1
|
Chi H, Wen X, Li H, Tang J, Zhang X, Chen H. An electrochemical immunosensing of electrochemically modified carbon cloth electrode based on functionalized gold nanoparticle-Prussian blue for the detection of aflatoxin B1 in vegetable oil industry. Food Chem 2025; 471:142765. [PMID: 39793356 DOI: 10.1016/j.foodchem.2025.142765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025]
Abstract
This study developed an electrochemical immunosensor for the detection of aflatoxin B1 (AFB1) in vegetable oil, based on an electrochemical modified carbon cloth (EMCC) electrode modified with a composite functional layer of cross-linked o-aminothiophenol functionalized AuNPs (o-ATP@AuNPs)/Prussian Blue (PB). The EMCC electrode substrate was prepared by modifying carbon cloth through electrochemical methods to increase its surface area, which allowed for the effective deposition of o-ATP@AuNPs/PB composite functional layer and improved the conductivity of the electrode material. The synergistic effect of o-ATP@AuNPs and PB significantly enhanced the sensitivity of the electrochemical sensor. Additionally, the AuS bond between L-Cysteine (L-Cys) and o-ATP@AuNPs improved the stability of the sensing interface. Under optimal conditions, the BSA/anti-AFB1/L-Cys/o-ATP@AuNPs/PB/EMCC sensor was able to detect AFB1 in the range of 0 to 20 ng mL-1 using square wave voltammetry (SWV), with a detection limit of 0.015 ng mL-1. The proposed sensor holds promise for future applications in the sensitive detection of AFB1 in vegetable oils.
Collapse
Affiliation(s)
- Hai Chi
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Xuefei Wen
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Huan Li
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Jie Tang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Xingzhong Zhang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Hongrui Chen
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| |
Collapse
|
2
|
Wei L, Wang K, Liang X, Shi Y, Pan X, Wu X, Xu J, Dong F, Zheng Y. Occurrence and risk assessment of mycotoxins and their modified forms in maize from typical planting regions of China. Food Chem 2025; 483:144253. [PMID: 40233515 DOI: 10.1016/j.foodchem.2025.144253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/23/2025] [Accepted: 04/06/2025] [Indexed: 04/17/2025]
Abstract
Mycotoxin contamination in maize has been a longstanding public concern. This study developed a high-performance liquid chromatography tandem mass spectrometry method for the analysis of 17 mycotoxins and investigated the contamination characteristics of maize grains from three planting regions in China. The results revealed that a total of 12 mycotoxins were detected, with co-occurrence rates of at least 2, 5, and 10 mycotoxins in maize being 69.9%, 30.1%, and 1.0%, respectively. Risk assessment indicated that deoxynivalenols (DON,15AcDON,3AcDON), fumonisins (FB1,FB2) and zearalenones (ZEN,ZAN,α-ZEL,β-ZEL) posed no potential health risks. However, when the three regions were evaluated individually, the estimated daily intake (EDI) value at P95 exposure level for rural male children accounted for 136.6% of the group Tolerable Daily Intake (TDI) for zearalenones in southwest mountainous planting region. Meanwhile, the EDI values (P95) for these three types of mycotoxins in other population groups and regions did not exceeded their respective group TDIs.
Collapse
Affiliation(s)
- Longbing Wei
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Kuan Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Xing Liang
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Yuan Shi
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Xinglu Pan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Xiaohu Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Jun Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Fengshou Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Yongquan Zheng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China; College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
3
|
Murashiki TC, Mazhandu AJ, Zinyama-Gutsire RBL, Mutingwende I, Mazengera LR, Duri K. Association between anaemia and aflatoxin B 1 and fumonisin B 1 exposure in HIV-infected and HIV-uninfected pregnant women from Harare, Zimbabwe. Mycotoxin Res 2025; 41:147-161. [PMID: 39549138 DOI: 10.1007/s12550-024-00571-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/03/2024] [Accepted: 10/28/2024] [Indexed: 11/18/2024]
Abstract
Aflatoxin B1 (AFB1) and fumonisin B1 (FB1) are poisons that contaminate poorly stored staple foods in resource-limited settings. Antenatal AFB1 and FB1 exposure may cause anaemia. We aimed to determine the associations of urinary aflatoxin M1 (AFM1) and FB1, biomarkers of AFB1 and FB1 exposure, respectively, with erythrocyte parameters and anaemia. A retrospective cross-sectional study was conducted in 68 HIV-infected and 61 HIV-uninfected pregnant women ≥ 20 weeks gestational age in Harare, Zimbabwe. AFM1 and FB1 were measured in urine via competitive ELISA, and levels were grouped into tertiles. The erythrocyte parameters assessed were haemoglobin (Hb), mean corpuscular volume, mean corpuscular haemoglobin, mean corpuscular haemoglobin concentration, red blood cell (RBC), haematocrit (HCT), and red blood cell distribution width. Associations of urinary AFM1 and FB1 with erythrocyte parameters, and anaemia were assessed in a multiple regression controlled for potential confounders. The presence of FB1 in urine decreased Hb levels in all women (β= -0.98, 95% CI: -1.94, 0.02) and HIV-uninfected (β= -1.99, 95% CI: -3.71, -0.26). FB1 tertile 3 decreased Hb levels (β= -0.88, 95% CI: -1.74, 0.01) and HCT levels (β= -2.65, 95% CI: -5.26, 0.03) in HIV-infected. AFM1 tertile 2 decreased RBC levels in HIV-infected (β= -0.34, 95% CI: -0.71, -0.03). The presence of FB1 in urine increased anaemia risk in HIV-uninfected (OR: 10.68 95% CI: 1.02, 112.34). AFM1 tertile 2 increased macrocytic anaemia risk in HIV-infected (OR: 13.72, 95% CI: 0.92, 203.55). There is need to ensure food safety through monitoring and nutritional interventions to improve maternal-infant health outcomes.
Collapse
Affiliation(s)
- Tatenda Clive Murashiki
- Immunology Unit, Department of Laboratory Diagnostic and Investigative Sciences, Faculty of Medicine and Health Sciences, University of Zimbabwe, Harare, Zimbabwe.
| | - Arthur John Mazhandu
- Immunology Unit, Department of Laboratory Diagnostic and Investigative Sciences, Faculty of Medicine and Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Rutendo B L Zinyama-Gutsire
- Immunology Unit, Department of Laboratory Diagnostic and Investigative Sciences, Faculty of Medicine and Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Isaac Mutingwende
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Medicine and Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Lovemore Ronald Mazengera
- Immunology Unit, Department of Laboratory Diagnostic and Investigative Sciences, Faculty of Medicine and Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Kerina Duri
- Immunology Unit, Department of Laboratory Diagnostic and Investigative Sciences, Faculty of Medicine and Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| |
Collapse
|
4
|
Murashiki TC, Munjoma PT, Zinyama-Gutsire RBL, Mutingwende I, Mazengera LR, Duri K. Aflatoxin B 1 and fumonisin B 1 exposure and adverse birth outcomes in HIV-infected and HIV-uninfected women from Harare, Zimbabwe. Drug Chem Toxicol 2025:1-14. [PMID: 39754746 DOI: 10.1080/01480545.2024.2448675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 11/04/2024] [Accepted: 12/27/2024] [Indexed: 01/06/2025]
Abstract
Aflatoxin B1 (AFB1) and fumonisin B1 (FB1) are toxic secondary products of fungi that frequently contaminate staple crops in resource-limited settings. Antenatal AFB1 and FB1 exposure may cause adverse birth outcomes. We conducted a retrospective substudy nested in a case-control cohort of HIV-infected and HIV-uninfected women ≥20 weeks gestation from Harare, Zimbabwe. Urinary aflatoxin M1 (AFM1) and FB1, biomarkers of AFB1 and FB1 exposure, respectively, were quantified in random antenatal urine via ELISA and grouped into tertiles. The adverse birth outcomes considered were low birth weight, preterm birth (PTB), small for gestational age, stillbirth, birth defects, neonatal death, neonatal jaundice and perinatal death (PD). We evaluated any associations between adverse birth outcomes and exposure to AFB1, FB1, or the AFB1-FB1 combination via a multivariable logistic regression controlled for potential confounders. We enrolled 94 HIV-infected and 81 HIV-uninfected women. In HIV-infected, AFM1 was detected in 46/94 (49%), and FB1 was detected in 86/94 (91%). In HIV-uninfected, AFM1 was detected in 48/81 (59%), and FB1 was detected in 74/81 (91%). Among all women, AFM1 tertile 3 was associated with PD (OR: 6.95; 95% CI: 1.21-39.78). In the same population, AFM1 tertiles 2 (OR: 13.46; 95% CI: 1.20-150.11) and 3 (OR: 7.92; 95% CI: 1.08-58.19) were associated with PTB. In HIV-infected, AFM1 tertile 2 was associated with PTB (OR: 64.73; 95% CI: 2.37-177.93). Our results revealed an association between AFB1 exposure and PD and PTB in women, including those infected with HIV. Public health and nutrition measures are necessary to mitigate mycotoxins.
Collapse
Affiliation(s)
- Tatenda Clive Murashiki
- Immunology Unit, Department of Laboratory, Diagnostic and Investigative Sciences, Faculty of Medicine and Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Privilege Tendai Munjoma
- Immunology Unit, Department of Laboratory, Diagnostic and Investigative Sciences, Faculty of Medicine and Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Rutendo B L Zinyama-Gutsire
- Immunology Unit, Department of Laboratory, Diagnostic and Investigative Sciences, Faculty of Medicine and Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Isaac Mutingwende
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Medicine and Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Lovemore Ronald Mazengera
- Immunology Unit, Department of Laboratory, Diagnostic and Investigative Sciences, Faculty of Medicine and Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Kerina Duri
- Immunology Unit, Department of Laboratory, Diagnostic and Investigative Sciences, Faculty of Medicine and Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| |
Collapse
|
5
|
Yu P, Li M, Wang S, Li S, Cui J, Yang J, Liu S, Kong L, Chen Z. Bi 2S 3/BiOCl heterojunction-based photoelectrochemical aptasensor for ultrasensitive assay of fumonisin B 1 via signal amplification with in situ grown Ag 2S quantum dots. Mikrochim Acta 2024; 191:762. [PMID: 39589431 DOI: 10.1007/s00604-024-06846-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/13/2024] [Indexed: 11/27/2024]
Abstract
Fumonisin B1 (FB1) is a mycotoxin mainly found in corn, peanuts, and wheat crops, which affects human health. Based on bismuth sulfide/bismuth oxychloride (Bi2S3/BiOCl) composite material, silver sulfide (Ag2S) was grown in situ as a quantum dot sensitization signal, and a photoelectrochemical (PEC) aptasensor was designed by layer upon layer modification to detect FB1. Bi2S3/BiOCl has a wide range of visible light absorption, stable chemical properties, and a simple synthesis method. In the construction process, L-ascorbic acid (AA) is selected to provide electrons and inhibit photogenerated electron-hole (e-/h+) recombination. Under the optimal experimental conditions, the detection range of the fabricated PEC aptasensor was 0.001 ~ 100 ng/mL, and the detection limit was 0.016 pg/mL. The prepared PEC aptasensor has high sensitivity, stability, and reproducibility. The combination of aptamer and PEC sensor provides a novel method for the application of PEC sensor in mycotoxin detection.
Collapse
Affiliation(s)
- Pengfei Yu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, People's Republic of China
| | - Meixin Li
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, People's Republic of China
| | - Shun Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, People's Republic of China
| | - Shanshan Li
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, People's Republic of China
| | - Jiaqi Cui
- School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, 255000, People's Republic of China
| | - Jun Yang
- School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, 255000, People's Republic of China
| | - Shuang Liu
- School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, 255000, People's Republic of China
| | - Ling Kong
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, People's Republic of China.
| | - Zhiwei Chen
- School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, 255000, People's Republic of China.
- Shandong Provincial Innovation Center for Dairy Technology, Zibo, 255000, People's Republic of China.
- Shandong Engineering Research Center for Food Rapid Analysis Technology, Zibo, 255000, People's Republic of China.
| |
Collapse
|
6
|
Li SL, Yan ZY, Qian HL, Xu ST, Yan XP. Aptamer-Conjugated Covalent-Organic Framework Nanochannels for Selective and Sensitive Detection of Aflatoxin B1. Anal Chem 2024; 96:17370-17376. [PMID: 39420777 DOI: 10.1021/acs.analchem.4c04098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Sensitive and selective detection of trace aflatoxin B1 (AFB1) in foods is of great importance to guarantee food safety and quality but still challenging because of its trace amount and the interference from the complex food matrix. Here, we report the integration of aptamer (Apt) and an ordered 2D covalent organic framework (COF) to solid-state anodic aluminum oxide (AAO) nanochannels (Apt/COF/AAO) for selective and sensitive detection of trace AFB1. The high specificity of Apt for AFB1 led to a selective change in the surface charge of Apt/COF/AAO and in turn the current change of the nanochannel, permitting the selective and sensitive determination of trace AFB1 in complex food samples. The developed nanofluidic sensor gave a wide linear range (1-500 pg mL-1), low detection limit (0.11 pg mL-1), and good precision (relative standard deviation of 1.5% for 11 replicate determinations of 100 pg mL-1). In addition, the developed sensor was successfully used for the detection of AFB1 in food samples with the recovery of 86.9%-102.5%. The coupling of Apt-conjugated 2D COF with an AAO nanochannel provides a promising way for sensitive and selective determination of food contaminants in complex samples.
Collapse
Affiliation(s)
- Shi-Lun Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhu-Ying Yan
- Analysis and Testing Center, Jiangnan University, Wuxi 214122, China
| | - Hai-Long Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shu-Ting Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiu-Ping Yan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
7
|
Abdallah MF, Yang S, Varga E. The Editorial on the Special Issue "Research on Mycotoxins in Food and Feed: From Detection and Unravelling of Toxicity to Control". Toxins (Basel) 2024; 16:435. [PMID: 39453211 PMCID: PMC11511062 DOI: 10.3390/toxins16100435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
In this Special Issue, several interesting research and review articles were published with the aim of filling in some of the existing knowledge gaps in the field of mycotoxins [...].
Collapse
Affiliation(s)
- Mohamed F. Abdallah
- Department of Food Technology, Safety and Health, Ghent University, 9000 Gent, Belgium
- Department of Human Biology and Toxicology, Faculty of Medicine, Pharmacy and Biomedical Sciences, University of Mons, 7000 Mons, Belgium
| | - Shupeng Yang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Elisabeth Varga
- Unit Food Hygiene and Technology, Centre for Food Science and Veterinary Public Health, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine, Vienna, 1210 Vienna, Austria;
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
8
|
Khan R. Mycotoxins in food: Occurrence, health implications, and control strategies-A comprehensive review. Toxicon 2024; 248:108038. [PMID: 39047955 DOI: 10.1016/j.toxicon.2024.108038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/14/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Mycotoxins are secondary metabolites produced by various filamentous fungi, including Aspergillus, Fusarium, Penicillium, Alternaria, Claviceps, Mucor, Trichoderma, Trichothecium, Myrothecium, Pyrenophora, and Stachybotrys. They can contaminate various plants or animal foods, resulting in a significant loss of nutritional and commercial value. Several factors contribute to mycotoxin production, such as humidity, temperature, oxygen levels, fungal species, and substrate. When contaminated food is consumed by animals and humans, mycotoxins are rapidly absorbed, affecting the liver, and causing metabolic disorders. The detrimental effects on humans and animals include reduced food intake and milk production, reduced fertility, increased risk of abortion, impaired immune response, and increased occurrence of diseases. Therefore, it is imperative to implement strategies for mycotoxin control, broadly classified as preventing fungal contamination and detoxifying their toxic compounds. This review aims to discuss various aspects of mycotoxins, including their occurrence, and risk potential. Additionally, it provides an overview of mycotoxin detoxification strategies, including the use of mycotoxin absorbents, as potential techniques to eliminate or mitigate the harmful effects of mycotoxins and masked mycotoxins on human and animal health while preserving the nutritional and commercial value of affected food products.
Collapse
Affiliation(s)
- Rahim Khan
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, 43300, Malaysia.
| |
Collapse
|
9
|
Mary VS, Vélez PA, Quiroz S, Beccacece I, Otaiza-González SN, Chiapello LS, Rubinstein HR, Theumer MG. Involvement of aryl hydrocarbon receptor in the aflatoxin B 1 and fumonisin B 1 effects on in vitro differentiation of murine regulatory-T and Th17 cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:48758-48772. [PMID: 39039370 DOI: 10.1007/s11356-024-34421-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024]
Abstract
Aflatoxin B1 (AFB1) and fumonisin B1 (FB1) are mycotoxins widely found as cereal contaminants, and their co-consumption is associated with liver cancer. Both are immunotoxic, but their interactions have been little studied. This work was aimed to evaluate in mouse spleen mononuclear cells (SMC) the effects of the exposure to AFB1 (5-50 µM), FB1 (25-250 µM), and AFB1-FB1 mixtures (MIX) on the in vitro differentiation of regulatory T cells (Treg and Tr1-like) and Th17 cells, as well as elucidate the contribution of aryl hydrocarbon receptor (Ahr) in such effects. AFB1 and mainly MIX induced cytotoxicity in activated CD4 cells via Ahr signaling. AFB1 (5 µM) increased the Treg cell differentiation, but its combination with FB1 (25 µM) also reduced Th17 cell expansion by Ahr-dependent mechanisms. Therefore, this mixture could enhance the Treg/Th17 cell ratio and favor immunosuppression and escape from tumor immunosurveillance to a greater extent than individual mycotoxins. Whereas, AFB1-FB1 mixtures at medium-high doses inhibited the Tr1-like cell expansion induced by the individual mycotoxins and affected Treg and Th17 cell differentiation in Ahr-independent and dependent manners, respectively, which could alter anti-inflammatory and Th17 immune responses. Moreover, individual FB1 altered regulatory T and Th17 cell development independently of Ahr. In conclusion, AFB1 and FB1 interact by modifying Ahr signaling, which is involved in the immunotoxicity as well as in the alteration of the differentiation of Treg, Tr1-like, and Th17 cells induced by AFB1-FB1 mixtures. Therefore, Ahr is implicated in the regulation of the anti- and pro-inflammatory responses caused by the combination of AFB1 and FB1.
Collapse
Affiliation(s)
- Verónica Sofía Mary
- Centro de Investigaciones en Bioquímica Clínica E Inmunología (CIBICI, UNC-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de La Torre y Medina Allende, Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Pilar Andrea Vélez
- Centro de Investigaciones en Bioquímica Clínica E Inmunología (CIBICI, UNC-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de La Torre y Medina Allende, Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Sol Quiroz
- Centro de Investigaciones en Bioquímica Clínica E Inmunología (CIBICI, UNC-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de La Torre y Medina Allende, Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Ignacio Beccacece
- Centro de Investigaciones en Bioquímica Clínica E Inmunología (CIBICI, UNC-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de La Torre y Medina Allende, Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Santiago Nicolás Otaiza-González
- Centro de Investigaciones en Bioquímica Clínica E Inmunología (CIBICI, UNC-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de La Torre y Medina Allende, Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Laura Silvina Chiapello
- Centro de Investigaciones en Bioquímica Clínica E Inmunología (CIBICI, UNC-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de La Torre y Medina Allende, Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Héctor Ramón Rubinstein
- Centro de Investigaciones en Bioquímica Clínica E Inmunología (CIBICI, UNC-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de La Torre y Medina Allende, Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Martín Gustavo Theumer
- Centro de Investigaciones en Bioquímica Clínica E Inmunología (CIBICI, UNC-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de La Torre y Medina Allende, Ciudad Universitaria, X5000HUA, Córdoba, Argentina.
| |
Collapse
|
10
|
Moura-Mendes J, Cazal-Martínez CC, Rojas C, Ferreira F, Pérez-Estigarribia P, Dias N, Godoy P, Costa J, Santos C, Arrua A. Species Identification and Mycotoxigenic Potential of Aspergillus Section Flavi Isolated from Maize Marketed in the Metropolitan Region of Asunción, Paraguay. Microorganisms 2023; 11:1879. [PMID: 37630439 PMCID: PMC10458825 DOI: 10.3390/microorganisms11081879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 08/27/2023] Open
Abstract
Zea mays var. amylacea and Zea mays var. indurata are maize ecotypes from Paraguay. Aspergillus section Flavi is the main spoilage fungus of maize under storage conditions. Due to its large intraspecific genetic variability, the accurate identification of this fungal taxonomic group is difficult. In the present study, potential mycotoxigenic strains of Aspergillus section Flavi isolated from Z. mays var. indurata and Z. mays var. amylacea that are marketed in the metropolitan region of Asunción were identified by a polyphasic approach. Based on morphological characters, 211 isolates were confirmed to belong to Aspergillus section Flavi. A subset of 92 strains was identified as Aspergillus flavus by mass spectrometry MALDI-TOF and the strains were classified by MALDI-TOF MS into chemotypes based on their aflatoxins and cyclopiazonic acid production. According to the partial sequencing of ITS and CaM genes, a representative subset of 38 A. flavus strains was confirmed. Overall, 75 A. flavus strains (86%) were characterized as producers of aflatoxins. The co-occurrence of at least two mycotoxins (AF/ZEA, FUM/ZEA, and AF/ZEA/FUM) was detected for five of the Z. mays samples (63%). Considering the high mycological bioburden and mycotoxin contamination, maize marketed in the metropolitan region of Asunción constitutes a potential risk to food safety and public health and requires control measures.
Collapse
Affiliation(s)
- Juliana Moura-Mendes
- Centro Multidisciplinario de Investigaciones Tecnológicas, Universidad Nacional de Asunción, San Lorenzo 111421, Paraguay; (J.M.-M.)
| | - Cinthia C. Cazal-Martínez
- Centro Multidisciplinario de Investigaciones Tecnológicas, Universidad Nacional de Asunción, San Lorenzo 111421, Paraguay; (J.M.-M.)
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Asunción, San Lorenzo 111421, Paraguay
| | - Cinthia Rojas
- Centro Multidisciplinario de Investigaciones Tecnológicas, Universidad Nacional de Asunción, San Lorenzo 111421, Paraguay; (J.M.-M.)
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Asunción, San Lorenzo 111421, Paraguay
| | - Francisco Ferreira
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Asunción, San Lorenzo 111421, Paraguay
| | - Pastor Pérez-Estigarribia
- Facultad Politécnica, Universidad Nacional de Asunción, San Lorenzo 111421, Paraguay
- Facultad de Medicina, Universidad Sudamericana, Pedro Juan Caballero 130112, Paraguay
| | - Nathalia Dias
- BIOREN-UFRO Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
| | - Patrício Godoy
- Instituto de Microbiología Clínica, Facultad de Medicina, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Jéssica Costa
- Departamento de Biologia, Instituto de Ciências Biológicas-ICB, Universidade Federal do Amazonas, Av. Rodrigo Otávio Jordão Ramos 3000, Bloco 01, Manaus 69077-000, Brazil;
| | - Cledir Santos
- Department of Chemical Science and Natural Resources, Universidad de La Frontera, Temuco 4811230, Chile
| | - Andrea Arrua
- Centro Multidisciplinario de Investigaciones Tecnológicas, Universidad Nacional de Asunción, San Lorenzo 111421, Paraguay; (J.M.-M.)
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Asunción, San Lorenzo 111421, Paraguay
| |
Collapse
|
11
|
Wang Z, Wei L, Ruan S, Chen Y. CRISPR/Cas12a-Assisted Chemiluminescence Sensor for Aflatoxin B 1 Detection in Cereal Based on Functional Nucleic Acid and In-Pipet Rolling Circle Amplification. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4417-4425. [PMID: 36853759 DOI: 10.1021/acs.jafc.3c00341] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Herein, we report a CRISPR/Cas12a-assisted chemiluminescence sensor for aflatoxin B1 (AFB1) detection based on functional nucleic-acid-mediated target recognition and in-pipet rolling circle amplification-mediated signal amplification. In this sensor, we performed rolling circle amplification on the inside of the pipet to enrich horseradish peroxidase (pipet-poly-HRP). When AFB1 is present, it interacts with functional nucleic acids and results in the release of the activator. The activator is designed to activate the CRISPR/Cas12a system, which cleaves the pipet-poly-HRP to liberate HRP. The freed HRP can then be measured by chemiluminescence to quantify AFB1. This CRISPR/Cas12a-assisted chemiluminescence sensor enables facile, highly sensitive, and specific detection of AFB1, with a linear range from 50 pg/mL to 100 ng/mL and a detection limit of 5.2 pg/mL. Furthermore, it exhibits satisfactory recovery and has successfully challenged AFB1 detection in cereal samples. The proposed sensor offers a novel rapid screening approach that holds great promise for food security monitoring.
Collapse
Affiliation(s)
- Zhilong Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Luyu Wei
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Shilong Ruan
- Daye Public Inspection and Test Center, Daye, Hubei 435100, People's Republic of China
| | - Yiping Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, People's Republic of China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, People's Republic of China
| |
Collapse
|
12
|
A Stimuli-Responsive Colorimetric Aptasensor Based on the DNA Hydrogel-Coated MOF for Fumonisin B1 Determination in Food Samples. Food Chem 2022; 403:134242. [DOI: 10.1016/j.foodchem.2022.134242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/31/2022] [Accepted: 09/11/2022] [Indexed: 11/17/2022]
|
13
|
Deng J, Jiang H, Chen Q. Determination of aflatoxin B 1 (AFB 1) in maize based on a portable Raman spectroscopy system and multivariate analysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 275:121148. [PMID: 35306308 DOI: 10.1016/j.saa.2022.121148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/20/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Aflatoxin B1 (AFB1) is the most widely distributed, most toxic, and most harmful, and it is widely present in moldy grains. This study proposes a new method for quantitative and rapid determination of the AFB1 content in maize based on Raman spectroscopy. The Raman spectra of maize samples with different mildew degrees were collected by a portable laser Raman spectroscopy system. Three different spectral selection methods, which were bootstrapping soft shrinkage (BOSS), variable combination population analysis (VCPA) and competitive adaptive reweighted sampling (CARS), were applied to optimize the characteristic wavelength variables of the pretreated Raman spectra. The support vector machine (SVM) detection models based on different optimized characteristic wavelength variables were established, and the results of each detection model were compared. The results obtained showed that the performance of the SVM models established by optimized features was significantly better than the performance of the SVM model built by full-spectrum data. Among them, the SVM model based on the characteristic wavelength variables optimized by the CARS method had the best performance, and its root mean square error of prediction (RMSEP) was 3.5377 μg∙kg-1, the determination coefficient of prediction (RP2) was 0.9715, and the relative prediction deviation (RPD) was 5.8258. The overall results reveal that the rapid quantitative detection of the AFB1 in maize by Raman spectroscopy has a promising application prospect. In addition, the implementation of the characteristic wavelength optimization of Raman spectra in the model calibration process can effectively improve the detection accuracy of chemometric models.
Collapse
Affiliation(s)
- Jihong Deng
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Hui Jiang
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
14
|
Nguenha RJ, Damyeh MS, Hong HT, Chaliha M, Sultanbawa Y. Effect of solvents on curcumin as a photosensitizer and its ability to inactivate
Aspergillus flavus
and reduce aflatoxin B1 in maize kernels and flour. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.16169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Rafael José Nguenha
- School of Agriculture and Food Science The University of Queensland St. Lucia Queensland Australia
- Faculdade de Agronomia e Engenharia Florestal Universidade Eduardo Mondlane Maputo Mozambique
| | - Maral Seidi Damyeh
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods Queensland Alliance for Agriculture and Food Innovation The University of Queensland St. Lucia Queensland Australia
- Centre for Food Science and Nutrition Sciences Queensland Alliance for Agriculture and Food Innovation The University of Queensland St Lucia Queensland Australia
| | - Hung Trieu Hong
- Centre for Food Science and Nutrition Sciences Queensland Alliance for Agriculture and Food Innovation The University of Queensland St Lucia Queensland Australia
| | - Mridusmita Chaliha
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods Queensland Alliance for Agriculture and Food Innovation The University of Queensland St. Lucia Queensland Australia
- Centre for Food Science and Nutrition Sciences Queensland Alliance for Agriculture and Food Innovation The University of Queensland St Lucia Queensland Australia
| | - Yasmina Sultanbawa
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods Queensland Alliance for Agriculture and Food Innovation The University of Queensland St. Lucia Queensland Australia
- Centre for Food Science and Nutrition Sciences Queensland Alliance for Agriculture and Food Innovation The University of Queensland St Lucia Queensland Australia
| |
Collapse
|
15
|
Ortega-Beltran A, Agbetiameh D, Atehnkeng J, Falade TDO, Bandyopadhyay R. Does Use of Atoxigenic Biocontrol Products to Mitigate Aflatoxin in Maize Increase Fumonisin Content in Grains? PLANT DISEASE 2021; 105:2196-2201. [PMID: 33210967 DOI: 10.1094/pdis-07-20-1447-re] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In the tropics and subtropics, maize (Zea mays) and other crops are frequently contaminated with aflatoxins by Aspergillus flavus. Treatment of crops with atoxigenic isolates of A. flavus formulated into biocontrol products can significantly reduce aflatoxin contamination. Treated crops contain up to 100% fewer aflatoxins compared with untreated crops. However, there is the notion that protecting crops from aflatoxin contamination may result in increased accumulation of other toxins, particularly fumonisins produced by a few Fusarium species. The objective of this study was to determine if treatment of maize with aflatoxin biocontrol products increased fumonisin concentration and fumonisin-producing fungi in grains. Over 200 maize samples from fields treated with atoxigenic biocontrol products in Nigeria and Ghana were examined for fumonisin content and contrasted with maize from untreated fields. Apart from low aflatoxin levels, most treated maize also harbored fumonisin levels considered safe by the European Union (<1 part per million; ppm). Most untreated maize also harbored equally low fumonisin levels but contained higher aflatoxin levels. In addition, during one year, we detected considerably lower Fusarium spp. densities in treated maize than in untreated maize. Our results do not support the hypothesis that treating crops with atoxigenic isolates of A. flavus used in biocontrol formulations results in higher grain fumonisin levels.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
| | - Daniel Agbetiameh
- International Institute of Tropical Agriculture, Ibadan 200001, Nigeria
- Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Department of Agro Enterprise Development, Faculty of Applied Science and Technology, Ho Technical University, Ho, Ghana
| | - Joseph Atehnkeng
- International Institute of Tropical Agriculture, Bukavu, D. R. Congo
| | | | | |
Collapse
|
16
|
Hu D, Xiao S, Guo Q, Yue R, Geng D, Ji D. Luminescence method for detection of aflatoxin B1 using ATP-releasing nucleotides. RSC Adv 2021; 11:24027-24031. [PMID: 35479041 PMCID: PMC9036674 DOI: 10.1039/d1ra03870b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/29/2021] [Indexed: 02/03/2023] Open
Abstract
Determination of aflatoxin B1 (AFB1) is still a big issue in food safety. In this paper, we developed a luminescence AFB1 detection method combined with ATP-releasing nucleotides (ARNs) and AFB1 aptamer. Firstly, using a new coupling method, we synthesized two ARNs (dTP4A and dGP4A) in a yield of 67% and 58%, respectively. The newly prepared ARNs show a much lower background. Then, we developed a new isothermal polymerase amplification method. In this method, two DNA hairpins were used to substitute the circle DNA template in rolling circle amplification. Using this amplification method and combined with AFB1 aptamer, a new AFB1 detection method is developed. A detection limit as low as 0.3 pM is achieved. This method is simple and efficient, and will have a great potential to be used for food safety and public health. Schematic illustration of a luminescence short DNA sequence detection method using ATP-releasing nucleotides. Combined with AFB1 aptamer, this method is used to detect AFB1.![]()
Collapse
Affiliation(s)
- Dongyue Hu
- College of Chemistry and Chemical Engineering, Qingdao University Qingdao 266071 PR China
| | - Shusen Xiao
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University Qingdao 266237 PR China
| | - Qiaqia Guo
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University Qingdao 266237 PR China
| | - Rongrong Yue
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University Qingdao 266237 PR China
| | - Demin Geng
- College of Chemistry and Chemical Engineering, Qingdao University Qingdao 266071 PR China
| | - Debin Ji
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University Qingdao 266237 PR China
| |
Collapse
|
17
|
Classification of Aflatoxin B1 Concentration of Single Maize Kernel Based on Near-Infrared Hyperspectral Imaging and Feature Selection. SENSORS 2021; 21:s21134257. [PMID: 34206281 PMCID: PMC8271414 DOI: 10.3390/s21134257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/14/2021] [Accepted: 06/17/2021] [Indexed: 11/23/2022]
Abstract
A rapid and nondestructive method is greatly important for the classification of aflatoxin B1 (AFB1) concentration of single maize kernel to satisfy the ever-growing needs of consumers for food safety. A novel method for classification of AFB1 concentration of single maize kernel was developed on the basis of the near-infrared (NIR) hyperspectral imaging (1100–2000 nm). Four groups of AFB1 samples with different concentrations (10, 20, 50, and 100 ppb) and one group of control samples were prepared, which were preprocessed with Savitzky–Golay (SG) smoothing and first derivative (FD) algorithms for their raw NIR spectra. A key wavelength selection method, combining the variance and order of average spectral intensity, was proposed on the basis of pretreated spectra. Moreover, principal component analysis (PCA) was conducted to reduce the dimensionality of hyperspectral data. Finally, a classification model for AFB1 concentrations was developed through linear discriminant analysis (LDA), combined with five key wavelengths and the first three PCs. The results show that the proposed method achieved an ideal performance for classifying AFB1 concentrations in a single maize kernel with overall accuracy, with an F1-score and Kappa values of 95.56%, 0.9554, and 0.9444, respectively, as well as the test accuracy yield of 88.67% for independent validation samples. The combinations of variance and order of average spectral intensity can be used for key wavelength selection which, combined with PCA, can achieve an ideal dimensionality reduction effect for model development. The findings of this study have positive significance for the classification of AFB1 concentration of maize kernels.
Collapse
|
18
|
Ngure F, Ngure C, Achieng G, Munga F, Moran Z, Stafstrom W, Nelson R. Mycotoxins contamination of market maize and the potential of density sorting in reducing exposure in unregulated food systems in Kenya. WORLD MYCOTOXIN J 2021. [DOI: 10.3920/wmj2020.2631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Aflatoxins and fumonisins commonly contaminate key food staples in tropical countries, causing recurring acute and chronic public health problems. The present study was conducted to assess the potential of a simple device designed for density-based sorting of maize for its potential to reduce aflatoxins and fumonisins in diverse samples of naturally contaminated maize. A cross sectional survey was conducted, analysing market maize samples (n=204) from eight counties in Western Kenya. A quarter (25%) of the maize samples were contaminated with aflatoxin B1 above the legal limit of 5 μg/kg and nearly half (48%) were contaminated with fumonisins at levels above the legal limit of 2 μg/g. Analysis of additional samples (n=24) from Meru County showed that contamination of maize with the two toxins was also common in Eastern Kenya. A simple density sorter was used to separate grain samples into heavy and light fractions. With an out-sort rate of 31%, density sorting was effective in separating maize by bulk density and 100-kernel weight (P<0.001). Bulk density was negatively correlated with aflatoxins in unsorted (r=-0.20, P<0.01) and heavy fractions (r=-0.32, P<0.01). Density sorting was effective at reducing fumonisins; for maize samples with >1 μg/g, the heavy (accepted) fraction had 66% lower fumonisins than the unsorted maize. After density sorting, the light and heavy fractions fumonisin levels differed by an average of 8.38 μg/g (P<0.001). However, sorting was not effective at significantly reducing aflatoxin levels in maize that was highly contaminated. A simple density sorting equipment that could be adopted by local small-scale millers has potential to reduce fumonisins in maize. Additional and complementary sorting technologies, such as size screening and spectral sorting might improve the effectiveness of reducing aflatoxins in maize.
Collapse
Affiliation(s)
- F.M. Ngure
- Independent Research Consultant, Mycotoxins Mitigation and Child Stunting Research Trial, Arusha Tanzania & Nairobi, P.O. Box 1292, Limuru 00217, Kenya
- Division of Nutritional Sciences, Cornell University, Savage Hall, Ithaca, NY 14853, USA
| | - C. Ngure
- Department of Plant Pathology, University of Nairobi, 3099-00200 Nairobi, Kenya
| | - G. Achieng
- Department of Plant Breeding and Biotechnology, University of Nairobi, 3099-00200 Nairobi, Kenya
| | - F. Munga
- Biosciences East and Central Africa Hub at the International Livestock Research Institute (BecA-ILRI), P.O. Box 30709, Nairobi 00100, Kenya
| | - Z. Moran
- Department of Emergency Medicine, NYU Langone Health, New York, NY, USA
| | - W. Stafstrom
- School of Integrative Plant Science, Cornell University, Ithaca NY 14853, USA
| | - R.J. Nelson
- School of Integrative Plant Science, Cornell University, Ithaca NY 14853, USA
| |
Collapse
|
19
|
Huang Q, Jiang K, Tang Z, Fan K, Meng J, Nie D, Zhao Z, Wu Y, Han Z. Exposure Assessment of Multiple Mycotoxins and Cumulative Health Risk Assessment: A Biomonitoring-Based Study in the Yangtze River Delta, China. Toxins (Basel) 2021; 13:103. [PMID: 33535530 PMCID: PMC7912756 DOI: 10.3390/toxins13020103] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 01/02/2023] Open
Abstract
The extensive exposure to multiple mycotoxins has been demonstrated in many countries; however, realistic assessments of the risks related to cumulative exposure are limited. This biomonitoring study was conducted to investigate exposure to 23 mycotoxins/metabolites and their determinants in 227 adults (aged 20-88 years) in the Yangtze River Delta, China. Eight mycotoxins were detected in 110 urine samples, and multiple mycotoxins co-occurred in 51/227 (22.47%) of urine samples, with deoxynivalenol (DON), fumonisin B1 (FB1), and zearalenone (ZEN) being the most frequently occurring. For single mycotoxin risk assessment, FB1, ZEN, aflatoxin B1 (AFB1), and ochratoxin A (OTA) all showed potential adverse effects. However, for the 12 samples containing DON and ZEN, in which none had a hazard risk, the combination of both mycotoxins in two samples was considered to pose potential endocrine disrupting risks to humans by hazard index (HI) method. The combined margin of exposure (MOET) for AFB1 and FB1 could constitute a potential health concern, and AFB1 was the main contributor. Our approach provides a blueprint for evaluating the cumulative risks related to different types of mycotoxins and opens a new horizon for the accurate interpretation of epidemiological health outcomes related to multi-mycotoxin exposure.
Collapse
Affiliation(s)
- Qingwen Huang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; (Q.H.); (K.J.)
- Institute for Agro-Food Standards and Testing Technology, Shanghai Key Laboratory of Protected Horticultural Technology, Laboratory of Quality and Safety Risk Assessment for Agro-Products (Shanghai), Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (Z.T.); (K.F.); (J.M.); (D.N.); (Z.Z.)
| | - Keqiu Jiang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; (Q.H.); (K.J.)
| | - Zhanmin Tang
- Institute for Agro-Food Standards and Testing Technology, Shanghai Key Laboratory of Protected Horticultural Technology, Laboratory of Quality and Safety Risk Assessment for Agro-Products (Shanghai), Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (Z.T.); (K.F.); (J.M.); (D.N.); (Z.Z.)
| | - Kai Fan
- Institute for Agro-Food Standards and Testing Technology, Shanghai Key Laboratory of Protected Horticultural Technology, Laboratory of Quality and Safety Risk Assessment for Agro-Products (Shanghai), Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (Z.T.); (K.F.); (J.M.); (D.N.); (Z.Z.)
| | - Jiajia Meng
- Institute for Agro-Food Standards and Testing Technology, Shanghai Key Laboratory of Protected Horticultural Technology, Laboratory of Quality and Safety Risk Assessment for Agro-Products (Shanghai), Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (Z.T.); (K.F.); (J.M.); (D.N.); (Z.Z.)
| | - Dongxia Nie
- Institute for Agro-Food Standards and Testing Technology, Shanghai Key Laboratory of Protected Horticultural Technology, Laboratory of Quality and Safety Risk Assessment for Agro-Products (Shanghai), Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (Z.T.); (K.F.); (J.M.); (D.N.); (Z.Z.)
| | - Zhihui Zhao
- Institute for Agro-Food Standards and Testing Technology, Shanghai Key Laboratory of Protected Horticultural Technology, Laboratory of Quality and Safety Risk Assessment for Agro-Products (Shanghai), Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (Z.T.); (K.F.); (J.M.); (D.N.); (Z.Z.)
| | - Yongjiang Wu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; (Q.H.); (K.J.)
| | - Zheng Han
- Institute for Agro-Food Standards and Testing Technology, Shanghai Key Laboratory of Protected Horticultural Technology, Laboratory of Quality and Safety Risk Assessment for Agro-Products (Shanghai), Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (Z.T.); (K.F.); (J.M.); (D.N.); (Z.Z.)
| |
Collapse
|
20
|
Priesterjahn EM, Geisen R, Schmidt-Heydt M. Influence of Light and Water Activity on Growth and Mycotoxin Formation of Selected Isolates of Aspergillus flavus and Aspergillus parasiticus. Microorganisms 2020; 8:microorganisms8122000. [PMID: 33333925 PMCID: PMC7765403 DOI: 10.3390/microorganisms8122000] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/30/2020] [Accepted: 12/12/2020] [Indexed: 12/03/2022] Open
Abstract
Aspergillus flavus and A. parasiticus are the main causes of aflatoxin contamination in various foods, particularly grains, as they can thrive in environments with lower water activity and higher temperatures. The growth of Aspergillus and the formation of the mycotoxins aflatoxin and cyclopiazonic acid are strongly influenced by environmental stimuli and can be reduced by modulating parameters such as water activity, pH, temperature and light during the storage. This study has two objectives—on the one hand, to assess how global warming and an increase in exposure to sunlight affect growth and mycotoxin formation, and on the other hand, how the findings from these experiments can be used to reduce fungal growth and mycotoxin formation in stored foods. Using growth substrates with two different water activities (aw 0.95, aw 0.98), together with a light incubation device consisting of different chambers equipped with diodes emitting visible light of five different wavelengths (455 nm, 470 nm, 530 nm, 590 nm, 627 nm) plus white light, we analyzed the growth and mycotoxin formation of selected Aspergillus flavus and A. parasiticus isolates. It was shown that light with a wavelength of 455/470 nm alone, but especially in combination with a lower water activity of aw 0.95, leads to a significant reduction in growth and mycotoxin formation, which was accompanied by reduced transcriptional activity of the responsible mycotoxin biosynthetic genes. Therefore, these results can be used to significantly reduce the growth and the mycotoxin formation of the analyzed fungi during storage and to estimate the trend of fungal infestation by Aspergillus flavus and A. parasiticus in water activity- and light exposure-equivalent climate change scenarios. Mycotoxin-producing aspergilli can be effective and sustainably inhibited using a combination of short-wave light and lowered water activity in the substrate. A higher annual mean temperature accompanying climate change may lead to an increased spread of aflatoxin-producing fungi in areas that were previously too cold for them. On the other hand, there will be regions in the world where contamination with aflatoxin-producing fungi will be reduced due to increased drought and sun exposure.
Collapse
|
21
|
Drying Performance and Aflatoxin Content of Paddy Rice Applying an Inflatable Solar Dryer in Burkina Faso. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10103533] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The drying performance of paddy rice using an inflatable solar dryer (ISD), or also known as GrainPro® Solar Bubble Dryer™, was evaluated and compared to conventional sun drying in Burkina Faso. Drying time was around eight hours. Thermal imaging was conducted to observe temperature distribution in the ISD during drying and mixing. Shadow casting was observed in the ISD due to the round shape of the black plastic film, which reduced the temperature of the paddy rice to about 10 °C. The temperature inside the ISD was up to 13 °C higher than the ambient temperature, whereas the temperature of paddy rice on the top layer was about 5 °C higher than on the bottom. The final moisture content of paddy rice dried in the ISD and under the sun was not considerably different. Under certain circumstances, impurities in paddy rice dried in the ISD could be substantially lower than for sun drying. The aflatoxin level of paddy rice was under the maximum limit of the EU regulation. Drying paddy rice seemed to be effective to remove aflatoxin type AFG2 content. Further adaptation of the ISD design for drying operations on rough surfaces and sandy soils is suggested.
Collapse
|
22
|
Li C, Li C, Yu H, Cheng Y, Xie Y, Yao W, Guo Y, Qian H. Chemical food contaminants during food processing: sources and control. Crit Rev Food Sci Nutr 2020; 61:1545-1555. [PMID: 32393047 DOI: 10.1080/10408398.2020.1762069] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
With the development in international food trade, there has been emerging risks in the food chain. Food contamination can be caused by several factors in a complex food chain. This articles provides a comprehensive review of known chemical contaminants from the production of raw materials to the consumption of food products as well as prevention and control measures. Specifically, this review discusses the following topics, raw material contamination caused by environmental pollution, endogenous food contamination caused by processing methods, and cold chain system challenges in food e-commerce.
Collapse
Affiliation(s)
- Changjian Li
- State Key Laboratory of Food Science and Technology, JiangnanUniversity, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Changyan Li
- YanTai Institute, China Agricultural University, Shandong Province, China
| | - Hang Yu
- State Key Laboratory of Food Science and Technology, JiangnanUniversity, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Technology, JiangnanUniversity, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yunfei Xie
- State Key Laboratory of Food Science and Technology, JiangnanUniversity, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology, JiangnanUniversity, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yahui Guo
- State Key Laboratory of Food Science and Technology, JiangnanUniversity, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - He Qian
- State Key Laboratory of Food Science and Technology, JiangnanUniversity, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
23
|
Yun S, Yoon J, Kim B, Ahn S, Choi K. Purity Assessment of Fumonisin B
1
by Quantitative
1
H NMR Spectroscopy. B KOREAN CHEM SOC 2020. [DOI: 10.1002/bkcs.11981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Suyeon Yun
- Department of ChemistryChung‐Ang University Seoul 06974 South Korea
| | - Jeongbin Yoon
- Department of ChemistryChung‐Ang University Seoul 06974 South Korea
| | - Byungjoo Kim
- Division of Chemical and Medical MetrologyKorea Research Institute of Standards and Science Daejeon 34113 South Korea
| | - Sangdoo Ahn
- Department of ChemistryChung‐Ang University Seoul 06974 South Korea
| | - Kihwan Choi
- Division of Chemical and Medical MetrologyKorea Research Institute of Standards and Science Daejeon 34113 South Korea
| |
Collapse
|
24
|
Wang X, Li L, Zhang G. Quercetin protects the buffalo rat liver (BRL-3A) cells from aflatoxin B1-induced cytotoxicity via activation of Nrf2-ARE pathway. WORLD MYCOTOXIN J 2020. [DOI: 10.3920/wmj2019.2465] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Aflatoxin B1 (AFB1) is the most toxic mycotoxin widely presented in agricultural products, and the protective effect of quercetin (QUE), a natural antioxidant, against AFB1-induced cytotoxicity to the buffalo rat liver (BRL-3A) cells was investigated. With an IC50 of 23 μM, AFB1 induced a significant oxidative stress to BRL-3A cells evidenced by a dose-dependent reduction of mitochondria membrane potential (MMP), ATP content, and activities of endogenous antioxidant enzymes along with increased levels of reactive oxygen species (ROS) and lipid peroxidation biomarker of malondialdehyde (MDA). The activity of CYP1A2, the key enzyme to convert AFB1 to reactive AFB1 exo-8,9- epoxide, was also increased, which, probably in together with ROS, led to cell apoptosis with DNA fragmentation, chromatin condensation and increased lactate dehydrogenase release. After the BRL cells were pre-treated by low level QUE (2.5 and/or 5 μM) for 24 h and then exposed to AFB1, the activities of antioxidant enzymes including haeme oxygenase-1, glutathione S-transferase, superoxide dismutase, and the ratio of reduced to oxidised glutathione were significantly increased whereas the levels of intracellular ROS and MDA were reduced. The QUE pre-treatment also increased the levels of MMP, ATP and DNA integrity, and reduced the expression of apoptosis related genes of Bax and Caspase-3. The Western blotting study revealed increased content of phosphorylated Akt and nuclear NF-E2-related factor 2 (Nrf2), indicating an activation of Nrf2-ARE pathway in counteracting oxidative stress and cytotoxicity of AFB1. Thus, the QUE pre-treatment enhanced the anti-stress capacity of the cells through the activation of the Nrf2-ARE pathway, and QUE-based measures could be developed to ameliorate the toxicity caused by AFB1.
Collapse
Affiliation(s)
- X. Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122 Jiangsu, China P.R
| | - L. Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122 Jiangsu, China P.R
| | - G. Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122 Jiangsu, China P.R
| |
Collapse
|
25
|
Abdallah MF, Audenaert K, Lust L, Landschoot S, Bekaert B, Haesaert G, De Boevre M, De Saeger S. Risk characterization and quantification of mycotoxins and their producing fungi in sugarcane juice: A neglected problem in a widely-consumed traditional beverage. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106811] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
26
|
Achimón F, Dambolena JS, Zygadlo JA, Pizzolitto RP. Carbon sources as factors affecting the secondary metabolism of the maize pathogen Fusarium verticillioides. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108470] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
du Plessis B, Regnier T, Combrinck S, Heinrich P, Braunbeck T. Effect of pH on the toxicity of fumonisins towards the RTL-W1 cell line and zebrafish (Danio rerio) embryos. Toxicol Lett 2019; 313:101-107. [DOI: 10.1016/j.toxlet.2019.06.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/31/2019] [Accepted: 06/25/2019] [Indexed: 11/29/2022]
|
28
|
Wu Y, Li T, Gong L, Wang Y, Jiang Y. Effects of Different Carbon Sources on Fumonisin Production and FUM Gene Expression by Fusarium proliferatum. Toxins (Basel) 2019; 11:toxins11050289. [PMID: 31121925 PMCID: PMC6563204 DOI: 10.3390/toxins11050289] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 05/09/2019] [Accepted: 05/14/2019] [Indexed: 01/20/2023] Open
Abstract
Fusarium proliferatum can infect many crops and then produce fumonisins that are very harmful to humans and animals. Previous study indicates that carbon sources play important roles in regulating the fumonisin biosynthesis. Unfortunately, there is limited information on the effects of carbon starvation in comparison with the carbon sources present in the host of fumonisin production in F. proliferatum. Our results indicated that F. proliferatum cultivated in the Czapek's broth (CB) medium in the absence of sucrose could greatly induce production of fumonisin, while an additional supplementation of sucrose to the culture medium significantly reduced the fumonisin production. Furthermore, cellulose and hemicellulose, and polysaccharide extracted from banana peel, which replaced sucrose as the carbon source, can reduce the production of fumonisin by F. proliferatum. Further work showed that these genes related to the synthesis of fumonisin, such as FUM1 and FUM8, were significantly up-regulated in the culture medium in the absence of sucrose. Consistent with fumonisin production, the expressions of FUM gene cluster and ZFR1 gene decreased after the addition of sucrose. Moreover, these genes were also significantly down-regulated in the presence of cellulose, hemicellulose or polysaccharide extracted from peel. Altogether, our results suggested that fumonisin production was regulated in F. proliferatum in response to different carbon source conditions, and this regulation might be mainly via the transcriptional level. Future work on these expressions of the fumonisin biosynthesis-related genes is needed to further clarify the response under different carbon conditions during the infection of F. proliferatum on banana fruit hosts. The findings in this study will provide a new clue regarding the biological effect of the fumonisin production in response to environmental stress.
Collapse
Affiliation(s)
- Yu Wu
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of Post-harvest Handling of Fruits, Ministry of Agriculture, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100039, China.
| | - Taotao Li
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of Post-harvest Handling of Fruits, Ministry of Agriculture, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| | - Liang Gong
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of Post-harvest Handling of Fruits, Ministry of Agriculture, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| | - Yong Wang
- Zhongshan Entry-Exit Inspection and Quarantine Bureau, Zhongshan 528403, China.
| | - Yueming Jiang
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of Post-harvest Handling of Fruits, Ministry of Agriculture, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
29
|
Yang X, Gao J, Liu Q, Yang D. Co-occurrence of mycotoxins in maize and maize-derived food in China and estimation of dietary intake. FOOD ADDITIVES & CONTAMINANTS PART B-SURVEILLANCE 2019; 12:124-134. [DOI: 10.1080/19393210.2019.1570976] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Xin Yang
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Jie Gao
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Qing Liu
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Dajin Yang
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| |
Collapse
|
30
|
Wang C, Huang X, Tian X, Zhang X, Yu S, Chang X, Ren Y, Qian J. A multiplexed FRET aptasensor for the simultaneous detection of mycotoxins with magnetically controlled graphene oxide/Fe3O4 as a single energy acceptor. Analyst 2019; 144:6004-6010. [DOI: 10.1039/c9an01593k] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A multiplexed FRET aptasensor was developed for the simultaneous detection of AFB1 and FB1 with magnetically controlled GO/Fe3O4 as a single energy acceptor.
Collapse
Affiliation(s)
- Chengquan Wang
- School of Food and Biological Engineering
- Jiangsu University
- Zhenjiang 212013
- PR China
| | - Xingyi Huang
- School of Food and Biological Engineering
- Jiangsu University
- Zhenjiang 212013
- PR China
| | - Xiaoyu Tian
- School of Food and Biological Engineering
- Jiangsu University
- Zhenjiang 212013
- PR China
| | - Xiaorui Zhang
- School of Food and Biological Engineering
- Jiangsu University
- Zhenjiang 212013
- PR China
| | - Shanshan Yu
- School of Food and Biological Engineering
- Jiangsu University
- Zhenjiang 212013
- PR China
| | - Xianhui Chang
- School of Food and Biological Engineering
- Jiangsu University
- Zhenjiang 212013
- PR China
| | - Yi Ren
- School of Food and Biological Engineering
- Jiangsu University
- Zhenjiang 212013
- PR China
| | - Jing Qian
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- PR China
| |
Collapse
|
31
|
Rong X, Sun-Waterhouse D, Wang D, Jiang Y, Li F, Chen Y, Zhao S, Li D. The Significance of Regulatory MicroRNAs: Their Roles in Toxicodynamics of Mycotoxins and in the Protection Offered by Dietary Therapeutics Against Mycotoxin-Induced Toxicity. Compr Rev Food Sci Food Saf 2018; 18:48-66. [DOI: 10.1111/1541-4337.12412] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/11/2018] [Accepted: 11/02/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Xue Rong
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes; the College of Food Science and Engineering, Shandong Agricultural Univ.; Taian Shandong 271018 P. R. China
| | - Dongxiao Sun-Waterhouse
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes; the College of Food Science and Engineering, Shandong Agricultural Univ.; Taian Shandong 271018 P. R. China
- School of Chemical Sciences; The Univ. of Auckland; Private Bag Auckland 92019 New Zealand
| | - Dan Wang
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes; the College of Food Science and Engineering, Shandong Agricultural Univ.; Taian Shandong 271018 P. R. China
- Shandong Inst. of Pomology; Taian Shandong 271000 P. R. China
| | - Yang Jiang
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes; the College of Food Science and Engineering, Shandong Agricultural Univ.; Taian Shandong 271018 P. R. China
| | - Feng Li
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes; the College of Food Science and Engineering, Shandong Agricultural Univ.; Taian Shandong 271018 P. R. China
| | - Yilun Chen
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes; the College of Food Science and Engineering, Shandong Agricultural Univ.; Taian Shandong 271018 P. R. China
| | - Shancang Zhao
- Central Laboratory of Shandong Academy of Agricultural Sciences; Key Laboratory of Test Technology on Food Quality and Safety of Shandong Province; Jinan Shandong 250100 P. R. China
| | - Dapeng Li
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes; the College of Food Science and Engineering, Shandong Agricultural Univ.; Taian Shandong 271018 P. R. China
| |
Collapse
|
32
|
Caceres I, Snini SP, Puel O, Mathieu F. Streptomyces roseolus, A Promising Biocontrol Agent Against Aspergillus flavus, the Main Aflatoxin B₁ Producer. Toxins (Basel) 2018; 10:toxins10110442. [PMID: 30380704 PMCID: PMC6267218 DOI: 10.3390/toxins10110442] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/26/2018] [Accepted: 10/27/2018] [Indexed: 12/20/2022] Open
Abstract
Crop contamination by aflatoxin B1 is a current problem in tropical and subtropical regions. In the future, this contamination risk may be expanded to European countries due to climate change. The development of alternative strategies to prevent mycotoxin contamination that further contribute to the substitution of phytopharmaceutical products are thus needed. For this, a promising method resides in the use of biocontrol agents. Several actinobacteria strains have demonstrated to effectively reduce the aflatoxin B1 concentration. Nevertheless, the molecular mechanism of action by which these biological agents reduce the mycotoxin concentration has not been determined. The aim of the present study was to test the potential use of Streptomyces roseolus as a biocontrol agent against aflatoxin B1 contamination. Co-cultures with Aspergillus flavus were conducted, and the molecular fungal response was investigated through analyzing the q-PCR expression of 65 genes encoding relevant fungal functions. Moreover, kojic and cyclopiazonic acid concentrations, as well as morphological fungal changes were also analyzed. The results demonstrated that reduced concentrations of aflatoxin B1 and kojic acid were respectively correlated with the down-regulation of the aflatoxin B1 gene cluster and kojR gene expression. Moreover, a fungal hypersporulated phenotype and a general over-expression of genes involved in fungal development were observed in the co-culture condition.
Collapse
Affiliation(s)
- Isaura Caceres
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, 31326 Toulouse, France.
| | - Selma P Snini
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, 31326 Toulouse, France.
| | - Olivier Puel
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, 31300 Toulouse, France.
| | - Florence Mathieu
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, 31326 Toulouse, France.
| |
Collapse
|
33
|
Evaluation of mycotoxins and their estimated daily intake in popcorn and cornflakes using LC-MS techniques. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.04.073] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Bertero A, Moretti A, Spicer LJ, Caloni F. Fusarium Molds and Mycotoxins: Potential Species-Specific Effects. Toxins (Basel) 2018; 10:E244. [PMID: 29914090 PMCID: PMC6024576 DOI: 10.3390/toxins10060244] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/08/2018] [Accepted: 06/12/2018] [Indexed: 02/07/2023] Open
Abstract
This review summarizes the information on biochemical and biological activity of the main Fusarium mycotoxins, focusing on toxicological aspects in terms of species-specific effects. Both in vitro and in vivo studies have centered on the peculiarity of the responses to mycotoxins, demonstrating that toxicokinetics, bioavailability and the mechanisms of action of these substances vary depending on the species involved, but additional studies are needed to better understand the specific responses. The aim of this review is to summarize the toxicological responses of the main species affected by Fusarium mycotoxins.
Collapse
Affiliation(s)
- Alessia Bertero
- Department of Veterinary Medicine (DIMEVET), Università degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy.
| | - Antonio Moretti
- Institute of Sciences of Food Production, National Research Council of Italy, Via Amendola 122/O, 70126 Bari, Italy.
| | - Leon J Spicer
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA.
| | - Francesca Caloni
- Department of Veterinary Medicine (DIMEVET), Università degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy.
| |
Collapse
|
35
|
Nleya N, Adetunji MC, Mwanza M. Current Status of Mycotoxin Contamination of Food Commodities in Zimbabwe. Toxins (Basel) 2018; 10:E89. [PMID: 29751574 PMCID: PMC5983227 DOI: 10.3390/toxins10050089] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 04/27/2018] [Accepted: 04/30/2018] [Indexed: 12/28/2022] Open
Abstract
Agricultural products, especially cereal grains, serve as staple foods in sub-Saharan Africa. However, climatic conditions in this region can lead to contamination of these commodities by moulds, with subsequent production of mycotoxins posing health risks to both humans and animals. There is limited documentation on the occurrence of mycotoxins in sub-Saharan African countries, leading to the exposure of their populations to a wide variety of mycotoxins through consumption of contaminated foods. This review aims at highlighting the current status of mycotoxin contamination of food products in Zimbabwe and recommended strategies of reducing this problem. Zimbabwe is one of the African countries with very little information with regards to mycotoxin contamination of its food commodities, both on the market and at household levels. Even though evidence of multitoxin occurrence in some food commodities such as maize and other staple foods exist, available published research focuses only on Aspergillus and Fusarium mycotoxins, namely aflatoxins, deoxynivalenol (DON), trichothecenes, fumonisins, and zearalenone (ZEA). Occurrence of mycotoxins in the food chain has been mainly associated with poor agricultural practices. Analysis of mycotoxins has been done mainly using chromatographic and immunological methods. Zimbabwe has adopted European standards, but the legislation is quite flexible, with testing for mycotoxin contamination in food commodities being done voluntarily or upon request. Therefore, the country needs to tighten its legislation as well as adopt stricter standards that will improve the food safety and security of the masses.
Collapse
Affiliation(s)
- Nancy Nleya
- Department of Animal Health, Northwest University, Mafikeng, Private Bag X2046, Mmabatho 2735, South Africa.
- Department of Applied Biology and Biochemistry, National University of Science and Technology, P.O. Box AC 939 Ascot, Bulawayo, Zimbabwe.
| | - Modupeade Christianah Adetunji
- Department of Animal Health, Northwest University, Mafikeng, Private Bag X2046, Mmabatho 2735, South Africa.
- Department of Biological Sciences, McPherson University, Seriki Sotayo, Ogun State, Abeokuta P.M.B. 2094, Ogun State, Nigeria.
| | - Mulunda Mwanza
- Department of Animal Health, Northwest University, Mafikeng, Private Bag X2046, Mmabatho 2735, South Africa.
| |
Collapse
|
36
|
Vidal A, Marín S, Sanchis V, De Saeger S, De Boevre M. Hydrolysers of modified mycotoxins in maize: α-Amylase and cellulase induce an underestimation of the total aflatoxin content. Food Chem 2018; 248:86-92. [DOI: 10.1016/j.foodchem.2017.12.057] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 11/19/2017] [Accepted: 12/14/2017] [Indexed: 10/18/2022]
|
37
|
Logrieco AF, Miller JD, Eskola M, Krska R, Ayalew A, Bandyopadhyay R, Battilani P, Bhatnagar D, Chulze S, De Saeger S, Li P, Perrone G, Poapolathep A, Rahayu ES, Shephard GS, Stepman F, Zhang H, Leslie JF. The Mycotox Charter: Increasing Awareness of, and Concerted Action for, Minimizing Mycotoxin Exposure Worldwide. Toxins (Basel) 2018; 10:E149. [PMID: 29617309 PMCID: PMC5923315 DOI: 10.3390/toxins10040149] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 03/27/2018] [Accepted: 03/29/2018] [Indexed: 02/07/2023] Open
Abstract
Mycotoxins are major food contaminants affecting global food security, especially in low and middle-income countries. The European Union (EU) funded project, MycoKey, focuses on “Integrated and innovative key actions for mycotoxin management in the food and feed chains” and the right to safe food through mycotoxin management strategies and regulation, which are fundamental to minimizing the unequal access to safe and sufficient food worldwide. As part of the MycoKey project, a Mycotoxin Charter (charter.mycokey.eu) was launched to share the need for global harmonization of mycotoxin legislation and policies and to minimize human and animal exposure worldwide, with particular attention to less developed countries that lack effective legislation. This document is in response to a demand that has built through previous European Framework Projects—MycoGlobe and MycoRed—in the previous decade to control and reduce mycotoxin contamination worldwide. All suppliers, participants and beneficiaries of the food supply chain, for example, farmers, consumers, stakeholders, researchers, members of civil society and government and so forth, are invited to sign this charter and to support this initiative.
Collapse
Affiliation(s)
- Antonio F Logrieco
- National Research Council, Institute of Sciences of Food Production, (CNR-ISPA), via Amendola 122/O, 70126 Bari, Italy.
| | - J David Miller
- Department of Chemistry, Carleton University, Ottawa, ON KS5B6, Canada.
| | - Mari Eskola
- Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Str. 20, 3430 Tulln, Austria.
| | - Rudolf Krska
- Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Str. 20, 3430 Tulln, Austria.
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, University Road, Belfast BT7 1NN, Northern Ireland, UK.
| | - Amare Ayalew
- Partnership for Aflatoxin Control in Africa, Department of Rural Economy and Agriculture, African Union Commission, P.O. Box 3243, Roosevelt Street, Addis Ababa, Ethiopia.
| | - Ranajit Bandyopadhyay
- International Institute of Tropical Agriculture (IITA), PMB 5320, Oyo Road, Ibadan 200001, Oyo State, Nigeria.
| | - Paola Battilani
- Department of the Science of Sustainable Vegetable Production, Faculty of Agriculture, Food and Environmental Sciences, Universitá Cattolica del Sacro Cuore, via E. Parmense, 84-29122 Piacenza, Italy.
| | - Deepak Bhatnagar
- Food and Feed Safety Research, Southern Regional Research Center, USDA-ARS, 1100 Robert E. Lee Boulevard, New Orleans, LA 70124, USA.
| | - Sofia Chulze
- Departamento de Microbiología e Immunología, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Rutas 8 y 36, Km 601, Río Cuarto 5800, Córdoba, Argentina.
| | - Sarah De Saeger
- Department of Bio-analysis, Faculty of Pharmaceutical Sciences, Ottergemsesteenweg 460, Ghent University, Gent 9000, Belgium.
| | - Peiwu Li
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Xudong Second Road, Wuhan 430062, China.
| | - Giancarlo Perrone
- National Research Council, Institute of Sciences of Food Production, (CNR-ISPA), via Amendola 122/O, 70126 Bari, Italy.
| | - Amnart Poapolathep
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand.
| | - Endang S Rahayu
- Department of Food Technology and Agricultural Products, Universiti Gadjah Mada, Yogyakarta 55281, Indonesia.
| | - Gordon S Shephard
- Institute of Biomedical and Microbial Biotechnology, Cape Peninsula University of Technology, Symphony Way, P.O. Box 1906, Bellville 7535, South Africa.
| | - François Stepman
- Platform for African-European Partnership in ARD, CTA Brussels Office, 39 rue Montoyer, 1000 Brussels, Belgium.
| | - Hao Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Beijing 100193, China.
| | - John F Leslie
- Department of Plant Pathology, Throckmorton Plant Sciences Center, 1712 Claflin Avenue, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
38
|
Righetti L, Fenclova M, Dellafiora L, Hajslova J, Stranska-Zachariasova M, Dall'Asta C. High resolution-ion mobility mass spectrometry as an additional powerful tool for structural characterization of mycotoxin metabolites. Food Chem 2017; 245:768-774. [PMID: 29287439 DOI: 10.1016/j.foodchem.2017.11.113] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 11/24/2017] [Accepted: 11/29/2017] [Indexed: 11/27/2022]
Abstract
This work was designed as a proof of concept, to demonstrate the successful use of the comparison between theoretical and experimental collision cross section (CCS) values to support the identification of isomeric forms. To this purpose, thirteen mycotoxins were considered and analyzed using drift time ion mobility mass spectrometry. A good linear correlation (r2 = 0.962) between theoretical and experimental CCS was found. The average ΔCCS was 3.2%, fully consistent with the acceptability threshold value commonly set at 5%. The agreement between theoretical and experimental CCS obtained for mycotoxin glucuronides suggested the potential of the CCS matching in supporting the annotation procedure.
Collapse
Affiliation(s)
- Laura Righetti
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technicka 3, 166 28 Prague 6, Czech Republic; Department of Food and Drug, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Marie Fenclova
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technicka 3, 166 28 Prague 6, Czech Republic
| | - Luca Dellafiora
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Jana Hajslova
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technicka 3, 166 28 Prague 6, Czech Republic
| | - Milena Stranska-Zachariasova
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technicka 3, 166 28 Prague 6, Czech Republic.
| | - Chiara Dall'Asta
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| |
Collapse
|
39
|
Misihairabgwi JM, Ezekiel CN, Sulyok M, Shephard GS, Krska R. Mycotoxin contamination of foods in Southern Africa: A 10-year review (2007-2016). Crit Rev Food Sci Nutr 2017; 59:43-58. [PMID: 28799776 DOI: 10.1080/10408398.2017.1357003] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Major staple foods in Southern Africa are prone to mycotoxin contamination, posing health risks to consumers and consequent economic losses. Regional climatic zones favor the growth of one or more main mycotoxin producing fungi, Aspergillus, Fusarium and Penicillium. Aflatoxin contamination is mainly reported in maize, peanuts and their products, fumonisin contamination in maize and maize products and patulin in apple juice. Lack of awareness of occurrence and risks of mycotoxins, poor agricultural practices and undiversified diets predispose populations to dietary mycotoxin exposure. Due to a scarcity of reports in Southern Africa, reviews on mycotoxin contamination of foods in Africa have mainly focused on Central, Eastern and Western Africa. However, over the last decade, a substantial number of reports of dietary mycotoxins in South Africa have been documented, with fewer reports documented in Botswana, Lesotho, Malawi, Mozambique, Zambia and Zimbabwe. Despite the reported high dietary levels of mycotoxins, legislation for their control is absent in most countries in the region. This review presents an up-to-date documentation of the epidemiology of mycotoxins in agricultural food commodities and discusses the implications on public health, current and recommended mitigation strategies, legislation, and challenges of mycotoxin research in Southern Africa.
Collapse
Affiliation(s)
- J M Misihairabgwi
- a Department of Biochemistry and Microbiology, School of Medicine , University of Namibia , Windhoek, Namibia. P. Bag 13301, Windhoek , Namibia
| | - C N Ezekiel
- b Department of Microbiology , Babcock University, Ilishan Remo , Ogun State , Nigeria
| | - M Sulyok
- c Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln) , University of Natural Resources and Life Sciences Vienna (BOKU) , Konrad Lorenz Str. 20, Tulln , Austria
| | - G S Shephard
- d Mycotoxicology and Chemoprevention Research Group, Institute of Biomedical and Microbial Biotechnology , Cape Peninsula University of Technology , PO Box 1906, Bellville , South Africa
| | - R Krska
- c Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln) , University of Natural Resources and Life Sciences Vienna (BOKU) , Konrad Lorenz Str. 20, Tulln , Austria
| |
Collapse
|
40
|
Udomkun P, Wiredu AN, Nagle M, Bandyopadhyay R, Müller J, Vanlauwe B. Mycotoxins in Sub-Saharan Africa: Present situation, socio-economic impact, awareness, and outlook. Food Control 2017. [DOI: 10.1016/j.foodcont.2016.07.039] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
41
|
Hove M, De Boevre M, Lachat C, Jacxsens L, Nyanga L, De Saeger S. Occurrence and risk assessment of mycotoxins in subsistence farmed maize from Zimbabwe. Food Control 2016. [DOI: 10.1016/j.foodcont.2016.04.038] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|