1
|
Panera-Martínez S, Capita R, García-Fernández C, Alonso-Calleja C. Viability and Virulence of Listeria monocytogenes in Poultry. Microorganisms 2023; 11:2232. [PMID: 37764076 PMCID: PMC10538215 DOI: 10.3390/microorganisms11092232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/11/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
The prevalence of Listeria monocytogenes in 30 samples of poultry was determined using culture-dependent (isolation on OCLA and confirmation by conventional polymerase chain reaction -PCR-, OCLA&PCR) and culture-independent (real-time polymerase chain reaction, q-PCR) methods. L. monocytogenes was detected in 15 samples (50.0%) by OCLA&PCR and in 20 (66.7%) by q-PCR. The concentrations (log10 cfu/g) of L. monocytogenes (q-PCR) ranged from 2.40 to 5.22 (total cells) and from <2.15 to 3.93 (viable cells). The two methods, q-PCR using a viability marker (v-PCR) and OCLA&PCR (gold standard), were compared for their capacity to detect viable cells of L. monocytogenes, with the potential to cause human disease. The values for sensitivity, specificity and efficiency of the v-PCR were 100%, 66.7% and 83.3%, respectively. The agreement between the two methods (kappa coefficient) was 0.67. The presence of nine virulence genes (hlyA, actA, inlB, inlA, inlC, inlJ, prfA, plcA and iap) was studied in 45 L. monocytogenes isolates (three from each positive sample) using PCR. All the strains harbored between six and nine virulence genes. Fifteen isolates (33.3% of the total) did not show the potential to form biofilm on a polystyrene surface, as determined by a crystal violet assay. The remaining strains were classified as weak (23 isolates, 51.1% of the total), moderate (one isolate, 2.2%) or strong (six isolates, 13.3%) biofilm producers. The strains were tested for susceptibility to a panel of 15 antibiotics. An average of 5.11 ± 1.30 resistances per isolate was observed. When the values for resistance and for reduced susceptibility were taken jointly, this figure rose to 6.91 ± 1.59. There was a prevalence of resistance or reduced susceptibility of more than 50.0% for oxacillin, cefoxitin, cefotaxime, cefepime ciprofloxacin, enrofloxacin and nitrofurantoin. For the remaining antibiotics tested, the corresponding values ranged from 0.0% for chloramphenicol to 48.9% for rifampicin. The high prevalence and level of L. monocytogenes with numerous virulence factors in poultry underline how crucial it is to follow correct hygiene procedures during the processing of this foodstuff in order to reduce the risk of human listeriosis.
Collapse
Affiliation(s)
- Sarah Panera-Martínez
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, 24071 León, Spain
- Institute of Food Science and Technology, University of León, 24071 León, Spain
| | - Rosa Capita
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, 24071 León, Spain
- Institute of Food Science and Technology, University of León, 24071 León, Spain
| | | | - Carlos Alonso-Calleja
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, 24071 León, Spain
- Institute of Food Science and Technology, University of León, 24071 León, Spain
| |
Collapse
|
2
|
Di Salvo E, Panebianco F, Panebianco A, Ziino G. Quantitative Detection of Viable but Nonculturable Vibrio parahaemolyticus in Frozen Bivalve Molluscs. Foods 2023; 12:2373. [PMID: 37372584 DOI: 10.3390/foods12122373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/06/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023] Open
Abstract
Vibrio parahaemolyticus is a foodborne pathogen diffusely distributed in the marine environment and often isolated from raw seafood belonging to different species, mostly shellfish. Ingestion of under- or uncooked seafood contaminated by V. parahaemolyticus can cause severe gastrointestinal symptoms in humans. Due to its ability to withstand low temperatures, Vibrio spp. could survive in frozen seafoods for long periods by entering the viable but nonculturable state (VBNC) and may constitute an unrecognized source of food contamination and infection. In the present study, seventy-seven frozen bivalve molluscs (35 mussels; 42 clams) were subjected to the detection and enumeration of viable V. parahaemolyticus using standard culture methods. VBNC forms were detected and quantified by applying an optimized protocol based on Propidium Monoazide (PMA) and Quantitative PCR (qPCR). All samples were negative for both the detection and enumeration of V. parahaemolyticus by the standard culture methods. VBNC forms were detected in 11.7% of the samples (9/77), with values ranging from 1.67 to 2.29 Log CFU/g. Only clam samples were positive for the detection of VBNC forms. The results of this study highlighted that VBNC V. parahaemolyticus may be present in frozen bivalve molluscs. Further data on the prevalence of VBNC V. parahaemolyticus in frozen seafood are needed in order to perform a robust risk assessment.
Collapse
Affiliation(s)
- Eleonora Di Salvo
- Department of Veterinary Sciences, University of Messina, Polo Universitario dell'Annunziata, Viale Palatucci snc, 98168 Messina, Italy
| | - Felice Panebianco
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, Grugliasco, 10095 Turin, Italy
| | - Antonio Panebianco
- Department of Veterinary Sciences, University of Messina, Polo Universitario dell'Annunziata, Viale Palatucci snc, 98168 Messina, Italy
| | - Graziella Ziino
- Department of Veterinary Sciences, University of Messina, Polo Universitario dell'Annunziata, Viale Palatucci snc, 98168 Messina, Italy
| |
Collapse
|
3
|
Hu YQ, Wang WY, Turmidzi F, Li FX, Fang LF, Zhou ZH, Zhang DF. Rapid and simultaneous detection of viable Vibrio parahaemolyticus, Vibrio alginolyticus, and Vibrio cholerae by PMA-mPCR assay in aquatic products. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
4
|
Yadav M, Dhyani S, Joshi P, Awasthi S, Tanwar S, Gupta V, Rathore DK, Chaudhuri S. Formic acid, an organic acid food preservative, induces viable-but-non-culturable state, and triggers new Antimicrobial Resistance traits in Acinetobacter baumannii and Klebsiella pneumoniae. Front Microbiol 2022; 13:966207. [PMID: 36504816 PMCID: PMC9730046 DOI: 10.3389/fmicb.2022.966207] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/14/2022] [Indexed: 11/25/2022] Open
Abstract
Numerous human pathogens, especially Gram-negative bacteria, are able to enter the viable-but-non-culturable (VBNC) state when they are exposed to environmental stressors and pose the risk of being resuscitated and causing infection after the removal of the trigger. Widely used food preservatives like weak organic acids are potential VBNC inducers in food processing and packaging facilities but have only been reported for food-borne pathogens. In the present study, it is demonstrated for the first time that one such agent, formic acid (FA), can induce a VBNC state at food processing, storage, and distribution temperatures (4, 25, and 37°C) with a varied time of treatment (days 4-10) in pathogenic Gram-negative bacteria Acinetobacter baumannii and Klebsiella pneumoniae. The use of hospital-associated pathogens is critical based on the earlier reports that demonstrated the presence of these bacteria in hospital kitchens and commonly consumed foods. VBNC induction was validated by multiple parameters, e.g., non-culturability, metabolic activity as energy production, respiratory markers, and membrane integrity. Furthermore, it was demonstrated that the removal of FA was able to resuscitate VBNC with an increased expression of multiple virulence and Antimicrobial Resistance (AMR) genes in both pathogens. Since food additives/preservatives are significantly used in most food manufacturing facilities supplying to hospitals, contamination of these packaged foods with pathogenic bacteria and the consequence of exposure to food additives emerge as pertinent issues for infection control, and control of antimicrobial resistance in the hospital setting.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Susmita Chaudhuri
- Department of Multidisciplinary Clinical and Translational Research, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| |
Collapse
|
5
|
A Novel Fluorescent Aptasensor Based on Real-Time Fluorescence and Strand Displacement Amplification for the Detection of Ochratoxin A. Foods 2022; 11:foods11162443. [PMID: 36010442 PMCID: PMC9407370 DOI: 10.3390/foods11162443] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/04/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
It is urgently necessary to develop convenient, reliable, ultrasensitive and specific methods of ochratoxin A determination in food safety owing to its high toxicity. In the present study, an ultrasensitive and labeled-free fluorescent aptamer sensor combining real-time fluorescence with strand displacement amplification (SDA) was fabricated for the determination of OTA. In the presence of OTA, the OTA–aptamer combines with OTA, thus opening hairpins. Then, SDA primers specifically bind to the hairpin stem, which is used for subsequent amplification as a template. SDA amplification is initiated under the action of Bst DNA polymerase and nicking endonuclease. The amplified products (ssDNA) are dyed with SYBR Green II and detected with real-time fluorescence. The method has good linearity in the range of 0.01–50 ng mL−1, with the lowest limit of detection of 0.01 ng mL−1. Additionally, the fluorescent aptamer sensor shows outstanding specificity and reproducibility. Furthermore, the sensor shows excellent analytical performance in the artificial labeled detection of wheat and oat samples, with a recovery rate of 96.1~100%. The results suggest that the developed sensor has a promising potential application for the ultrasensitive detection of contaminants in food.
Collapse
|
6
|
He D, Du Z, Wang Y, Xu E, Jin Z, Wu Z. Quantitative detection of Campylobacter jejuni with a core-satellite assemblies-based dual-modular aptasensor. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
7
|
Rapid and visual detection of viable Staphylococcus aureus in pork and pork products by PMA and saltatory rolling circle amplification. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-03990-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Shi D, Shi H. Combining loop-mediated isothermal amplification and nanozyme-strip for ultrasensitive and rapid detection of viable Listeria monocytogenes cells and biofilms. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Yang Q, Guo W, Liu Y, Zhang Y, Ming R, Yuan Y, Tan J, Zhang W. Novel Single Primer Isothermal Amplification Method for the Visual Detection of Vibrio parahaemolyticus. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-02033-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Chen S, Gong P, Zhang J, Shan Y, Han X, Zhang L. Use of qPCR for the analysis of population heterogeneity and dynamics during Lactobacillus delbrueckii spp. bulgaricus batch fculture. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2021; 49:1-10. [PMID: 33356615 DOI: 10.1080/21691401.2020.1860074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Direct molecular methods such as real-time polymerase chain reaction (qPCR) and propidium monoazide (PMA)-qPCR have been successfully used for quantifying viable microorganisms in the food industry. This study attempted to use qPCR and PMA-qPCR for quantifying Lactobacillus delbrueckii spp. bulgaricus sp1.1 physiological states. The qPCR standards of the 16S rRNA gene were employed to calibrate the qPCR assay, which contributed to an amplification efficiency of 98.42%. The number of copies of the 16S rRNA gene was linearly related to cell density, and this linear relationship was used to construct a quantitative curve (R2 =0.9981) with a detection limit of 15.1 colony-forming units mL-1·reaction-1. qPCR in combination with an optimal PMA concentration (60 μM) helped in discriminating and quantifying the viable cells, without any interference by heat-killed cells. Compared with the conventional methods, the population heterogeneity of viable, culturable, dormant-like and membrane-permeabilized cells were well identified and quantified using qPCR during L. delbrueckii spp. bulgaricus sp1.1 batch culture. Despite the restriction in the enumeration of lysed cells, qPCR-based methods facilitated reliable identification and quantification of bacterial physiological states and provided additional knowledge on the dynamics of L. delbrueckii spp. bulgaricus sp1.1 physiological states.
Collapse
Affiliation(s)
- Shiwei Chen
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Pimin Gong
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Jianming Zhang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Yujuan Shan
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Xue Han
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Lanwei Zhang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China.,College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
11
|
Zheng G, Gao Q, Jiang Y, Lu L, Li J, Zhang X, Zhao H, Fan P, Cui Y, Gu F, Wang Y. Instrumentation-Compact Digital Microfluidic Reaction Interface-Extended Loop-Mediated Isothermal Amplification for Sample-to-Answer Testing of Vibrio parahaemolyticus. Anal Chem 2021; 93:9728-9736. [PMID: 34228918 DOI: 10.1021/acs.analchem.1c00917] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Vibrio parahaemolyticus is usually spread via consumption of contaminated seafood and causes vibriosis. By combination of digital microfluidic (DMF) and loop-mediated isothermal amplification (LAMP), we provided an automated instrumentation-compact DMF-LAMP device for sample-to-answer detection of V. parahaemolyticus. For the first time, how much the proper mixing might facilitate the DMF-LAMP process is explored. The results illustrated that increasing the number of flow configurations and decreasing the fluid-reversibility will extend the interfacial surface available for diffusion-based mass transfer within a droplet microreactor, thus contributing to the overall amplification reaction rate. Noticeably, the DMF-LAMP amplification plateau time is shortened by proper mixing, from 60 min in static mixing and traditional bulk LAMP to 30 min in 2-electrode mixing and 15 min in 3-electrode mixing. The device achieved much higher detection sensitivity (two copies per reaction) than previously reported devices. V. parahaemolyticus from spiked shrimps is detected by Q-tip sampling associated with 3-electrode mixing DMF-LAMPs. The detectable signal occurs within only 3 min at a higher concentration and, at most, is delayed to 18 min, with a detection limit of <0.23 × 103 CFU/g. Thus, the developed DMF-LAMP device demonstrates potential for being used as a sample-to-answer system with a quick analysis time, high sensitivity, and sample-to-answer format.
Collapse
Affiliation(s)
- Guoxia Zheng
- Medical school, Dalian University, Dalian 116622, China.,Chemical and Environmental Engineering Institute, Dalian University, Dalian 116622, China
| | - Qian Gao
- Medical school, Dalian University, Dalian 116622, China
| | - Youwei Jiang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ling Lu
- Medical school, Dalian University, Dalian 116622, China
| | - Jianfeng Li
- Jiangsu Celyee Cell Technology, Research Institute Co., Nanjing 210000, China
| | - Xingcai Zhang
- Department of Physics, School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Hongyu Zhao
- Chemical and Environmental Engineering Institute, Dalian University, Dalian 116622, China
| | - Panpan Fan
- Medical school, Dalian University, Dalian 116622, China
| | - Yutong Cui
- Chemical and Environmental Engineering Institute, Dalian University, Dalian 116622, China
| | - Furong Gu
- Chemical and Environmental Engineering Institute, Dalian University, Dalian 116622, China
| | - Yunhua Wang
- Medical school, Dalian University, Dalian 116622, China
| |
Collapse
|
12
|
Zhang XH, Ahmad W, Zhu XY, Chen J, Austin B. Viable but nonculturable bacteria and their resuscitation: implications for cultivating uncultured marine microorganisms. MARINE LIFE SCIENCE & TECHNOLOGY 2021; 3:189-203. [PMID: 37073345 PMCID: PMC10077291 DOI: 10.1007/s42995-020-00041-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 03/25/2020] [Indexed: 05/03/2023]
Abstract
Culturing has been the cornerstone of microbiology since Robert Koch first successfully cultured bacteria in the late nineteenth century. However, even today, the majority of microorganisms in the marine environment remain uncultivated. There are various explanations for the inability to culture bacteria in the laboratory, including lack of essential nutrients, osmotic support or incubation conditions, low growth rate, development of micro-colonies, and the presence of senescent or viable but nonculturable (VBNC) cells. In the marine environment, many bacteria have been associated with dormancy, as typified by the VBNC state. VBNC refers to a state where bacteria are metabolically active, but are no longer culturable on routine growth media. It is apparently a unique survival strategy that has been adopted by many microorganisms in response to harsh environmental conditions and the bacterial cells in the VBNC state may regain culturability under favorable conditions. The resuscitation of VBNC cells may well be an important way to cultivate the otherwise uncultured microorganisms in marine environments. Many resuscitation stimuli that promote the restoration of culturability have so far been identified; these include sodium pyruvate, quorum sensing autoinducers, resuscitation-promoting factors Rpfs and YeaZ, and catalase. In this review, we focus on the issues associated with bacterial culturability, the diversity of bacteria entering the VBNC state, mechanisms of induction into the VBNC state, resuscitation factors of VBNC cells and implications of VBNC resuscitation stimuli for cultivating these otherwise uncultured microorganisms. Bringing important microorganisms into culture is still important in the era of high-throughput sequencing as their ecological functions in the marine environment can often only be known through isolation and cultivation.
Collapse
Affiliation(s)
- Xiao-Hua Zhang
- College of Marine Life Sciences and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071 China
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266100 China
| | - Waqar Ahmad
- College of Marine Life Sciences and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
| | - Xiao-Yu Zhu
- College of Marine Life Sciences and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
| | - Jixiang Chen
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, 730050 China
| | - Brian Austin
- Institute of Aquaculture, University of Stirling, Stirling, FK9 4LA Scotland, UK
| |
Collapse
|
13
|
Mishra S, Lin Z, Pang S, Zhang W, Bhatt P, Chen S. Recent Advanced Technologies for the Characterization of Xenobiotic-Degrading Microorganisms and Microbial Communities. Front Bioeng Biotechnol 2021; 9:632059. [PMID: 33644024 PMCID: PMC7902726 DOI: 10.3389/fbioe.2021.632059] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 01/11/2021] [Indexed: 12/16/2022] Open
Abstract
Global environmental contamination with a complex mixture of xenobiotics has become a major environmental issue worldwide. Many xenobiotic compounds severely impact the environment due to their high toxicity, prolonged persistence, and limited biodegradability. Microbial-assisted degradation of xenobiotic compounds is considered to be the most effective and beneficial approach. Microorganisms have remarkable catabolic potential, with genes, enzymes, and degradation pathways implicated in the process of biodegradation. A number of microbes, including Alcaligenes, Cellulosimicrobium, Microbacterium, Micrococcus, Methanospirillum, Aeromonas, Sphingobium, Flavobacterium, Rhodococcus, Aspergillus, Penecillium, Trichoderma, Streptomyces, Rhodotorula, Candida, and Aureobasidium, have been isolated and characterized, and have shown exceptional biodegradation potential for a variety of xenobiotic contaminants from soil/water environments. Microorganisms potentially utilize xenobiotic contaminants as carbon or nitrogen sources to sustain their growth and metabolic activities. Diverse microbial populations survive in harsh contaminated environments, exhibiting a significant biodegradation potential to degrade and transform pollutants. However, the study of such microbial populations requires a more advanced and multifaceted approach. Currently, multiple advanced approaches, including metagenomics, proteomics, transcriptomics, and metabolomics, are successfully employed for the characterization of pollutant-degrading microorganisms, their metabolic machinery, novel proteins, and catabolic genes involved in the degradation process. These technologies are highly sophisticated, and efficient for obtaining information about the genetic diversity and community structures of microorganisms. Advanced molecular technologies used for the characterization of complex microbial communities give an in-depth understanding of their structural and functional aspects, and help to resolve issues related to the biodegradation potential of microorganisms. This review article discusses the biodegradation potential of microorganisms and provides insights into recent advances and omics approaches employed for the specific characterization of xenobiotic-degrading microorganisms from contaminated environments.
Collapse
Affiliation(s)
- Sandhya Mishra
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Ziqiu Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shimei Pang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Wenping Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
14
|
Gao R, Liao X, Zhao X, Liu D, Ding T. The diagnostic tools for viable but nonculturable pathogens in the food industry: Current status and future prospects. Compr Rev Food Sci Food Saf 2021; 20:2146-2175. [PMID: 33484068 DOI: 10.1111/1541-4337.12695] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/21/2020] [Accepted: 12/28/2020] [Indexed: 12/21/2022]
Abstract
Viable but nonculturable (VBNC) microorganisms have been recognized as pathogenic contaminants in foods and environments. The failure of VBNC cells to form the visible colonies hinders the ability to use conventional media for their detection. Efficient and rapid detection of pathogens in the VBNC state is a prerequisite to ensure the food safety and public health. Despite their nonculturability, VBNC cells have distinct characteristics, such as morphology, metabolism, chemical composition, and gene and protein expression, that have been used as the basis for the development of abundant diagnostic tools. This review covers the current status and advances in various approaches for examining microorganisms in the VBNC state, including but not limited to the methodological aspects, advantages, and drawbacks of each technique. Existing methods, such as direct viable count, SYTO/PI dual staining, and propidium monoazide quantitative polymerase chain reaction (PCR), as well as some techniques with potential to be applied in the future, such as digital PCR, enhanced-surface Raman spectroscopy, and impedance-based techniques, are summarized in depth. Finally, future prospects for the one-step detection of VBNC bacteria are proposed and discussed. We believe that this review can provide more optional methods for researchers and promote the development of rapid, accurate detecting methods, and for inspectors, the diagnostic tools can provide data to undertake risk analysis of VBNC cells.
Collapse
Affiliation(s)
- Rui Gao
- Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xinyu Liao
- Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xihong Zhao
- Research Center for Environmental Ecology and Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Donghong Liu
- Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tian Ding
- Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
15
|
Chen H, Li YK, Zhang TT, Bi Y, Shu M, Zhong C, Tang KJ, Wu GP. A Novel Real-Time Loop-Mediated Isothermal Amplification Combined with Immunomagnetic Beads Separation and Ethidium Bromide Monoazide Treatment for Rapid and Ultrasensitive Detection of Viable Escherichia coli O157:H7 in Milk. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-020-01932-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Guan Y, Wang K, Zeng Y, Ye Y, Chen L, Huang T. Development of a Direct and Rapid Detection Method for Viable but Non-culturable State of Pediococcus acidilactici. Front Microbiol 2021; 12:687691. [PMID: 34276618 PMCID: PMC8283312 DOI: 10.3389/fmicb.2021.687691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/31/2021] [Indexed: 02/05/2023] Open
Abstract
Pediococcus acidilactici may significantly reduce the pH-value, and thus has different influence, including serving as a probiotic in human microbiota but a spoilage in human food as it could change the flavor. Pediococcus acidilactici is also capable of entering into the viable but non-culturable (VBNC) state causing false negative results of standard culture-based detection method. Thus, development of detection method for VBNC state P. acidilactici is of great significance. In this study, propidium monoazide (PMA) combined with cross priming amplification (CPA) was developed to detect the VBNC cells of P. acidilactici and applied on the detection in different systems. With detection limit of 104 cells/ml, high sensitivity, and 100% specificity, PMA-CPA can successfully detect VBNC cells of P. acidilactici and be applied in with high robustness.
Collapse
Affiliation(s)
- Yu Guan
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- *Correspondence: Yu Guan
| | - Kan Wang
- Center for Translational Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Yang Zeng
- Shantou University Medical College, Shantou, China
| | - Yanrui Ye
- School of Biological Science and Engineering, South China University of Technology, Guangzhou, China
| | - Ling Chen
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, China
| | - Tengyi Huang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
- Tengyi Huang
| |
Collapse
|
17
|
Li Y, Huang TY, Mao Y, Chen Y, Shi F, Peng R, Chen J, Yuan L, Bai C, Chen L, Wang K, Liu J. Study on the Viable but Non-culturable (VBNC) State Formation of Staphylococcus aureus and Its Control in Food System. Front Microbiol 2020; 11:599739. [PMID: 33324380 PMCID: PMC7726111 DOI: 10.3389/fmicb.2020.599739] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/14/2020] [Indexed: 02/05/2023] Open
Abstract
A Viable but non-culturable (VBNC) state is a bacterial survival strategy under reverse conditions. It poses a significant challenge for public health and food safety. In this study, the effect of external environmental conditions including acid, nutrition, and salt concentrations on the formation of S. aureus VBNC states at low temperatures were investigated. Different acidity and nutritional conditions were then applied to food products to control the VBNC state formation. Four different concentration levels of each factor (acid, nutrition, and salt) were selected in a total of 16 experimental groups. Nutrition showed the highest influence on the VBNC state formation S. aureus, followed by acid and salt. The addition of 1% acetic acid could directly kill S. aureus cells and inhibit the formation of the VBNC state with a nutrition concentration of 25, 50, and 100%. A propidium monoazide-polymerase chain reaction (PMA-PCR) assay was applied and considered as a rapid and sensitive method to detect S. aureus in VBNC state with the detection limit of 104 CFU/mL.
Collapse
Affiliation(s)
- Yanmei Li
- Department of Haematology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Teng-Yi Huang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Yuzhu Mao
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Yanni Chen
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Fan Shi
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Ruixin Peng
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Jinxuan Chen
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Lei Yuan
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Caiying Bai
- Guangdong Women and Children Hospital, Guangzhou, China
| | - Ling Chen
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Research Institute for Food Nutrition and Human Health, Guangzhou, China
| | - Kan Wang
- Research Center for Translational Medicine, The Second Affiliated Hospital, Medical College of Shantou University, Shantou, China
| | - Junyan Liu
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, United States
| |
Collapse
|
18
|
Copin S, Mougin J, Raguenet V, Robert-Pillot A, Midelet G, Grard T, Bonnin-Jusserand M. Ethidium and propidium monoazide: comparison of potential toxicity on Vibrio sp. viability. Lett Appl Microbiol 2020; 72:245-250. [PMID: 33058219 DOI: 10.1111/lam.13412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/07/2020] [Accepted: 10/07/2020] [Indexed: 11/29/2022]
Abstract
Vibrio sp., ubiquitous in the aquatic ecosystem, are bacteria of interest because of their involvement in human health, causing gastroenteritis after ingestion of seafood, as well as their role in vibriosis leading to severe losses in aquaculture production. Their ability to enter a viable but non-culturable (VBNC) state under stressful environmental conditions may lead to underestimation of the Vibrio population by traditional microbiological enumeration methods. As a result, using molecular methods in combination with EMA or PMA allows the detection of viable (VBNC and culturable viable) cells. In this study, the impact of the EMA and PMA was tested at different concentrations on the viability of several Vibrio species. We compared the toxicity of these two DNA-binding dyes to determine the best pretreatment to use with qPCR to discriminate between viable and dead Vibrio cells. Our results showed that EMA displayed lethal effects for each strain of V. cholerae and V. vulnificus tested. In contrast, the concentrations of PMA tested had no toxic effect on the viability of Vibrio cells studied. These results may help to achieve optimal PMA-qPCR methods to detect viable Vibrio sp. cells in food and environmental samples.
Collapse
Affiliation(s)
- S Copin
- Agence Nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail (ANSES), Laboratoire de sécurité des aliments, Boulogne-sur-Mer, France
| | - J Mougin
- Institut Charles Viollette, Univ. Littoral Côte d'Opale, UMR 1158 BioEcoAgro, USC ANSES, INRAE, Univ. Lille, Univ. Artois, Univ. Picardie Jules Verne, Univ. Liège, Yncréa, Boulogne-sur-Mer, France
| | - V Raguenet
- Agence Nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail (ANSES), Laboratoire de sécurité des aliments, Boulogne-sur-Mer, France
| | - A Robert-Pillot
- Institut Pasteur, Unité des Bactéries Pathogènes Entériques, Centre National de Référence des Vibrions et du Choléra, Paris, France
| | - G Midelet
- Agence Nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail (ANSES), Laboratoire de sécurité des aliments, Boulogne-sur-Mer, France
| | - T Grard
- Institut Charles Viollette, Univ. Littoral Côte d'Opale, UMR 1158 BioEcoAgro, USC ANSES, INRAE, Univ. Lille, Univ. Artois, Univ. Picardie Jules Verne, Univ. Liège, Yncréa, Boulogne-sur-Mer, France
| | - M Bonnin-Jusserand
- Institut Charles Viollette, Univ. Littoral Côte d'Opale, UMR 1158 BioEcoAgro, USC ANSES, INRAE, Univ. Lille, Univ. Artois, Univ. Picardie Jules Verne, Univ. Liège, Yncréa, Boulogne-sur-Mer, France
| |
Collapse
|
19
|
Liu C, Fang S, Tian Y, Ma J, Wang Z, Xu D, Li Y, Hou D, Liu Q. Rapid detection of
Escherichia coli
O157
:
H7
in milk, bread, and jelly by lac dye
coloration‐based
bidirectional lateral flow immunoassay strip. J Food Saf 2020. [DOI: 10.1111/jfs.12862] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Cheng Liu
- School of Medical Instrument and Food Engineering University of Shanghai for Science and Technology Shanghai China
| | - Shuiqin Fang
- School of Medical Instrument and Food Engineering University of Shanghai for Science and Technology Shanghai China
| | - Yachen Tian
- School of Medical Instrument and Food Engineering University of Shanghai for Science and Technology Shanghai China
| | - Junfei Ma
- School of Medical Instrument and Food Engineering University of Shanghai for Science and Technology Shanghai China
| | - Zheng Wang
- School of Medical Instrument and Food Engineering University of Shanghai for Science and Technology Shanghai China
| | - Dongpo Xu
- School of Medical Instrument and Food Engineering University of Shanghai for Science and Technology Shanghai China
| | - Ying Li
- Animal Product Quality Control Department China Animal Disease Control Centre Beijing China
| | - Dongjun Hou
- Animal Product Quality Control Department China Animal Disease Control Centre Beijing China
| | - Qing Liu
- School of Medical Instrument and Food Engineering University of Shanghai for Science and Technology Shanghai China
- Laboratory for Marine Fisheries Science and Food Production Processes Qingdao National Laboratory for Marine Science and Technology Qingdao China
| |
Collapse
|
20
|
Lv X, Wang L, Zhang J, Zeng H, Chen X, Shi L, Cui H, He X, Zhao L. Rapid and sensitive detection of VBNC Escherichia coli O157: H7 in beef by PMAxx and real-time LAMP. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107292] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
21
|
Lei S, Gu X, Zhong Q, Duan L, Zhou A. Absolute quantification of Vibrio parahaemolyticus by multiplex droplet digital PCR for simultaneous detection of tlh, tdh and ureR based on single intact cell. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107207] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
22
|
A Novel, Rapid, and Simple PMA-qPCR Method for Detection and Counting of Viable Brucella Organisms. J Vet Res 2020; 64:253-261. [PMID: 32587912 PMCID: PMC7305652 DOI: 10.2478/jvetres-2020-0033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 04/28/2020] [Indexed: 11/20/2022] Open
Abstract
Introduction The plate counting method widely used at present to discern viable from non-viable Brucella in the host or cell is time-consuming and laborious. Therefore, it is necessary to establish a rapid, simple method for detecting and counting viable Brucella organisms. Material and Methods Using propidium monoazide (PMA) to inhibit amplification of DNA from dead Brucella, a novel, rapid PMA-quantitative PCR (PMA-qPCR) detection method for counting viable Brucella was established. The standard recombinant plasmid with the target BCSP31 gene fragment inserted was constructed for drawing a standard curve. The reaction conditions were optimised, and the sensitivity, specificity, and repeatability were analysed. Results The optimal exposure time and working concentration of PMA were 10 min and 15 μg/mL, respectively. The correlation coefficient (R2) of the standard curve was 0.999. The sensitivity of the method was 103 CFU/mL, moreover, its specificity and repeatability also met the requirements. The concentration of B. suis measured by the PMA-qPCR did not differ significantly from that measured by the plate counting method, and the concentrations of viable bacteria in infected cells determined by the two methods were of the same order of magnitude. Conclusion In this study, a rapid and simple PMA-qPCR counting method for viable Brucella was established, which will facilitate related research.
Collapse
|
23
|
Rapid visual detection of Vibrio parahaemolyticus in seafood samples by loop-mediated isothermal amplification with hydroxynaphthol blue dye. World J Microbiol Biotechnol 2020; 36:76. [PMID: 32390085 DOI: 10.1007/s11274-020-02851-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 05/04/2020] [Indexed: 10/24/2022]
Abstract
The detection and monitoring of Vibrio parahaemolyticus pathogen in aquatic foods have become essential for preventing outbreaks. In this study, loop-mediated isothermal amplification (LAMP) assay with the azo dye, hydroxynaphthol blue (HNB) was developed targeting species-specific tlh gene. The assay was carried out on 62 seafood samples that included clam and shrimp and compared with conventional LAMP assay performed with the commonly used fluorescent dye, conventional PCR, and real-time PCR (RT-PCR). Of 62 samples studied for tlh gene, 32 (51.61%) gave positive by HNB-LAMP, which comprised 22 (70.96%) clam samples and 10 (32.25%) shrimp samples. The HNB-LAMP assay was found to be highly sensitive, specific, and superior to conventional PCR (p > 0.05). RT-PCR presented higher sensitivity than HNB-LAMP; however, it has the limitation of being cost-intensive and requiring technical expertise to perform. HNB-LAMP is affordable, rapid, simple, and easy to perform, allowing naked eye visualization.
Collapse
|
24
|
Yuan N, Zhang Y, Xu H, Zhou Z, Lu X, Chen T, Yang Q, Tan J, Zhang W. Development of the Saltatory Rolling Circle Amplification Assay for Rapid and Visual Detection of Alicyclobacillus acidoterrestris in Apple Juice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4538-4545. [PMID: 32208687 DOI: 10.1021/acs.jafc.0c00061] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A novel nucleic acid isothermal amplification method based on saltatory rolling circle amplification (SRCA) for rapid and visual detection of Alicyclobacillus acidoterrestris in apple juice was established. Fourteen A. acidoterrestris strains and 44 non-A. acidoterrestris strains were used to confirm the specificity. The sensitivity of SRCA was 4.5 × 101 CFU/mL by observing the white precipitate with the naked eye, while it was 4.5 × 100 CFU/mL by fluorescence visualization. The detection limit of SRCA in artificially inoculated apple juice was 7.1 × 101 and 7.1 × 100 CFU/mL via visualization of the white precipitate and fluorescence, respectively. Compared with the traditional PCR method, SRCA exhibited at least a 100-fold higher sensitivity and 100-fold lower detection limit. Seventy samples were investigated for A. acidoterrestris contamination, and the results showed 100% sensitivity, 97.01% specificity, and 97.14% accuracy compared with those by the conventional microbiological cultivation method. Overall, this method is a potentially useful tool for visual and rapid detection of A. acidoterrestris.
Collapse
Affiliation(s)
- Ning Yuan
- College of Science and Technology, Hebei Agricultural University, Cangzhou 061100, Hebei, China
| | - Yunzhe Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Hui Xu
- College of Science and Technology, Hebei Agricultural University, Cangzhou 061100, Hebei, China
| | - Zhijun Zhou
- Teaching experiment center, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Xin Lu
- College of Science and Technology, Hebei Agricultural University, Cangzhou 061100, Hebei, China
| | - Tingting Chen
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Qian Yang
- College of Science and Technology, Hebei Agricultural University, Cangzhou 061100, Hebei, China
| | - Jianxin Tan
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Wei Zhang
- College of Science and Technology, Hebei Agricultural University, Cangzhou 061100, Hebei, China
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, Hebei, China
- College of Life Sciences, Hebei Agricultural University, Baoding 071001, Hebei, China
| |
Collapse
|
25
|
Zhao L, Lv X, Cao X, Zhang J, Gu X, Zeng H, Wang L. Improved quantitative detection of VBNC Vibrio parahaemolyticus using immunomagnetic separation and PMAxx-qPCR. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106962] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
26
|
Han L, Wang K, Ma L, Delaquis P, Bach S, Feng J, Lu X. Viable but Nonculturable Escherichia coli O157:H7 and Salmonella enterica in Fresh Produce: Rapid Determination by Loop-Mediated Isothermal Amplification Coupled with a Propidium Monoazide Treatment. Appl Environ Microbiol 2020; 86:e02566-19. [PMID: 32005729 PMCID: PMC7082562 DOI: 10.1128/aem.02566-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/21/2020] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli O157:H7 and Salmonella enterica are leading causes of foodborne outbreaks linked to fresh produce. Both species can enter the "viable but nonculturable" (VBNC) state that precludes detection using conventional culture-based or molecular methods. In this study, we assessed propidium monoazide-quantitative PCR (PMA-qPCR) assays and novel methods combining PMA and loop-mediated isothermal amplification (LAMP) for the detection and quantification of VBNC E. coli O157:H7 and S. enterica in fresh produce. The performance of PMA-LAMP assays targeting the wzy gene of E. coli O157:H7 and the agfA gene of S. enterica and the performance of PMA-qPCR assays were compared in pure culture and spiked tomato, lettuce, and spinach. No cross-reaction was observed in the specificity tests. The values representing the limit of detection (LOD) seen with PMA-LAMP were 9.0 CFU/reaction for E. coli O157:H7 and 4.6 CFU/reaction for S. enterica in pure culture and were 5.13 × 103 or 5.13 × 104 CFU/g for VBNC E. coli O157:H7 and 1.05 × 104 or 1.05 × 105 CFU/g for VBNC S. enterica in fresh produce, representing results comparable to those obtained by PMA-qPCR. Standard curves showed correlation coefficients ranging from 0.925 to 0.996, indicating a good quantitative capacity of PMA-LAMP for determining populations of both bacterial species in the VBNC state. The PMA-LAMP assay was completed with considerable economy of time (30 min versus 1 h) and achieved sensitivity and quantitative capacity comparable to those seen with a PMA-qPCR assay. PMA-LAMP is a rapid, sensitive, and robust method for the detection and quantification of VBNC E. coli O157:H7 and S. enterica in fresh produce.IMPORTANCE VBNC pathogenic bacteria pose a potential risk to the food industry because they do not multiply on routine microbiological media and thus can evade detection in conventional plating assays. Both E. coli O157:H7 and S. enterica have been reported to enter the VBNC state under a range of environmental stress conditions and to resuscitate under favorable conditions and are a potential cause of human infections. PMA-LAMP methods developed in this study provide a rapid, sensitive, and specific way to determine levels of VBNC E. coli O157:H7 and S. enterica in fresh produce, which potentially decreases the risks related to the consumption of fresh produce contaminated by enteric pathogens in this state. PMA-LAMP can be further applied in the field study to enhance our understanding of the fate of VBNC pathogens in the preharvest and postharvest stages of fresh produce.
Collapse
Affiliation(s)
- Lu Han
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Kaidi Wang
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Lina Ma
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Pascal Delaquis
- Agriculture and Agri-Food Canada, Summerland Research and Development Centre, Summerland, British Columbia, Canada
| | - Susan Bach
- Agriculture and Agri-Food Canada, Summerland Research and Development Centre, Summerland, British Columbia, Canada
| | - Jinsong Feng
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
- Michael Smith Laboratories, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Xiaonan Lu
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
27
|
Chen S, Gong P, Zhang J, Shan Y, Han X, Zhang L. Quantitative analysis of Lactobacillus delbrueckii subsp. bulgaricus cell division and death using fluorescent dye tracking. J Microbiol Methods 2020; 169:105832. [DOI: 10.1016/j.mimet.2020.105832] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 12/29/2019] [Accepted: 01/01/2020] [Indexed: 12/30/2022]
|
28
|
Rapid and Sensitive Detection of Viable but Non-culturable Salmonella Induced by Low Temperature from Chicken Using EMA-Rti-LAMP Combined with BCAC. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01655-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
29
|
Zhou P, Xie G, Liang T, Yu B, Aguilar Z, Xu H. Rapid and quantitative detection of viable emetic Bacillus cereus by PMA-qPCR assay in milk. Mol Cell Probes 2019; 47:101437. [DOI: 10.1016/j.mcp.2019.101437] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/14/2019] [Accepted: 08/14/2019] [Indexed: 02/07/2023]
|
30
|
Detection of viable but nonculturable Vibrio parahaemolyticus in shrimp samples using improved real-time PCR and real-time LAMP methods. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.04.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Kan Y, Jiang N, Xu X, Lyu Q, Gopalakrishnan V, Walcott R, Burdman S, Li J, Luo L. Induction and Resuscitation of the Viable but Non-culturable (VBNC) State in Acidovorax citrulli, the Causal Agent of Bacterial Fruit Blotch of Cucurbitaceous Crops. Front Microbiol 2019; 10:1081. [PMID: 31156591 PMCID: PMC6529555 DOI: 10.3389/fmicb.2019.01081] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/29/2019] [Indexed: 01/14/2023] Open
Abstract
Acidovorax citrulli is a gram-negative bacterium that infects a wide range of cucurbits causing bacterial fruit blotch (BFB) disease. Copper-based compounds are the most widely-used chemicals for managing BFB and other bacterial diseases in the field. Many bacteria can enter a viable but non-culturable (VBNC) state in response to stress, including exposure to copper, and recover the culturability when favorable conditions return. The present study demonstrates that A. citrulli strain AAC00-1 is able to enter into the VBNC state by treatment with different concentrations of copper sulfate. It took 3 h, 5 and 15 days for all viable cells to lose culturability upon exposure to copper sulfate concentrations of 50, 10, and 5 μM, respectively. The VBNC A. citrulli cells regained culturability when the Cu2+ ions were removed by chelation with EDTA or by transfer of cells to LB broth, a cell-free supernatant from a suspension of AAC00-1, oligotrophic media amended with casein hydrolysate or watermelon seedling juice. We also found that the VBNC cells induced by Cu2+ were unable to colonize or infect watermelon seedlings directly, but the resuscitated cells recovered full virulence equivalent to untreated bacterial cells in the log phase. To the best of our knowledge, this is the first report on the VBNC state in A. citrulli and the factors that facilitate resuscitation and restoration of pathogenicity.
Collapse
Affiliation(s)
- Yumin Kan
- Department of Plant Pathology, China Agricultural University, Beijing Key Laboratory of Seed Disease Testing and Control, Beijing, China
| | - Na Jiang
- Department of Plant Pathology, China Agricultural University, Beijing Key Laboratory of Seed Disease Testing and Control, Beijing, China
| | - Xin Xu
- Department of Plant Pathology, China Agricultural University, Beijing Key Laboratory of Seed Disease Testing and Control, Beijing, China
| | - Qingyang Lyu
- Department of Plant Pathology, China Agricultural University, Beijing Key Laboratory of Seed Disease Testing and Control, Beijing, China
| | - Vinoj Gopalakrishnan
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Ronald Walcott
- Department of Plant Pathology, University of Georgia, Athens, GA, United States
| | - Saul Burdman
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Jianqiang Li
- Department of Plant Pathology, China Agricultural University, Beijing Key Laboratory of Seed Disease Testing and Control, Beijing, China
| | - Laixin Luo
- Department of Plant Pathology, China Agricultural University, Beijing Key Laboratory of Seed Disease Testing and Control, Beijing, China
| |
Collapse
|
32
|
Zhong Q, Wang B, Wang J, Liu Y, Fang X, Liao Z. Global Proteomic Analysis of the Resuscitation State of Vibrio parahaemolyticus Compared With the Normal and Viable but Non-culturable State. Front Microbiol 2019; 10:1045. [PMID: 31134040 PMCID: PMC6517545 DOI: 10.3389/fmicb.2019.01045] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/25/2019] [Indexed: 11/24/2022] Open
Abstract
Vibrio parahaemolyticus is a common pathogen which has become a major concern of seafood products. The bacteria in the viable but non-culturable (VBNC) state are unable to form colonies on growth media, but under appropriate conditions they can regain culturability. In this study, V. parahaemolyticus was induced into VBNC state at low temperature and oligotrophic condition, and was resuscitated to culturable state. The aim of this study is to explore the comparative proteomic profiles of the resuscitation state compared with the VBNC state and the exponential phase of V. parahaemolyticus using isobaric tags for relative and absolute quantitation (iTRAQ) technique. The differentially expressed proteins (DEPs) were subjected to GO functional annotations and KEGG pathway analysis. The results indicated that a total of 429 proteins were identified as the significant DEPs in the resuscitation cells compared with the VBNC cells, including 330 up-regulated and 99 down-regulated DEPs. Meanwhile, the resuscitation cells displayed 25 up-regulated and 36 down-regulated DEPs (total of 61 DEPs) in comparison with the exponential phase cells. The remarkable DEPs including ribosomal proteins, ABC transporters, outer membrane proteins and flagellar proteins. GO annotation showed that the 429 DEPs were classified into 37 GO terms, of which 17 biological process (BP) terms, 9 cellular component (CC) terms and 11 molecular function (MF) terms. The up-regulated proteins presented in all GO terms except two terms of developmental process and reproduction. The 61 DEPs were assigned to 23 GO terms, the up- and down-regulated DEPs were both mainly involved in cellular process, establishment of localization, metabolic process and so on. KEGG pathway analysis revealed that the 429 DEPs were assigned to 35 KEGG pathways, and the pathways of ribosome, glyoxylate and dicarboxylate metabolism were significantly enriched. Moreover, the 61 DEPs located in 26 KEGG pathways, including the significantly enriched KEGG pathways of ABC transporters and two-component system. This study would contribute to a better understanding of the molecular mechanism underlying the resuscitation of the VBNC state of V. parahaemolyticus.
Collapse
Affiliation(s)
- Qingping Zhong
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China.,SCAU (Chaozhou) Food Institute Co. Ltd., Chaozhou, China
| | - Bin Wang
- Guangdong Scau Assets Management Co., Ltd., South China Agricultural University, Guangzhou, China
| | - Jie Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yufei Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Xiang Fang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Zhenlin Liao
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
33
|
Vidic J, Vizzini P, Manzano M, Kavanaugh D, Ramarao N, Zivkovic M, Radonic V, Knezevic N, Giouroudi I, Gadjanski I. Point-of-Need DNA Testing for Detection of Foodborne Pathogenic Bacteria. SENSORS (BASEL, SWITZERLAND) 2019; 19:E1100. [PMID: 30836707 PMCID: PMC6427207 DOI: 10.3390/s19051100] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 12/18/2022]
Abstract
Foodborne pathogenic bacteria present a crucial food safety issue. Conventional diagnostic methods are time-consuming and can be only performed on previously produced food. The advancing field of point-of-need diagnostic devices integrating molecular methods, biosensors, microfluidics, and nanomaterials offers new avenues for swift, low-cost detection of pathogens with high sensitivity and specificity. These analyses and screening of food items can be performed during all phases of production. This review presents major developments achieved in recent years in point-of-need diagnostics in land-based sector and sheds light on current challenges in achieving wider acceptance of portable devices in the food industry. Particular emphasis is placed on methods for testing nucleic acids, protocols for portable nucleic acid extraction and amplification, as well as on the means for low-cost detection and read-out signal amplification.
Collapse
Affiliation(s)
- Jasmina Vidic
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France.
| | - Priya Vizzini
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France.
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università di Udine, 33100 Udine, Italy.
| | - Marisa Manzano
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università di Udine, 33100 Udine, Italy.
| | - Devon Kavanaugh
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France.
| | - Nalini Ramarao
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France.
| | - Milica Zivkovic
- Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, 11000 Belgrade, Serbia.
| | - Vasa Radonic
- BioSense-Research and Development Institute for Information Technologies in Biosystems, University of Novi Sad, 21000 Novi Sad, Serbia.
| | - Nikola Knezevic
- BioSense-Research and Development Institute for Information Technologies in Biosystems, University of Novi Sad, 21000 Novi Sad, Serbia.
| | - Ioanna Giouroudi
- BioSense-Research and Development Institute for Information Technologies in Biosystems, University of Novi Sad, 21000 Novi Sad, Serbia.
| | - Ivana Gadjanski
- BioSense-Research and Development Institute for Information Technologies in Biosystems, University of Novi Sad, 21000 Novi Sad, Serbia.
| |
Collapse
|
34
|
Song S, Wang X, Xu K, Xia G, Yang X. Visualized Detection of Vibrio parahaemolyticus in Food Samples Using Dual-Functional Aptamers and Cut-Assisted Rolling Circle Amplification. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:1244-1253. [PMID: 30608683 DOI: 10.1021/acs.jafc.8b04913] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A biosensor using two aptamers (Dual-Apt) and cut-assisted rolling circle amplification (CA-RCA) for rapid and visualized detection of Vibrio parahaemolyticus was established. The anchoring aptamer (A-Apt) that specifically binds to the surface of V. parahaemolyticus was applied to separate and enrich the bacterium from the food matrix with the help of streptavidin magnetic beads. While the detecting aptamer (D-Apt), binding on the different sites of the cell surface, was used as a signal reporter. CA-RCA with an enhanced amplification rate was fabricated here to amplify the D-Apt to produce the monomeric G4 sequence that catalyzes the oxidation of ABTS2-, resulting in the coloration visible to the naked eye. Under optimal conditions, as low as 10 colony-forming units (CFU)/mL (g) of V. parahaemolyticus can be visibly detected in real food samples. Free from DNA extraction, visualized signal output and no need for expensive instruments enable Dual-Apt and CA-RCA to be a promising strategy for on-spot rapid detection.
Collapse
Affiliation(s)
- Shixi Song
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science , Shaanxi Normal University , Xi'an , Shaanxi 710062 , People's Republic of China
| | - Xingyu Wang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science , Shaanxi Normal University , Xi'an , Shaanxi 710062 , People's Republic of China
| | - Ke Xu
- Department of Joint Surgery, Hong Hui Hospital , Xi'an Jiaotong University , Xi'an , Shaanxi 710054 , People's Republic of China
| | - Guanmei Xia
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science , Shaanxi Normal University , Xi'an , Shaanxi 710062 , People's Republic of China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science , Shaanxi Normal University , Xi'an , Shaanxi 710062 , People's Republic of China
| |
Collapse
|
35
|
Anupama KP, Chakraborty A, Karunasagar I, Karunasagar I, Maiti B. Loop-mediated isothermal amplification assay as a point-of-care diagnostic tool for Vibrio parahaemolyticus: recent developments and improvements. Expert Rev Mol Diagn 2019; 19:229-239. [PMID: 30657706 DOI: 10.1080/14737159.2019.1571913] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
INTRODUCTION A number of DNA-based diagnostic tools have been developed for the detection of Vibrio parahaemolyticus in seafood. However, the loop-mediated isothermal amplification (LAMP) has distinct advantages with regards to its simplicity, speed and the ease of performing without any need for sophisticated equipment. Over the last decade, LAMP has emerged as a potential tool for the detection of V. parahaemolyticus. Area covered: The literature search was restricted to LAMP assay and its variants for the detection of V. parahaemolyticus. The focus in this review is to enlist the various techniques that have been developed using the principle of the LAMP towards improved simplicity, sensitivity and specificity of the assay. Expert commentary: LAMP assay and its variants are significantly faster and require minimum accessories compared to other DNA based molecular techniques such as PCR and their types. Despite the availability of several versions, LAMP-based diagnostics is not the first choice for the detection of V. parahaemolyticus in the seafood sector. Our recommendation would be to explore the possibilities of developing cost-effective LAMP kits and implementing these kits as point-of-care diagnostic tools for rapid and sensitive detection of pathogenic V. parahaemolyticus.
Collapse
Affiliation(s)
- Karanth Padyana Anupama
- a Division of Infectious Diseases , Nitte University Centre for Science Education and Research , Mangaluru , India
| | - Anirban Chakraborty
- b Division of Molecular Genetics and Cancer , Nitte University Centre for Science Education and Research , Mangaluru , India
| | - Iddya Karunasagar
- c NITTE (Deemed to be University), University Enclave , Mangaluru, Medical Sciences Complex , India
| | - Indrani Karunasagar
- a Division of Infectious Diseases , Nitte University Centre for Science Education and Research , Mangaluru , India.,c NITTE (Deemed to be University), University Enclave , Mangaluru, Medical Sciences Complex , India
| | - Biswajit Maiti
- a Division of Infectious Diseases , Nitte University Centre for Science Education and Research , Mangaluru , India
| |
Collapse
|
36
|
Detection and Evaluation of Viable but Non-culturable Escherichia coli O157:H7 Induced by Low Temperature with a BCAC-EMA-Rti-LAMP Assay in Chicken Without Enrichment. FOOD ANAL METHOD 2018. [DOI: 10.1007/s12161-018-1377-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Liu Y, Zhong Q, Wang J, Lei S. Enumeration of Vibrio parahaemolyticus in VBNC state by PMA-combined real-time quantitative PCR coupled with confirmation of respiratory activity. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.03.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
38
|
Guo Z, Jia Y, Song X, Lu J, Lu X, Liu B, Han J, Huang Y, Zhang J, Chen T. Giant Gold Nanowire Vesicle-Based Colorimetric and SERS Dual-Mode Immunosensor for Ultrasensitive Detection of Vibrio parahemolyticus. Anal Chem 2018; 90:6124-6130. [PMID: 29701459 DOI: 10.1021/acs.analchem.8b00292] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Conventional methods for the detection of Vibrio parahemolyticus (VP) usually need tedious, labor-intensive processes, and have low sensitivity, which further limits their practical applications. Herein, we developed a simple and efficient colorimetry and surface-enhanced Raman scattering (SERS) dual-mode immunosensor for sensitive detection of VP, by employing giant Au vesicles with anchored tiny gold nanowires (AuNW) as a smart probe. Due to the larger specific surface and special hollow structure of giant Au vesicles, silver staining would easily lead to vivid color change for colorimetric analysis and further amplify SERS signals. The t-test was further used to determine if two sets of data from colorimetry and SERS were significantly different from each other. The result shows that there was no significant difference between data from the two methods. Two sets of data can mutually validate each other and avoid false positive and negative detection. The designed colorimetry-SERS dual-mode sensor would be very promising in various applications such as food safety inspection, personal healthcare, and on-site environmental monitoring.
Collapse
Affiliation(s)
- Zhiyong Guo
- Faculty of Materials Science and Chemical Engineering , Ningbo University , Ningbo 315211 , P.R. China
| | - Yaru Jia
- Faculty of Materials Science and Chemical Engineering , Ningbo University , Ningbo 315211 , P.R. China.,Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Division of Polymer and Composite Materials , Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences , Ningbo 315201 , P. R. China
| | - Xinxin Song
- Faculty of Materials Science and Chemical Engineering , Ningbo University , Ningbo 315211 , P.R. China
| | - Jing Lu
- Faculty of Materials Science and Chemical Engineering , Ningbo University , Ningbo 315211 , P.R. China
| | - Xuefei Lu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Division of Polymer and Composite Materials , Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences , Ningbo 315201 , P. R. China
| | - Baoqing Liu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Division of Polymer and Composite Materials , Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences , Ningbo 315201 , P. R. China
| | - Jiaojiao Han
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Division of Polymer and Composite Materials , Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences , Ningbo 315201 , P. R. China
| | - Youju Huang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Division of Polymer and Composite Materials , Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences , Ningbo 315201 , P. R. China.,Max Planck Institute for Polymer Research , Ackermannweg 10 , 55128 Mainz , Germany
| | - Jiawei Zhang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Division of Polymer and Composite Materials , Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences , Ningbo 315201 , P. R. China
| | - Tao Chen
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Division of Polymer and Composite Materials , Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences , Ningbo 315201 , P. R. China
| |
Collapse
|
39
|
Rapid Detection of Vibrio parahaemolyticus in Shellfish by Real-Time Recombinase Polymerase Amplification. FOOD ANAL METHOD 2018. [DOI: 10.1007/s12161-018-1188-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
40
|
|
41
|
Loop-mediated isothermal amplification for visual detection of Vibrio parahaemolyticus using gold nanoparticles. Mikrochim Acta 2017; 185:35. [DOI: 10.1007/s00604-017-2594-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/27/2017] [Indexed: 02/06/2023]
|
42
|
Bonnin-Jusserand M, Copin S, Le Bris C, Brauge T, Gay M, Brisabois A, Grard T, Midelet-Bourdin G. Vibrio species involved in seafood-borne outbreaks (Vibrio cholerae, V. parahaemolyticus and V. vulnificus): Review of microbiological versus recent molecular detection methods in seafood products. Crit Rev Food Sci Nutr 2017; 59:597-610. [DOI: 10.1080/10408398.2017.1384715] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Maryse Bonnin-Jusserand
- Univ. Littoral Côte d'Opale, convention ANSES, EA 7394 – ICV – Institut Charles Viollette, Boulogne-sur-Mer, France
- INRA, France
- Univ. Lille, Lille, France
- ISA, Lille, France
- Univ. Artois, Arras, France
| | - Stéphanie Copin
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Laboratory for Food Safety, Boulevard du Bassin Napoléon, Boulogne-sur-Mer, France
| | - Cédric Le Bris
- Univ. Littoral Côte d'Opale, convention ANSES, EA 7394 – ICV – Institut Charles Viollette, Boulogne-sur-Mer, France
| | - Thomas Brauge
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Laboratory for Food Safety, Boulevard du Bassin Napoléon, Boulogne-sur-Mer, France
| | - Mélanie Gay
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Laboratory for Food Safety, Boulevard du Bassin Napoléon, Boulogne-sur-Mer, France
| | - Anne Brisabois
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Laboratory for Food Safety, Boulevard du Bassin Napoléon, Boulogne-sur-Mer, France
| | - Thierry Grard
- Univ. Littoral Côte d'Opale, convention ANSES, EA 7394 – ICV – Institut Charles Viollette, Boulogne-sur-Mer, France
| | - Graziella Midelet-Bourdin
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Laboratory for Food Safety, Boulevard du Bassin Napoléon, Boulogne-sur-Mer, France
| |
Collapse
|
43
|
Li Y, Yang L, Fu J, Yan M, Chen D, Zhang L. The novel loop-mediated isothermal amplification based confirmation methodology on the bacteria in Viable but Non-Culturable (VBNC) state. Microb Pathog 2017; 111:280-284. [DOI: 10.1016/j.micpath.2017.09.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 09/03/2017] [Accepted: 09/05/2017] [Indexed: 01/28/2023]
|
44
|
Selective turn-on fluorescence detection of Vibrio parahaemolyticus in food based on charge-transfer between CdSe/ZnS quantum dots and gold nanoparticles. Food Control 2017. [DOI: 10.1016/j.foodcont.2017.05.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
45
|
Zhao X, Zhong J, Wei C, Lin CW, Ding T. Current Perspectives on Viable but Non-culturable State in Foodborne Pathogens. Front Microbiol 2017; 8:580. [PMID: 28421064 PMCID: PMC5378802 DOI: 10.3389/fmicb.2017.00580] [Citation(s) in RCA: 198] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 03/21/2017] [Indexed: 01/24/2023] Open
Abstract
The viable but non-culturable (VBNC) state, a unique state in which a number of bacteria respond to adverse circumstances, was first discovered in 1982. Unfortunately, it has been reported that many foodborne pathogens can be induced to enter the VBNC state by the limiting environmental conditions during food processing and preservation, such as extreme temperatures, drying, irradiation, pulsed electric field, and high pressure stress, as well as the addition of preservatives and disinfectants. After entering the VBNC state, foodborne pathogens will introduce a serious crisis to food safety and public health because they cannot be detected using conventional plate counting techniques. This review provides an overview of the various features of the VBNC state, including the biological characteristics, induction and resuscitation factors, formation and resuscitation mechanisms, detection methods, and relationship to food safety.
Collapse
Affiliation(s)
- Xihong Zhao
- Key Laboratory for Green Chemical Process of Ministry of Education, Key Laboratory for Hubei Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of TechnologyWuhan, China
| | - Junliang Zhong
- Key Laboratory for Green Chemical Process of Ministry of Education, Key Laboratory for Hubei Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of TechnologyWuhan, China
| | - Caijiao Wei
- Key Laboratory for Green Chemical Process of Ministry of Education, Key Laboratory for Hubei Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of TechnologyWuhan, China
| | - Chii-Wann Lin
- Institute of Biomedical Engineering, National Taiwan UniversityTaipei, Taiwan
| | - Tian Ding
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang UniversityHangzhou, China
| |
Collapse
|
46
|
SONG X, WU Y, WU L, HU Y, LI W, GUO Z, SU X, JIANG X. Christmas-tree Derived Amplification Immuno-strategy for Sensitive Visual Detection of Vibrio parahaemolyticus Based on Gold Label Silver Stain Technology. ANAL SCI 2017; 33:889-895. [DOI: 10.2116/analsci.33.889] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Xinxin SONG
- Faculty of Materials Science and Chemical Engineering, Ningbo University
| | - Yanjie WU
- Faculty of Materials Science and Chemical Engineering, Ningbo University
| | - Lin WU
- Faculty of Materials Science and Chemical Engineering, Ningbo University
| | - Yufang HU
- Faculty of Materials Science and Chemical Engineering, Ningbo University
| | - Wenrou LI
- Faculty of Materials Science and Chemical Engineering, Ningbo University
| | - Zhiyong GUO
- Faculty of Materials Science and Chemical Engineering, Ningbo University
| | - Xiurong SU
- School of Marine Sciences, Ningbo University
| | - Xiaohua JIANG
- School of Applied Chemistry and Biological Technology, Shenzhen Polytechnic
| |
Collapse
|