1
|
Mahapatra AD, Paul I, Dasgupta S, Roy O, Sarkar S, Ghosh T, Basu S, Chattopadhyay D. Antiviral Potential and In Silico Insights of Polyphenols as Sustainable Phytopharmaceuticals: A Comprehensive Review. Chem Biodivers 2025; 22:e202401913. [PMID: 39648847 DOI: 10.1002/cbdv.202401913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/23/2024] [Accepted: 12/06/2024] [Indexed: 12/10/2024]
Abstract
Polyphenols, particularly flavonoids, are reported to have health-promoting, disease-preventing abilities and several polyphenols having a wide spectrum of antiviral activities can be explored for preventive and/or therapeutic purposes. We have compiled the updated literature of diverse polyphenols active against common viral diseases, including herpes, hepatitis, influenza, rota and SARS-corona-viruses. The antiviral activity of bioactive polyphenols depends on the hydroxyl and ester groups of polyphenol molecules, as compounds with five or more hydroxyl groups and three specific methoxy groups showed antiviral potential, like anti-rabies activity. This comprehensive review will explore selective polyphenols isolated from common ethnomedicinal or food plants. Comparing bioactivities of structurally related polyphenols and using bioinformatics studies, we have explored the three most promising phyto-antivirals, including chrysin, resveratrol and quercetin, available in many foods and medicinal plants. Quercetin showed a maximum interaction score with human genes. We also explore the intricate structure-activity relationship between these polyphenols and pathogenic viruses with their mechanisms of antiviral action in selected virus models. Here, we report the promising potential of some phyto-polyphenols in the management of viral diseases through an in-depth analysis of the structure and bioactivity of these compounds.
Collapse
Affiliation(s)
| | - Indrani Paul
- Department of Biotechnology, Brainware University, Barasat, Kolkata, India
| | - Sanjukta Dasgupta
- Department of Biotechnology, Brainware University, Barasat, Kolkata, India
- Center for Multidisciplinary Research & Innovations, Brainware University, Barasat, Kolkata, India
| | - Oliva Roy
- Department of Biotechnology, Brainware University, Barasat, Kolkata, India
| | - Srinjoy Sarkar
- Department of Biotechnology, Brainware University, Barasat, Kolkata, India
| | - Tusha Ghosh
- Department of Biotechnology, Brainware University, Barasat, Kolkata, India
| | - Sayantan Basu
- Department of Biotechnology, Brainware University, Barasat, Kolkata, India
| | - Debprasad Chattopadhyay
- School of Life Sciences, Swami Vivekananda University, Barrackpore, Kolkata, India
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, India
| |
Collapse
|
2
|
Noh M, Cho SY, Choi J, Song SH, Cho JY, Vaidya B, Kim D. Enhanced anti-influenza activity of fermented yellow soybean extract and daidzein co-treatment on MDCK cells. Food Sci Biotechnol 2025; 34:733-742. [PMID: 39958163 PMCID: PMC11822145 DOI: 10.1007/s10068-024-01673-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/09/2024] [Accepted: 07/25/2024] [Indexed: 02/18/2025] Open
Abstract
The study investigated the effectiveness of pre- and co-treatment with fermented yellow soybean extract (FYSE) against anti-influenza A virus (IAV) on MDCK cells. FYSE, fermented with Bacillus subtilis, was evaluated for its anti-IAV activity by inhibiting the IAV PA gene expression. Daidzein was identified as a significant contributor to FYSE's antiviral effects. Co-treatment with FYSE and daidzein during IAV infection demonstrated superior anti-IAV activity compared to their respective pre-treatment (IC50: FYSE; 8.65 vs 3.77 µg/mL, and daidzein; 6.01 vs 5.20 µg/mL). Both pre- and co-treatment with FYSE demonstrated higher therapeutic potential than daidzein (Selective index: pre-treatment; > 115.58 vs. 72.32 and co-treatment; > 265.04 vs. 83.56). Despite daidzein showing lower anti-IAV activity in both treatment methods compared to oseltamivir phosphate, it exhibited lower cytotoxicity (CC50: 434.50 vs. 395.20 µg/mL). In conclusion, co-treatment with FYSE and daidzein presents a promising anti-IAV strategy with minimal cytotoxicity in vitro, potentially offering a safer alternative for IAV treatment. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-024-01673-2.
Collapse
Affiliation(s)
- Minjeong Noh
- Department of Food Science and Technology, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Se-Young Cho
- Department of Food Science and Technology, Chonnam National University, Gwangju, 61186 Republic of Korea
- Foodborne Virus Research Center, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Jiyeong Choi
- Department of Food Science and Technology, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Si-Hun Song
- Department of Food Science and Technology, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Jeong-Yong Cho
- Department of Food Science and Technology, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Bipin Vaidya
- Department of Food Science and Technology, Chonnam National University, Gwangju, 61186 Republic of Korea
- Foodborne Virus Research Center, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Duwoon Kim
- Department of Food Science and Technology, Chonnam National University, Gwangju, 61186 Republic of Korea
- Foodborne Virus Research Center, Chonnam National University, Gwangju, 61186 Republic of Korea
| |
Collapse
|
3
|
Ahmad S, Ahsan F, Ansari JA, Mahmood T, Bano S, Shahanawaz M. Bioflavonoid Daidzein: Therapeutic Insights, Formulation Advances, and Future Directions. Drug Res (Stuttg) 2024; 74:433-455. [PMID: 39299251 DOI: 10.1055/a-2379-6849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Bioflavonoids, are a diverse group of phytonutrients that are widely distributed in fruits, vegetables, grains, teas, and certain medicinal herbs. They are characterized by their antioxidant properties and play essential roles in plant biology, such as providing color to fruits and flowers, protecting plants from environmental stresses. Daidzein, a bioflavonoid classified under natural products, is sourced from plants like soybeans and legumes. It exists in forms such as glycosides and aglycones, with equol and trihydroxy isoflavone being key metabolites formed by gut bacteria. Known for its wide-ranging therapeutic potential, daidzein has shown effects on cardiovascular health, cancer, diabetes, skin conditions, osteoporosis, and neurodegenerative disorders. Its mechanisms include interaction with estrogen receptors, antioxidative and anti-inflammatory properties, and modulation of apoptosis and cell cycles. Recent advances in formulation technologies aimed at enhancing daidzein's bioavailability and efficacy are critically evaluated, including nanoparticle-based delivery systems and encapsulation strategies. Researchers have developed advanced formulations like nanoparticles and liposomes to enhance daidzein's solubility, stability, bioavailability, and targeted delivery. Considered a promising nutraceutical, daidzein warrants further exploration into its molecular actions and safety profile to fully realize its clinical potential. This review offers a succinct overview encompassing therapeutic benefits, chemical characteristics, historical uses, toxicology insights, recent advancements in delivery systems, and future directions for daidzein research.
Collapse
Affiliation(s)
- Sana Ahmad
- Department of Pharmacy, Integral University, Dasauli, Kursi road, Lucknow (U.P.)-India
| | - Farogh Ahsan
- Department of Pharmacy, Integral University, Dasauli, Kursi road, Lucknow (U.P.)-India
| | - Javed Akhtar Ansari
- Department of Pharmacy, Integral University, Dasauli, Kursi road, Lucknow (U.P.)-India
| | - Tarique Mahmood
- Department of Pharmacy, Integral University, Dasauli, Kursi road, Lucknow (U.P.)-India
| | - Shahzadi Bano
- Department of Chemistry, Integral University, Dasauli, Kursi road, Lucknow (U.P.)-India
| | - Mo Shahanawaz
- Department of Pharmacy, Integral University, Dasauli, Kursi road, Lucknow (U.P.)-India
| |
Collapse
|
4
|
Ahmad S, Ahsan F, Ansari JA, Mahmood T, Shamim A, Bano S, Tiwari R, Ansari VA, Shafiurrahman, Kesari M. A review on daidzein as food supplement: Exploring its phytopharmacological and preclinical status. EFOOD 2024; 5. [DOI: 10.1002/efd2.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 09/04/2024] [Indexed: 01/05/2025] Open
Abstract
AbstractA natural product is a compound or substance originating from a living organism and found in nature. Daidzein belongs to the class of bioflavonoids, which are plant‐derived compounds with various biological activities. Predominantly exists in soybeans and several legumes in either glycoside or aglycone forms. Its primary chemical constituents include metabolites like equol and trihydroxy isoflavone, generated through the influence of intestinal bacteria. Daidzein has exhibited pharmacological impacts on different ailments, including cardiovascular disease, cancer, diabetes, skin disorders, osteoporosis, and neurodegenerative disorders. Daidzein's mechanisms of action involve interactions with estrogen receptors, as well as its antioxidant and anti‐inflammatory properties, along with its ability to regulate apoptosis and the cell cycle. In efforts to enhance its solubility, stability, bioavailability, and targeting, daidzein has been innovatively formulated into novel dosage forms, including nanoparticles, liposomes, microemulsions, and nanosuspensions. As a promising nutraceutical, daidzein presents multiple health benefits and holds potential for various clinical applications. Additional investigation is required to comprehend the molecular mechanisms of this phenomenon and assess its safety. The purpose of this review is to provide a short description of the therapeutic properties, chemical composition, traditional use, toxicology profile, new insights on the dosage form, and future prospects of daidzein.
Collapse
Affiliation(s)
- Sana Ahmad
- Department of Pharmacy Integral University Lucknow Uttar Pradesh India
| | - Farogh Ahsan
- Department of Pharmacy Integral University Lucknow Uttar Pradesh India
| | | | - Tarique Mahmood
- Department of Pharmacy Integral University Lucknow Uttar Pradesh India
| | - Arshiya Shamim
- Department of Pharmacy Integral University Lucknow Uttar Pradesh India
| | - Shahzadi Bano
- Department of Chemistry Integral University Lucknow Uttar Pradesh India
| | - Reshu Tiwari
- Department of Pharmacy Integral University Lucknow Uttar Pradesh India
| | | | - Shafiurrahman
- Department of Pharmacy Integral University Lucknow Uttar Pradesh India
| | - Mithilesh Kesari
- Department of Pharmacy Integral University Lucknow Uttar Pradesh India
| |
Collapse
|
5
|
Ge Q, Zhao S, Shao X, Wei Y, Chen J, Wang H, Xu F. Influence of flavonoids from Sedum aizoon L. on mitochondrial function of Rhizopus nigricans in strawberry. World J Microbiol Biotechnol 2024; 40:161. [PMID: 38613738 DOI: 10.1007/s11274-024-03967-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/22/2024] [Indexed: 04/15/2024]
Abstract
Rhizopus nigricans (R. nigricans), one of the fungi that grows the fastest, is frequently discovered in postharvest fruits, it's the main pathogen of strawberry root rot. Flavonoids in Sedum aizoon L. (FSAL) is a kind of green and safe natural substance extracted from Sedum aizoon L. which has antifungal activity. In this study, the minimum inhibitory concentration (MIC) of FSAL on R. nigricans and cell apoptosis tests were studied to explore the inhibitory effect of FSAL on R. nigricans. The effects of FSAL on mitochondria of R. nigricans were investigated through the changes of mitochondrial permeability transition pore(mPTP), mitochondrial membrane potential(MMP), Ca2+ content, H2O2 content, cytochrome c (Cyt c) content, the related enzyme activity and related genes of mitochondria. The results showed that the MIC of FSAL on R. nigricans was 1.800 mg/mL, with the addition of FSAL (1.800 mg/mL), the mPTP openness of R. nigricans increased and the MMP reduced. Resulting in an increase in Ca2+ content, accumulation of H2O2 content and decrease of Cyt c content, the activity of related enzymes was inhibited and related genes were up-regulated (VDAC1, ANT) or down-regulated (SDHA, NOX2). This suggests that FSAL may achieve the inhibitory effect of fungi by damaging mitochondria, thereby realizing the postharvest freshness preservation of strawberries. This lays the foundation for the development of a new plant-derived antimicrobial agent.
Collapse
Affiliation(s)
- Qingqing Ge
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Shiyi Zhao
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Xingfeng Shao
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Yingying Wei
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Jiahui Chen
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Hongfei Wang
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China.
| | - Feng Xu
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China.
| |
Collapse
|
6
|
Sakai-Sugino K, Uematsu J, Yamamoto H, Kihira S, Kawano M, Nishio M, Tsurudome M, Sekijima H, O'Brien M, Komada H. Inhibitory effects of kaempferol, quercetin and luteolin on the replication of human parainfluenza virus type 2 in vitro. Drug Discov Ther 2024; 18:16-23. [PMID: 38382931 DOI: 10.5582/ddt.2023.01099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
The eight flavonoids, apigenin, chrysin, hesperidin, kaempferol, myricetin, quercetin, rutin and luteolin were tested for the inhibition of human parainfluenza virus type 2 (hPIV-2) replication. Three flavonoids out of the eight, kaempferol, quercetin and luteolin inhibited hPIV-2 replication. Kaempferol reduced the virus release (below 1/10,000), partly inhibited genome and mRNA syntheses, but protein synthesis was observed. It partly inhibited virus entry into the cells and virus spreading, and also partly disrupted microtubules and actin microfilaments, indicating that the virus release inhibition was partly caused by the disruption of cytoskeleton. Quercetine reduced the virus release (below 1/10,000), partly inhibited genome, mRNA and protein syntheses. It partly inhibited virus entry and spreading, and also partly destroyed microtubules and microfilaments. Luteolin reduced the virus release (below 1/100,000), largely inhibited genome, mRNA and protein syntheses. It inhibited virus entry and spreading. It disrupted microtubules and microfilaments. These results indicated that luteolin has the most inhibitory effect on hPIV-2 relication. In conclusion, the three flavonoids inhibited virus replication by the inhibition of genome, mRNA and protein syntheses, and in addition to those, by the disruption of cytoskeleton in vitro.
Collapse
Affiliation(s)
- Kae Sakai-Sugino
- Department of Microbiology, Mie University Graduate School of Medicine, Mie, Japan
- Department of Life and Environmental Science, Tsu City College, Mie, Japan
- Microbiology and Immunology Section, Department of Clinical Nutrition, Graduate School of Health Science, Suzuka University of Medical Science, Mie, Japan
| | - Jun Uematsu
- Microbiology and Immunology Section, Department of Clinical Nutrition, Graduate School of Health Science, Suzuka University of Medical Science, Mie, Japan
| | - Hidetaka Yamamoto
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Mie, Japan
| | - Sahoko Kihira
- Department of Life Vista, Nara Saho College, Nara, Japan
| | - Mitsuo Kawano
- Department of Microbiology, Mie University Graduate School of Medicine, Mie, Japan
| | - Miwako Nishio
- Department of Microbiology, Mie University Graduate School of Medicine, Mie, Japan
| | - Masato Tsurudome
- Department of Microbiology, Mie University Graduate School of Medicine, Mie, Japan
| | - Hidehisa Sekijima
- Department of Forensic Medicine and Sciences, Mie University Graduate School of Medicine, Mie, Japan
| | - Myles O'Brien
- Graduate School of Nursing, Mie Prefectural College of Nursing, Mie, Japan
| | - Hiroshi Komada
- Microbiology and Immunology Section, Department of Clinical Nutrition, Graduate School of Health Science, Suzuka University of Medical Science, Mie, Japan
| |
Collapse
|
7
|
Souza SCR, Pinheiro RR, Peixoto RM, de Sousa ALM, Andrioli A, Lima AMC, Mendes BKM, Magalhães NMDA, Amaral GP, Teixeira MFDS. In vivo evaluation of the antiretroviral activity of Melia azedarach against small ruminant lentiviruses in goat colostrum and milk. Braz J Microbiol 2024; 55:875-887. [PMID: 38010582 PMCID: PMC10920544 DOI: 10.1007/s42770-023-01174-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/31/2023] [Indexed: 11/29/2023] Open
Abstract
This study aimed to evaluate in vivo the use of the extract from the leaves of Melia azedarach in the ethyl acetate fraction at a concentration of 150 µg/mL as an antiretroviral treatment against small ruminant lentiviruses (SRLV) in goat colostrum, and milk with a 90-min action. Two groups of six kids were treated with the extract. One group received three supplies of colostrum from does naturally positive for SRLV, treated with the ethyl acetate fraction of M. azedarach (EAF-MA) for three days, while the other group consumed milk from does also carrying the virus with the respective extract twice a day for five days. After undergoing treatment, all animals began to receive thermized milk until weaning (60 days) and were monitored for six months using nested polymerase chain reaction (nPCR) and western blot (WB) tests. The study revealed cumulative percentages of positive animals in WB or nPCR in the milk group of 66.66% on the seventh day, 83.33% in the following week, and 100% at 120 days, while the colostrum group showed values of 66.66% at 14 days, 83.33% at 90 days, and 100% at 120 days. Variation and intermittency were observed in viral detection, but all animals tested positive in WB or nPCR at some point. A potential delay in infection was observed, which was more significant in the colostrum group. The need for the combination of serological and molecular tests for a more efficient detection of the disease is also emphasized.
Collapse
Affiliation(s)
| | | | | | | | | | - Ana Milena César Lima
- Regional Scientific Development Fellowship of the National Council for Scientific and Technological Development (DCR-CNPq/FUNCAP), Level C, Embrapa Goats & Sheep, Sobral, Ceará, Brazil
| | | | | | - Gabriel Paula Amaral
- Graduate Program in Animal Science, Vale Do Acaraú State University, Sobral, Ceará, Brazil
| | | |
Collapse
|
8
|
Periferakis A, Periferakis AT, Troumpata L, Periferakis K, Scheau AE, Savulescu-Fiedler I, Caruntu A, Badarau IA, Caruntu C, Scheau C. Kaempferol: A Review of Current Evidence of Its Antiviral Potential. Int J Mol Sci 2023; 24:16299. [PMID: 38003488 PMCID: PMC10671393 DOI: 10.3390/ijms242216299] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/07/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
Kaempferol and its derivatives are flavonoids found in various plants, and a considerable number of these have been used in various medical applications worldwide. Kaempferol and its compounds have well-known antioxidant, anti-inflammatory and antimicrobial properties among other health benefits. However, the antiviral properties of kaempferol are notable, and there is a significant number of experimental studies on this topic. Kaempferol compounds were effective against DNA viruses such as hepatitis B virus, viruses of the alphaherpesvirinae family, African swine fever virus, and pseudorabies virus; they were also effective against RNA viruses, namely feline SARS coronavirus, dengue fever virus, Japanese encephalitis virus, influenza virus, enterovirus 71, poliovirus, respiratory syncytial virus, human immunodeficiency virus, calicivirus, and chikungunya virus. On the other hand, no effectiveness against murine norovirus and hepatitis A virus could be determined. The antiviral action mechanisms of kaempferol compounds are various, such as the inhibition of viral polymerases and of viral attachment and entry into host cells. Future research should be focused on further elucidating the antiviral properties of kaempferol compounds from different plants and assessing their potential use to complement the action of antiviral drugs.
Collapse
Affiliation(s)
- Argyrios Periferakis
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
- Elkyda, Research & Education Centre of Charismatheia, 17675 Athens, Greece
| | - Aristodemos-Theodoros Periferakis
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Elkyda, Research & Education Centre of Charismatheia, 17675 Athens, Greece
| | - Lamprini Troumpata
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Konstantinos Periferakis
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
- Pan-Hellenic Organization of Educational Programs (P.O.E.P), 17236 Athens, Greece
| | - Andreea-Elena Scheau
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Ilinca Savulescu-Fiedler
- Department of Internal Medicine, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Internal Medicine and Cardiology, Coltea Clinical Hospital, 030167 Bucharest, Romania
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, “Titu Maiorescu” University, 031593 Bucharest, Romania
| | - Ioana Anca Badarau
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Dermatology, “Prof. N.C. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | - Cristian Scheau
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Radiology and Medical Imaging, “Foisor” Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
| |
Collapse
|
9
|
Influences of flavonoids from Sedum aizoon L. on the cell membrane of Botrytis cinerea. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
10
|
High pressure treatment and green tea extract synergistically control enteric virus contamination in beverages. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Sanin AV, Pronin AV, Narovlyanskiy AN, Ozherelkov SV, Sedov AM. Phosphorilated Polyprenols as Universal Agents of Viral Reproduction Suppression. BIOLOGY BULLETIN REVIEWS 2022. [PMCID: PMC9749632 DOI: 10.1134/s207908642206007x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- A. V. Sanin
- Gamaleya National Research Center for Epidemiology and Microbiology of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - A. V. Pronin
- Gamaleya National Research Center for Epidemiology and Microbiology of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - A. N. Narovlyanskiy
- Gamaleya National Research Center for Epidemiology and Microbiology of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - S. V. Ozherelkov
- Chumakov Federal Scientific Center for Research and Development of Immunobiological Preparations, Russian Academy of Sciences, Moscow, Russia
| | - A. M. Sedov
- Gamaleya National Research Center for Epidemiology and Microbiology of the Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
12
|
Septembre-Malaterre A, Boumendjel A, Seteyen ALS, Boina C, Gasque P, Guiraud P, Sélambarom J. Focus on the high therapeutic potentials of quercetin and its derivatives. PHYTOMEDICINE PLUS : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 2:100220. [PMID: 35403087 PMCID: PMC8759805 DOI: 10.1016/j.phyplu.2022.100220] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 04/15/2023]
Abstract
BACKGROUND Polyphenols and particularly flavonoids are of constant interest to the scientific community. Flavonoids are investigated for their biological and pharmacological purposes, notably as antioxidant, anticancer, antiviral and for their anti-inflammatory activities. Certainly, one of the best-known flavonols recognized for its therapeutic and preventive properties, is quercetin. Despite its biological interest, quercetin suffer from some drawbacks, mainly related to its bioavailability. Hence, its synthetic or biosynthetic derivatives have been the subject of intensive research. The health-promoting biological activities of flavonols and derivatives mainly arise from their capacity to disrupt the host-pathogen interactions and/or to regulate host cellular functions including oxidative processes and immunological responses. In the age of coronavirus pandemic, the anti-inflammatory and antiviral potential of flavonols should be put forward to explore these substances for decreasing the viral load and inflammatory storm caused by the infection. PURPOSE OF STUDY The present review will decipher and discuss the antioxidant, anti-inflammatory and antiviral capacities of major flavonol with a focus on the molecular basis and structure-activity relationships. STUDY DESIGN Current study used a combination of quercetin derivatives, pathway, antioxidant, anti-inflammatory, antiviral activities as keywords to retrieve the literature. This study critically reviewed the current literature and presented the ability of natural analogs of quercetin having superior antioxidant, anti-inflammatory and antiviral effects than the original molecule. RESULTS This review allowed the identification of relevant key structure-activity relationship elements and highlight approaches on the mechanisms governing the antioxidant, antiviral and anti-inflammatory activities. CONCLUSION Through a critical analysis of the literature, flavonols and more precisely quercetin derivatives reviewed and found to act simultaneously on inflammation, virus and oxidative stress, three key factors that may lead to life threatening diseases.
Collapse
Affiliation(s)
- Axelle Septembre-Malaterre
- Université de La Réunion, Unité de recherche Etudes Pharmaco-Immunologie (EPI), CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France
- Laboratoire d'immunologie clinique et expérimentale de la zone de l'océan indien (LICE-OI) CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France
| | | | - Anne-Laure Sandenon Seteyen
- Université de La Réunion, Unité de recherche Etudes Pharmaco-Immunologie (EPI), CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France
| | - Chailas Boina
- Université de La Réunion, Unité de recherche Etudes Pharmaco-Immunologie (EPI), CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France
- Laboratoire d'immunologie clinique et expérimentale de la zone de l'océan indien (LICE-OI) CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France
| | - Philippe Gasque
- Université de La Réunion, Unité de recherche Etudes Pharmaco-Immunologie (EPI), CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France
- Laboratoire d'immunologie clinique et expérimentale de la zone de l'océan indien (LICE-OI) CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France
| | - Pascale Guiraud
- Université de La Réunion, Unité de recherche Etudes Pharmaco-Immunologie (EPI), CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France
| | - Jimmy Sélambarom
- Université de La Réunion, Unité de recherche Etudes Pharmaco-Immunologie (EPI), CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France
| |
Collapse
|
13
|
Sarowska J, Wojnicz D, Jama-Kmiecik A, Frej-Mądrzak M, Choroszy-Król I. Antiviral Potential of Plants against Noroviruses. Molecules 2021; 26:molecules26154669. [PMID: 34361822 PMCID: PMC8347075 DOI: 10.3390/molecules26154669] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/26/2021] [Accepted: 07/30/2021] [Indexed: 01/02/2023] Open
Abstract
Human noroviruses, which belong to the enterovirus family, are one of the most common etiological agents of food-borne diseases. In recent years, intensive research has been carried out regarding the antiviral activity of plant metabolites that could be used for the preservation of fresh food, because they are safer for consumption when compared to synthetic chemicals. Plant preparations with proven antimicrobial activity differ in their chemical compositions, which significantly affects their biological activity. Our review aimed to present the results of research related to the characteristics, applicability, and mechanisms of the action of various plant-based preparations and metabolites against norovirus. New strategies to combat intestinal viruses are necessary, not only to ensure food safety and reduce infections in humans but also to lower the direct health costs associated with them.
Collapse
Affiliation(s)
- Jolanta Sarowska
- Department of Basic Sciences, Faculty of Health Sciences, Wroclaw Medical University, Chalubinskiego 4, 50-368 Wroclaw, Poland; (J.S.); (A.J.-K.); (M.F.-M.); (I.C.-K.)
| | - Dorota Wojnicz
- Department of Biology and Medical Parasitology, Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 9, 50-345 Wroclaw, Poland
- Correspondence: ; Tel.: +48-717-841-512
| | - Agnieszka Jama-Kmiecik
- Department of Basic Sciences, Faculty of Health Sciences, Wroclaw Medical University, Chalubinskiego 4, 50-368 Wroclaw, Poland; (J.S.); (A.J.-K.); (M.F.-M.); (I.C.-K.)
| | - Magdalena Frej-Mądrzak
- Department of Basic Sciences, Faculty of Health Sciences, Wroclaw Medical University, Chalubinskiego 4, 50-368 Wroclaw, Poland; (J.S.); (A.J.-K.); (M.F.-M.); (I.C.-K.)
| | - Irena Choroszy-Król
- Department of Basic Sciences, Faculty of Health Sciences, Wroclaw Medical University, Chalubinskiego 4, 50-368 Wroclaw, Poland; (J.S.); (A.J.-K.); (M.F.-M.); (I.C.-K.)
| |
Collapse
|
14
|
Fakhri S, Nouri Z, Moradi SZ, Akkol EK, Piri S, Sobarzo-Sánchez E, Farzaei MH, Echeverría J. Targeting Multiple Signal Transduction Pathways of SARS-CoV-2: Approaches to COVID-19 Therapeutic Candidates. Molecules 2021; 26:2917. [PMID: 34068970 PMCID: PMC8156180 DOI: 10.3390/molecules26102917] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/30/2021] [Accepted: 05/11/2021] [Indexed: 02/06/2023] Open
Abstract
Due to the complicated pathogenic pathways of coronavirus disease 2019 (COVID-19), related medicinal therapies have remained a clinical challenge. COVID-19 highlights the urgent need to develop mechanistic pathogenic pathways and effective agents for preventing/treating future epidemics. As a result, the destructive pathways of COVID-19 are in the line with clinical symptoms induced by severe acute coronary syndrome (SARS), including lung failure and pneumonia. Accordingly, revealing the exact signaling pathways, including inflammation, oxidative stress, apoptosis, and autophagy, as well as relative representative mediators such as tumor necrosis factor-α (TNF-α), nuclear factor erythroid 2-related factor 2 (Nrf2), Bax/caspases, and Beclin/LC3, respectively, will pave the road for combating COVID-19. Prevailing host factors and multiple steps of SARS-CoV-2 attachment/entry, replication, and assembly/release would be hopeful strategies against COVID-19. This is a comprehensive review of the destructive signaling pathways and host-pathogen interaction of SARS-CoV-2, as well as related therapeutic targets and treatment strategies, including potential natural products-based candidates.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; (S.F.); (S.Z.M.); (S.P.)
| | - Zeinab Nouri
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah 6714415153, Iran;
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; (S.F.); (S.Z.M.); (S.P.)
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Etiler, Ankara 06330, Turkey;
| | - Sana Piri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; (S.F.); (S.Z.M.); (S.P.)
| | - Eduardo Sobarzo-Sánchez
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8330507, Chile
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Mohammad Hosein Farzaei
- Medical Technology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile
| |
Collapse
|
15
|
Sobczak-Kupiec A, Drabczyk A, Florkiewicz W, Głąb M, Kudłacik-Kramarczyk S, Słota D, Tomala A, Tyliszczak B. Review of the Applications of Biomedical Compositions Containing Hydroxyapatite and Collagen Modified by Bioactive Components. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2096. [PMID: 33919199 PMCID: PMC8122483 DOI: 10.3390/ma14092096] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/11/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023]
Abstract
Regenerative medicine is becoming a rapidly evolving technique in today's biomedical progress scenario. Scientists around the world suggest the use of naturally synthesized biomaterials to repair and heal damaged cells. Hydroxyapatite (HAp) has the potential to replace drugs in biomedical engineering and regenerative drugs. HAp is easily biodegradable, biocompatible, and correlated with macromolecules, which facilitates their incorporation into inorganic materials. This review article provides extensive knowledge on HAp and collagen-containing compositions modified with drugs, bioactive components, metals, and selected nanoparticles. Such compositions consisting of HAp and collagen modified with various additives are used in a variety of biomedical applications such as bone tissue engineering, vascular transplantation, cartilage, and other implantable biomedical devices.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bożena Tyliszczak
- Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland; (A.S.-K.); (A.D.); (W.F.); (M.G.); (S.K.-K.); (D.S.); (A.T.)
| |
Collapse
|
16
|
Behl T, Rocchetti G, Chadha S, Zengin G, Bungau S, Kumar A, Mehta V, Uddin MS, Khullar G, Setia D, Arora S, Sinan KI, Ak G, Putnik P, Gallo M, Montesano D. Phytochemicals from Plant Foods as Potential Source of Antiviral Agents: An Overview. Pharmaceuticals (Basel) 2021; 14:381. [PMID: 33921724 PMCID: PMC8073840 DOI: 10.3390/ph14040381] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/13/2021] [Accepted: 04/17/2021] [Indexed: 12/11/2022] Open
Abstract
To date, the leading causes of mortality and morbidity worldwide include viral infections, such as Ebola, influenza virus, acquired immunodeficiency syndrome (AIDS), severe acute respiratory syndrome (SARS) and recently COVID-19 disease, caused by the SARS-CoV-2 virus. Currently, we can count on a narrow range of antiviral drugs, especially older generation ones like ribavirin and interferon which are effective against viruses in vitro but can often be ineffective in patients. In addition to these, we have antiviral agents for the treatment of herpes virus, influenza virus, HIV and hepatitis virus. Recently, drugs used in the past especially against ebolavirus, such as remdesivir and favipiravir, have been considered for the treatment of COVID-19 disease. However, even if these drugs represent important tools against viral diseases, they are certainly not sufficient to defend us from the multitude of viruses present in the environment. This represents a huge problem, especially considering the unprecedented global threat due to the advancement of COVID-19, which represents a potential risk to the health and life of millions of people. The demand, therefore, for new and effective antiviral drugs is very high. This review focuses on three fundamental points: (1) presents the main threats to human health, reviewing the most widespread viral diseases in the world, thus describing the scenario caused by the disease in question each time and evaluating the specific therapeutic remedies currently available. (2) It comprehensively describes main phytochemical classes, in particular from plant foods, with proven antiviral activities, the viruses potentially treated with the described phytochemicals. (3) Consideration of the various applications of drug delivery systems in order to improve the bioavailability of these compounds or extracts. A PRISMA flow diagram was used for the inclusion of the works. Taking into consideration the recent dramatic events caused by COVID-19 pandemic, the cry of alarm that denounces critical need for new antiviral drugs is extremely strong. For these reasons, a continuous systematic exploration of plant foods and their phytochemicals is necessary for the development of new antiviral agents capable of saving lives and improving their well-being.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (S.C.); (A.K.); (G.K.); (D.S.); (S.A.)
| | - Gabriele Rocchetti
- Department for Sustainable Food Process, University Cattolica del Sacro Cuore, 29122 Piacenza, Italy;
| | - Swati Chadha
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (S.C.); (A.K.); (G.K.); (D.S.); (S.A.)
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University Campus, Konya 42130, Turkey; (G.Z.); (K.I.S.); (G.A.)
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
| | - Arun Kumar
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (S.C.); (A.K.); (G.K.); (D.S.); (S.A.)
| | - Vineet Mehta
- Department of Pharmacology, Government College of Pharmacy, Rohru, Distt. Shimla, Himachal Pradesh 171207, India;
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka 1213, Bangladesh;
- Pharmakon Neuroscience Research Network, Dhaka 1207, Bangladesh
| | - Gaurav Khullar
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (S.C.); (A.K.); (G.K.); (D.S.); (S.A.)
| | - Dhruv Setia
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (S.C.); (A.K.); (G.K.); (D.S.); (S.A.)
| | - Sandeep Arora
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (S.C.); (A.K.); (G.K.); (D.S.); (S.A.)
| | - Kouadio Ibrahime Sinan
- Department of Biology, Faculty of Science, Selcuk University Campus, Konya 42130, Turkey; (G.Z.); (K.I.S.); (G.A.)
| | - Gunes Ak
- Department of Biology, Faculty of Science, Selcuk University Campus, Konya 42130, Turkey; (G.Z.); (K.I.S.); (G.A.)
| | - Predrag Putnik
- Department of Food Technology, University North, 48000 Koprivnica, Croatia;
| | - Monica Gallo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini, 5, 80131 Naples, Italy
| | - Domenico Montesano
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
17
|
Sartini S, Permana AD, Mitra S, Tareq AM, Salim E, Ahmad I, Harapan H, Emran TB, Nainu F. Current State and Promising Opportunities on Pharmaceutical Approaches in the Treatment of Polymicrobial Diseases. Pathogens 2021; 10:245. [PMID: 33672615 PMCID: PMC7924209 DOI: 10.3390/pathogens10020245] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/10/2021] [Accepted: 02/18/2021] [Indexed: 12/18/2022] Open
Abstract
In recent years, the emergence of newly identified acute and chronic infectious disorders caused by diverse combinations of pathogens, termed polymicrobial diseases, has had catastrophic consequences for humans. Antimicrobial agents have been clinically proven to be effective in the pharmacological treatment of polymicrobial diseases. Unfortunately, an increasing trend in the emergence of multi-drug-resistant pathogens and limited options for delivery of antimicrobial drugs might seriously impact humans' efforts to combat polymicrobial diseases in the coming decades. New antimicrobial agents with novel mechanism(s) of action and new pharmaceutical formulations or delivery systems to target infected sites are urgently required. In this review, we discuss the prospective use of novel antimicrobial compounds isolated from natural products to treat polymicrobial infections, mainly via mechanisms related to inhibition of biofilm formation. Drug-delivery systems developed to deliver antimicrobial compounds to both intracellular and extracellular pathogens are discussed. We further discuss the effectiveness of several biofilm-targeted delivery strategies to eliminate polymicrobial biofilms. At the end, we review the applications and promising opportunities for various drug-delivery systems, when compared to conventional antimicrobial therapy, as a pharmacological means to treat polymicrobial diseases.
Collapse
Affiliation(s)
- Sartini Sartini
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (S.S.); (A.D.P.)
| | - Andi Dian Permana
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (S.S.); (A.D.P.)
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh; or
| | - Abu Montakim Tareq
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh; or
| | - Emil Salim
- Faculty of Pharmacy, Universitas Sumatera Utara, North Sumatera 20155, Indonesia;
| | - Islamudin Ahmad
- Faculty of Pharmacy, Universitas Mulawarman, East Kalimantan 75119, Indonesia;
| | - Harapan Harapan
- Medical Research Unit, School of Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia;
- Tropical Disease Centre, School of Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
- Department of Microbiology, School of Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh;
| | - Firzan Nainu
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (S.S.); (A.D.P.)
| |
Collapse
|
18
|
Li Z, Ma W, Ali I, Zhao H, Wang D, Qiu J. Green and Facile Synthesis and Antioxidant and Antibacterial Evaluation of Dietary Myricetin-Mediated Silver Nanoparticles. ACS OMEGA 2020; 5:32632-32640. [PMID: 33376900 PMCID: PMC7758972 DOI: 10.1021/acsomega.0c05002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/30/2020] [Indexed: 05/02/2023]
Abstract
Myricetin (MY) is a dietary flavonoid which exhibits a wide spectrum of biological properties, viz., antibacterial, antioxidant, anticancer, and so forth. The lower solubility in aqueous medium and hence lesser bioavailability of MY limits the use of such dietary flavonoids in further in vivo research. To overcome bioavailability limitations, a number of drug-delivery systems are being investigated. Herein, MY-mediated silver nanoparticles (MY-AgNPs) were synthesized by a green approach to improve the therapeutic efficacy of MY. MY-AgNPs were characterized by ultraviolet-visible spectroscopy (UV-Vis), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, and X-ray powder diffraction (XRD). The results showed that the dispersion of AgNPs had the maximum UV-vis absorption at about 410 nm. The synthesized nanoparticles were almost spherical. MY-AgNPs were further investigated against human pathogenic bacteria, and their antioxidant potential was also determined. The free radical scavenging rate was about 60-87%. MY-AgNPs had good antibacterial activity against Escherichia coli and Salmonella at room temperature with minimum inhibitory concentrations of 10-4 and 10-5 g/L, respectively.
Collapse
Affiliation(s)
- Zhao Li
- School
of Pharmaceutical Sciences and Key Laboratory for Applied Technology
of Sophisticated Analytical Instruments of Shandong Province, Shandong
Analysis and Test Center, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250014, China
| | - Wenya Ma
- School
of Pharmaceutical Sciences and Key Laboratory for Applied Technology
of Sophisticated Analytical Instruments of Shandong Province, Shandong
Analysis and Test Center, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250014, China
- College
of Life Science, Shandong Normal University, Jinan 250014, China
| | - Iftikhar Ali
- School
of Pharmaceutical Sciences and Key Laboratory for Applied Technology
of Sophisticated Analytical Instruments of Shandong Province, Shandong
Analysis and Test Center, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250014, China
- Department
of Chemistry, Karakoram International University, Gilgit 15100, Pakistan
| | - Huanzhu Zhao
- School
of Pharmaceutical Sciences and Key Laboratory for Applied Technology
of Sophisticated Analytical Instruments of Shandong Province, Shandong
Analysis and Test Center, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250014, China
| | - Daijie Wang
- School
of Pharmaceutical Sciences and Key Laboratory for Applied Technology
of Sophisticated Analytical Instruments of Shandong Province, Shandong
Analysis and Test Center, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250014, China
| | - Jiying Qiu
- Institute
of Agro-Food Science and Technology, Shandong
Academy of Agricultural Sciences, Jinan 250100, China
| |
Collapse
|
19
|
Agrawal PK, Agrawal C, Blunden G. Quercetin: Antiviral Significance and Possible COVID-19 Integrative Considerations. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20976293] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Quercetin, a naturally occurring dietary flavonoid, is well known to ameliorate chronic diseases and aging processes in humans, and its antiviral properties have been investigated in numerous studies. In silico and in vitro studies demonstrated that quercetin can interfere with various stages of the coronavirus entry and replication cycle such as PLpro, 3CLpro, and NTPase/helicase. Due to its pleiotropic activities and lack of systemic toxicity, quercetin and its derivatives may represent target compounds to be tested in future clinical trials to enrich the drug arsenal against coronavirus infections. There is evidence that quercetin in combination with, for example, vitamins C and D, may exert a synergistic antiviral action that may provide either an alternative or additional therapeutic/preventive option due to overlapping antiviral and immunomodulatory properties. This review summarizes the antiviral significance of quercetin and proposes a possible strategy for the effective utilization of natural polyphenols in our daily diet for the prevention of viral infection.
Collapse
Affiliation(s)
| | | | - Gerald Blunden
- School of Pharmacy and Biomedical Science, University of Portsmouth, Portsmouth, UK
| |
Collapse
|
20
|
Gobeil A, Maherani B, Lacroix M. Norovirus elimination on the surface of fresh foods. Crit Rev Food Sci Nutr 2020; 62:1822-1837. [DOI: 10.1080/10408398.2020.1848784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Alexandra Gobeil
- Research Laboratories in Sciences, Applied to Food, Canadian Irradiation Centre, Nutraceuticals and Functional Foods, Laval, Québec, Canada
| | - Behnoush Maherani
- Research Laboratories in Sciences, Applied to Food, Canadian Irradiation Centre, Nutraceuticals and Functional Foods, Laval, Québec, Canada
| | - Monique Lacroix
- Research Laboratories in Sciences, Applied to Food, Canadian Irradiation Centre, Nutraceuticals and Functional Foods, Laval, Québec, Canada
| |
Collapse
|
21
|
Majnooni MB, Fakhri S, Shokoohinia Y, Kiyani N, Stage K, Mohammadi P, Gravandi MM, Farzaei MH, Echeverría J. Phytochemicals: Potential Therapeutic Interventions Against Coronavirus-Associated Lung Injury. Front Pharmacol 2020; 11:588467. [PMID: 33658931 PMCID: PMC7919380 DOI: 10.3389/fphar.2020.588467] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/06/2020] [Indexed: 12/15/2022] Open
Abstract
Since the outbreak of coronavirus disease 2019 (COVID-19) in December 2019, millions of people have been infected and died worldwide. However, no drug has been approved for the treatment of this disease and its complications, which urges the need for finding novel therapeutic agents to combat. Among the complications due to COVID-19, lung injury has attained special attention. Besides, phytochemicals have shown prominent anti-inflammatory effects and thus possess significant effects in reducing lung injury caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Also, the prevailing evidence reveales the antiviral effects of those phytochemicals, including anti-SARS-CoV activity, which could pave the road in providing suitable lead compounds in the treatment of COVID-19. In the present study, candidate phytochemicals and related mechanisms of action have been shown in the treatment/protection of lung injuries induced by various methods. In terms of pharmacological mechanism, phytochemicals have shown potential inhibitory effects on inflammatory and oxidative pathways/mediators, involved in the pathogenesis of lung injury during COVID-19 infection. Also, a brief overview of phytochemicals with anti-SARS-CoV-2 compounds has been presented.
Collapse
Affiliation(s)
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Yalda Shokoohinia
- Pharmaceutical Sciences Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Ric Scalzo Botanical Research Institute, Southwest College of Naturopathic Medicine, Tempe, AZ, United States
| | - Narges Kiyani
- Ric Scalzo Botanical Research Institute, Southwest College of Naturopathic Medicine, Tempe, AZ, United States
| | - Katrina Stage
- Ric Scalzo Botanical Research Institute, Southwest College of Naturopathic Medicine, Tempe, AZ, United States
| | - Pantea Mohammadi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Javier Echeverría
- Departamento De Ciencias Del Ambiente, Facultad De Química y Biología, Universidad De Santiago De Chile, Santiago, Chile
| |
Collapse
|
22
|
Ullah A, Munir S, Badshah SL, Khan N, Ghani L, Poulson BG, Emwas AH, Jaremko M. Important Flavonoids and Their Role as a Therapeutic Agent. Molecules 2020; 25:molecules25225243. [PMID: 33187049 PMCID: PMC7697716 DOI: 10.3390/molecules25225243] [Citation(s) in RCA: 524] [Impact Index Per Article: 104.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/25/2020] [Accepted: 11/01/2020] [Indexed: 12/14/2022] Open
Abstract
Flavonoids are phytochemical compounds present in many plants, fruits, vegetables, and leaves, with potential applications in medicinal chemistry. Flavonoids possess a number of medicinal benefits, including anticancer, antioxidant, anti-inflammatory, and antiviral properties. They also have neuroprotective and cardio-protective effects. These biological activities depend upon the type of flavonoid, its (possible) mode of action, and its bioavailability. These cost-effective medicinal components have significant biological activities, and their effectiveness has been proved for a variety of diseases. The most recent work is focused on their isolation, synthesis of their analogs, and their effects on human health using a variety of techniques and animal models. Thousands of flavonoids have been successfully isolated, and this number increases steadily. We have therefore made an effort to summarize the isolated flavonoids with useful activities in order to gain a better understanding of their effects on human health.
Collapse
Affiliation(s)
- Asad Ullah
- Department of Chemistry, Islamia College University Peshawar, Peshawar 25120, Pakistan; (A.U.); (S.M.); (N.K.)
| | - Sidra Munir
- Department of Chemistry, Islamia College University Peshawar, Peshawar 25120, Pakistan; (A.U.); (S.M.); (N.K.)
| | - Syed Lal Badshah
- Department of Chemistry, Islamia College University Peshawar, Peshawar 25120, Pakistan; (A.U.); (S.M.); (N.K.)
- Correspondence: (S.L.B.); (M.J.)
| | - Noreen Khan
- Department of Chemistry, Islamia College University Peshawar, Peshawar 25120, Pakistan; (A.U.); (S.M.); (N.K.)
| | - Lubna Ghani
- Department of Chemistry, The University of Azad Jammu and Kashmir, Muzaffarabad, Azad Kashmir 13230, Pakistan;
| | - Benjamin Gabriel Poulson
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| | - Mariusz Jaremko
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
- Correspondence: (S.L.B.); (M.J.)
| |
Collapse
|
23
|
Randazzo W, Costantini V, Morantz EK, Vinjé J. Human Intestinal Enteroids to Evaluate Human Norovirus GII.4 Inactivation by Aged-Green Tea. Front Microbiol 2020; 11:1917. [PMID: 32973702 PMCID: PMC7461803 DOI: 10.3389/fmicb.2020.01917] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 07/21/2020] [Indexed: 12/21/2022] Open
Abstract
Human noroviruses are the leading cause of epidemic and sporadic acute gastroenteritis worldwide and the most common cause of foodborne illness in the United States. Several natural compounds, such as aged-green tea extract (aged-GTE), have been suggested as ingestible antiviral agents against human norovirus based on data using murine norovirus and feline calicivirus as surrogates. However, in vitro data showing their effectiveness against infectious human norovirus are lacking. We tested the activity of aged-GTE to inhibit human norovirus in a human intestinal enteroids (HIEs) model and Tulane virus in LLC-monkey kidney (LLC-MK2) cell culture. HIE monolayers pretreated with aged-GTE at different temperatures showed complete inhibition of human norovirus GII.4 replication at concentrations as low as 1.0 mg/ml for 37°C, 1.75 mg/ml for 21°C, and 2.5 mg/ml for 7°C. In contrast, a moderate decrease in Tulane virus infectivity of 0.85, 0.75, and 0.65 log TCID50/ml was observed for 2.5 mg/ml aged-GTE at 37, 21, and 7°C, respectively. Our findings demonstrate that GTE could be an effective natural compound against human norovirus GII.4, while only minimally effective against Tulane virus.
Collapse
Affiliation(s)
- Walter Randazzo
- Division of Viral Diseases, National Calicivirus Laboratory, Centers for Disease Control and Prevention, Atlanta, GA, United States.,Department of Microbiology and Ecology, University of Valencia, Valencia, Spain
| | - Veronica Costantini
- Division of Viral Diseases, National Calicivirus Laboratory, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Esther K Morantz
- Division of Viral Diseases, National Calicivirus Laboratory, Centers for Disease Control and Prevention, Atlanta, GA, United States.,Cherokee Nation Assurance, Arlington, VA, United States
| | - Jan Vinjé
- Division of Viral Diseases, National Calicivirus Laboratory, Centers for Disease Control and Prevention, Atlanta, GA, United States
| |
Collapse
|
24
|
|
25
|
Seo DJ, Jung D, Jung S, Yeo D, Choi C. Inhibitory effect of lactic acid bacteria isolated from kimchi against murine norovirus. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106881] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
26
|
Netzler NE, Enosi Tuipulotu D, White PA. Norovirus antivirals: Where are we now? Med Res Rev 2019; 39:860-886. [PMID: 30584800 PMCID: PMC7168425 DOI: 10.1002/med.21545] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 10/02/2018] [Accepted: 10/04/2018] [Indexed: 12/24/2022]
Abstract
Human noroviruses inflict a significant health burden on society and are responsible for approximately 699 million infections and over 200 000 estimated deaths worldwide each year. Yet despite significant research efforts, approved vaccines or antivirals to combat this pathogen are still lacking. Safe and effective antivirals are not available, particularly for chronically infected immunocompromised individuals, and for prophylactic applications to protect high-risk and vulnerable populations in outbreak settings. Since the discovery of human norovirus in 1972, the lack of a cell culture system has hindered biological research and antiviral studies for many years. Recent breakthroughs in culturing human norovirus have been encouraging, however, further development and optimization of these novel methodologies are required to facilitate more robust replication levels, that will enable reliable serological and replication studies, as well as advances in antiviral development. In the last few years, considerable progress has been made toward the development of norovirus antivirals, inviting an updated review. This review focuses on potential therapeutics that have been reported since 2010, which were examined across at least two model systems used for studying human norovirus or its enzymes. In addition, we have placed emphasis on antiviral compounds with a defined chemical structure. We include a comprehensive outline of direct-acting antivirals and offer a discussion of host-modulating compounds, a rapidly expanding and promising area of antiviral research.
Collapse
Affiliation(s)
- Natalie E. Netzler
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, SydneyNew South WalesAustralia
| | - Daniel Enosi Tuipulotu
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, SydneyNew South WalesAustralia
| | - Peter A. White
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, SydneyNew South WalesAustralia
| |
Collapse
|
27
|
Kim N, Park S, Nhiem NX, Song JH, Ko HJ, Kim SH. Cycloartane-type triterpenoid derivatives and a flavonoid glycoside from the burs of Castanea crenata. PHYTOCHEMISTRY 2019; 158:135-141. [PMID: 30529974 DOI: 10.1016/j.phytochem.2018.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/01/2018] [Accepted: 11/01/2018] [Indexed: 06/09/2023]
Abstract
Five undescribed cycloartane-type triterpenoids, which were isolated for the first time from the genus, and a flavonoid glycoside together with 11 known compounds were isolated from the burs of Castanea crenata. The structures were elucidated based on the spectroscopic analysis of 1D and 2D NMR and MS data. All isolated compounds were evaluated for antiviral activities against HRV1B-, CVB3-, and PR8-infected cells. Most kaempferol derivatives showed statistically significant antiviral activities against HRV1B-infected cells. Among the tested compounds, kaempferol-3-O-[2″,6″-di-O-Z-p-coumaroyl]-β-d-glucopyranoside exhibited the most consistent and effective antiviral activities against all infections.
Collapse
Affiliation(s)
- Nanyoung Kim
- National Institute of Food & Drug Safety Evaluation Herbal Medicinal Products Division, Ministry of Food and Drug Safety, Chungcheongbuk-do, 28159, South Korea
| | - SeonJu Park
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, 21983, South Korea
| | - Nguyen Xuan Nhiem
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Viet Nam
| | - Jae-Hyoung Song
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon, 24341, South Korea
| | - Hyun-Jeong Ko
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon, 24341, South Korea
| | - Seung Hyun Kim
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, 21983, South Korea.
| |
Collapse
|
28
|
Iloghalu U, Holmes B, Khatiwada J, Williams LL. Selected Plant Extracts Show Antiviral Effects against Murine Norovirus Surrogate. ACTA ACUST UNITED AC 2019. [DOI: 10.4236/aim.2019.94022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
29
|
Chen Y, Li P, Su S, Chen M, He J, Liu L, He M, Wang H, Xue W. Synthesis and antibacterial and antiviral activities of myricetin derivatives containing a 1,2,4-triazole Schiff base. RSC Adv 2019; 9:23045-23052. [PMID: 35514467 PMCID: PMC9067368 DOI: 10.1039/c9ra05139b] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 07/22/2019] [Indexed: 11/24/2022] Open
Abstract
A series of novel myricetin derivatives containing a 1,2,4-triazole Schiff base were designed and synthesized. Their structures were systematically characterized using 1H NMR, 13C NMR, and HRMS. During antibacterial bioassays, 6f, 6i, and 6q demonstrated a good inhibitory effect against Xanthomonas axonopodis pv. citri (Xac), with half-maximal effective concentration (EC50) values of 10.0, 9.4, and 8.8 μg mL−1, respectively, which were better than those of bismerthiazol (54.9 μg mL−1) and thiodiazole copper (61.1 μg mL−1). Note that 6w demonstrated a good inhibitory effect against Ralstonia solanacearum (Rs) with and EC50 value of 15.5 μg mL−1, which was better than those of bismerthiazol (55.2 μg mL−1) and thiodiazole copper (127.9 μg mL−1). Similarly, 6a, 6d, and 6e demonstrated a good inhibitory effect against Xanthomonas oryzae pv. oryzae (Xoo) with EC50 values of 47.1, 61.2, and 61.0 μg mL−1, respectively, which were better than those of bismerthiazol (148.2 μg mL−1) and thiodiazole copper (175.5 μg mL−1). Furthermore, we used scanning electron microscopy (SEM) to study the possible sterilization process of the target compound 6q against Xac. The results indicated the possibility of destroying the bacterial cell membrane structure, resulting in an incomplete bacterial structure, and thus achieving inhibition. Furthermore, antiviral bioassays revealed that most compounds exhibited excellent antiviral activity against tobacco mosaic virus (TMV) at a concentration of 500 μg mL−1. The results of the molecular docking studies for 6g with TMV-CP (PDB code: 1EI7) showed that compound 6g had partially interacted with TMV-CP. Therefore, mechanistic studies of the action of compound 6g could be further studied based on that. The myricetin derivatives containing a 1,2,4-triazole Schiff base were designed and synthesized. Antibacterial mechanism was investigated through SEM.![]()
Collapse
Affiliation(s)
- Ying Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agricultural Bioengineering
- Ministry of Education
- Center for Research and Development of Fine Chemicals
- Guizhou University
| | - Pu Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agricultural Bioengineering
- Ministry of Education
- Center for Research and Development of Fine Chemicals
- Guizhou University
| | - Shijun Su
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agricultural Bioengineering
- Ministry of Education
- Center for Research and Development of Fine Chemicals
- Guizhou University
| | - Mei Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agricultural Bioengineering
- Ministry of Education
- Center for Research and Development of Fine Chemicals
- Guizhou University
| | - Jun He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agricultural Bioengineering
- Ministry of Education
- Center for Research and Development of Fine Chemicals
- Guizhou University
| | - Liwei Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agricultural Bioengineering
- Ministry of Education
- Center for Research and Development of Fine Chemicals
- Guizhou University
| | - Ming He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agricultural Bioengineering
- Ministry of Education
- Center for Research and Development of Fine Chemicals
- Guizhou University
| | - Hua Wang
- Institute for Plant Protection and Soil Science
- Hubei Academy of Agricultural Sciences
- Wuhan
- China
| | - Wei Xue
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agricultural Bioengineering
- Ministry of Education
- Center for Research and Development of Fine Chemicals
- Guizhou University
| |
Collapse
|
30
|
Marti E, Ferrary-Américo M, Barardi CR. Viral disinfection of organic fresh produce comparing Polyphenon 60 from green tea with chlorine. Food Control 2017. [DOI: 10.1016/j.foodcont.2017.03.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
31
|
Falcó I, Randazzo W, Gómez-Mascaraque L, Aznar R, López-Rubio A, Sánchez G. Effect of (−)-epigallocatechin gallate at different pH conditions on enteric viruses. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.03.050] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
32
|
Seo DJ, Choi C. Inhibitory mechanism of five natural flavonoids against murine norovirus. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 30:59-66. [PMID: 28545670 DOI: 10.1016/j.phymed.2017.04.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 03/22/2017] [Accepted: 04/30/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Human noroviruses (HuNoV), which are responsible for acute gastroenteritis, are becoming a serious public health concern worldwide. Since no effective antiviral drug or vaccine for HuNoV has been developed yet, some natural extracts and their active components have been investigated for their ability to inhibit noroviruses. However, their exact antiviral mechanisms have not been investigated. PURPOSE This study was performed to investigate the expression of interferon (IFN)-α, IFN-λ, tumor necrosis factor-α (TNF-α), Mx, and zinc finger CCCH type antiviral protein 1 (ZAP), 2'-5' oligo (A) synthetase (OAS), and inducible nitric oxide synthase (iNOS) in RAW 264.7 cells pre-treated with fisetin, daidzein, quercetin, epigallocatechin gallate (EGCG), and epicatechin gallate (ECG) that have anti-noroviral activity. STUDY DESIGN Based on the antiviral activity of the five flavonoids, recently reported by our group, the expression of antiviral factors such as IFN-α, IFN-λ, TNF-α, IL-1β, IL-6, Mx, ZAP, OAS, and iNOS was investigated in RAW 264.7 cells pre-treated with these flavonoids. METHODS Anti-noroviral effect was determined by performing a plaque assay on cells treated with the flavonoid. RAW 264.7 cells were treated with fisetin, daidzein, quercetin, EGCG, and ECG. Then, mRNA of IFN-α, IFN-λ, TNF-α, IL-1β, IL-6, Mx, ZAP, OAS, and iNOS were measured by real-time RT-PCR. IFN-α, TNF-α, IL-1β, and IL-6 proteins were measured by ELISA. RESULTS Pre-treatment with fisetin (50μM), fisetin (100μM), EGCG (100μM), quercetin (100μM), daidzein (50μM), and ECG (150μM) significantly reduced MNoV by 50.00±7.14 to 60.67±9.26%. The mRNA levels of IFN-α, IFN-λ, TNF-α, Mx, and ZAP were upregulated in RAW 264.7 cells pre-treated with fisetin, quercetin, and daidzein, but not in those pre-treated with EGCG or ECG. Regarding protein levels, IFN-α was significantly induced in cells pre-treated with fisetin, quercetin, and daidzein, whereas TNF-α was significantly induced only in cells pre-treated with daidzein. CONCLUSION Pre-treatment of RAW 264.7 cells with the five flavonoids inhibited MNoV by upregulating the expression of antiviral cytokines (IFN-α, IFN-λ, and TNF-α) and interferon-stimulating genes (Mx and ZAP).
Collapse
Affiliation(s)
- Dong Joo Seo
- Department of Food and Nutrition, School of Food Science and Technology, College of Biotechnology and Natural Resources, Chung-Ang University, Anseong, Gyeonggi, 17546, South Korea
| | - Changsun Choi
- Department of Food and Nutrition, School of Food Science and Technology, College of Biotechnology and Natural Resources, Chung-Ang University, Anseong, Gyeonggi, 17546, South Korea.
| |
Collapse
|
33
|
Flavonoids: promising natural compounds against viral infections. Arch Virol 2017; 162:2539-2551. [PMID: 28547385 PMCID: PMC7087220 DOI: 10.1007/s00705-017-3417-y] [Citation(s) in RCA: 271] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/05/2017] [Indexed: 01/12/2023]
Abstract
Flavonoids are widely distributed as secondary metabolites produced by plants and play important roles in plant physiology, having a variety of potential biological benefits such as antioxidant, anti-inflammatory, anticancer, antibacterial, antifungal and antiviral activity. Different flavonoids have been investigated for their potential antiviral activities and several of them exhibited significant antiviral properties in in vitro and even in vivo studies. This review summarizes the evidence for antiviral activity of different flavonoids, highlighting, where investigated, the cellular and molecular mechanisms of action on viruses. We also present future perspectives on therapeutic applications of flavonoids against viral infections.
Collapse
|
34
|
Seo DJ, Lee M, Jeon SB, Park H, Jeong S, Lee BH, Choi C. Antiviral activity of herbal extracts against the hepatitis A virus. Food Control 2017. [DOI: 10.1016/j.foodcont.2016.07.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
35
|
Antiviral effect of theaflavins against caliciviruses. J Antibiot (Tokyo) 2016; 70:443-447. [PMID: 27756911 DOI: 10.1038/ja.2016.128] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 09/07/2016] [Accepted: 09/23/2016] [Indexed: 01/11/2023]
Abstract
Caliciviruses are contagious pathogens of humans and various animals. They are the most common cause of viral gastroenteritis in humans, and can cause lethal diseases in domestic animals such as cats, rabbits and immunocompromised mice. In this study, we conducted cytopathic effect-based screening of 2080 selected compounds from our in-house library to find antiviral compounds against three culturable caliciviruses: feline calicivirus, murine norovirus (MNV) and porcine sapovirus (PoSaV). We identified active six compounds, of which two compounds, both related to theaflavins, showed broad antiviral activities against all three caliciviruses; three compounds (abamectin, a mixture of avermectin B1a and B1b; avermectin B1a; and (-)-epigallocatechin gallate hydrate) were effective against PoSaV only; and a heterocyclic carboxamide derivative (BFTC) specifically inhibited MNV infectivity in cell cultures. Further studies of the antiviral mechanism and structure-activity relationship of theaflavins suggested the following: (1) theaflavins worked before the viral entry step; (2) the effect of theaflavins was time- and concentration-dependent; and (3) the hydroxyl groups of the benzocycloheptenone ring were probably important for the anti-calicivirus activity of theaflavins. Theaflavins could be used for the calicivirus research, and as potential disinfectants and antiviral reagents to prevent and control calicivirus infections in animals and humans.
Collapse
|