1
|
Andrade CFDS, Souza MN, Dantas IIDS, Fonseca ASK, Ikuta N, Kipper D, Lunge VR. Salmonella enterica Enteritidis and Heidelberg serotype-specific molecular detection in poultry samples by a rapid isothermal method. Br Poult Sci 2025; 66:367-373. [PMID: 39527500 DOI: 10.1080/00071668.2024.2419623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 09/11/2024] [Indexed: 11/16/2024]
Abstract
1. Loop-mediated isothermal amplification (LAMP) assays were developed to detect Salmonella enterica subspecies enterica serotypes Enteritidis and Heidelberg in poultry farms. These serotype-specific methods were evaluated in comparison with PCR in the analysis of different Salmonella spp. serotypes from a culture collection and poultry farm samples.2. The results demonstrated the specific amplification of the genetic targets safA in all S. Enteritidis (n = 10) and ACF69659 in all S. Heidelberg (n = 36) isolates from the culture collection. The remaining isolates from other Salmonella spp. serotypes (n = 84) and bacterial species (n = 8) were negative in both LAMP assays.3. The methods detected DNAs from S. Enteritidis and S. Heidelberg after a single-step pre-enrichment in buffered peptone water of the poultry samples, which agreed with previously developed PCR methods to detect these same two serotypes.4. In conclusion, LAMP assays were useful for rapid serotype-specific detection, being suitable for surveillance purposes in resource-limited environments such as poultry farms.
Collapse
Affiliation(s)
- C F D S Andrade
- Molecular Diagnostics Laboratory, Lutheran University of Brazil (ULBRA), Canoas, Brazil
| | - M N Souza
- Molecular Diagnostics Laboratory, Lutheran University of Brazil (ULBRA), Canoas, Brazil
| | - I I D S Dantas
- Molecular Diagnostics Laboratory, Lutheran University of Brazil (ULBRA), Canoas, Brazil
| | | | - N Ikuta
- Simbios Biotecnologia, Cachoeirinha, Brazil
| | - D Kipper
- Simbios Biotecnologia, Cachoeirinha, Brazil
| | - V R Lunge
- Molecular Diagnostics Laboratory, Lutheran University of Brazil (ULBRA), Canoas, Brazil
- Simbios Biotecnologia, Cachoeirinha, Brazil
| |
Collapse
|
2
|
Mendes CR, Zortea AVL, de Souza Laurentino G, de Lima GHT, de Freitas PLCC, Dilarri G, Bidoia ED, Montagnolli RN. Anise essential oil immobilized in chitosan microparticles: a novel bactericidal material for food protection. Int Microbiol 2025; 28:161-175. [PMID: 39316255 DOI: 10.1007/s10123-024-00594-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 08/20/2024] [Accepted: 09/18/2024] [Indexed: 09/25/2024]
Abstract
Foodborne infections in humans are one of the major concerns of the food industries, especially for minimally processed foods (MPF). Thereby, the packaging industry applies free chlorine in the sanitization process, ensuring the elimination of any fecal coliforms or pathogenic microorganisms. However, free chlorine's propensity to react with organic matter, forming toxic compounds such as trihalomethanes and haloacetic acid. Therefore, the present work aimed to synthesize a novel organic biomaterial as an alternative to free chlorine. Chitosan microparticles were produced, with Pimpinella anisum (anise) essential oil immobilized in the biopolymer matrix (MPsQTO). The characterization of this biomaterial was done through GC-MS/MS, FT-IR, and SEM. Antimicrobial assays proved that the MPsQTO presented antibacterial activity for Escherichia coli, Salmonella typhi, Pseudomonas aeruginosa, and Bacillus subtilis at 300 µL mL-1 of concentration. The fluorescence microscope also showed the MPsQTO targets the cytoplasmatic membrane, which is responsible for cell death in the first minutes of contact. Studies with the mutant B. subtilis (amy::pspac-ftsZ-gfpmut1) and the Saccharomyces cerevisiae D7 also proved that the biomaterial did not affect the genetic material and did not have any mutagenic/carcinogenic effect on the cells. The sanitization assays with pumpkin MPF proved that the MPsQTO is more effective than free chlorine, increasing the shelf-life of the MPF. Consequently, the novel biomaterial proposed in this work is a promising alternative to traditional chemical sanitizers.
Collapse
Affiliation(s)
- Carolina Rosai Mendes
- Department of General and Applied Biology, Sao Paulo State University (UNESP), Avenida 24-A 1515, Rio Claro-SP, Postal Code 13506-900, Brazil
| | - Antonella Valentina Lazzari Zortea
- Department of Fisheries Engineering and Biological Sciences, Santa Catarina State University (UDESC), Rua Coronel Fernandes Martins 270, Laguna-SC, Postal Code 88790-000, Brazil
| | - Gabriel de Souza Laurentino
- Department of Fisheries Engineering and Biological Sciences, Santa Catarina State University (UDESC), Rua Coronel Fernandes Martins 270, Laguna-SC, Postal Code 88790-000, Brazil
| | - Guilherme Henrique Teixeira de Lima
- Department of Fisheries Engineering and Biological Sciences, Santa Catarina State University (UDESC), Rua Coronel Fernandes Martins 270, Laguna-SC, Postal Code 88790-000, Brazil
| | - Pietro Luis Coletti Casemiro de Freitas
- Department of Fisheries Engineering and Biological Sciences, Santa Catarina State University (UDESC), Rua Coronel Fernandes Martins 270, Laguna-SC, Postal Code 88790-000, Brazil
| | - Guilherme Dilarri
- Department of Fisheries Engineering and Biological Sciences, Santa Catarina State University (UDESC), Rua Coronel Fernandes Martins 270, Laguna-SC, Postal Code 88790-000, Brazil.
- Multicentric Graduate Program in Biochemistry and Molecular Biology (PMBqBM), Santa Catarina State University (UDESC), Avenida Luiz de Camões 2090, Lages-SC, Postal Code 88520-000, Brazil.
| | - Ederio Dino Bidoia
- Department of General and Applied Biology, Sao Paulo State University (UNESP), Avenida 24-A 1515, Rio Claro-SP, Postal Code 13506-900, Brazil
| | - Renato Nallin Montagnolli
- Department of Natural Sciences, Mathematics and Education, Federal University of Sao Carlos (UFSCar), SP-330 Km 174, Araras-SP, Brazil
| |
Collapse
|
3
|
Thapa S, Ghimire N, Chen FC. Rapid Quantification of Salmonella Typhimurium in Ground Chicken Using Immunomagnetic Chemiluminescent Assay. Microorganisms 2025; 13:871. [PMID: 40284706 PMCID: PMC12029590 DOI: 10.3390/microorganisms13040871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/03/2025] [Accepted: 04/08/2025] [Indexed: 04/29/2025] Open
Abstract
Many countries have established regulatory frameworks to monitor and mitigate Salmonella contamination in poultry products. The ability to rapidly quantify Salmonella is critical for poultry processors to facilitate early detection, implement corrective measures, and enhance product safety. This study aimed to develop an Immunomagnetic Chemiluminescent Assay (IMCA) for the quantification of Salmonella Typhimurium in ground chicken. Immunomagnetic microbeads functionalized with monoclonal antibodies were employed to selectively capture and concentrate Salmonella from ground chicken samples. A biotin-labeled monoclonal antibody, followed by an avidin-horseradish peroxidase conjugate, was used to bind the captured bacteria and initiate a chemiluminescent reaction catalyzed by peroxidase. Light emission was quantified in relative light units (RLUs) using two luminometers. Ground chicken samples were inoculated with a four-strain S. Typhimurium cocktail ranging from 0 to 3.5 Log CFU/g. Bacterial concentrations were confirmed using the Most Probable Number (MPN) method. Samples underwent enrichment in Buffered Peptone Water (BPW) supplemented with BAX MP Supplement at 42 °C for 6 and 8 h before analysis via IMCA. A linear regression analysis demonstrated that the optimal quantification of Salmonella was achieved at the 8 h enrichment period (R2 ≥ 0.89), as compared to the 6 h enrichment. The limit of quantification (LOQ) was determined to be below 1 CFU/g. A strong positive correlation (R2 ≥ 0.88) was observed between IMCA and MPN results, indicating methodological consistency. These findings support the application of IMCA as a rapid and reliable method for the detection and quantification of Salmonella in ground chicken.
Collapse
Affiliation(s)
- Sandhya Thapa
- Department of Food and Animal Sciences, Tennessee State University, Nashville, TN 37209, USA; (S.T.)
| | - Niraj Ghimire
- Department of Food and Animal Sciences, Tennessee State University, Nashville, TN 37209, USA; (S.T.)
| | - Fur-Chi Chen
- Department of Food and Animal Sciences, Tennessee State University, Nashville, TN 37209, USA; (S.T.)
- Department of Human Sciences, Tennessee State University, Nashville, TN 37209, USA
| |
Collapse
|
4
|
Joshi R, Ahmadi H, Hasan Kashem MN, Afnan F, Parameswaran S, Chen CC, Levent G, Li W. Rapid isolation and recovery of Salmonella using hollow glass microspheres coated with multilayered nanofilms. Mater Today Bio 2025; 31:101472. [PMID: 39896293 PMCID: PMC11787436 DOI: 10.1016/j.mtbio.2025.101472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/19/2024] [Accepted: 01/08/2025] [Indexed: 02/04/2025] Open
Abstract
Timely isolation, recovery, and identification of Salmonella from food samples is essential for prevention and control of foodborne Salmonella outbreaks. Traditional culture-based Salmonella isolation and serotyping techniques are time consuming and labor intensive. Despite the progress of innovative microfluidic or immunomagnetic isolation techniques, sophisticated lab equipment and microfabrication are often needed. Here, we present a novel, rapid yet simple method for isolation and recovery of Salmonella from mixed bacterial populations in food matrices and blood. This method utilizes self-floating hollow glass microspheres (HGMS) coated with biodegradable layer-by-layer (LbL) films and Salmonella specific antibodies. The isolation and recovery process can be completed in less than 2 h, without any sophisticated laboratory equipment or external force. In this study, we demonstrate that Salmonella can be captured due to antigen-antibody interactions on the surface of HGMS, allowing them to float to the top. The HGMS can then be washed and subjected to enzymatic degradation of the LbL film to recover the captured bacteria. The recovered Salmonella can subsequently be grown on selective agar plates for further analysis. Recovery efficiency of up to 22 % and detection limit of 100 CFU/mL were achieved. This method is expected to provide a viable alternative to traditional isolation techniques, especially in resource limited areas.
Collapse
Affiliation(s)
- Rutwik Joshi
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, USA
| | - Hesaneh Ahmadi
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, USA
| | | | - Fariha Afnan
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, USA
| | - Siva Parameswaran
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, USA
| | - Chau-Chyun Chen
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, USA
| | - Gizem Levent
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, USA
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Wei Li
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
5
|
Wang Y, Dong H, Yu H, Yuan S, Kawasaki H, Guo Y, Yao W. Single-Port Fluorescence Immunoassay for Concurrent Quantification of Live and Dead Bacteria: A Strategy Based on Extracellular Nucleases and DNase I. Molecules 2025; 30:1374. [PMID: 40142149 PMCID: PMC11944870 DOI: 10.3390/molecules30061374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/12/2025] [Accepted: 03/17/2025] [Indexed: 03/28/2025] Open
Abstract
Bacteria are the primary culprits of global foodborne diseases, making bacterial detection one of the most critical aspects of food safety. The quantification of viable and dead bacteria is typically achieved through distinct methodologies, such as culture-based methods and molecular biological techniques. These approaches often have non-overlapping requirements in terms of sample pre-treatment and detection equipment. However, in this presented work, bacterial extracellular nucleases and DNase I were utilized to achieve the simultaneous quantification of both live and dead bacteria in a single well of a microplate. The detection limits of the method for live and dead bacteria are estimated to be 7.13 × 105 CFU/mL and 3.54 × 105 CFU/mL, respectively. In the application of detecting bacteria in pickled pork stewed bamboo shoot soup, the detection limit for live bacteria can be reduced to as low as 102 CFU/mL within 24 h after enrichment cultivation.
Collapse
Affiliation(s)
- Yuhan Wang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Han Dong
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hang Yu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shaofeng Yuan
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hideya Kawasaki
- Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita 564-8680, Japan
| | - Yahui Guo
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
6
|
Chen M, Peng M, Yuan M, Huang C, Liu J, Wu Z, Chen W, Hu S, Liu Q, Dong J, Ling L. Detection of Salmonella enterica in food using targeted mass spectrometry. Food Chem 2025; 465:141985. [PMID: 39549512 DOI: 10.1016/j.foodchem.2024.141985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/11/2024] [Accepted: 11/07/2024] [Indexed: 11/18/2024]
Abstract
The high prevalence of Salmonella enterica necessitates rapid and efficient detection methods. Targeted mass spectrometry (MS) using multiple reaction monitoring (MRM) and parallel reaction monitoring (PRM) has become a promising technique with improved specificity and sensitivity. We develop a novel targeted MS method for detecting S. enterica in food based on peptide biomarkers. Using a combination of four peptide biomarkers, this newly developed method could accurately distinguish S. enterica from other conventional food-borne pathogens. When combined with buoyant density centrifugation (BDC), Salmonella was efficiently separated from food matrices. Based on this discovery, this method was successfully applied to detect S. enterica in both artificially and naturally contaminated food samples, comparable to the culture method. These results demonstrate the potential of the targeted MS method in various food categories and are expected to be an alternative approach for S. enterica detection in food.
Collapse
Affiliation(s)
- Mengqi Chen
- Guangzhou Customs Technology Center, Guangzhou 510623, China; School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Miaoxi Peng
- Guangzhou Customs Technology Center, Guangzhou 510623, China
| | - Muyun Yuan
- Guangzhou Customs Technology Center, Guangzhou 510623, China
| | - Chengdong Huang
- Guangzhou Customs Technology Center, Guangzhou 510623, China
| | - Jingwen Liu
- Guangzhou Customs Technology Center, Guangzhou 510623, China
| | - Zuqing Wu
- Guangzhou Customs Technology Center, Guangzhou 510623, China
| | - Wenrui Chen
- Guangzhou Customs Technology Center, Guangzhou 510623, China
| | - Songqing Hu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Qing Liu
- Guangzhou Customs Technology Center, Guangzhou 510623, China
| | - Jie Dong
- Guangzhou Customs Technology Center, Guangzhou 510623, China
| | - Li Ling
- Guangzhou Customs Technology Center, Guangzhou 510623, China.
| |
Collapse
|
7
|
Shen M, Ni C, Yuan J, Zhou X. Phage-ELISA for ultrasensitive detection of Salmonella enteritidis. Analyst 2025; 150:567-575. [PMID: 39817488 DOI: 10.1039/d4an01121j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
The M13 phage carries approximately 5 copies of the pIII protein, each of which is capable of displaying a single-chain variable fragment (scFv) that targets a specific antigen. This feature enables the M13 phage to be widely employed in the construction of scFv libraries, thereby facilitating the identification of antibodies with high specificity and affinity for target antigens. In this study, mice were immunized three times with Salmonella enteritidis (strain C50041) to induce diverse antibodies. The variable region sequences were subsequently amplified by PCR using genome extracted from the mice's splenic cells and fused to the pIII protein to construct the scFv phage display library (C50041-M13-scFv). Through biopanning with the C50041-M13-scFv library, a phage clone (C50041-scFv-4) exhibiting high affinity for the target bacteria was successfully obtained. Moreover, the scFv antibody (scFv-4) derived from C50041-scFv-4 was expressed in a prokaryotic expression system and validated to possess high specificity and affinity for C50041 through in vitro adsorption assays. Additionally, a phage-ELISA method was established: initially, bacteria were immobilized on the bottom surface of a 96-well plate. Next, the positive clone C50041-scFv-4 was introduced to specifically bind to the host cells. Finally, horseradish peroxidase (HRP)-conjugated anti-pVIII antibodies were used to detect the pVIII proteins of the bound phage clones. Owing to the capacity of multiple C50041-scFv-4 probes to simultaneously bind to a single target Salmonella and each phage clone's ability to accommodate hundreds of HRP-labeled antibodies, the proposed phage-ELISA demonstrated remarkable sensitivity (104 CFU mL-1) for detecting Salmonella enteritidis samples. This sensitivity surpasses that of traditional ELISA by one order of magnitude in this study. Our phage-ELISA technology exhibits broad applicability across various biological species and provides an improved and robust platform for pathogen detection including bacteria and viruses.
Collapse
Affiliation(s)
- Mangmang Shen
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China.
| | - Chang Ni
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China.
| | - Jiasheng Yuan
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China.
| | - Xin Zhou
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
8
|
Nazir J, Manzoor T, Saleem A, Gani U, Bhat SS, Khan S, Haq Z, Jha P, Ahmad SM. Combatting Salmonella: a focus on antimicrobial resistance and the need for effective vaccination. BMC Infect Dis 2025; 25:84. [PMID: 39833704 PMCID: PMC11744889 DOI: 10.1186/s12879-025-10478-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/09/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Salmonella infections represent a major global public health concern due to their widespread zoonotic transmission, antimicrobial resistance, and associated morbidity and mortality. This review aimed to summarize the zoonotic nature of Salmonella, the challenges posed by antimicrobial resistance, the global burden of infections, and the need for effective vaccination strategies to mitigate the rising threat of Salmonella. METHODS A systematic review of literature was conducted using databases such as PubMed, Scopus, Web of Science, and Google Scholar. Relevant studies published in English were identified using keywords including Salmonella, vaccination, antimicrobial resistance, and public health. Articles focusing on epidemiology, vaccine development, and strategies to control Salmonella infections were included, while conference abstracts and non-peer-reviewed studies were excluded. RESULTS Salmonella infections result in approximately 95 million global cases annually, with an estimated 150,000 deaths. Regional variations were evident, with higher infection rates in low- and middle-income countries due to poor sanitation and food safety standards. Salmonella Enteritidis and S. Typhimurium were the most prevalent serovars associated with human infections. The review highlighted an alarming rise in multidrug-resistant (MDR) Salmonella strains, particularly due to the overuse of antibiotics in humans and livestock. Despite progress in vaccine development, challenges remain in achieving a universal vaccine that targets diverse Salmonella serovars. Live-attenuated, killed, recombinant, subunit, and conjugate vaccines are currently under development, but limitations such as efficacy, cost, and accessibility persist. CONCLUSIONS Salmonella infections continue to impose a significant burden on global health, exacerbated by rising antimicrobial resistance. There is an urgent need for a multifaceted approach, including improved sanitation, prudent antibiotic use, and the development of affordable, broad-spectrum vaccines. Strengthening surveillance systems and promoting collaborative global efforts are essential to effectively control and reduce the burden of Salmonella.
Collapse
Affiliation(s)
- Junaid Nazir
- Division of Animal Biotechnology, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST Kashmir, Shuhama, J&K, 190006, India
- Department of Clinical Biochemistry, Lovely Professional University, Phagwara, Punjab, India
| | - Tasaduq Manzoor
- Division of Animal Biotechnology, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST Kashmir, Shuhama, J&K, 190006, India
| | - Afnan Saleem
- Division of Animal Biotechnology, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST Kashmir, Shuhama, J&K, 190006, India
| | - Ubaid Gani
- Division of Animal Biotechnology, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST Kashmir, Shuhama, J&K, 190006, India
| | - Sahar Saleem Bhat
- Division of Animal Biotechnology, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST Kashmir, Shuhama, J&K, 190006, India
| | - Shabir Khan
- Division of Animal Biotechnology, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST Kashmir, Shuhama, J&K, 190006, India
| | - Zulfqarul Haq
- Division of Livestock Production and Management, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST Kashmir, Shuhama, J&K, India
| | - Priyanka Jha
- Department of Clinical Biochemistry, Lovely Professional University, Phagwara, Punjab, India.
| | - Syed Mudasir Ahmad
- Division of Animal Biotechnology, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST Kashmir, Shuhama, J&K, 190006, India.
| |
Collapse
|
9
|
Zhang X, Zhu W, Mei L, Zhang S, Liu J, Wang F. Machine Learning-Enhanced Bacteria Detection Using a Fluorescent Sensor Array with Functionalized Graphene Quantum Dots. ACS APPLIED MATERIALS & INTERFACES 2025; 17:3084-3096. [PMID: 39747818 DOI: 10.1021/acsami.4c20078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Pathogenic bacteria are the source of many serious health problems, such as foodborne diseases and hospital infections. Timely and accurate detection of these pathogens is of vital significance for disease prevention, control of epidemic spread, and protection of public health security. Rapid identification of pathogenic bacteria has become a research focus in recent years. In contrast to traditional large-scale detection equipment, the fluorescent sensor array developed in this study can detect bacteria within just five min and is cost-effective. The array employs nitrogen- and sulfur-doped graphene quantum dots (NS-GQDs) synthesized through a simple hydrothermal process, making it environmentally friendly by avoiding toxic metal elements. Functionalized with antibiotics, spectinomycin, kanamycin, and polymyxin B, the NS-GQDs (renamed as S-NS-GQDs, K-NS-GQDs, and B-NS-GQDs) exhibit variable affinities for different bacteria, enabling broad-spectrum detection without targeting specific species. Upon binding with bacteria, the fluorescence intensity of the functionalized NS-GQDs decreases significantly. The sensor array exhibits distinct fluorescence responses to different bacterial species, which can be distinguished by using various machine learning algorithms. The results demonstrate that the platform can quickly and accurately identify and quantify five bacterial species, showing excellent performance in terms of accuracy, sensitivity, and stability. This makes it a promising tool with great practical application prospects in pathogenic bacterial detection.
Collapse
Affiliation(s)
- Xin Zhang
- Hefei University of Technology, Hefei, 230009, China
| | - WeiWei Zhu
- Hefei University of Technology, Hefei, 230009, China
| | - LiangHui Mei
- Hefei University of Technology, Hefei, 230009, China
| | | | - Jian Liu
- Hefei University of Technology, Hefei, 230009, China
| | - Fangbin Wang
- Hefei University of Technology, Hefei, 230009, China
| |
Collapse
|
10
|
Li C, Huang Y, Li S, Li Y, Tan H. Portable foodborne pathogen detection via ratiometric fluorescence nanoprobe for adenosine triphosphate quantification based on DNA-functionalized metal-organic framework. Int J Biol Macromol 2025; 286:138410. [PMID: 39645114 DOI: 10.1016/j.ijbiomac.2024.138410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/25/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
The increasing incidence of foodborne illnesses highlights the need for rapid, sensitive, and portable methods to detect pathogenic bacteria in food. In this work, we develop a portable method that utilizes a ratiometric fluorescence nanoprobe for adenosine triphosphate (ATP) quantification. The nanoprobe is constructed by encapsulating Ru(bpy)32+ within a zirconium-based metal-organic framework, followed by functionalization of double-stranded DNA (dsDNA). This design permits SYBR Green I (SGI) to intercalate into dsDNA, conferring the nanoprobe with dual-emission property. The presence of ATP disrupts dsDNA structure, quenching SGI fluorescence while maintaining Ru(bpy)32+ fluorescence, providing a stable reference signal. This differential response enables the nanoprobe to achieve ratiometric ATP detection with high precision and sensitivity, with a detection limit of 0.63 μM. Since ATP is a reliable biomarker for viable bacterial cells, a portable hydrogel kit was further developed by integrating the ratiometric fluorescence nanoprobe into an agarose hydrogel matrix. The validation of the kit was conducted using a smartphone application for color recognition, enabling the rapid and on-site detection of pathogens in milk samples. The kit exhibits exceptional sensitivity with a detection limit of 10 CFU/mL, making it a promising tool for real-time bacteria detection in food safety monitoring.
Collapse
Affiliation(s)
- Changling Li
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, College of Biological and Food Engineering, Huaihua University, Huaihua 418008, PR China
| | - Yingjie Huang
- Jiangxi Provincial Key Laboratory of Natural and Biomimetic Drugs Research, College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, PR China
| | - Shenghua Li
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, College of Biological and Food Engineering, Huaihua University, Huaihua 418008, PR China.
| | - Yong Li
- Jiangxi Provincial Key Laboratory of Natural and Biomimetic Drugs Research, College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, PR China
| | - Hongliang Tan
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, College of Biological and Food Engineering, Huaihua University, Huaihua 418008, PR China; Jiangxi Provincial Key Laboratory of Natural and Biomimetic Drugs Research, College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, PR China.
| |
Collapse
|
11
|
Byzova NA, Safenkova IV, Gorbatov AA, Biketov SF, Dzantiev BB, Zherdev AV. Lateral Flow Immunosensing of Salmonella Typhimurium Cells in Milk: Comparing Three Sequences of Interactions. Microorganisms 2024; 12:2555. [PMID: 39770758 PMCID: PMC11678374 DOI: 10.3390/microorganisms12122555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
To ensure the safety of foodstuffs, widespread non-laboratory monitoring for pathogenic contaminants is in demand. A suitable technique for this purpose is lateral flow immunoassay (LFIA) which combines simplicity, rapidity, and productivity with specific immune detection. This study considered three developed formats of LFIA for Salmonella Typhimurium, a priority pathogenic contaminant of milk. Common sandwich LFIA with all immunoreagents pre-applied to the test strip (format A) was compared with incubation of the sample and (gold nanoparticle-antibody) conjugate, preceding the lateral flow processes (format B), and sequential passages of the sample and the conjugate along the test strip (format C). Under the chosen conditions, the detection limits and the assay times were 3 × 104, 1 × 105, and 3 × 105 cells/mL, 10, 15, and 20 min for formats A, B, and C, respectively. The selected format A of LFIA was successfully applied to test milk samples. The sample's dilution to a fat content of 1.0% causes pathogen detection, with 70-110% revealing and 1.5-8.5% accuracy. The obtained results demonstrate that the developed LFIA allows the detection of lower concentrations of Salmonella cells and, in this way, accelerates decision-making in food safety control.
Collapse
Affiliation(s)
- Nadezhda A. Byzova
- A.N. Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (N.A.B.); (I.V.S.); (B.B.D.)
| | - Irina V. Safenkova
- A.N. Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (N.A.B.); (I.V.S.); (B.B.D.)
| | - Alexey A. Gorbatov
- State Research Center for Applied Microbiology & Biotechnology, 142279 Obolensk, Russia; (A.A.G.); (S.F.B.)
| | - Sergey F. Biketov
- State Research Center for Applied Microbiology & Biotechnology, 142279 Obolensk, Russia; (A.A.G.); (S.F.B.)
| | - Boris B. Dzantiev
- A.N. Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (N.A.B.); (I.V.S.); (B.B.D.)
| | - Anatoly V. Zherdev
- A.N. Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (N.A.B.); (I.V.S.); (B.B.D.)
| |
Collapse
|
12
|
Agapé L, Menanteau P, Kempf F, Schouler C, Boulesteix O, Riou M, Chaumeil T, Velge P. Prophylactic phage administration reduces Salmonella Enteritidis infection in newly hatched chicks. Microbiologyopen 2024; 13:e70002. [PMID: 39679633 DOI: 10.1002/mbo3.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 09/17/2024] [Accepted: 09/23/2024] [Indexed: 12/17/2024] Open
Abstract
Salmonellosis outbreaks are global issues primarily associated with the consumption of poultry products, which may be infected with Salmonella. The use of lytic bacteriophages could be a safe and effective approach to reduce Salmonella prevalence in poultry and subsequently the incidence in humans. This study examined the value of prophylactic phage treatment on Salmonella levels in chickens and the effect of such treatment on their overall gut microbiome. We also investigated phage persistence in vivo and resistance emergence against the six-phage cocktail used. The preventive potential of phages was evaluated on 200 chicks by administering phages via drinking water for 6 days after hatching, followed by the Salmonella Enteritidis challenge on Day 7. The results showed that up to 4 days postinfection, phages had a preventive effect by significantly reducing Salmonella colonization in ceca by three logs. Furthermore, the phage cocktail did not induce dysbiosis, although variations in microbiota in terms of microbial composition were observed between conditions, with the Enterobacteriaceae family being impacted. However, the phage cocktail did not induce a long-term effect, with Salmonella levels rebounding 8 days after phage treatment was stopped. Overall, our data show that phage prophylaxis can reduce Salmonella colonization and explore ways of improving the effectiveness of phages in limiting infections throughout poultry production.
Collapse
Affiliation(s)
- Lorna Agapé
- INRAE, Université de Tours, UMR ISP, Nouzilly, France
| | | | - Florent Kempf
- INRAE, Université de Tours, UMR ISP, Nouzilly, France
| | | | - Olivier Boulesteix
- INRAE, UE-1277-PFIE (Plateforme d'Infectiologie Expérimentale), Nouzilly, France
| | - Mickaël Riou
- INRAE, UE-1277-PFIE (Plateforme d'Infectiologie Expérimentale), Nouzilly, France
| | - Thierry Chaumeil
- INRAE, UE-1277-PFIE (Plateforme d'Infectiologie Expérimentale), Nouzilly, France
| | | |
Collapse
|
13
|
Jyoti, Castillo A, Jurado‐Sánchez B, Pumera M, Escarpa A. Active Quantum Biomaterials-Enhanced Microrobots for Food Safety. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404248. [PMID: 39449211 PMCID: PMC11673522 DOI: 10.1002/smll.202404248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/22/2024] [Indexed: 10/26/2024]
Abstract
Timely disruptive tools for the detection of pathogens in foods are needed to face global health and economic challenges. Herein, the utilization of quantum biomaterials-enhanced microrobots (QBEMRs) as autonomous mobile sensors designed for the precise detection of endotoxins originating from Salmonella enterica (S. enterica) as an indicator species for food-borne contamination globally is presented. A fluorescent molecule-labeled affinity peptide functions as a specific probe, is quenched upon binding to the surface of QBEMRs. Owing to its selective affinity for endotoxin, in the presence of S. enterica the fluorescence is restored and easy to observe and quantifies optical color change to indicate the presence of Salmonella. The devised approach is designed to achieve highly sensitive detection of the S. enterica serovar Typhimurium endotoxin with exquisite selectivity through the utilization of QBEMRs. Notably, no fluorescence signal is observed in the presence of endotoxins bearing similar structural characteristics, highlighting the selectivity of the approach during food sample analysis. Technically, the strategy is implemented in microplate readers to extend microrobots-based approaches to the routine laboratory. This new platform can provide fast and anticipated results in food safety.
Collapse
Affiliation(s)
- Jyoti
- Department of Analytical Chemistry, Physical Chemistry, and Chemical EngineeringUniversidad de AlcalaAlcala de HenaresMadridE‐28802Spain
- Future Energy and Innovation LaboratoryCentral European Institute of TechnologyBrno University of Technology (CEITEC‐BUT)Brno61200Czech Republic
| | - Alberto‐Rodríguez Castillo
- Department of Analytical Chemistry, Physical Chemistry, and Chemical EngineeringUniversidad de AlcalaAlcala de HenaresMadridE‐28802Spain
| | - Beatriz Jurado‐Sánchez
- Department of Analytical Chemistry, Physical Chemistry, and Chemical EngineeringUniversidad de AlcalaAlcala de HenaresMadridE‐28802Spain
- Chemical Research Institute “Andres M. Del Río,”Universidad de AlcalaAlcala de HenaresMadridE‐28802Spain
| | - Martin Pumera
- Future Energy and Innovation LaboratoryCentral European Institute of TechnologyBrno University of Technology (CEITEC‐BUT)Brno61200Czech Republic
- Advanced Nanorobots & Multiscale Robotics LaboratoryFaculty of Electrical Engineering and Computer ScienceVSB‐Technical University of Ostrava17. Listopadu 2172/15Ostrava70800Czech Republic
- Department of Medical ResearchChina Medical University HospitalChina Medical UniversityNo. 91 Hsueh‐Shih RoadTaichung40402Taiwan
| | - Alberto Escarpa
- Department of Analytical Chemistry, Physical Chemistry, and Chemical EngineeringUniversidad de AlcalaAlcala de HenaresMadridE‐28802Spain
- Chemical Research Institute “Andres M. Del Río,”Universidad de AlcalaAlcala de HenaresMadridE‐28802Spain
| |
Collapse
|
14
|
Zhao Y, Yu Q, Duan M, Zhang Q, Li Z, Zhang Y, Liu Y, Wang H, Li X, Dai R, Jia F. Locking-Fluorescence Signals Regulated CRISPR/Cas12a Biosensor Based on Metal-Organic Framework for Sensitive Detection of Salmonella typhimurium. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:25987-25996. [PMID: 39508638 DOI: 10.1021/acs.jafc.4c07681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
The efficient, sensitive, and rapid detection of Salmonella typhimurium (S. typhimurium) in food and food products is important to ensure food safety and health. This study developed a fluorescence biosensing assay that integrated recombinase-aided amplification (RAA) and CRISPR/Cas12a with a zeolitic imidazolate framework-8@fluorescein sodium (ZIF-8@FLS) nanocomposite for the sensitive detection of S. typhimurium. In this approach, using RAA as a preamplification module, CRISPR/Cas12a-AChE as a target recognition and dual-enzyme cascade amplification module, and the prepared ZIF-8@FLS with high porosity and rapid pH responsiveness as a fluorescence signal explosive amplification module, the RAA-CRISPR/Cas12a-ZIF-8@FLS biosensor was constructed. Under optimal conditions, it exhibited an excellent linear relationship for S. Typhimurium, with a sensitive detection limit as low as 1.3 × 102 CFU/mL and could complete sample detection within 2 h relying on the RAA and ZIF-8@FLS explosive fluorescence rapid response, demonstrating its significant advantages in specificity, sensitivity, and reliability in food-borne pathogens detection.
Collapse
Affiliation(s)
- Yan Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Qianqian Yu
- College of Life Science, Yantai University, Yantai 264005, China
| | - Miaolin Duan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Qi Zhang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Zhishang Li
- Center for Molecular Design and Biomimetics, Arizona State University, Tempe 85281, Arizona United States
| | - Yan Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yana Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Han Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xingmin Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Ruitong Dai
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Fei Jia
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
15
|
Mokhtari R, Fard MK, Rezaei M, Dirandeh E. Effect of casein bioactive peptides on performance, nutrient digestibility, enzyme activity and intestinal microbial population in broiler chickens. J Anim Physiol Anim Nutr (Berl) 2024; 108:1798-1806. [PMID: 39004910 DOI: 10.1111/jpn.14021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024]
Abstract
This experiment was carried out to investigate the effect of bioactive peptides derived from casein on performance, nutrient digestibility, enzyme activity and intestinal microbial population in broiler chickens. In this study, 350 1-day-old male Ross 308 broiler chicks were distributed among 35 pens in a completely randomized design with seven treatments, five replicates and 10 chicks in each replicate. The experimental treatments included: basal diet without any additives (control), basal diet + Avilamycin antibiotic, basal diet + 200, 400, 600, 800 and 1000 mg of peptides per kg of diet. Results showed no significant effects of the experimental treatments on weight gain and feed conversion ratio during the starter period, but there was a significant improvement in weight gain in grower, finisher and whole periods in chicks fed with diet containing 1000 mg/kg peptides (p < 0.05). Adding peptides improved intestinal morphology (in duodenum and ileum) (p < 0.05). Supplementation of casein peptides significantly reduced thiobarbituric acid reactive substances concentration in breast and thigh meat. The activity of amylase, lipase and protease enzymes improved in treatments containing 800 and 1000 mg peptides in comparison to the control treatment. The use of casein-peptides increased intestinal Lactobacillus and decreased Coliform populations.
Collapse
Affiliation(s)
- Raziyeh Mokhtari
- Department of Animal Science, College of Animal Science and Fisheries, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Mohammad Kazemi Fard
- Department of Animal Science, College of Animal Science and Fisheries, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Mansour Rezaei
- Department of Animal Science, College of Animal Science and Fisheries, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Essa Dirandeh
- Department of Animal Science, College of Animal Science and Fisheries, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| |
Collapse
|
16
|
Duan H, Wang X, Li H, Zheng L, Huang X. Multifunctional Fe 3O 4@CuS nanoparticle-driven colorimetric and photothermal immunochromatographic test strip for the sensitive detection of Salmonella typhimurium in milk. Anal Chim Acta 2024; 1323:343091. [PMID: 39182977 DOI: 10.1016/j.aca.2024.343091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/27/2024] [Accepted: 08/09/2024] [Indexed: 08/27/2024]
Abstract
Magnetic nanoparticles are widely employed as signal labeling reporters in immunochromatographic test strips (ICTS) for detecting foodborne pathogens due to their outstanding anti-interference and magnetic enrichment performance. However, the insufficient colorimetric signal brightness of magnetic nanoparticles results in poor sensitivity, hindering their ability to meet the growing demand for advanced ICTS. Herein, we synthesized Fe3O4@CuS core-shell structure nanoparticles using a facile in-situ growth method. These Fe3O4@CuS nanoparticles exhibit a superior photothermal conversion efficiency of 42.12 % and a magnetization strength of 35 emu/g. We developed a dual-readout format ICTS based on Fe3O4@CuS, incorporating both colorimetric and photothermal formats to enhance sensitivity for Salmonella typhimurium detection. The limit of detection for Fe3O4@CuS-ICTS in the colorimetric and photothermal format was 5 × 10⁴ CFU/mL and 7.7 × 10³ CFU/mL, respectively. Additionally, the average recoveries ranged from 91.25 % to 103.39 %, with variations from 2.2 % to 11.1 %, demonstrating good accuracy and precision. Therefore, this work suggests that Fe3O4@CuS nanoparticles, with their superior magnetic, optical, and photothermal properties, can serve as promising signal labeling reporters to improve the detection performance of ICTS and hold potential for constructing more accurate and sensitive point-of-care testing platforms.
Collapse
Affiliation(s)
- Hong Duan
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology & Business University, Beijing, 100048, PR China
| | - Xuan Wang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology & Business University, Beijing, 100048, PR China
| | - Haichuan Li
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| | - Lingyan Zheng
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology & Business University, Beijing, 100048, PR China.
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China.
| |
Collapse
|
17
|
Peng S, Zhang Z, Xin M, Liu D. SERS-based Ag NCs@PDMS flexible substrate combined with chemometrics for rapid detection of foodborne pathogens on egg surface. Mikrochim Acta 2024; 191:612. [PMID: 39305299 DOI: 10.1007/s00604-024-06669-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/26/2024] [Indexed: 09/25/2024]
Abstract
An innovative method is introduced based on the combination of label-free surface-enhanced Raman scattering with advanced multivariate analysis. This technique allows both quantitative and qualitative assessment of Salmonella typhimurium and Escherichia coli on eggshells. Using silver nanocubes embedded in polydimethylsiloxane, we consistently achieved Raman spectra of bacteria. The stability of the Ag NCs@PDMS substrate is confirmed using rhodamine 6G over 30 days under standard conditions. Principal component analysis (PCA) effectively distinguishes between S. typhimurium and E. coli spectra. Partial least squares regression (PLS) models were developed for quantitative determination of bacteria on egg surfaces, yielding accurate results with minimal error. The S. typhimurium model achieves Rc2 = 0.9563 and RMSEC = 0.601 in calibration, and Rv2 = 0.9113 and RMSEV = 0.907 in validation. Similarly, the E. coli model achieves Rc2 = 0.9877 and RMSEC = 0.322 in calibration, and Rv2 = 0.9606 and RMSEV = 0.579 in validation. Recoveries validate PLS predictions by inoculating egg surfaces with varying bacterial amounts. Our study demonstrates the feasibility of SERS-PLS for quantitative determination of S. typhimurium and E. coli on eggshells, promising enhanced food safety protocols.
Collapse
Affiliation(s)
- Sasa Peng
- College of Food Science and Technology, Northwest University, 229 Taibai North Road, Xi'an, 710069, People's Republic of China
| | - Zhilong Zhang
- College of Food Science and Technology, Northwest University, 229 Taibai North Road, Xi'an, 710069, People's Republic of China
| | - Mingwei Xin
- College of Food Science and Technology, Northwest University, 229 Taibai North Road, Xi'an, 710069, People's Republic of China
| | - Dongli Liu
- College of Food Science and Technology, Northwest University, 229 Taibai North Road, Xi'an, 710069, People's Republic of China.
| |
Collapse
|
18
|
Eser E, Felton VA, Drolia R, Bhunia AK. Salmonella Detection in Food Using a HEK-hTLR5 Reporter Cell-Based Sensor. BIOSENSORS 2024; 14:444. [PMID: 39329819 PMCID: PMC11430776 DOI: 10.3390/bios14090444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/31/2024] [Accepted: 09/14/2024] [Indexed: 09/28/2024]
Abstract
The development of a rapid, sensitive, specific method for detecting foodborne pathogens is paramount for supplying safe food to enhance public health safety. Despite the significant improvement in pathogen detection methods, key issues are still associated with rapid methods, such as distinguishing living cells from dead, the pathogenic potential or health risk of the analyte at the time of consumption, the detection limit, and the sample-to-result. Mammalian cell-based assays analyze pathogens' interaction with host cells and are responsive only to live pathogens or active toxins. In this study, a human embryonic kidney (HEK293) cell line expressing Toll-Like Receptor 5 (TLR-5) and chromogenic reporter system (HEK dual hTLR5) was used for the detection of viable Salmonella in a 96-well tissue culture plate. This cell line responds to low concentrations of TLR5 agonist flagellin. Stimulation of TLR5 ligand activates nuclear factor-kB (NF-κB)-linked alkaline phosphatase (AP-1) signaling cascade inducing the production of secreted embryonic alkaline phosphatase (SEAP). With the addition of a ρ-nitrophenyl phosphate as a substrate, a colored end product representing a positive signal is quantified. The assay's specificity was validated with the top 20 Salmonella enterica serovars and 19 non-Salmonella spp. The performance of the assay was also validated with spiked food samples. The total detection time (sample-to-result), including shortened pre-enrichment (4 h) and selective enrichment (4 h) steps with artificially inoculated outbreak-implicated food samples (chicken, peanut kernel, peanut butter, black pepper, mayonnaise, and peach), was 15 h when inoculated at 1-100 CFU/25 g sample. These results show the potential of HEK-DualTM hTLR5 cell-based functional biosensors for the rapid screening of Salmonella.
Collapse
Affiliation(s)
- Esma Eser
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
- Department of Food Engineering, Faculty of Engineering, Canakkale Onsekiz Mart University, Canakkale 17100, Turkey
| | - Victoria A Felton
- Molecular and Cellular Microbiology Laboratory, Department of Biological Science, Old Dominion University, Norfolk, VA 23529, USA
| | - Rishi Drolia
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
- Molecular and Cellular Microbiology Laboratory, Department of Biological Science, Old Dominion University, Norfolk, VA 23529, USA
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
- Center for Bioelectronics, Old Dominion University, Norfolk, VA 23508, USA
| | - Arun K Bhunia
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
19
|
Yang H, Yan S, Yang T. Electrospun Nanofiber-Based Biosensors for Foodborne Bacteria Detection. Molecules 2024; 29:4415. [PMID: 39339410 PMCID: PMC11434534 DOI: 10.3390/molecules29184415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/09/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
Food contamination has emerged as a significant global health concern, posing substantial challenges to the food industry. Bacteria are the primary cause of foodborne diseases. Consequently, it is crucial to develop accurate and efficient sensing platforms to detect foodborne bacteria in food products. Among various detection methods, biosensors have emerged as a promising solution due to their portability, affordability, simplicity, selectivity, sensitivity, and rapidity. Electrospun nanofibers have gained increasing popularity in enhancing biosensor performance. These nanofibers possess a distinctive three-dimensional structure, providing a large surface area and ease of preparation. This review provides an overview of the electrospinning technique, nanofibers and nanofiber-based biosensors. It also explores their mechanisms and applications in the detection of foodborne bacteria such as Salmonella, Listeria monocytogenes (L. monocytogenes), Escherichia coli (E. coli), Staphylococcus aureus (S. aureus) and Pseudomonas putida (P. putida).
Collapse
Affiliation(s)
- Haoming Yang
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Song Yan
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Tianxi Yang
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
20
|
Mehrzad A, Verdian A, Sarabi-Jamab M, Shaegh SAM, Hu Q, Khoshbin Z. An emerging assay for rapid diagnosis of live Salmonella Typhimurium by exploiting aqueous/liquid crystal interface. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135365. [PMID: 39088946 DOI: 10.1016/j.jhazmat.2024.135365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/15/2024] [Accepted: 07/27/2024] [Indexed: 08/03/2024]
Abstract
The rapid and accurate identification of live pathogens with high proliferative ability is in great demand to mitigate foodborne infection outbreaks. Herein, we have developed an ultrasensitive image-based aptasensing array to directly detect live Salmonella typhimurium (S.T) cells. This method relies on the long-range orientation of surfactant-decorated liquid crystals (LCs) and the superiority of aptamers (aptST). The self-assembling of hydrophobic surfactant tails leads to a perpendicular/vertical ordered film at the aqueous/LC interface and signal-off response. The addition of aptST perturbed LCs' ordering into a planar/tilted state at the aqueous phase due to electrostatic interactions between the surfactant with the aptST, and a signal-on response. Following the conformational switch of aptST in the presence of live S. typhimurium, a relative reversing signal-off response was observed upon the target concentration. This aptasensor could promptly confirm the presence of S. typhimurium without intricate DNA-extraction or pre-enrichment stats over a linear range of 1-1.1 × 106 CFU/mL and a detection limit of 1.2 CFU/mL within ∼30 min. These results were successfully validated using molecular and culture-based methods in spiked-milk samples, with a 92.61-104.61 % recovery value. Meanwhile, the flexibility of this portable sensing platform allows for its development and adoption for the precise detection of various pathogens in food and the environment.
Collapse
Affiliation(s)
- Atiyeh Mehrzad
- Department of Food Safety and Quality Control, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran; Department of Food Microbiology, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran.
| | - Asma Verdian
- Department of Food Safety and Quality Control, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran.
| | - Mahboobe Sarabi-Jamab
- Department of Food Microbiology, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran.
| | - Seyed Ali Mousavi Shaegh
- Laboratory of Microfluidics and Medical Microsystems, BuAli Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Orthopedic Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Clinical Research Unit of Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Qiongzheng Hu
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, Shandong, China.
| | - Zahra Khoshbin
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
21
|
Ávila Oliveira BD, Gomes RS, de Carvalho AM, Lima EMF, Pinto UM, da Cunha LR. Revolutionizing food safety with electrochemical biosensors for rapid and portable pathogen detection. Braz J Microbiol 2024; 55:2511-2525. [PMID: 38922532 PMCID: PMC11405362 DOI: 10.1007/s42770-024-01427-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
Foodborne diseases remain a worldwide concern, despite the advances made in sanitation, pathogen surveillance and food safety management systems. The methods routinely applied for detecting pathogens in foods are time consuming, labor intensive and usually require trained and qualified individuals. The objective of this review was to highlight the use of biosensors, with a focus on the electrochemical devices, as promising alternatives for detecting foodborne pathogens. These biosensors present high speed for obtaining results, with the possibility of evaluating foods in real time, at low cost, ease of use, in addition to being compact and portable. These aspects are considered advantageous and suitable for use in food safety management systems. This work also shows some limitations for the application of biosensors, and we present perspectives with the development and use of nanomaterials.
Collapse
Affiliation(s)
- Brígida D' Ávila Oliveira
- Health and Nutrition Graduate Program, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Raíssa Soares Gomes
- Health and Nutrition Graduate Program, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Alice Mendes de Carvalho
- Health and Nutrition Graduate Program, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Emília Maria França Lima
- Food Research Center (FoRC), Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Uelinton Manoel Pinto
- Food Research Center (FoRC), Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Luciana Rodrigues da Cunha
- Department of Foods, Health and Nutrition Graduate Program, Federal University of Ouro Preto, Federal University of Ouro Preto (UFOP), Ouro Preto, 35400-000, Minas Gerais, Brazil.
| |
Collapse
|
22
|
Zhu J, Xu L, Zhang J, Wang Y, Yu H, Hao C, Cheng G, Liu D, Chen M. High catalytic nickel-platinum nanozyme enhancing colorimetric detection of Salmonella Typhimurium in milk. J Dairy Sci 2024:S0022-0302(24)01073-7. [PMID: 39154726 DOI: 10.3168/jds.2024-25111] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/18/2024] [Indexed: 08/20/2024]
Abstract
Colorimetric qualitative and sensitive quantitative detection of Salmonella Typhimurium (S. Typhimurium) holds significant importance for ensuring food safety and preventing foodborne illnesses. In the study, an ultra-high catalytic activity and biocompatible nickel-platinum nanoparticle (NiPt NP) nanozyme is successful synthesized to prepare a NLISA strategy for the detection of S. Typhimurium. The synthesized NiPt NPs exhibit high oxidase-like catalytic efficiency, with a Michaelis constant (Km) of 0.493 mM, similar to that of natural horseradish peroxidase (HRP). The maximal reaction velocity (Vmax) was determined to be 1.97 × 10-7 M·s-1 exhibiting a 1.97-fold higher than that of the HRP (1.0 × 10-7 M·s-1). Meanwhile, the antibody employed in this NiPt NPs-based NLISA exhibits exceptional capture efficacy, generating a stable immune complex with S. Typhimurium. The NiPt NPs-based NLISA demonstrates sensitivity, specificity, convenience, and cost-efficiency for the detection of S. Typhimurium. Under optimal conditions, this NiPt NPs-based NLISA demonstrates a quantitative range of 103∼106 cfu/mL with a detection limit as low as 103 cfu/mL. A single-blind experimental testing detects different concentrations of S. Typhimurium spiked skim milk, indicating the application potential of the proposed NLISA in real samples. In all, this research provides novel insights into the synthesis of nanozymes with excellent catalytic activity and their applications in S. Typhimurium biosensing.
Collapse
Affiliation(s)
- Jie Zhu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221006, China
| | - Lingyue Xu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221006, China
| | - Junlin Zhang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221006, China
| | - Yuxin Wang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221006, China
| | - Hongyue Yu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221006, China
| | - Chuanchuan Hao
- The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221004, P.R. China; School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, PR China
| | - Guohui Cheng
- The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221004, P.R. China; School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, PR China
| | - Daofeng Liu
- Jiangxi Province Key Laboratory of Diagnosing and Tracing of Foodborne Disease, Jiangxi Province Center for Disease Control and Prevention, 555 East Beijing Road, Nanchang 330029, China.
| | - Minghui Chen
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221006, China; The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221004, P.R. China.
| |
Collapse
|
23
|
Dou S, Liu M, Wang H, Zhou S, Marrazza G, Guo Y, Sun X, Darwish IA. Synthesis of dual models multivalent activatable aptamers based on HCR and RCA for ultrasensitive detection of Salmonella typhimurium. Talanta 2024; 275:126101. [PMID: 38631268 DOI: 10.1016/j.talanta.2024.126101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/19/2024]
Abstract
Aptamers have superior structural properties and have been widely used in bacterial detection methods. However, the problem of low affinity still exists in complex sample detection. In contrast, hybridization chain reaction (HCR)-based model I and rolling circle amplification (RCA)-based model II multivalent activatable aptamers (multi-Apts) can fulfill the need for low-cost, rapid, highly sensitive and high affinity detection of S. typhimurium. In our research, two models of multi-Apts were designed. First, a monovalent activatable aptamer (mono-Apt) was constructed by fluorescence resonance energy transfer (FRET) with an S. typhimurium aptamer and its complementary chain of BHQ1. Next, the DNA scaffold was obtained by HCR and RCA, and the multi-Apts were obtained by self-assembly of the mono-Apt with a DNA scaffold. In model I, when target was presented, the complementary chain BHQ1 was released due to the binding of multi-Apts to the target and was subsequently adsorbed by UIO66. Finally, a FRET-based fluorescence detection signal was obtained. In mode II, the multi-Apts bound to the target, and the complementary chain BHQ1 was released to become the trigger chain for the next round of amplification of HCR with a fluorescence detection signal. HCR and RCA based multi-Apts were able to detect S. typhimurium as low as 2 CFU mL-1 and 1 CFU mL-1 respectively. Multi-Apts amplification strategy provides a new method for early diagnosis of pathogenic microorganisms in foods.
Collapse
Affiliation(s)
- Shouyi Dou
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
| | - Mengyue Liu
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
| | - Haifang Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Shuxian Zhou
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
| | - Giovanna Marrazza
- "Ugo Schiff" Chemistry Department, University of Florence, Via Della Lastruccia 3, 50019, Sesto Fiorentino, FI, Italy
| | - Yemin Guo
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China.
| | - Xia Sun
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China.
| | - Ibrahim A Darwish
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
24
|
Zambry NS, Awang MS, Hamzah HH, Mohamad AN, Khalid MF, Khim BK, Bustami Y, Jamaluddin NF, Ibrahim F, Aziah I, Abd Manaf A. A portable label-free electrochemical DNA biosensor for rapid detection of Salmonella Typhi. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:5254-5262. [PMID: 39011785 DOI: 10.1039/d4ay00888j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
A highly accurate, rapid, portable, and robust platform for detecting Salmonella enterica serovar Typhi (S. Typhi) is crucial for early-stage diagnosis of typhoid to avert and control the outbreaks of this pathogen, which threaten global public health. This study presents a proof-of-concept for our developed label-free electrochemical DNA biosensor system for S. Typhi detection, which employs a printed circuit board gold electrode (PCBGE), integrated with a portable potentiostat reader. Initially, the functionalized DNA biosensor and target detection were characterized using cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS) methods using a benchtop potentiostat. Interestingly, the newly developed DNA biosensor can identify target single-stranded DNA concentrations ranging from 10 nM to 20 μM, achieving a detection limit of 7.6 nM within a brief 5 minute timeframe. Under optimal detection conditions, the DNA biosensor exhibits remarkable selectivity, capable of distinguishing a single mismatch base pair from the target single-stranded DNA sequence. We then evaluated the feasibility of the developed DNA biosensor system as a diagnostic tool by detecting S. Typhi in 50 clinical samples using a portable potentiostat reader based on the DPV technique. Remarkably, the developed biosensor can distinctly distinguish between positive and negative samples, indicating that the miniaturised DNA biosensor system is practical for detecting S. Typhi in real biological samples. The developed DNA biosensor device in this work proves to be a promising point-of-care (POC) device for Salmonella detection due to its swift detection time, uncomplicated design, and streamlined workflow detection system.
Collapse
Affiliation(s)
- Nor Syafirah Zambry
- Centre for Innovation in Medical Engineering (CIME), Faculty of Engineering, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Mohd Syafiq Awang
- Collaborative Microelectronic Design Excellence Center (CEDEC), Universiti Sains Malaysia, Sains@USM, Level 1, Block C, No. 10 Persiaran Bukit Jambul, 11900 Bayan Lepas, Pulau Pinang, Malaysia
| | - Hairul Hisham Hamzah
- School of Health & Life Sciences, Teesside University, Middlesbrough, Tees Valley, TS1 3BX, UK
- School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia
| | - Ahmad Najib Mohamad
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Muhammad Fazli Khalid
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Beh Khi Khim
- Collaborative Microelectronic Design Excellence Center (CEDEC), Universiti Sains Malaysia, Sains@USM, Level 1, Block C, No. 10 Persiaran Bukit Jambul, 11900 Bayan Lepas, Pulau Pinang, Malaysia
| | - Yazmin Bustami
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia
| | - Nurul Fauzani Jamaluddin
- Centre for Innovation in Medical Engineering (CIME), Faculty of Engineering, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Fatimah Ibrahim
- Centre for Innovation in Medical Engineering (CIME), Faculty of Engineering, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Ismail Aziah
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Asrulnizam Abd Manaf
- Collaborative Microelectronic Design Excellence Center (CEDEC), Universiti Sains Malaysia, Sains@USM, Level 1, Block C, No. 10 Persiaran Bukit Jambul, 11900 Bayan Lepas, Pulau Pinang, Malaysia
| |
Collapse
|
25
|
Velez FJ, Kandula N, Blech-Hermoni Y, Jackson CR, Bosilevac JM, Singh P. Digital PCR assay for the specific detection and estimation of Salmonella contamination levels in poultry rinse. Curr Res Food Sci 2024; 9:100807. [PMID: 39076681 PMCID: PMC11284941 DOI: 10.1016/j.crfs.2024.100807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/31/2024] Open
Abstract
Strains of Salmonella are a frequent cause of foodborne illness and are known to contaminate poultry products. Most Salmonella testing methods can qualitatively detect Salmonella and cannot quantify or estimate the Salmonella load in samples. Therefore, the aim of this study was to standardize and validate a partitioned-based digital PCR (dPCR) assay for the detection and estimation of Salmonella contamination levels in poultry rinses. Pure culture Salmonella strains were cultured, enumerated, cold-stressed for 48 h, and used to inoculate whole carcass chicken rinse (WCCR) at 1-4 log CFU/30 mL and enriched at 37 °C for 5 h. Undiluted DNA samples with primer and probes targeting the Salmonella-specific invA gene were used for the dPCR assay. The dPCR assay was highly specific, with a limit of detection of 0.001 ng/μL and a limit of quantification of 0.01 ng/μL. The dPCR assay further showed no PCR reaction inhibition up to 5 μg of crude DNA extract. The assays accurately detected all cold-stressed Salmonella in inoculated WCCR samples following a 5-h enrichment. Most importantly, when converted to log, the dPCR copies/μL values accurately estimated the inoculated Salmonella levels. The dPCR assay standardized in this study is a robust method for the detection and estimation of Salmonella concentration in contaminated food samples. This approach can allow same-day decision-making for poultry processors attempting to maintain limits and controls on Salmonella contamination.
Collapse
Affiliation(s)
- Frank J. Velez
- Department of Health, Nutrition and Food Sciences, Florida State University, Tallahassee, FL, 32306, USA
| | - Nethraja Kandula
- Department of Health, Nutrition and Food Sciences, Florida State University, Tallahassee, FL, 32306, USA
| | | | - Charlene R. Jackson
- U.S. National Poultry Research Center, U.S. Department of Agriculture-Agricultural Research Service, 950 College Station Road, Athens, GA, 30605-2720, USA
| | - Joseph M. Bosilevac
- U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, NE, USA
| | - Prashant Singh
- Department of Health, Nutrition and Food Sciences, Florida State University, Tallahassee, FL, 32306, USA
| |
Collapse
|
26
|
Zhao X, Bhat A, O’Connor C, Curtin J, Singh B, Tian F. Review of Detection Limits for Various Techniques for Bacterial Detection in Food Samples. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:855. [PMID: 38786811 PMCID: PMC11124167 DOI: 10.3390/nano14100855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/07/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024]
Abstract
Foodborne illnesses can be infectious and dangerous, and most of them are caused by bacteria. Some common food-related bacteria species exist widely in nature and pose a serious threat to both humans and animals; they can cause poisoning, diseases, disabilities and even death. Rapid, reliable and cost-effective methods for bacterial detection are of paramount importance in food safety and environmental monitoring. Polymerase chain reaction (PCR), lateral flow immunochromatographic assay (LFIA) and electrochemical methods have been widely used in food safety and environmental monitoring. In this paper, the recent developments (2013-2023) covering PCR, LFIA and electrochemical methods for various bacterial species (Salmonella, Listeria, Campylobacter, Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli)), considering different food sample types, analytical performances and the reported limit of detection (LOD), are discussed. It was found that the bacteria species and food sample type contributed significantly to the analytical performance and LOD. Detection via LFIA has a higher average LOD (24 CFU/mL) than detection via electrochemical methods (12 CFU/mL) and PCR (6 CFU/mL). Salmonella and E. coli in the Pseudomonadota domain usually have low LODs. LODs are usually lower for detection in fish and eggs. Gold and iron nanoparticles were the most studied in the reported articles for LFIA, and average LODs were 26 CFU/mL and 12 CFU/mL, respectively. The electrochemical method revealed that the average LOD was highest for cyclic voltammetry (CV) at 18 CFU/mL, followed by electrochemical impedance spectroscopy (EIS) at 12 CFU/mL and differential pulse voltammetry (DPV) at 8 CFU/mL. LOD usually decreases when the sample number increases until it remains unchanged. Exponential relations (R2 > 0.95) between LODs of Listeria in milk via LFIA and via the electrochemical method with sample numbers have been obtained. Finally, the review discusses challenges and future perspectives (including the role of nanomaterials/advanced materials) to improve analytical performance for bacterial detection.
Collapse
Affiliation(s)
- Xinyi Zhao
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman, D07 ADY7 Dublin, Ireland; (X.Z.); (A.B.); (C.O.); (B.S.)
- FOCAS Research Institute, Technological University Dublin, Camden Row, D08 CKP1 Dublin, Ireland
| | - Abhijnan Bhat
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman, D07 ADY7 Dublin, Ireland; (X.Z.); (A.B.); (C.O.); (B.S.)
- MiCRA Biodiagnostics Technology Gateway and Health, Engineering & Materials Sciences (HEMS) Research Hub, Technological University Dublin, D24 FKT9 Dublin, Ireland
| | - Christine O’Connor
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman, D07 ADY7 Dublin, Ireland; (X.Z.); (A.B.); (C.O.); (B.S.)
| | - James Curtin
- Faculty of Engineering and Built Environment, Technological University Dublin, Bolton Street, D01 K822 Dublin, Ireland;
| | - Baljit Singh
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman, D07 ADY7 Dublin, Ireland; (X.Z.); (A.B.); (C.O.); (B.S.)
- MiCRA Biodiagnostics Technology Gateway and Health, Engineering & Materials Sciences (HEMS) Research Hub, Technological University Dublin, D24 FKT9 Dublin, Ireland
| | - Furong Tian
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman, D07 ADY7 Dublin, Ireland; (X.Z.); (A.B.); (C.O.); (B.S.)
- FOCAS Research Institute, Technological University Dublin, Camden Row, D08 CKP1 Dublin, Ireland
| |
Collapse
|
27
|
Eser E, Ekiz OÖ, Ekiz Hİ. Utilizing fab fragment-conjugated surface plasmon resonance-based biosensor for detection of Salmonella Enteritidis. J Mol Recognit 2024; 37:e3078. [PMID: 38400609 DOI: 10.1002/jmr.3078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/05/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024]
Abstract
Although antibodies, a key element of biorecognition, are frequently used as biosensor probes, the use of these large molecules can lead to adverse effects. Fab fragments can be reduced to allow proper antigen-binding orientation via thiol groups containing Fab sites that can directly penetrate Au sites chemically. In this study, the ability of the surface plasmon resonance (SPR) sensor to detect Salmonella was studied. Tris(2-carboxyethyl)phosphine was used as a reducing agent to obtain half antibody fragments. Sensor surface was immobilized with antibody, and bacteria suspensions were injected from low to high concentrations. Response units were changed by binding first reduced antibody fragments, then bacteria. The biosensor was able to determine the bacterial concentrations between 103 and 108 CFU/mL. Based on these results, the half antibody fragmentation method can be generalized for faster, label-free, sensitive, and selective detection of other bacteria species.
Collapse
Affiliation(s)
- Esma Eser
- Department of Food Engineering, Canakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Okan Öner Ekiz
- Department of Material Science and Engineering, OSTİM Teknical University, Ankara, Turkey
- Nanodev Scientific, Bilkent Cyberpark, Ankara, Turkey
| | - H İbrahim Ekiz
- Department of Food Engineering, Mersin University, Mersin, Turkey
| |
Collapse
|
28
|
Lee SY, Oh SW. Point-of-Care Diagnostic System for Viable Salmonella Species via Improved Propidium Monoazide and Recombinase Polymerase Amplification Based Nucleic Acid Lateral Flow. Diagnostics (Basel) 2024; 14:831. [PMID: 38667476 PMCID: PMC11049151 DOI: 10.3390/diagnostics14080831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/05/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Salmonella species are prominent foodborne microbial pathogens transmitted through contaminated food or water and pose a significant threat to human health. Accurate and rapid point-of-care (POC) diagnosis is gaining attention in effectively preventing outbreaks of foodborne disease. However, the presence of dead bacteria can interfere with an accurate diagnosis, necessitating the development of methods for the rapid, simple, and efficient detection of viable bacteria only. Herein, we used an improved propidium monoazide (PMAxx) to develop a nucleic acid lateral flow (NALF) assay based on recombinase polymerase amplification (RPA) to differentiate viable Salmonella Typhimurium. We selected an RPA primer set targeting the invA gene and designed a probe for NALF. RPA-based NALF was optimized for temperature (30-43 °C), time (1-25 min), and endonuclease IV concentration (0.025-0.15 unit/µL). PMAxx successfully eliminated false-positive results from dead S. Typhimurium, enabling the accurate detection of viable S. Typhimurium with a detection limit of 1.11 × 102 CFU/mL in pure culture. The developed method was evaluated with spiked raw chicken breast and milk with analysis completed within 25 min at 39 °C. This study has potential as a tool for the POC diagnostics of viable foodborne pathogens with high specificity, sensitivity, rapidity, and cost-effectiveness.
Collapse
Affiliation(s)
| | - Se-Wook Oh
- Department of Food and Nutrition, Kookmin University, Seoul 136-702, Republic of Korea;
| |
Collapse
|
29
|
Shang Y, Wang J, Xia H, Jiao C, Wu Y, Jiang Y, Wu X, Wen C, Zeng J. PEI-Mediated Assembly of Fe 3O 4 onto SiO 2-Encapsulated CsPbBr 3 for Highly Sensitive Fluorescent Lateral Flow Immunoassay. Anal Chem 2024; 96:6065-6071. [PMID: 38569047 DOI: 10.1021/acs.analchem.4c00648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
The conventional lateral flow immunoassay (LFIA) method using colloidal gold nanoparticles (Au NPs) as labeling agents faces two inherent limitations, including restricted sensitivity and poor quantitative capability, which impede early viral infection detection. Herein, we designed and synthesized CsPbBr3 perovskite quantum dot-based composite nanoparticles, CsPbBr3@SiO2@Fe3O4 (CSF), which integrated fluorescence detection and magnetic enrichment properties into LFIA technology and achieved rapid, sensitive, and convenient quantitative detection of the SARS-CoV-2 virus N protein. In this study, CsPbBr3 served as a high-quantum-yield fluorescent signaling probe, while SiO2 significantly enhanced the stability and biomodifiability of CsPbBr3. Importantly, the SiO2 shell shows relatively low absorption or scattering toward fluorescence, maintaining a quantum yield of up to 74.4% in CsPbBr3@SiO2. Assembly of Fe3O4 nanoparticles mediated by PEI further enhanced the method's sensitivity and reduced matrix interference through magnetic enrichment. Consequently, the method achieved a fluorescent detection range of 1 × 102 to 5 × 106 pg·mL-1 after magnetic enrichment, with a limit of detection (LOD) of 58.8 pg·mL-1, representing a 13.3-fold improvement compared to nonenriched samples (7.58 × 102 pg·mL-1) and a 2-orders-of-magnitude improvement over commercial colloidal gold kits. Furthermore, the method exhibited 80% positive and 100% negative detection rates in clinical samples. This approach holds promise for on-site diagnosis, home-based quantitative tests, and disease procession evaluation.
Collapse
Affiliation(s)
- Yanxue Shang
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemical Safety, China University of Petroleum (East China), Qingdao 266580, China
| | - Jinling Wang
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemical Safety, China University of Petroleum (East China), Qingdao 266580, China
| | - Hongkun Xia
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemical Safety, China University of Petroleum (East China), Qingdao 266580, China
| | - Chunpeng Jiao
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemical Safety, China University of Petroleum (East China), Qingdao 266580, China
| | - Yanfang Wu
- School of Chemistry, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Yongzhong Jiang
- Hubei Provincial Center for Disease Control and Prevention, Wuhan 430065, China
| | - Xian Wu
- Department of Clinical Laboratory, Peking University First Hospital, Beijing 100034, China
| | - Congying Wen
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemical Safety, China University of Petroleum (East China), Qingdao 266580, China
| | - Jingbin Zeng
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemical Safety, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
30
|
Oslan SNH, Yusof NY, Lim SJ, Ahmad NH. Rapid and sensitive detection of Salmonella in agro-Food and environmental samples: A review of advances in rapid tests and biosensors. J Microbiol Methods 2024; 219:106897. [PMID: 38342249 DOI: 10.1016/j.mimet.2024.106897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/13/2024]
Abstract
Salmonella is as an intracellular bacterium, causing many human fatalities when the host-specific serotypes reach the host gastrointestinal tract. Nontyphoidal Salmonella are responsible for numerous foodborne outbreaks and product recalls worldwide whereas typhoidal Salmonella are responsible for Typhoid fever cases in developing countries. Yet, Salmonella-related foodborne disease outbreaks through its food and water contaminations have urged the advancement of rapid and sensitive Salmonella-detecting methods for public health protection. While conventional detection methods are time-consuming and ineffective for monitoring foodstuffs with short shelf lives, advances in microbiology, molecular biology and biosensor methods have hastened the detection. Here, the review discusses Salmonella pathogenic mechanisms and its detection technology advancements (fundamental concepts, features, implementations, efficiency, benefits, limitations and prospects). The time-efficiency of each rapid test method is discussed in relation to their limit of detections (LODs) and time required from sample enrichment to final data analysis. Importantly, the matrix effects (LODs and sample enrichments) were compared within the methods to potentially speculate Salmonella detection from environmental, clinical or food matrices using certain techniques. Although biotechnological advancements have led to various time-efficient Salmonella-detecting techniques, one should consider the usage of sophisticated equipment to run the analysis by moderately to highly trained personnel. Ultimately, a fast, accurate Salmonella screening that is readily executed by untrained personnels from various matrices, is desired for public health procurement.
Collapse
Affiliation(s)
- Siti Nur Hazwani Oslan
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia; Food Security Research Laboratory, Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia.
| | - Nik Yusnoraini Yusof
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Si Jie Lim
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Nurul Hawa Ahmad
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
31
|
Mishra KK, Dhamu VN, Poudyal DC, Muthukumar S, Prasad S. PathoSense: a rapid electroanalytical device platform for screening Salmonella in water samples. Mikrochim Acta 2024; 191:146. [PMID: 38372811 DOI: 10.1007/s00604-024-06232-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/06/2024] [Indexed: 02/20/2024]
Abstract
Salmonella contamination is a major global health challenge, causing significant foodborne illness. However, current detection methods face limitations in sensitivity and time, which mostly rely on the culture-based detection techniques. Hence, there is an immediate and critical need to enhance early detection, reduce the incidence and impact of Salmonella contamination resulting in outbreaks. In this work, we demonstrate a portable non-faradaic, electrochemical sensing platform capable of detecting Salmonella in potable water with an assay turnaround time of ~ 9 min. We evaluated the effectiveness of this sensing platform by studying two sensor configurations: one utilizing pure gold (Au) and the other incorporating a semiconductor namely a zinc oxide thin film coated on the surface of the gold (Au/ZnO). The inclusion of zinc oxide was intended to enhance the sensing capabilities of the system. Through comprehensive experimentation and analysis, the LoD (limit of detection) values for the Au sensor and Au/ZnO sensor were 0.9 and 0.6 CFU/mL, respectively. In addition to sensitivity, we examined the sensing platform's precision and reproducibility. Both the Au sensor and Au/ZnO sensor exhibited remarkable consistency, with inter-study percentage coefficient of variation (%CV) and intra-study %CV consistently below 10%. The proposed sensing platform exhibits high sensitivity in detecting low concentrations of Salmonella in potable water. Its successful development demonstrates its potential as a rapid and on-site detection tool, offering portability and ease of use. This research opens new avenues for electrochemical-based sensors in food safety and public health, mitigating Salmonella outbreaks and improving water quality monitoring.
Collapse
Affiliation(s)
- Kundan Kumar Mishra
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, 75080, USA
| | | | - Durgasha C Poudyal
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, 75080, USA
| | | | - Shalini Prasad
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, 75080, USA.
- EnLiSense LLC, 1813 Audubon Pondway, Allen, TX, 75013, USA.
| |
Collapse
|
32
|
Thomas GA, Paradell Gil T, Müller CT, Rogers HJ, Berger CN. From field to plate: How do bacterial enteric pathogens interact with ready-to-eat fruit and vegetables, causing disease outbreaks? Food Microbiol 2024; 117:104389. [PMID: 37919001 DOI: 10.1016/j.fm.2023.104389] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/11/2023] [Accepted: 09/17/2023] [Indexed: 11/04/2023]
Abstract
Ready-to-eat fruit and vegetables are a convenient source of nutrients and fibre for consumers, and are generally safe to eat, but are vulnerable to contamination with human enteric bacterial pathogens. Over the last decade, Salmonella spp., pathogenic Escherichia coli, and Listeria monocytogenes have been linked to most of the bacterial outbreaks of foodborne illness associated with fresh produce. The origins of these outbreaks have been traced to multiple sources of contamination from pre-harvest (soil, seeds, irrigation water, domestic and wild animal faecal matter) or post-harvest operations (storage, preparation and packaging). These pathogens have developed multiple processes for successful attachment, survival and colonization conferring them the ability to adapt to multiple environments. However, these processes differ across bacterial strains from the same species, and across different plant species or cultivars. In a competitive environment, additional risk factors are the plant microbiome phyllosphere and the plant responses; both factors directly modulate the survival of the pathogens on the leaf's surface. Understanding the mechanisms involved in bacterial attachment to, colonization of, and proliferation, on fresh produce and the role of the plant in resisting bacterial contamination is therefore crucial to reducing future outbreaks.
Collapse
Affiliation(s)
- Gareth A Thomas
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Teresa Paradell Gil
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Carsten T Müller
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Hilary J Rogers
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Cedric N Berger
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, UK.
| |
Collapse
|
33
|
Stathas L, Aspridou Z, Koutsoumanis K. Quantitative microbial risk assessment of Salmonella in fresh chicken patties. Food Res Int 2024; 178:113960. [PMID: 38309878 DOI: 10.1016/j.foodres.2024.113960] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/21/2023] [Accepted: 01/02/2024] [Indexed: 02/05/2024]
Abstract
Quantitative microbial risk assessment (QMRA) has witnessed rapid development within the context of food safety in recent years. As a means of contributing to these advancements, a QMRA for Salmonella spp. in fresh chicken patties for the general European Union (EU) population was developed. A two-dimensional (Second Order) Monte-Carlo simulation method was used for separating variability and uncertainty of model's parameters. The stages of industrial processing, retail storage, domestic storage, and cooking in the domestic environment were considered in the exposure assessment. For hazard characterization, a dose-response model was developed by combining 8 published dose-response models using a Pert distribution for describing uncertainty. The QMRA model predicted a mean probability of illness of 1.19*10-4 (5.28*10-5 - 3.57*10-4 95 % C.I.), and a mean annual number of illnesses per 100,000 people of 2.13 (0.96 - 6.59 95 % C.I.). Moreover, sensitivity analysis was performed, and variability in cooking preferences was found to be the most influential model parameter (r = -0.39), followed by dose-response related variability (r = 0.22), and variability in the concentration of Salmonella spp. at the time of introduction at the processing facility (r = 0.11). Various mitigation strategy scenarios were tested, from which, "increasing the internal temperature of cooking" and "decreasing shelf life" were estimated to be the most effective in reducing the predicted risk of illness. Salmonella-related illnesses exhibit particularly high severity, making them some of the most prominent zoonotic diseases in the EU. Regular monitoring of this hazard in order to further highlight its related parameters and causes is a necessary procedure. This study not only provides an updated assessment of Salmonella spp. risk associated with chicken patties, but also facilitates the identification of crucial targets for scientific investigation and implementation of real-world intervention strategies.
Collapse
Affiliation(s)
- Leonardos Stathas
- Laboratory of Food Microbiology and Hygiene, Department of Food Science and Technology, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Zafiro Aspridou
- Laboratory of Food Microbiology and Hygiene, Department of Food Science and Technology, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Konstantinos Koutsoumanis
- Laboratory of Food Microbiology and Hygiene, Department of Food Science and Technology, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| |
Collapse
|
34
|
Dicle Y, Karamese M. Biosensors for the detection of pathogenic bacteria: current status and future perspectives. Future Microbiol 2024; 19:281-291. [PMID: 38305241 DOI: 10.2217/fmb-2023-0182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/13/2023] [Indexed: 02/03/2024] Open
Abstract
Pathogenic microorganisms pose significant threats to human health, food safety and environmental integrity. Rapid and accurate detection of these pathogens is essential to mitigate their impact. Fast, sensitive detection methods such as biosensors also play a critical role in preventing outbreaks and controlling their spread. In recent years, biosensors have emerged as a revolutionary technology for pathogen detection. This review aims to present the current developments in biosensor technology, investigate the methods by which these developments are used in the detection of pathogenic bacteria and highlight future perspectives on the subject.
Collapse
Affiliation(s)
- Yalcin Dicle
- Department of Medical Microbiology, Mardin Artuklu University, Faculty of Medicine, Mardin, 47200, Turkey
| | - Murat Karamese
- Department of Medical Microbiology, Kafkas University, Faculty of Medicine, Kars, 36100, Turkey
| |
Collapse
|
35
|
Huang Z, Wen J, Ma G, Liu Y, Tan H. Time-resolved fluorescence immunoassay based on glucose oxidase-encapsulated metal-organic framework for amplified detection of foodborne pathogen. Anal Chim Acta 2024; 1287:342111. [PMID: 38182387 DOI: 10.1016/j.aca.2023.342111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Fluorescence immunoassays are commonly employed for the detection of pathogenic bacteria as a means of ensuring food safety and preserving public health. However, the challenges such as poor photostability and background interference have limited their sensitivity and accuracy. The emergence of metal-organic frameworks (MOFs) as a label probe offers a promising solution for advancing fluorescence immunoassays owing to their tunable nature. Nonetheless, the low fluorescence efficiency of MOFs and the potential risk of dye leakage pose obstacles to achieving high detection sensitivity. Therefore, there exists a pressing need to fully utilize the potential of MOF composites in fluorescence immunoassays. RESULTS We explored the potential of glucose oxidase-encapsulated zeolitic imidazole framework-90 (GOx@ZIF-90) as a label probe to construct a time-resolved fluorescence immunoassay with amplified detection signal. This immunoassay involved functionalizing Fe3O4 nanoparticle with porcine antibody to specifically capture and separate the target bacteria, Staphylococcus aureus (S. aureus). The captured S. aureus was then bound by GOx@ZIF-90 modified with vancomycin, resulting in a fluorescence response in the europium tetracycline (EuTc). The encapsulation of GOx in ZIF-90 provided a confinement effect that significantly enhanced the catalytic activity and stability of GOx. This led to a highly efficient conversion of glucose to H2O2, amplifying the fluorescence signal of EuTc. The immunoassay demonstrated a high sensitivity in detecting S. aureus, with a detection limit of 2 CFU/mL. We also obtained satisfactory results in milk samples. Attractively, the time-resolved detection mode of EuTc allowed the immunoassay to eliminate background fluorescence and enhance accuracy. SIGNIFICANCE This study not only presented a new method for detecting foodborne pathogens but also highlighted the potential of enzyme-encapsulated MOF composites as label probes in immunoassays, providing valuable insights for the design and fabrication of MOF composites for various applications.
Collapse
Affiliation(s)
- Zhiyang Huang
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, PR China
| | - Jin Wen
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, PR China
| | - Guangran Ma
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, PR China
| | - Yongjun Liu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, PR China
| | - Hongliang Tan
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, PR China.
| |
Collapse
|
36
|
Duan M, Li B, He Y, Zhao Y, Liu Y, Zou B, Liu Y, Chen J, Dai R, Li X, Jia F. A CG@MXene nanocomposite-driven E-CRISPR biosensor for the rapid and sensitive detection of Salmonella Typhimurium in food. Talanta 2024; 266:125011. [PMID: 37544254 DOI: 10.1016/j.talanta.2023.125011] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/19/2023] [Accepted: 07/28/2023] [Indexed: 08/08/2023]
Abstract
In this study, we developed a novel electrochemical biosensor based on CRISPR/Cas12a (E-CRISPR) for the rapid and sensitive detection of Salmonella Typhimurium (S. Typhimurium). The CRISPR/Cas12a system was applied to identify S. Typhimurium gene and induce signal changes in electrochemical measurement. The colloidal gold and MXene (CG@MXene) nanocomposites were synthesized and immobilized to improve the performance of the biosensor by decreasing the background noise. The formation process of CG@MXene was well characterized, and experiment conditions were fully optimized. Under the optimal conditions, the proposed E-CRISPR biosensor exhibited excellent sensitivity for S. Typhimurium, with a limit of detection (LOD) of 160 CFU/mL, and great specificity against other common foodborne pathogens. Furthermore, the feasibility of the E-CRISPR biosensor was evaluated by analyzing S. Typhimurium-spiked chicken samples, with a recovery rate ranging from 100.46% to 106.37%. In summary, this research proposed a novel E-CRISPR biosensor from a new perspective to detect S. Typhimurium which can be an alternative approach for bacterial detection in the food supply chain.
Collapse
Affiliation(s)
- Miaolin Duan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Bingyan Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yawen He
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Yijie Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yana Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Bo Zou
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yi Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Juhong Chen
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Ruitong Dai
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Xingmin Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Fei Jia
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR, 72701, USA.
| |
Collapse
|
37
|
Silva GBL, Campos FV, Guimarães MCC, Oliveira JP. Recent Developments in Lateral Flow Assays for Salmonella Detection in Food Products: A Review. Pathogens 2023; 12:1441. [PMID: 38133324 PMCID: PMC10747123 DOI: 10.3390/pathogens12121441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/22/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
Salmonellosis is a disease transmitted by contaminated food and is one of the leading causes of infections worldwide, making the early detection of Salmonella of crucial importance for public health. However, current detection methods are laborious and time-consuming, thus impacting the entire food supply chain and leading to production losses and economic sanctions. To mitigate these issues, a number of different biosensors have been developed, including lateral flow assays (LFAs), which have emerged as valuable tools in pathogen detection due to their portability, ease of use, time efficiency, and cost effectiveness. The performance of LFAs has been considerably enhanced by the development of new nanomaterials over the years. In this review, we address the principles and formats of the assay and discuss future prospects and challenges with an emphasis on LFAs developed for the detection of different Salmonella serovars in food.
Collapse
Affiliation(s)
| | | | | | - Jairo P. Oliveira
- Morphology Department, Health Sciences Center, Federal University of Espírito Santo, Av Marechal Campos 1468, Vitória 29040-090, Brazil; (G.B.L.S.); (F.V.C.); (M.C.C.G.)
| |
Collapse
|
38
|
Lomakina GY, Ugarova NN. Luciola mingrelica firefly luciferase as a marker in bioluminescent immunoassays. Biophys Rev 2023; 15:955-962. [PMID: 37975007 PMCID: PMC10643422 DOI: 10.1007/s12551-023-01115-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 08/13/2023] [Indexed: 11/19/2023] Open
Abstract
Chemical modification of the enzymes with biospecific macromolecules is used in various fields of biotechnology to impart new functions or improve their properties and is a fast and convenient way to get the final products. The preparation of highly active, stable, and functionally active conjugates of the thermostable luciferase through the NH2-groups or free SH-groups of the enzyme with target molecules of different molecular weight (albumin, avidin from chicken eggs, antibodies, and progesterone) is described. The obtained conjugates were successfully tested as a reporter in bioluminescent immunoassay for the detection of the molecules and pathogens. Thus, the luc-albumin (Luc-Alb) and luc-insulin (Luc-Ins) conjugates were used in competitive ELISA for the detection of an analyte (albumin or insulin) in the samples. Luc-progesterone (Luc-Pg) was used in the rapid homogeneous immunoassay of progesterone by the BRET technique with the detection limit of 0.5 ng/ml. Luciferase conjugates with avidin (Luc-Avi) and secondary and primary antibodies (Luc-RAM and Luc-Sal) were used for enzyme immunoassay detection of Salmonella paratyphi A cells with the cell detection limit of 5 × 104 CFU/ml. To reduce the detection limit of Salmonella cells, we developed a pseudo-homogeneous bioluminescent enzyme immunoassay of cells using a new matrix for the analyte capture-polystyrene microparticles coated with Pluronic F108, covalently labeled with Sal antibodies. This allowed to achieve efficient trapping of cells from solution, significantly reduced nonspecific sorption and decreased the cell detection limit to 2.7 × 103 CFU/ml without prior concentration of the sample. The methodology that was developed in this study can be applied for the development of novel bioanalytical systems based on firefly luciferases.
Collapse
Affiliation(s)
- Galina Yu. Lomakina
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, Russia
- Bauman Moscow State Technical University, Moscow, Russia
| | | |
Collapse
|
39
|
Dou S, Liu M, Zhang F, Li B, Zhang Y, Li F, Guo Y, Sun X. Silver/copper bimetallic nanoclusters integrating with cryonase-assisted target recycling amplification detection of Salmonella typhimurium. Mikrochim Acta 2023; 190:403. [PMID: 37728643 DOI: 10.1007/s00604-023-05973-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/27/2023] [Indexed: 09/21/2023]
Abstract
An unsophisticated fluorescence-enabled strategy is brought forward to process the highly sensitive fluorescence detection of Salmonella typhimurium (S. typhimurium) which based on polyethyleneimine (PEI)-templated silver/copper nanoclusters (Ag/CuNCs) (λ excitation = 334 nm and λ emission = 466 nm) with cryonase-assisted target recycling amplification. The Ag/CuNCs nanoclusters are synthesized as fluorescent materials due to their strong and stable fluorescence characteristics and are modified with S. typhimurium aptamers to form aptamer-Ag/CuNCs probes. The probes can be adsorbed on the surface of quenching agents-polydopamine nanospheres (PDANSs), thereby inducing fluorescence quenching of the probes. Once the aptamers are bound to the target, the aptamers/targets complexes are separated from the PDANSs surface, and the Ag/CuNCs recover the fluorescence signal. The released complexes will immediately be transformed into a substrate digested by cryonase (an enzyme that can digest all types of nucleic acids), and the released targets are bound to another aptamers to initiate the next round of cleavage. This reaction will be repeated continuously until all relevant aptamers are consumed and all Ag/CuNCs are released, resulting in a significant amplification of the fluorescence signal and improved sensitivity. Using Ag/CuNCs as fluorescent probes combined with cryonase-assisted amplification strategy, the fluorescence aptasensor is constructed with detection limits as low as 3.8 CFU mL-1, which is tenfold better than without the cryonase assistance. The method developed has been applied to milk, orange juice, chicken, and egg white samples with excellent selectivity and accuracy providing an approach for the early and rapid detection of S. typhimurium in food.
Collapse
Affiliation(s)
- Shouyi Dou
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China
| | - Mengyue Liu
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China
| | - Fengjuan Zhang
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China
| | - Baoxin Li
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China
| | - Yuhao Zhang
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China
| | - Falan Li
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China
| | - Yemin Guo
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China.
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China.
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China.
| | - Xia Sun
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China.
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China.
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China.
| |
Collapse
|
40
|
Fathi S, Jalilzadeh N, Amini M, Shanebandi D, Baradaran B, Oroojalian F, Mokhtarzadeh A, Kesharwani P, Sahebkar A. Surface plasmon resonance-based oligonucleotide biosensor for Salmonella Typhi detection. Anal Biochem 2023; 677:115250. [PMID: 37482208 DOI: 10.1016/j.ab.2023.115250] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/25/2023]
Abstract
Due to high mortality rates, typhoid fever still is one of the major health problems in the world, particularly in developing countries. The lack of highly specific and sensitive diagnostic tests and the great resemblance of typhoid fever symptoms to other diseases made the false-negative diagnosis a major challenge in typhoid fever management. Hence, we decided to design a Surface Plasmon Resonance (SPR) based biosensor for specific detection of Salmonella typhi through DNA hybridization. The results showed that the 10 nM of the synthetic target sequence, as well as 1 nM of PCR product, were the lowest feasible detected concentrations by the designed biosensor. This genosensor was also found to significantly distinguish the complementary sequence with the accuracy of one base mismatch sequence. The surface of the chip can be regenerated with NaOH solution and used for consecutive diagnosis. Therefore, the function of the designed biosensor indicates its high potential for Salmonella typhi detection practice.
Collapse
Affiliation(s)
- Sepideh Fathi
- Department of Biological Sciences, Faculty of Basic Sciences, Higher Education Institute of Rab-Rashid, Tabriz, Iran; Immunology Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Jalilzadeh
- Immunology Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Amini
- Immunology Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dariush Shanebandi
- Immunology Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Oroojalian
- Department of Advanced Technologies, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran; Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India; Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
41
|
da Silva EC, de Oliveira CD, Ribeiro LFM, Casas MRT, Pereira JG, Possebon FS, Junior JPA. Salmonella detection with LAMP and qPCR and identification of serovars of interest by multiplex qPCR in poultry carcasses. Braz J Microbiol 2023; 54:2173-2182. [PMID: 37582950 PMCID: PMC10484893 DOI: 10.1007/s42770-023-01095-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 08/03/2023] [Indexed: 08/17/2023] Open
Abstract
Salmonella is present in the poultry production chain and is a major challenge in terms of food safety and animal health. The early Salmonella detection is one of the main tools to control and prevent the transmission of this pathogen. Microbiological isolation and serotyping to identify and differentiate Salmonella serovars are laborious processes, time-consuming, and expensive. Therefore, molecular diagnostic methods can be rapid and efficient alternatives to the detection of this pathogen. Thus, the aim herein was to standardize and evaluate the use of loop-mediated isothermal amplification (LAMP) in comparison with real-time PCR (qPCR) for detection of Salmonella associated with a multiplex qPCR for simultaneous identification and differentiation of S. Enteritidis, S. Typhimurium, S. Pullorum, and S. Gallinarum. The LAMP, qPCR, and multiplex qPCR assays were comparable in specificity. The three techniques were evaluated for specificity for 16 different serovars of Salmonella and for 37 strains of the serovars of interest. The limit of detection and the efficiency of the LAMP, qPCR, and multiplex qPCR reactions were determined. The techniques were applied to 33 samples of chicken carcasses and compared to the results of conventional microbiology for validation. As results, LAMP was specific in the detection of different Salmonella serovars but presented lower limit of detection ranging from 101 to 104 CFU/reaction. In comparison, qPCR could detect less cells (100 to 102 CFU/reaction), reaching equal specificity and better repeatability in the assays. The qPCR multiplexing for identification of the different serovars also showed good specificity, with the detection threshold between entre 101 and 102 CFU/reaction. The results obtained in the analyses on poultry carcasses suggested a correspondence between the results obtained in molecular methods and in conventional microbiology. Thus, the proposed assays are promising for the diagnosis of Salmonella in poultry carcasses, already proved to be faster and more efficient than conventional diagnostics techniques, being of great interest for poultry production, animal, and public health.
Collapse
Affiliation(s)
- Evelyn Cristine da Silva
- Institute for Biotechnology, São Paulo State University (UNESP), Tecomarias Avenue, Botucatu, SP, 18607-440, Brazil.
| | - Catarina Demarchi de Oliveira
- Department of Animal Production and Preventive Veterinary Medicine, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Prof. Walter Maurício Correa St., SP, 18618-681, Botucatu, Brazil
| | - Lucas Franco Miranda Ribeiro
- Department of Animal Production and Preventive Veterinary Medicine, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Prof. Walter Maurício Correa St., SP, 18618-681, Botucatu, Brazil
| | - Monique Ribeiro Tiba Casas
- Bacteriology Division, Adolfo Lutz Institute (IAL), Doutor Arnaldo Avenue, São Paulo, SP, 01246-000, Brazil
| | - Juliano Gonçalves Pereira
- Department of Animal Production and Preventive Veterinary Medicine, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Prof. Walter Maurício Correa St., SP, 18618-681, Botucatu, Brazil
| | - Fábio Sossai Possebon
- Institute for Biotechnology, São Paulo State University (UNESP), Tecomarias Avenue, Botucatu, SP, 18607-440, Brazil
- Department of Animal Production and Preventive Veterinary Medicine, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Prof. Walter Maurício Correa St., SP, 18618-681, Botucatu, Brazil
| | - João Pessoa Araújo Junior
- Institute for Biotechnology, São Paulo State University (UNESP), Tecomarias Avenue, Botucatu, SP, 18607-440, Brazil
| |
Collapse
|
42
|
Guo Q, Huang J, Fang H, Li X, Su Y, Xiong Y, Leng Y, Huang X. Gold nanoparticle-decorated covalent organic frameworks as amplified light-scattering probes for highly sensitive immunodetection of Salmonella in milk. Analyst 2023; 148:4084-4090. [PMID: 37486303 DOI: 10.1039/d3an00946g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Traditional immunoassays exhibit insufficient screening sensitivity for foodborne pathogens due to their low colorimetric signal intensities. Herein, we propose an ultrasensitive dynamic light scattering (DLS) immunosensor for Salmonella based on a "cargo release-seed growth" strategy enabled by a probe, namely gold nanoparticle-decorated covalent organic frameworks (COF@AuNP). Large amounts of AuNPs in COF@AuNP can be released by acid treatment-induced decomposition of the imine-linked COF, and then they are enlarged via gold growth to generate a dramatically enhanced light-scattering signal, leading to a vast improvement in detection sensitivity. Based on an immunomagnetic microbead carrier, the proposed DLS immunosensor is capable of detecting trace Salmonella in milk in the range of 2.0 × 102-2.0 × 105 CFU mL-1, with a limit of detection of 60 CFU mL-1. The immunosensor also demonstrated excellent selectivity, good accuracy and precision, and high reliability for detecting Salmonella in milk.
Collapse
Affiliation(s)
- Qian Guo
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, P. R. China.
- School of Food Science and Technology, Nanchang University, Nanchang 330047, P.R. China
- Jiangxi Province Centre for Disease Control and Prevention, Nanchang, 330029, P. R. China
| | - Jun Huang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, P. R. China.
- School of Food Science and Technology, Nanchang University, Nanchang 330047, P.R. China
| | - Hao Fang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, P. R. China.
- School of Food Science and Technology, Nanchang University, Nanchang 330047, P.R. China
| | - Xiaoyang Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, P. R. China.
- School of Food Science and Technology, Nanchang University, Nanchang 330047, P.R. China
| | - Yu Su
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, P. R. China.
- School of Food Science and Technology, Nanchang University, Nanchang 330047, P.R. China
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, P. R. China.
- School of Food Science and Technology, Nanchang University, Nanchang 330047, P.R. China
- Sino German Joint Research Institute, Nanchang University, Nanchang 330047, P. R. China
| | - Yuankui Leng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, P. R. China.
- School of Food Science and Technology, Nanchang University, Nanchang 330047, P.R. China
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, P. R. China.
- School of Food Science and Technology, Nanchang University, Nanchang 330047, P.R. China
| |
Collapse
|
43
|
Hewawaduge C, Senevirathne A, Sivasankar C, Lee JH. The impact of lipid A modification on biofilm and related pathophysiological phenotypes, endotoxicity, immunogenicity, and protection of Salmonella Typhimurium. Vet Microbiol 2023; 282:109759. [PMID: 37104940 DOI: 10.1016/j.vetmic.2023.109759] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/02/2023] [Accepted: 04/22/2023] [Indexed: 04/29/2023]
Abstract
This study presents the engineering of a less endotoxic Salmonella Typhimurium strain by manipulating the lipid-A structure of the lipopolysaccharide (LPS) component. Salmonella lipid A was dephosphorylated by using lpxE from Francisella tularensis. The 1-phosphate group from lipid-A was removed selectively, resulting in a close analog of monophosphoryl lipid A. We observed a significant impact of ∆pagL on major virulence factors such as biofilm formation, motility, persistency, and immune evasion. In correlation with biofilm and motility retardation, adhesion and invasion were elevated but with reduced intracellular survival, a favorable phenotype prospect of a vaccine strain. Western blotting and silver staining confirmed the absence of the O-antigen and truncated lipid-A core in the detoxified Salmonella mutant. In vitro and in vivo studies demonstrated that the dephosphorylated Salmonella mutant mediated lower pro-inflammatory cytokine secretion than the wild-type strain. The vaccine strains were present in the spleen and liver for five days and were cleared from the organs by day seven. However, the wild-type strain persisted in the spleen, liver, and brain, leading to sepsis-induced death. Histological evaluations of tissue samples further confirmed the reduced endotoxic activity of the detoxified Salmonella mutant. The detoxification strategy did not compromise the level of protective immunity, as the vaccine strain could enhance humoral and cellular immune responses and protect against the wild-type challenge in immunized mice.
Collapse
Affiliation(s)
- Chamith Hewawaduge
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596 Iksan, Republic of Korea
| | - Amal Senevirathne
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596 Iksan, Republic of Korea
| | - Chandran Sivasankar
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596 Iksan, Republic of Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596 Iksan, Republic of Korea.
| |
Collapse
|
44
|
Lin X, Zhao M, Peng T, Zhang P, Shen R, Jia Y. Detection and discrimination of pathogenic bacteria with nanomaterials-based optical biosensors: A review. Food Chem 2023; 426:136578. [PMID: 37336102 DOI: 10.1016/j.foodchem.2023.136578] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/16/2023] [Accepted: 06/02/2023] [Indexed: 06/21/2023]
Abstract
Pathogenic bacteria can pose a great threat to food safety and human health. It is therefore imperative to develop a rapid, portable, and sensitive determination and discrimination method for pathogenic bacteria. Over the past few years, various nanomaterials (NMs) have been employed as desirable nanoprobes because they possess extraordinary properties that can be used for optical signal enabled detection and identification of bacteria. By means of modification, NMs can, depending on different mechanisms, sense targets directly or indirectly, which then provides an essential support for the detection and differentiation of pathogenic bacteria. In this review, recent application of NMs-based optical biosensors for food safety bacterial detection and discrimination is performed, mainly in but not limited to noble metal NMs, fluorescent NMs, and point-of-care testing (POCT). This review also focuses on future trends in bacterial detection and discrimination, and machine learning in performing intelligent rapid detection and multiple accurate identification of bacteria.
Collapse
Affiliation(s)
- Xiaodong Lin
- Zhuhai UM Science & Technology Research Institute, Zhuhai, China.
| | - Minyang Zhao
- Precision Medicine Institute, The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, China
| | - Tao Peng
- Zhuhai UM Science & Technology Research Institute, Zhuhai, China
| | - Pan Zhang
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau, China
| | - Ren Shen
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau, China
| | - Yanwei Jia
- Zhuhai UM Science & Technology Research Institute, Zhuhai, China; State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau, China.
| |
Collapse
|
45
|
Sielski Galvão Soares L, Casella T, Kawagoe EK, Benetti Filho V, Omori WP, Nogueira MCL, Wagner G, Rodrigues de Oliveira R, Stahlhofer SR, Antunes Ferreira F, Tondo EC, De Dea Lindner J. Phenotypic and genotypic characterization of antibiotic resistance of Salmonella Heidelberg in the south of Brazil. Int J Food Microbiol 2023; 391-393:110151. [PMID: 36871395 DOI: 10.1016/j.ijfoodmicro.2023.110151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023]
Abstract
Salmonella is the main human pathogen present in the poultry chain. Salmonella Heidelberg is one of the most important serovars for public health since it has been frequently isolated in broiler chickens from different countries and may present multidrug resistance (MDR). This study was carried out with 130 S. Heidelberg isolates collected from pre-slaughter broiler farms in 2019 and 2020 in 18 cities from three Brazilian states to study relevant aspects regarding their genotypic and phenotypic resistance. The isolates were tested and identified using somatic and flagellar antiserum (0:4, H:2, and H:r), and an antimicrobial susceptibility test (AST) was performed against 11 antibiotics for veterinary use. The strains were typed by Enterobacterial Repetitive Intergenic Consensus (ERIC)-PCR, and representatives of the main clusters of the identified profiles were sequenced by Whole Genome Sequencing (WGS). AST results showed that all isolates were resistant to sulfonamide, 54 % (70/130) were resistant to amoxicillin, and only one was sensitive to tetracycline. Twelve isolates (15.4 %) were MDR. The dendrogram obtained from the ERIC-PCR showed that the strains were grouped into 27 clusters with similarity above 90 %, with some isolates showing 100 % similarity but with different phenotypic profiles of antimicrobial resistance. Identical strains collected on the same farm on other dates were identified, indicating that they were residents. WGS identified 66 antibiotic-resistance genes. The sul2 (present in all sequenced samples) and tet(A) genes were highlighted and validated in the experimental analysis. The fosA7 gene was also identified in all sequenced samples, but resistance was not observed in the phenotypic test, possibly due to the heteroresistance of the S. Heidelberg strains evaluated. Considering that chicken meat is one of the most consumed meats in the world, the data obtained in the present study can corroborate the mapping of the origin and trends of antimicrobial resistance.
Collapse
Affiliation(s)
- Luana Sielski Galvão Soares
- Food Technology and Bioprocess Research Group, Department of Food Science and Technology, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Tiago Casella
- Center for Microorganisms Investigation, São José Do Rio Preto Medical School (FAMERP), São José Do Rio Preto, SP, Brazil
| | - Eric Kazuo Kawagoe
- Laboratory of Bioinformatics, Department of Microbiology, Immunology and Parasitology, UFSC, Florianópolis, SC, Brazil
| | - Vilmar Benetti Filho
- Laboratory of Bioinformatics, Department of Microbiology, Immunology and Parasitology, UFSC, Florianópolis, SC, Brazil
| | | | - Mara Corrêa Lelles Nogueira
- Center for Microorganisms Investigation, São José Do Rio Preto Medical School (FAMERP), São José Do Rio Preto, SP, Brazil
| | - Glauber Wagner
- Laboratory of Bioinformatics, Department of Microbiology, Immunology and Parasitology, UFSC, Florianópolis, SC, Brazil
| | | | | | | | - Eduardo Cesar Tondo
- Laboratory of Food Microbiology and Food Control, Institute of Food Science and Food Technology of Federal University of Rio Grande do Sul (ICTA/UFRGS), Porto Alegre, RS, Brazil
| | - Juliano De Dea Lindner
- Food Technology and Bioprocess Research Group, Department of Food Science and Technology, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil.
| |
Collapse
|
46
|
Kabiraz MP, Majumdar PR, Mahmud MC, Bhowmik S, Ali A. Conventional and advanced detection techniques of foodborne pathogens: A comprehensive review. Heliyon 2023; 9:e15482. [PMID: 37151686 PMCID: PMC10161726 DOI: 10.1016/j.heliyon.2023.e15482] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/13/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023] Open
Abstract
Foodborne pathogens are a major public health concern and have a significant economic impact globally. From harvesting to consumption stages, food is generally contaminated by viruses, parasites, and bacteria, which causes foodborne diseases such as hemorrhagic colitis, hemolytic uremic syndrome (HUS), typhoid, acute, gastroenteritis, diarrhea, and thrombotic thrombocytopenic purpura (TTP). Hence, early detection of foodborne pathogenic microbes is essential to ensure a safe food supply and to prevent foodborne diseases. The identification of foodborne pathogens is associated with conventional (e.g., culture-based, biochemical test-based, immunological-based, and nucleic acid-based methods) and advances (e.g., hybridization-based, array-based, spectroscopy-based, and biosensor-based process) techniques. For industrial food applications, detection methods could meet parameters such as accuracy level, efficiency, quickness, specificity, sensitivity, and non-labor intensive. This review provides an overview of conventional and advanced techniques used to detect foodborne pathogens over the years. Therefore, the scientific community, policymakers, and food and agriculture industries can choose an appropriate method for better results.
Collapse
Affiliation(s)
- Meera Probha Kabiraz
- Department of Biotechnology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Priyanka Rani Majumdar
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Kensington, NSW, 2052, Australia
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - M.M. Chayan Mahmud
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, 221 Burwood Highway, VIC, 3125, Australia
| | - Shuva Bhowmik
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
- Centre for Bioengineering and Nanomedicine, Faculty of Dentistry, Division of Health Sciences, University of Otago, Dunedin, 9054, New Zealand
- Department of Food Science, University of Otago, Dunedin, 9054, New Zealand
- Corresponding author. Centre for Bioengineering and Nanomedicine, Faculty of Dentistry, Division of Health Sciences, University of Otago, Dunedin, 9054, New Zealand.
| | - Azam Ali
- Centre for Bioengineering and Nanomedicine, Faculty of Dentistry, Division of Health Sciences, University of Otago, Dunedin, 9054, New Zealand
- Corresponding author.
| |
Collapse
|
47
|
Nuchchanart W, Pikoolkhao P, Saengthongpinit C. Development of a lateral flow dipstick test for the detection of 4 strains of Salmonella spp. in animal products and animal production environmental samples based on loop-mediated isothermal amplification. Anim Biosci 2023; 36:654-670. [PMID: 36108678 PMCID: PMC9996269 DOI: 10.5713/ab.22.0151] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/31/2022] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE This study aimed to develop loop-mediated isothermal amplification (LAMP) combined with lateral flow dipstick (LFD) and compare it with LAMP-AGE, polymerase chain reaction (PCR), and standard Salmonella culture as reference methods for detecting Salmonella contamination in animal products and animal production environmental samples. METHODS The SalInvA01 primer, derived from the InvA gene and designed as a new probe for LFD detection, was used in developing this study. Adjusting for optimal conditions by temperature, time, and reagent concentration includes evaluating the specificity and limit of detection. The sampling of 120 animal product samples and 350 animal production environmental samples was determined by LAMP-LFD, comparing LAMP-AGE, PCR, and the culture method. RESULTS Salmonella was amplified using optimal conditions for the LAMP reaction and a DNA probe for LFD at 63°C for 60 minutes. The specificity test revealed no cross-reactivity with other microorganisms. The limit of detection of LAMP-LFD in pure culture was 3×102 CFU/mL (6 CFU/reaction) and 9.01 pg/μL in genomic DNA. The limit of detection of the LAMP-LFD using artificially inoculated in minced chicken samples with 5 hours of pre-enrichment was 3.4×104 CFU/mL (680 CFU/reaction). For 120 animal product samples, Salmonella was detected by the culture method, LAMP-LFD, LAMP-AGE, and PCR in 10/120 (8.3%). In three hundred fifty animal production environmental samples, Salmonella was detected in 91/350 (26%) by the culture method, equivalent to the detection rates of LAMP-LFD and LAMP-AGE, while PCR achieved 86/350 (24.6%). When comparing sensitivity, specificity, positive predictive value, and accuracy, LAMP-LFD showed the best results at 100%, 95.7%, 86.3%, and 96.6%, respectively. For Kappa index of LAMP-LFD, indicated nearly perfect agreement with culture method. CONCLUSION The LAMP-LFD Salmonella detection, which used InvA gene, was highly specific, sensitive, and convenient for identifying Salmonella. Furthermore, this method could be used for Salmonella monitoring and primary screening in animal products and animal production environmental samples.
Collapse
Affiliation(s)
- Wirawan Nuchchanart
- Department of Animal Science, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom 73140, Thailand.,Center for Agricultural Biotechnology, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand.,Center of Excellence on Agricultural Biotechnology: (AG-BIO/MHESI), Bangkok 10900, Thailand
| | - Prapasiri Pikoolkhao
- Department of Animal Science, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom 73140, Thailand.,Center for Agricultural Biotechnology, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand.,Center of Excellence on Agricultural Biotechnology: (AG-BIO/MHESI), Bangkok 10900, Thailand
| | - Chalermkiat Saengthongpinit
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Kasetsart University, Nakhon Pathom 73140, Thailand
| |
Collapse
|
48
|
Dhital R, Mustapha A. DNA concentration by solid phase reversible immobilization improves its yield and purity, and detection time of E. coli O157:H7 in foods by high resolution melt curve qPCR. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
49
|
Recent progress on lateral flow immunoassays in foodborne pathogen detection. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
50
|
Effects of cuminaldehyde combined with mild heat against Salmonella enterica serovar Typhimurium in powdered infant formula. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|