quality control in the future.
Collapse
Affiliation(s)
- Bing Han
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Cheng Fang
- Department of Spine Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Department of Critical Care Unit, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Lingjun Sha
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Mohammed Jalalah
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, P.O. Box: 1988, Najran 11001, Saudi Arabia
| | - M S Al-Assiri
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, P.O. Box: 1988, Najran 11001, Saudi Arabia
| | - Farid A Harraz
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, P.O. Box: 1988, Najran 11001, Saudi Arabia; Nanomaterials and Nanotechnology Department, Central Metallurgical Research and Development Institute (CMRDI), P.O. 87 Helwan, Cairo 11421, Egypt.
| | - Ya Cao
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
12
|
Pigłowski M. Comparative analysis of notifications regarding mycotoxins in the Rapid Alert System for Food and Feed (RASFF). QUALITY ASSURANCE AND SAFETY OF CROPS & FOODS 2019. [DOI: 10.3920/qas2018.1398] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- M. Pigłowski
- Gdynia Maritime University, Morska 81-87, 81-225 Gdynia, Poland
| |
Collapse
|
13
|
Thanushree M, Sailendri D, Yoha K, Moses J, Anandharamakrishnan C. Mycotoxin contamination in food: An exposition on spices. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.08.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Ye J, Xuan Z, Zhang B, Wu Y, Li L, Wang S, Xie G, Wang S. Automated analysis of ochratoxin A in cereals and oil by immunoaffinity magnetic beads coupled to UPLC-FLD. Food Control 2019. [DOI: 10.1016/j.foodcont.2018.11.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
Liu Y, Li W, Ding Z, Li Q, Wang X, Liu J, Zhuo S, Shao R, Ling Q, Zheng T, Li J. Three-dimensional ordered macroporous magnetic photonic crystal microspheres for enrichment and detection of mycotoxins (II): The application in liquid chromatography with fluorescence detector for mycotoxins. J Chromatogr A 2019; 1604:460475. [PMID: 31466701 DOI: 10.1016/j.chroma.2019.460475] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/18/2019] [Accepted: 08/21/2019] [Indexed: 12/13/2022]
Abstract
Enrichment, separation and purification are very important to accurately analyze mycotoxins in complicated samples. In the work, we developed a new enrichment, purification and high-performance liquid chromatography combined with fluorescence detector (HPLC-FLD) for aflatoxins B1 (AFB1), ochratoxin A (OTA) and Zearalenone (ZEN) assay using the macroporous magnetic 3D photonic crystal microspheres (3DPCMs). The conditions of enrichment and purification for mycotoxins have been optimized, which are as follows: pore size of 3DPCMs at 280 nm, 1:1 methanol:acetonitrile (v/v) as eluent, antibody concentrations at 60 µg/mL,60 µg/mL and 120 µg/mL for OTA, AFB1 and ZEN, respectively. The recovery rates in the rice, wheat and corn samples range from 70.01% to 100.12% and the relative standard deviation (RSD) range from 0.45% to 7.09%. The recovery rates used 3DPCMs are almost tenfold higher than that used non-macroporous PCMs in the same conditions. The developed method is simple, rapid (time including enrichment, purification and detection <2 h) and only requires small volume reagents (≤200 µL).
Collapse
Affiliation(s)
- Yan Liu
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210024, China
| | - Wei Li
- Department of Electronic and Electrical Engineering, The University of Sheffield, Sheffield S3 7HQ, United Kingdom
| | - Zhi Ding
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210024, China
| | - Qianjin Li
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210024, China
| | - Xin Wang
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210024, China
| | - Jie Liu
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210024, China
| | - Siqi Zhuo
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210024, China
| | - Rui Shao
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210024, China
| | - Qianqian Ling
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210024, China
| | - Tiesong Zheng
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210024, China
| | - Jianlin Li
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210024, China.
| |
Collapse
|
16
|
Alhamoud Y, Yang D, Fiati Kenston SS, Liu G, Liu L, Zhou H, Ahmed F, Zhao J. Advances in biosensors for the detection of ochratoxin A: Bio-receptors, nanomaterials, and their applications. Biosens Bioelectron 2019; 141:111418. [PMID: 31228729 DOI: 10.1016/j.bios.2019.111418] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/04/2019] [Accepted: 06/04/2019] [Indexed: 01/20/2023]
Abstract
Ochratoxin A (OTA) is a class of mycotoxin mainly produced by the genera Aspergillus and Penicillium. OTA can cause various forms of kidney, liver and brain diseases in both humans and animals although trace amount of OTA is normally present in food. Therefore, development of fast and sensitive detection technique is essential for accurate diagnosis of OTA. Currently, the most commonly used detection methods are enzyme-linked immune sorbent assays (ELISA) and chromatographic techniques. These techniques are sensitive but time consuming, and require expensive equipment, highly trained operators, as well as extensive preparation steps. These drawbacks limit their wide application in OTA detection. On the contrary, biosensors hold a great potential for OTA detection at for both research and industry because they are less expensive, rapid, sensitive, specific, simple and portable. This paper aims to provide an extensive overview on biosensors for OTA detection by highlighting the main biosensing recognition elements for OTA, the most commonly used nanomaterials for fabricating the sensing interface, and their applications in different read-out types of biosensors. Current challenges and future perspectives are discussed as well.
Collapse
Affiliation(s)
- Yasmin Alhamoud
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, People's Republic of China
| | - Danting Yang
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, People's Republic of China; Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale BioPhotonics (CNBP), Faculty of Engineering, The University of New South Wales, Sydney, Sydney, 2052, Australia.
| | - Samuel Selorm Fiati Kenston
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, People's Republic of China
| | - Guozhen Liu
- Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale BioPhotonics (CNBP), Faculty of Engineering, The University of New South Wales, Sydney, Sydney, 2052, Australia
| | - Linyang Liu
- Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale BioPhotonics (CNBP), Faculty of Engineering, The University of New South Wales, Sydney, Sydney, 2052, Australia
| | - Haibo Zhou
- Institute of Pharmaceutical Analysis and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine & New Drug Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Fatma Ahmed
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, People's Republic of China
| | - Jinshun Zhao
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, People's Republic of China.
| |
Collapse
|
17
|
Huang R, Xiong LL, Chai HH, Fu JJ, Lu Z, Yu L. Sensitive colorimetric detection of ochratoxin A by a dual-functional Au/Fe3O4 nanohybrid-based aptasensor. RSC Adv 2019; 9:38590-38596. [PMID: 35540181 PMCID: PMC9075840 DOI: 10.1039/c9ra07899a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 11/20/2019] [Indexed: 12/16/2022] Open
Abstract
A novel colorimetric aptasensor based on a Au/Fe3O4 nanohybrid was developed to detect ochratoxin A (OTA). The aptasensor is composed of a free OTA aptamer, a Au/Fe3O4 nanohybrid coated with biotinylated complementary DNA of the OTA aptamer (biotin-cDNA-Au/Fe3O4), and free alkaline-phosphatase-labeled streptavidin (SA-ALP). The Au/Fe3O4 nanohybrid not only immobilizes biotin-cDNA but also magnetically separates SA-ALP from the sample solution. One part of the OTA aptamer sequence hybridizes with biotin-cDNA immobilized on Au/Fe3O4, and the left part of the OTA aptamer sequence covers the biotin and blocks the specific interaction between biotin and SA-ALP. OTA can interrupt the interaction of OTA aptamer binding to biotin-cDNA-Au/Fe3O4 and can inhibit the shielding effect of the OTA aptamer on biotin. The amount of SA-ALP that can be captured by biotin-cDNA-Au/Fe3O4 thus increases with increasing OTA concentration. Through a simple magnetic separation, the collected SA-ALP-linked Au/Fe3O4 can produce a yellow-colored solution in the presence of p-nitrophenyl phosphate (p-NPP). This colorimetric aptasensor can detect OTA as low as 1.15 ng mL−1 with high specificity. A novel colorimetric aptasensor based on a Au/Fe3O4 nanohybrid was developed to detect ochratoxin A (OTA).![]()
Collapse
Affiliation(s)
- Rong Huang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry
- Ministry of Education
- Institute for Clean Energy and Advanced Materials
- School of Materials and Energy
- Southwest University
| | - Lu Lu Xiong
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry
- Ministry of Education
- Institute for Clean Energy and Advanced Materials
- School of Materials and Energy
- Southwest University
| | - Hui Hui Chai
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry
- Ministry of Education
- Institute for Clean Energy and Advanced Materials
- School of Materials and Energy
- Southwest University
| | - Jing Jing Fu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry
- Ministry of Education
- Institute for Clean Energy and Advanced Materials
- School of Materials and Energy
- Southwest University
| | - Zhisong Lu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry
- Ministry of Education
- Institute for Clean Energy and Advanced Materials
- School of Materials and Energy
- Southwest University
| | - Ling Yu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry
- Ministry of Education
- Institute for Clean Energy and Advanced Materials
- School of Materials and Energy
- Southwest University
| |
Collapse
|
18
|
A test strip for ochratoxin A based on the use of aptamer-modified fluorescence upconversion nanoparticles. Mikrochim Acta 2018; 185:497. [PMID: 30291459 DOI: 10.1007/s00604-018-3022-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/23/2018] [Indexed: 12/25/2022]
Abstract
An aptamer-based test strip is described for visual and instrumental determination of the mycotoxin ochratoxin A (OTA). It is based on the use of NaYF4:Yb,Er upconversion nanoparticles (UCNPs) as a label for the aptamer and on the competition between OTA and its complementary sequence for an OTA-specific aptamer. To improve the analytical performance, the optical properties of the UCNPs, the fluidity of the UCNP-aptamer conjugate, and the migration rate on the nitrocellulose membranes were investigated. Under the optimal experimental conditions and by using a 980-nm laser, the relative fluorescence intensity (test line value/control line value) is proportional to the logarithm of the OTA concentration over a range from 5 to 100 ng·mL-1 (R2 = 0.9955). The limit of the detection is 1.86 ng·mL-1. This aptamer based flow assay can be performed within 15 min and has no serious cross-sensitivity to potentially interfering species. It was successfully applied to the determination of OTA in spiked wheat and beer samples. Graphical abstract An aptamer-based upconversion fluorescent strip based on the use of NaYF4:Yb,Er nanoparticles was developed for sensitive detection of Ochratoxin A. The limit of the detection was determined as 1.86 ng·mL-1. The assay can be performed within 15 min, indicating its great potential in point-of-care testing.
Collapse
|
19
|
Huang P, Kong W, Wang S, Wang R, Lu J, Yang M. Multiclass mycotoxins in lotus seeds analysed by an isotope-labelled internal standard-based UPLC-MS/MS. J Pharm Pharmacol 2018; 70:1378-1388. [DOI: 10.1111/jphp.12974] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 06/15/2018] [Indexed: 10/28/2022]
Abstract
Abstract
Objectives
This study aimed to explore the residue levels of multiclass mycotoxins in medicinal and edible lotus seeds.
Methods
A rapid and reliable isotope-labelled internal standard-based UPLC-MS/MS method was developed and validated for sensitive and accurate analysis of multiclass mycotoxins including aflatoxins (AFB1, AFB2, AFG1 and AFG2), ochratoxin A (OTA), zearalenone (ZEN), deoxynivalenol (DON), fumonisins (FB1 and FB2), T-2 and HT-2 toxins in lotus seeds. Some critical conditions such as extract solution with the addition of isotope-labelled internal standard, type of mobile phase and the elution condition were scientifically optimized. The 11 mycotoxins obtained satisfactory resolution and sensitive detection in multiple reactions monitoring scanning mode combined with the ion switching technology in positive and negative ion switching mode.
Key findings
The developed isotope-labelled internal standard-based UPLC-MS/MS method exhibited an approving linearity (r ≥ 0.9984), high sensitivity (limit of detection in the range of 0.015–30.05 μg/kg), acceptable precision (RSDs ≤6.3%) and good recovery (76.0–116.0%) for 11 analytes, respectively. Ten batches of real lotus seed samples were tested, and three batches out of which were contaminated with AFB1, FB2, T-2 and ZEN. AFB1 showed the highest occurrence rate (30%) with contents of 10.50 and 8.32 μg/kg in two samples over the official limit (5.0 μg/kg).
Conclusions
The monitoring of multiclass mycotoxins in Chinese herbal medicines is in great urgency to ensure the security of consumers. The proposed method could be further utilized for simple, sensitive and rapid detection of more mycotoxins in other complex matrices to compensate for matrix effects.
Collapse
Affiliation(s)
- Pinxuan Huang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Pharmacy College, Jinzhou Medical University, Jinzhou, China
| | - Weijun Kong
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Sha Wang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ruilin Wang
- PLA Institute of Chinese Materia Medica, 302 Hospital of People's Liberation Army, Beijing, China
| | - Jinghua Lu
- Pharmacy College, Jinzhou Medical University, Jinzhou, China
| | - Meihua Yang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
20
|
Caballero-Casero N, García-Fonseca S, Rubio S. Restricted access supramolecular solvents for the simultaneous extraction and cleanup of ochratoxin A in spices subjected to EU regulation. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.01.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Jiang C, Lan L, Yao Y, Zhao F, Ping J. Recent progress in application of nanomaterial-enabled biosensors for ochratoxin A detection. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.02.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
22
|
Wei D, Wu X, Xu J, Dong F, Liu X, Zheng Y, Ji M. Determination of Ochratoxin A contamination in grapes, processed grape products and animal-derived products using ultra-performance liquid chromatography-tandem mass spectroscopy system. Sci Rep 2018; 8:2051. [PMID: 29391603 PMCID: PMC5794868 DOI: 10.1038/s41598-018-20534-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/18/2018] [Indexed: 11/08/2022] Open
Abstract
We developed a sensitive and rapid analytical method to determine the level of Ochratoxin A contamination in grapes, processed grape products and in foods of animal origin (a total of 11 different food matrices). A pretreatment that followed a "quick, easy, cheap, effective, rugged, and safe" protocol was optimized to extract Ochratoxin A from the matrices, and the extracted Ochratoxin A was then detected with the use of a highly sensitive ultra-performance liquid chromatography-tandem mass spectrometry system. Good linearities of Ochratoxin A were obtained in the range of 0.1-500 µg L-1 (correlation coefficient (R2) > 0.9994 in each case). Mean recovery from the 11 matrices ranged from 70.3 to 114.7%, with a relative standard deviation ≤19.2%. The method is easy to use and yields reliable results for routine determination of Ochratoxin A in food products of grape and animal origin. In store-purchased foods and foods obtained from the field and wholesale suppliers, the Ochratoxin A concentration ranged from undetectable to 10.14 µg kg-1, with the more contaminated samples being mainly those of processed grape products. Our results indicate that the necessity for regulation of and supervision during the processing of grape products.
Collapse
Affiliation(s)
- Dongmei Wei
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110161, China
- Risk Assessment Laboratory for biological hazards of agricultural product quality and safety, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiaohu Wu
- Risk Assessment Laboratory for biological hazards of agricultural product quality and safety, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jun Xu
- Risk Assessment Laboratory for biological hazards of agricultural product quality and safety, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Fengshou Dong
- Risk Assessment Laboratory for biological hazards of agricultural product quality and safety, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xingang Liu
- Risk Assessment Laboratory for biological hazards of agricultural product quality and safety, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yongquan Zheng
- Risk Assessment Laboratory for biological hazards of agricultural product quality and safety, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Mingshan Ji
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110161, China.
| |
Collapse
|
23
|
Huertas-Pérez JF, Arroyo-Manzanares N, García-Campaña AM, Gámiz-Gracia L. Solid phase extraction as sample treatment for the determination of Ochratoxin A in foods: A review. Crit Rev Food Sci Nutr 2018; 57:3405-3420. [PMID: 26744990 DOI: 10.1080/10408398.2015.1126548] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Ochratoxin A (OTA) is a mycotoxin produced by two main types of fungi, Aspergillus and Penicillium species. OTA is a natural contaminant found in a large number of different matrices and is considered as a possible carcinogen for humans. Hence, low maximum permitted levels in foods have been established by competent authorities around the world, making essential the use of very sensitive analytical methods for OTA detection. Sample treatment is a crucial step of analytical methodology to get clean and concentrated extracts, and therefore low limits of quantification. Solid phase extraction (SPE) is a useful technique for rapid and selective sample preparation. This sample treatment enables the concentration and purification of analytes from the sample solution or extract by sorption on a solid sorbent. This review is focused on sample treatment procedures based on SPE prior to the determination of OTA in food matrices, published from 2010.
Collapse
Affiliation(s)
- J Fernando Huertas-Pérez
- a Department of Analytical Chemistry, Faculty of Sciences , University of Granada , Campus Fuentenueva s/n, Granada , Spain
| | - Natalia Arroyo-Manzanares
- a Department of Analytical Chemistry, Faculty of Sciences , University of Granada , Campus Fuentenueva s/n, Granada , Spain
| | - Ana M García-Campaña
- a Department of Analytical Chemistry, Faculty of Sciences , University of Granada , Campus Fuentenueva s/n, Granada , Spain
| | - Laura Gámiz-Gracia
- a Department of Analytical Chemistry, Faculty of Sciences , University of Granada , Campus Fuentenueva s/n, Granada , Spain
| |
Collapse
|
24
|
Visible-light driven label-free photoelectrochemical immunosensor based on TiO2/S-BiVO4@Ag2S nanocomposites for sensitive detection OTA. Biosens Bioelectron 2018; 99:14-20. [DOI: 10.1016/j.bios.2017.07.029] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/06/2017] [Accepted: 07/11/2017] [Indexed: 11/30/2022]
|
25
|
Oplatowska-Stachowiak M, Kleintjens T, Sajic N, Haasnoot W, Campbell K, Elliott CT, Salden M. T-2 Toxin/HT-2 Toxin and Ochratoxin A ELISAs Development and In-House Validation in Food in Accordance with the Commission Regulation (EU) No 519/2014. Toxins (Basel) 2017; 9:E388. [PMID: 29189752 PMCID: PMC5744108 DOI: 10.3390/toxins9120388] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 11/25/2017] [Accepted: 11/29/2017] [Indexed: 11/23/2022] Open
Abstract
T-2 toxin/HT-2 toxin (T-2/HT-2) and ochratoxin A (OTA) are mycotoxins that can contaminate a variety of agricultural commodities. To protect consumers' health, indicative limits for T-2/HT-2 and maximum limits for OTA have been set by the European Commission, requiring food business operators and controlling agencies to conduct routine checks for the presence of these harmful contaminants. Screening methods are increasingly used for monitoring purposes. Due to the demand for new and improved screening tools, two individual detection methods, T-2/HT-2 and OTA enzyme-linked immunosorbent assays (ELISAs), were developed in this study. The T-2/HT-2 ELISA was based on a T-2 monoclonal antibody with an IC50 (50% inhibitory concentration) of 0.28 ng/mL and 125% cross-reactivity with HT-2. As regards the OTA ELISA, a new sensitive monoclonal antibody specific to OTA with an IC50 of 0.13 ng/mL was produced. Both developed ELISA tests were then validated in agricultural commodities in accordance with the new performance criteria guidelines for the validation of screening methods for mycotoxins included in Commission Regulation (EU) No 519/2014. The T-2/HT-2 ELISA was demonstrated to be suitable for the detection of T-2/HT-2 in cereals and baby food at and above the screening target concentration (STC) of 12.5 μg/kg and 7.5 μg/kg, respectively. The OTA ELISA was shown to be applicable for the detection of OTA in cereals, coffee, cocoa and wine at and above the STC of 2 μg/kg, 2.5 μg/kg, 2.5 μg/kg and 0.4 ng/mL, respectively. The accuracy of both ELISAs was further confirmed by analysing proficiency test and reference samples. The developed methods can be used for sensitive and high-throughput screening for the presence of T-2/HT-2 and OTA in agricultural commodities.
Collapse
Affiliation(s)
| | | | - Nermin Sajic
- EuroProxima B.V., Arnhem 6827 BN, The Netherlands.
| | | | - Katrina Campbell
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast BT9 5BN, UK.
| | - Christopher T Elliott
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast BT9 5BN, UK.
| | | |
Collapse
|
26
|
Yang Z, Wang H, Ying G, Yang M, Nian Y, Liu J, Kong W. Relationship of Mycotoxins Accumulation and Bioactive Components Variation in Ginger after Fungal Inoculation. Front Pharmacol 2017; 8:331. [PMID: 28626424 PMCID: PMC5454032 DOI: 10.3389/fphar.2017.00331] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 05/16/2017] [Indexed: 11/13/2022] Open
Abstract
Ginger has got increasing worldwide interests due to its extensive biological activities, along with high medical and edible values. But fungal contamination and mycotoxin residues have brought challenges to its quality and safety. In the present study, the relationship of content of mycotoxins accumulation and bioactive components variation in ginger after infection by toxigenic fungi were investigated for the first time to elucidate the influence of fungal contamination on the inherent quality of ginger. After being infected by Aspergillus flavus and Aspergillus carbonarius for different periods, the produced mycotoxins was determined by an immunoaffinity column clean-up based ultra-fast liquid chromatography coupled with tandem mass spectrometry, and the main bioactive components in ginger were analyzed by ultra performance liquid chromatography-photodiode array detection. The results showed that consecutive incubation of ginger with A. flavus and A. carbonarius within 20 days resulted in the production and accumulation of aflatoxins (especially AFB1) and ochratoxin A, as well as the constant content reduction of four bioactive components, which were confirmed through the scanning electron microscope images. Significantly negative correlation was expressed between the mycotoxins accumulation and bioactive components variation in ginger, which might influence the quality and safety of it. Furthermore, a new compound was detected after inoculation for 6 days, which was found in our study for the first time.
Collapse
Affiliation(s)
- Zhixin Yang
- College of Pharmacy, Heilongjiang University of Chinese MedicineHarbin, China
| | - Haiwei Wang
- College of Pharmacy, Heilongjiang University of Chinese MedicineHarbin, China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China
| | - Guangyao Ying
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China
- College of Pharmacy, Jinzhou Medical UniversityJinzhou, China
| | - Meihua Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China
| | - Yujiao Nian
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China
- College of Traditional Chinese Medicine, Jilin Agricultural UniversityChangchun, China
| | - Jiajia Liu
- College of Pharmacy, Heilongjiang University of Chinese MedicineHarbin, China
| | - Weijun Kong
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China
| |
Collapse
|
27
|
Zhou J, Xu JJ, Huang BF, Cai ZX, Ren YP. High-performance liquid chromatographic determination of multi-mycotoxin in cereals and bean foodstuffs using interference-removal solid-phase extraction combined with optimized dispersive liquid-liquid microextraction. J Sep Sci 2017; 40:2141-2150. [PMID: 28342297 DOI: 10.1002/jssc.201601326] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 02/26/2017] [Accepted: 03/15/2017] [Indexed: 11/12/2022]
Abstract
A novel pre-treatment was proposed for the simultaneous determination of aflatoxins, ochratoxin A and zearalenone in foodstuffs using high-performance liquid chromatography with fluorescence detection. The analytical procedure was based on a first step using a quick, easy, cheap, effective, rugged, and safe based extraction procedure, followed by salting out and purification with a C18 solid-phase extraction column as interference removal clean-up. Subsequently, collected supernatant was subjected to dispersive liquid-liquid microextraction. Response surface methodology based on central composite design was employed to optimize conditions in the microextraction procedure. Under the optimum conditions, satisfactory analytical performance with recoveries ranging from 63.22 to 107.6% were achieved in different types of cereals and beans, as well as desirable precisions (0.81-8.13%). Limits of detections and quantifications for these six mycotoxins ranging from 0.03 to 13 μg/kg and 0.22 to 44 μg/kg, respectively, were obtained. Finally, the established method was successfully validated by four certified reference materials (P = 0.897 > 0.05) and applied to 79 samples from local markets.
Collapse
Affiliation(s)
- Jian Zhou
- College of Chemical Engineering, Zhejiang University of Technology, Zhejiang, China.,Lab of Physicochemical Research, Department of Physicochemical & Toxicology, Zhejiang Provincial Center for Disease Control and Prevention, Zhejiang, China
| | - Jiao-Jiao Xu
- Lab of Physicochemical Research, Department of Physicochemical & Toxicology, Zhejiang Provincial Center for Disease Control and Prevention, Zhejiang, China
| | - Bai-Fen Huang
- Lab of Physicochemical Research, Department of Physicochemical & Toxicology, Zhejiang Provincial Center for Disease Control and Prevention, Zhejiang, China
| | - Zeng-Xuan Cai
- Lab of Physicochemical Research, Department of Physicochemical & Toxicology, Zhejiang Provincial Center for Disease Control and Prevention, Zhejiang, China
| | - Yi-Ping Ren
- College of Chemical Engineering, Zhejiang University of Technology, Zhejiang, China.,National Center for Food Safety Risk Assessment Application Technology Cooperation Center, Yangtze Delta Region Institute of Tsinghua University, Zhejiang, China
| |
Collapse
|
28
|
Is Gamma Radiation Suitable to Preserve Phenolic Compounds and to Decontaminate Mycotoxins in Aromatic Plants? A Case-Study with Aloysia citrodora Paláu. Molecules 2017; 22:molecules22030347. [PMID: 28241497 PMCID: PMC6155410 DOI: 10.3390/molecules22030347] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/16/2017] [Accepted: 02/20/2017] [Indexed: 11/24/2022] Open
Abstract
This study aimed to determine the effect of gamma radiation on the preservation of phenolic compounds and on decontamination of dry herbs in terms of ochratoxin A (OTA) and aflatoxin B1 (AFB1), using Aloysia citrodora Paláu as a case study. For this purpose, artificially contaminated dry leaves were submitted to gamma radiation at different doses (1, 5, and 10 kGy; at dose rate of 1.7 kGy/h). Phenolic compounds were analysed by HPLC-DAD-ESI/MS and mycotoxin levels were determined by HPLC-fluorescence. Eleven phenolic compounds were identified in the samples and despite the apparent degradation of some compounds (namely verbasoside), 1 and 10 kGy doses point to a preservation of the majority of the compounds. The mean mycotoxin reduction varied between 5.3% and 9.6% for OTA and from 4.9% to 5.2% for AFB1. It was not observed a significant effect of the irradiation treatments on mycotoxin levels, and a slight degradation of the phenolic compounds in the irradiated samples was observed.
Collapse
|
29
|
Kolakowski B, O'Rourke SM, Bietlot HP, Kurz K, Aweryn B. Ochratoxin A Concentrations in a Variety of Grain-Based and Non-Grain-Based Foods on the Canadian Retail Market from 2009 to 2014. J Food Prot 2016; 79:2143-2159. [PMID: 28221957 DOI: 10.4315/0362-028x.jfp-16-051] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The extent of ochratoxin A (OTA) contamination of domestically produced foods sold across Canada was determined from 2009 to 2014 with sampling and testing occurring each fiscal year. Cereal-based, fruit-based, and soy-based food samples (n = 6,857) were analyzed. Almost half of the samples (3,200; 47%) did not contain detectable concentrations of OTA. The remaining 3,657 samples contained OTA at 0.040 to 631 ng/g. Wheat, oats, milled products of other grains (such as rye and buckwheat), and to a lesser extent corn products and their derived foods were the most significant potential sources of OTA exposure for the Canadian population. Wine, grape juice, soy products, beer, dairy-based infant formula, and licorice candy were not significant contributors to OTA consumption. Spices had the highest OTA concentrations; but because so little is ingested, these foods are not considered to be a significant source of OTA. In contrast, infant formulas and cereals can be important dietary sources of OTA. Infant cereals containing oats and infant formulas containing soy had detectable concentrations of OTA, some of which exceeded the proposed Canadian guidelines. The prevalence and concentrations of OTA in major crops (wheat, corn, and oats) varied widely across years. Because these foods were purchased at retail stores, no information was available on the OTA concentrations in the raw materials, the storage conditions before purchase of the samples, or the origin of the ingredients (may include blends of raw materials from different years and/or different geographical regions of Canada); therefore, impact of these factors could not be assessed. Overall, 2.3% of the samples exceeded the proposed Canadian OTA regulatory limits and 2.7% exceeded the current European Union (EU) OTA regulatory limits. These results are consistent with a Health Canada exposure assessment published in 2010, despite the inclusion of a wider range of products and confirm the safety of foods widely available across Canada.
Collapse
Affiliation(s)
- Beata Kolakowski
- Canadian Food Inspection Agency, 1400 Merivale Road, Ottawa, Ontario, Canada K1A 0Y9
| | - Sarah M O'Rourke
- Canadian Food Inspection Agency, 1400 Merivale Road, Ottawa, Ontario, Canada K1A 0Y9
| | - Henri P Bietlot
- Canadian Food Inspection Agency, 1400 Merivale Road, Ottawa, Ontario, Canada K1A 0Y9
| | - Karl Kurz
- Canadian Food Inspection Agency, 1400 Merivale Road, Ottawa, Ontario, Canada K1A 0Y9
| | - Barbara Aweryn
- Canadian Food Inspection Agency, 1400 Merivale Road, Ottawa, Ontario, Canada K1A 0Y9
| |
Collapse
|
30
|
Manda P, Adanou KM, Ardjouma D, Adepo AJB, Dano DS. Occurrence of ochratoxin A in spices commercialized in Abidjan (Côte d'Ivoire). Mycotoxin Res 2016; 32:137-43. [PMID: 27040819 DOI: 10.1007/s12550-016-0248-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/20/2016] [Accepted: 03/22/2016] [Indexed: 10/22/2022]
Abstract
Ochratoxin A (OTA) is a mycotoxin produced mostly by several species of Aspergillus and Penicillium. OTA is nephrotoxic in all animal species in which it has been tested and is cancerogenic in rodents. It is associated with Balkan endemic nephropathy. It is naturally present in many crop products such as cereals (barley, wheat, maize) and dried fruits, spices, coffee, wine, olives, and cocoa. The aim of this study was to assess the contamination of three Ivoirian spices with OTA (ginger, chili, and pepper) widely consumed by the population. A total of 90 spice samples (ginger: n = 30; chili: n = 30; pepper n = 30) was taken from various sales outlets of Abidjan. OTA was quantified using an HPLC apparatus coupled with a fluorimetric detector. The chili and ginger samples were contaminated with OTA at a mean concentration of 57.48 ± 174 and 0.12 ± 0.15 μg/kg, respectively. No contamination of the pepper samples was detected. Eight (26.67 %) of the chili samples exceeded the maximum limit of 15 μg/kg established by European regulation. These results should serve as an alert on the risk to the consumer population of these products that are highly contaminated with OTA.
Collapse
Affiliation(s)
- Pierre Manda
- Laboratoire de Toxicologie et Hygiène Agro-Industrielle, UFR Sciences Pharmaceutiques et Biologiques, Université Félix Houphouët Boigny, BPV 34, Abidjan, Côte d'Ivoire.
| | - Ketty Michele Adanou
- Laboratoire de Toxicologie et Hygiène Agro-Industrielle, UFR Sciences Pharmaceutiques et Biologiques, Université Félix Houphouët Boigny, BPV 34, Abidjan, Côte d'Ivoire
| | - Dembelé Ardjouma
- Laboratoire Central d'Agrochimie et d'Ecotoxicologie, Laboratoire National pour le Développement Agricole, Abidjan, Côte d'Ivoire
| | - Aholia Jean Baptiste Adepo
- Laboratoire de Toxicologie et Hygiène Agro-Industrielle, UFR Sciences Pharmaceutiques et Biologiques, Université Félix Houphouët Boigny, BPV 34, Abidjan, Côte d'Ivoire
| | - Djédjé Sébastien Dano
- Laboratoire de Toxicologie et Hygiène Agro-Industrielle, UFR Sciences Pharmaceutiques et Biologiques, Université Félix Houphouët Boigny, BPV 34, Abidjan, Côte d'Ivoire
| |
Collapse
|
31
|
Ochratoxin A Detection on Antibody- Immobilized on BSA-Functionalized Gold Electrodes. PLoS One 2016; 11:e0160021. [PMID: 27467684 PMCID: PMC4965031 DOI: 10.1371/journal.pone.0160021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/12/2016] [Indexed: 11/21/2022] Open
Abstract
Ochratoxin A (OTA)—a toxin produced by Aspergillus carbonarius, Aspergillus ochraceus, and Penicillium verrucosum—is one of the most-abundant food-contaminating mycotoxins. To avoid the risk of OTA consumption for humans and animals, the rapid detection and quantitation of OTA level in different commodities are of great importance. In this work, an impedimetric immunosensor for ochratoxin A (OTA) detection, a common toxic botanical contaminant, was developed via the immobilization of anti-OTA antibody on bovine serum albumin modified gold electrodes. A four-step reaction protocol was tested to modify the gold electrode and obtain the sensing substrate. All the steps of the immunosensor elaboration and also the immunochemical reaction between surface-bound antibody and ochratoxin A were analyzed using cyclic voltammetry and electrochemical impedance spectroscopy. Modification of the impedance due to the specific antigen-antibody reaction at immunosensor surface, was used in order to detect ochratoxin A. Linear proportionality of the charge transfer resistance to the concentration of OTA allows ochratoxin A detection in the range of 2.5–100 ng/mL.
Collapse
|
32
|
Determination of Neomycin in Aquatic Products Using an Immunoaffinity Column Coupled to High-Performance Liquid Chromatography. FOOD ANAL METHOD 2016. [DOI: 10.1007/s12161-016-0589-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
33
|
A reliable screening of mycotoxins and pesticide residues in paprika using ultra-high performance liquid chromatography coupled to high resolution Orbitrap mass spectrometry. Food Control 2016. [DOI: 10.1016/j.foodcont.2015.09.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
34
|
Matsuda R, Rodriguez E, Suresh D, Hage DS. Chromatographic immunoassays: strategies and recent developments in the analysis of drugs and biological agents. Bioanalysis 2015; 7:2947-66. [PMID: 26571109 PMCID: PMC4820777 DOI: 10.4155/bio.15.206] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
A chromatographic immunoassay is a technique in which an antibody or antibody-related agent is used as part of a chromatographic system for the isolation or measurement of a specific target. Various binding agents, detection methods, supports and assay formats have been developed for this group of methods, and applications have been reported that range from drugs, hormones and herbicides to peptides, proteins and bacteria. This review discusses the general principles and applications of chromatographic immunoassays, with an emphasis being given to methods and formats that have been developed for the analysis of drugs and biological agents. The relative advantages or limitations of each format are discussed. Recent developments and research in this field, as well as possible future directions, are also considered.
Collapse
Affiliation(s)
- Ryan Matsuda
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588-0304, USA
| | - Elliott Rodriguez
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588-0304, USA
| | - Doddavenkatanna Suresh
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588-0304, USA
- Home Department: Department of Chemistry, Tumkur University, Tumkur, Karnataka 572103, India
| | - David S Hage
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588-0304, USA
| |
Collapse
|
35
|
Wang C, Qian J, Wang K, Yang X, Liu Q, Hao N, Wang C, Dong X, Huang X. Colorimetric aptasensing of ochratoxin A using Au@Fe3O4 nanoparticles as signal indicator and magnetic separator. Biosens Bioelectron 2015; 77:1183-91. [PMID: 26583358 DOI: 10.1016/j.bios.2015.11.004] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/23/2015] [Accepted: 11/02/2015] [Indexed: 01/16/2023]
Abstract
Gold nanoparticles (Au NPs) doped Fe3O4 (Au@Fe3O4) NPs have been synthesized by a facile one-step solvothermal method. The peroxidase-like activity of Au@Fe3O4 NPs was effectively enhanced due to the synergistic effect between the Fe3O4 NPs and Au NPs. On this basis, an efficient colorimetric aptasensor has been developed using the intrinsic dual functionality of the Au@Fe3O4 NPs as signal indicator and magnetic separator. Initially, the amino-modified aptamer specific for a typical mycotoxin, ochratoxin A (OTA), was surface confined on the amino-terminated glass beads surafce using glutaraldehyde as a linker. Subsequently, the amino-modified capture DNA (cDNA) was labeled with the amino-functionalized Au@Fe3O4 NPs and the aptasensor was thus fabricated through the hybridization reaction between cDNA and the aptamers. While upon OTA addition, aptamers preferred to form the OTA-aptamer complex and the Au@Fe3O4 NPs linked on the cDNA were released into the bulk solution. Through a simple magnetic separation, the collected Au@Fe3O4 NPs can produce a blue colored solution in the presence of 3,3',5,5'-tetramethylbenzidine and H2O2. When the reaction was terminated by addition of H(+) ions, the blue product could be changed into a yellow one with higher absorption intensity. This colorimetric aptasensor can detect as low as 30 pgmL(-1) OTA with high specificity. To the best of our knowledge, the present colorimetric aptasensor is the first attempt to use the peroxidase-like activity of nanomaterial for OTA detection, which may provide an acttractive path toward routine quality control of food safety.
Collapse
Affiliation(s)
- Chengquan Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jing Qian
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Kun Wang
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Xingwang Yang
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Qian Liu
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Nan Hao
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Chengke Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Xiaoya Dong
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Xingyi Huang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
36
|
Ostry V, Malir F, Dofkova M, Skarkova J, Pfohl-Leszkowicz A, Ruprich J. Ochratoxin A Dietary Exposure of Ten Population Groups in the Czech Republic: Comparison with Data over the World. Toxins (Basel) 2015; 7:3608-35. [PMID: 26378578 PMCID: PMC4591665 DOI: 10.3390/toxins7093608] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 08/31/2015] [Accepted: 09/02/2015] [Indexed: 12/04/2022] Open
Abstract
Ochratoxin A is a nephrotoxic and renal carcinogenic mycotoxin and is a common contaminant of various food commodities. Eighty six kinds of foodstuffs (1032 food samples) were collected in 2011–2013. High-performance liquid chromatography with fluorescence detection was used for ochratoxin A determination. Limit of quantification of the method varied between 0.01–0.2 μg/kg depending on the food matrices. The most exposed population is children aged 4–6 years old. Globally for this group, the maximum ochratoxin A dietary exposure for “average consumer” was estimated at 3.3 ng/kg bw/day (lower bound, considering the analytical values below the limit of quantification as 0) and 3.9 ng/kg bw/day (middle bound, considering the analytical values below the limit of quantification as 1/2 limit of quantification). Important sources of exposure for this latter group include grain-based products, confectionery, meat products and fruit juice. The dietary intake for “high consumers” in the group 4–6 years old was estimated from grains and grain-based products at 19.8 ng/kg bw/day (middle bound), from tea at 12.0 ng/kg bw/day (middle bound) and from confectionery at 6.5 ng/kg bw/day (middle bound). For men aged 18–59 years old beer was the main contributor with an intake of 2.60 ng/kg bw/day (“high consumers”, middle bound). Tea and grain-based products were identified to be the main contributors for dietary exposure in women aged 18–59 years old. Coffee and wine were identified as a higher contributor of the OTA intake in the population group of women aged 18–59 years old compared to the other population groups.
Collapse
Affiliation(s)
- Vladimir Ostry
- National Reference Center for Microfungi and Mycotoxins in Food Chains, Center of Health, Nutrition and Food in Brno, National Institute of Public Health in Prague, 61242 Brno, Czech Republic.
| | - Frantisek Malir
- Department of Biology, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic.
| | - Marcela Dofkova
- National Reference Center for Microfungi and Mycotoxins in Food Chains, Center of Health, Nutrition and Food in Brno, National Institute of Public Health in Prague, 61242 Brno, Czech Republic.
| | - Jarmila Skarkova
- National Reference Center for Microfungi and Mycotoxins in Food Chains, Center of Health, Nutrition and Food in Brno, National Institute of Public Health in Prague, 61242 Brno, Czech Republic.
| | - Annie Pfohl-Leszkowicz
- Department Bioprocess & Microbial Systems, Laboratory Chemical Engineering, INP/ENSA Toulouse, University of Toulouse, UMR 5503 CNRS/INPT/UPS, 31320 Auzeville-Tolosane, France.
| | - Jiri Ruprich
- National Reference Center for Microfungi and Mycotoxins in Food Chains, Center of Health, Nutrition and Food in Brno, National Institute of Public Health in Prague, 61242 Brno, Czech Republic.
| |
Collapse
|
37
|
Selvaraj JN, Wang Y, Zhou L, Zhao Y, Xing F, Dai X, Liu Y. Recent mycotoxin survey data and advanced mycotoxin detection techniques reported from China: a review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2015; 32:440-52. [PMID: 25604871 DOI: 10.1080/19440049.2015.1010185] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mycotoxin contamination in agro-food systems has been a serious concern over the last few decades in China, where the Ministry of Health has set maximum limits for mycotoxins in different agro-products. Overall survey data show that aflatoxin contamination in infant cereals, edible oils, raw milk, ginger and its related products are far below Chinese regulatory limits. The absence of aflatoxin M1 contamination in infant milk powders indicates a high standard of control. Aflatoxins in liquorice roots and lotus seeds have been reported for the first time. For deoxynivalenol, high levels were found in wheat grown in the Yangtze Delta region, which is more prone to rainfall, supporting Fusarium infection. The emerging mycotoxins beauvericins and enniatins have been reported in the medicinal herbs in China. Ochratoxin A in wine was below the European Union regulatory limits, but fumonisins in maize need to be monitored and future regulatory control considered. Overall from all the survey data analysed in this review, it can be concluded that 92% of the samples analysed had mycotoxin levels below the Chinese regulatory limits. In terms of detection techniques in recent years, immuno-based assays have been developed largely due to their excellent sensitivity and ease of use. Assays targeting multiple mycotoxins like aflatoxins, ochratoxin A, zearalenone and deoxynivalenol have been reported using microarrays and suspension arrays targeting in particular maize, rice and peanuts. Aptamer-based assays against ochratoxin A and aflatoxins B1 and B2 have been developed involving fluorescence detection; and surface plasmon resonance immunosensors have been developed targeting wine, maize, wheat, wild rye, hay and peanut oil with high sensitivity (> 0.025 ng l(-1)). Commercialisation of these technologies is much needed for wider usage in the coming years.
Collapse
Affiliation(s)
- Jonathan Nimal Selvaraj
- a Institute of Agro-Products Processing Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing , Ministry of Agriculture , Beijing , China
| | | | | | | | | | | | | |
Collapse
|
38
|
Berthiller F, Brera C, Crews C, Iha M, Krsha R, Lattanzio V, MacDonald S, Malone R, Maragos C, Solfrizzo M, Stroka J, Whitaker T. Developments in mycotoxin analysis: an update for 2013-2014. WORLD MYCOTOXIN J 2015. [DOI: 10.3920/wmj2014.1840] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review highlights developments in the determination of mycotoxins over a period between mid-2013 and mid-2014. It continues in the format of the previous articles of this series, emphasising on analytical methods to determine aflatoxins, Alternaria toxins, ergot alkaloids, fumonisins, ochratoxins, patulin, trichothecenes and zearalenone. The importance of proper sampling and sample preparation is briefly addressed in a dedicated section, while another chapter summarises new methods used to analyse botanicals and spices. As LC-MS/MS instruments are becoming more and more widespread in the determination of multiple classes of mycotoxins, another section is focusing on such newly developed multi-mycotoxin methods. While the wealth of published methods during the 12 month time span makes it impossible to cover every single one, this exhaustive review nevertheless aims to address and briefly discuss the most important developments and trends.
Collapse
Affiliation(s)
- F. Berthiller
- Department for Agrobiotechnology (IFA-Tulln), Christian Doppler Laboratory for Mycotoxin Metabolism and Center for Analytical Chemistry, University of Natural Resources and Life Sciences, Vienna, Konrad Lorenz Str. 20, 3430 Tulln, Austria
| | - C. Brera
- Department of Veterinary Public Health and Food Safety — GMO and Mycotoxins Unit, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - C. Crews
- The Food and Environment Research Agency, Sand Hutton, York YO41 1LZ, United Kingdom
| | - M.H. Iha
- Laboratório I de Ribeiro Preto, Instituto Adolfo Lutz, CEP 14085-410, Ribeiro Preto, SP, Brazil
| | - R. Krsha
- Department for Agrobiotechnology (IFA-Tulln), Christian Doppler Laboratory for Mycotoxin Metabolism and Center for Analytical Chemistry, University of Natural Resources and Life Sciences, Vienna, Konrad Lorenz Str. 20, 3430 Tulln, Austria
| | - V.M.T. Lattanzio
- National Research Council, Institute of Sciences of Food Production, Via Amendola, 122/O, 70126 Bari, Italy
| | - S. MacDonald
- The Food and Environment Research Agency, Sand Hutton, York YO41 1LZ, United Kingdom
| | - R.J. Malone
- Trilogy Analytical Laboratory, 870 Vossbrink Dr, Washington, MO 63090, USA
| | - C. Maragos
- USDA, ARS National Center for Agricultural Utilization Research, 1815 N University St, Peoria, IL 61604, USA
| | - M. Solfrizzo
- National Research Council, Institute of Sciences of Food Production, Via Amendola, 122/O, 70126 Bari, Italy
| | - J. Stroka
- European Commission, Joint Research Centre, Institute for Reference Materials and Measurements (IRMM), Retieseweg 111, 2440 Geel, Belgium
| | - T.B. Whitaker
- Biological and Agricultural Engineering Department, N.C. State University, Raleigh, NC 27695-7625, USA
| |
Collapse
|
39
|
Zhu Z, Feng M, Zuo L, Zhu Z, Wang F, Chen L, Li J, Shan G, Luo SZ. An aptamer based surface plasmon resonance biosensor for the detection of ochratoxin A in wine and peanut oil. Biosens Bioelectron 2014; 65:320-6. [PMID: 25461176 DOI: 10.1016/j.bios.2014.10.059] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 10/20/2014] [Accepted: 10/27/2014] [Indexed: 12/31/2022]
Abstract
Ochratoxin A (OTA), as a kind of chlorophenolic mycotoxin, exist widely in plant origin food and is harmful to human. Herein, a surface plasmon resonance (SPR) biosensor using an anti-OTA aptamer immobilized sensor chip was developed to measure ochratoxin A (OTA) quantificationally through a straightforward direct binding assay. The streptavidin protein as a crosslinker was immobilized onto the surface of a sensor chip and the biotin-aptamer was captured through streptavidin-biotin interaction. The biosensor exhibited a detection range from 0.094 to 100ng/mL (linear range from 0.094 to 10ng/mL) of OTA with a lower detection limit of 0.005ng/mL. Detection of OTA in wine and peanut oil was further performed in the SPR biosensor using simple liquid-liquid extraction for sample pretreatments. Recoveries of ochratoxin A from spiked samples ranged from 86.9% to 116.5% and coefficients of variation (CVs) ranged from 0.2% to 6.9%. The developed methods in our studies showed good analytical performances with limits of detection much lower than the maximum residue limit, as well as a good reproducibility and stability.
Collapse
Affiliation(s)
- Zhiling Zhu
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029 China; Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050 China
| | - Mengxue Feng
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029 China; Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050 China
| | - Limin Zuo
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050 China
| | - Zhentai Zhu
- State Key Laboratory of NBC Protection for Civilian, Beijing, China
| | - Fengwei Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing, China
| | - Long Chen
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029 China
| | - Jinghua Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050 China
| | - Guangzhi Shan
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050 China.
| | - Shi-Zhong Luo
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029 China.
| |
Collapse
|